]> git.karo-electronics.de Git - linux-beck.git/blob - drivers/net/wireless/rt2x00/rt2x00dev.c
Merge remote branch 'gcl/next' into next
[linux-beck.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3         Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4         <http://rt2x00.serialmonkey.com>
5
6         This program is free software; you can redistribute it and/or modify
7         it under the terms of the GNU General Public License as published by
8         the Free Software Foundation; either version 2 of the License, or
9         (at your option) any later version.
10
11         This program is distributed in the hope that it will be useful,
12         but WITHOUT ANY WARRANTY; without even the implied warranty of
13         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14         GNU General Public License for more details.
15
16         You should have received a copy of the GNU General Public License
17         along with this program; if not, write to the
18         Free Software Foundation, Inc.,
19         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20  */
21
22 /*
23         Module: rt2x00lib
24         Abstract: rt2x00 generic device routines.
25  */
26
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30
31 #include "rt2x00.h"
32 #include "rt2x00lib.h"
33
34 /*
35  * Radio control handlers.
36  */
37 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
38 {
39         int status;
40
41         /*
42          * Don't enable the radio twice.
43          * And check if the hardware button has been disabled.
44          */
45         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
46                 return 0;
47
48         /*
49          * Initialize all data queues.
50          */
51         rt2x00queue_init_queues(rt2x00dev);
52
53         /*
54          * Enable radio.
55          */
56         status =
57             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
58         if (status)
59                 return status;
60
61         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
62
63         rt2x00leds_led_radio(rt2x00dev, true);
64         rt2x00led_led_activity(rt2x00dev, true);
65
66         set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
67
68         /*
69          * Enable RX.
70          */
71         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
72
73         /*
74          * Start watchdog monitoring.
75          */
76         rt2x00link_start_watchdog(rt2x00dev);
77
78         /*
79          * Start the TX queues.
80          */
81         ieee80211_wake_queues(rt2x00dev->hw);
82
83         return 0;
84 }
85
86 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
87 {
88         if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
89                 return;
90
91         /*
92          * Stop the TX queues in mac80211.
93          */
94         ieee80211_stop_queues(rt2x00dev->hw);
95         rt2x00queue_stop_queues(rt2x00dev);
96
97         /*
98          * Stop watchdog monitoring.
99          */
100         rt2x00link_stop_watchdog(rt2x00dev);
101
102         /*
103          * Disable RX.
104          */
105         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
106
107         /*
108          * Disable radio.
109          */
110         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
111         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
112         rt2x00led_led_activity(rt2x00dev, false);
113         rt2x00leds_led_radio(rt2x00dev, false);
114 }
115
116 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
117 {
118         /*
119          * When we are disabling the RX, we should also stop the link tuner.
120          */
121         if (state == STATE_RADIO_RX_OFF)
122                 rt2x00link_stop_tuner(rt2x00dev);
123
124         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
125
126         /*
127          * When we are enabling the RX, we should also start the link tuner.
128          */
129         if (state == STATE_RADIO_RX_ON)
130                 rt2x00link_start_tuner(rt2x00dev);
131 }
132
133 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
134                                           struct ieee80211_vif *vif)
135 {
136         struct rt2x00_dev *rt2x00dev = data;
137         struct rt2x00_intf *intf = vif_to_intf(vif);
138         int delayed_flags;
139
140         /*
141          * Copy all data we need during this action under the protection
142          * of a spinlock. Otherwise race conditions might occur which results
143          * into an invalid configuration.
144          */
145         spin_lock(&intf->lock);
146
147         delayed_flags = intf->delayed_flags;
148         intf->delayed_flags = 0;
149
150         spin_unlock(&intf->lock);
151
152         /*
153          * It is possible the radio was disabled while the work had been
154          * scheduled. If that happens we should return here immediately,
155          * note that in the spinlock protected area above the delayed_flags
156          * have been cleared correctly.
157          */
158         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
159                 return;
160
161         if (delayed_flags & DELAYED_UPDATE_BEACON)
162                 rt2x00queue_update_beacon(rt2x00dev, vif, true);
163 }
164
165 static void rt2x00lib_intf_scheduled(struct work_struct *work)
166 {
167         struct rt2x00_dev *rt2x00dev =
168             container_of(work, struct rt2x00_dev, intf_work);
169
170         /*
171          * Iterate over each interface and perform the
172          * requested configurations.
173          */
174         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
175                                             rt2x00lib_intf_scheduled_iter,
176                                             rt2x00dev);
177 }
178
179 /*
180  * Interrupt context handlers.
181  */
182 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
183                                      struct ieee80211_vif *vif)
184 {
185         struct rt2x00_dev *rt2x00dev = data;
186         struct sk_buff *skb;
187
188         /*
189          * Only AP mode interfaces do broad- and multicast buffering
190          */
191         if (vif->type != NL80211_IFTYPE_AP)
192                 return;
193
194         /*
195          * Send out buffered broad- and multicast frames
196          */
197         skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
198         while (skb) {
199                 rt2x00mac_tx(rt2x00dev->hw, skb);
200                 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
201         }
202 }
203
204 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
205                                         struct ieee80211_vif *vif)
206 {
207         struct rt2x00_dev *rt2x00dev = data;
208
209         if (vif->type != NL80211_IFTYPE_AP &&
210             vif->type != NL80211_IFTYPE_ADHOC &&
211             vif->type != NL80211_IFTYPE_MESH_POINT &&
212             vif->type != NL80211_IFTYPE_WDS)
213                 return;
214
215         rt2x00queue_update_beacon(rt2x00dev, vif, true);
216 }
217
218 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
219 {
220         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
221                 return;
222
223         /* send buffered bc/mc frames out for every bssid */
224         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
225                                             rt2x00lib_bc_buffer_iter,
226                                             rt2x00dev);
227         /*
228          * Devices with pre tbtt interrupt don't need to update the beacon
229          * here as they will fetch the next beacon directly prior to
230          * transmission.
231          */
232         if (test_bit(DRIVER_SUPPORT_PRE_TBTT_INTERRUPT, &rt2x00dev->flags))
233                 return;
234
235         /* fetch next beacon */
236         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
237                                             rt2x00lib_beaconupdate_iter,
238                                             rt2x00dev);
239 }
240 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
241
242 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
243 {
244         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
245                 return;
246
247         /* fetch next beacon */
248         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
249                                             rt2x00lib_beaconupdate_iter,
250                                             rt2x00dev);
251 }
252 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
253
254 void rt2x00lib_dmadone(struct queue_entry *entry)
255 {
256         clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
257         rt2x00queue_index_inc(entry->queue, Q_INDEX_DMA_DONE);
258 }
259 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
260
261 void rt2x00lib_txdone(struct queue_entry *entry,
262                       struct txdone_entry_desc *txdesc)
263 {
264         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
265         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
266         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
267         enum data_queue_qid qid = skb_get_queue_mapping(entry->skb);
268         unsigned int header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
269         u8 rate_idx, rate_flags, retry_rates;
270         u8 skbdesc_flags = skbdesc->flags;
271         unsigned int i;
272         bool success;
273
274         /*
275          * Unmap the skb.
276          */
277         rt2x00queue_unmap_skb(entry);
278
279         /*
280          * Remove the extra tx headroom from the skb.
281          */
282         skb_pull(entry->skb, rt2x00dev->ops->extra_tx_headroom);
283
284         /*
285          * Signal that the TX descriptor is no longer in the skb.
286          */
287         skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
288
289         /*
290          * Remove L2 padding which was added during
291          */
292         if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
293                 rt2x00queue_remove_l2pad(entry->skb, header_length);
294
295         /*
296          * If the IV/EIV data was stripped from the frame before it was
297          * passed to the hardware, we should now reinsert it again because
298          * mac80211 will expect the same data to be present it the
299          * frame as it was passed to us.
300          */
301         if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags))
302                 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
303
304         /*
305          * Send frame to debugfs immediately, after this call is completed
306          * we are going to overwrite the skb->cb array.
307          */
308         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
309
310         /*
311          * Determine if the frame has been successfully transmitted.
312          */
313         success =
314             test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
315             test_bit(TXDONE_UNKNOWN, &txdesc->flags);
316
317         /*
318          * Update TX statistics.
319          */
320         rt2x00dev->link.qual.tx_success += success;
321         rt2x00dev->link.qual.tx_failed += !success;
322
323         rate_idx = skbdesc->tx_rate_idx;
324         rate_flags = skbdesc->tx_rate_flags;
325         retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
326             (txdesc->retry + 1) : 1;
327
328         /*
329          * Initialize TX status
330          */
331         memset(&tx_info->status, 0, sizeof(tx_info->status));
332         tx_info->status.ack_signal = 0;
333
334         /*
335          * Frame was send with retries, hardware tried
336          * different rates to send out the frame, at each
337          * retry it lowered the rate 1 step except when the
338          * lowest rate was used.
339          */
340         for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
341                 tx_info->status.rates[i].idx = rate_idx - i;
342                 tx_info->status.rates[i].flags = rate_flags;
343
344                 if (rate_idx - i == 0) {
345                         /*
346                          * The lowest rate (index 0) was used until the
347                          * number of max retries was reached.
348                          */
349                         tx_info->status.rates[i].count = retry_rates - i;
350                         i++;
351                         break;
352                 }
353                 tx_info->status.rates[i].count = 1;
354         }
355         if (i < (IEEE80211_TX_MAX_RATES - 1))
356                 tx_info->status.rates[i].idx = -1; /* terminate */
357
358         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
359                 if (success)
360                         tx_info->flags |= IEEE80211_TX_STAT_ACK;
361                 else
362                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
363         }
364
365         /*
366          * Every single frame has it's own tx status, hence report
367          * every frame as ampdu of size 1.
368          *
369          * TODO: if we can find out how many frames were aggregated
370          * by the hw we could provide the real ampdu_len to mac80211
371          * which would allow the rc algorithm to better decide on
372          * which rates are suitable.
373          */
374         if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
375                 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
376                 tx_info->status.ampdu_len = 1;
377                 tx_info->status.ampdu_ack_len = success ? 1 : 0;
378         }
379
380         if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
381                 if (success)
382                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
383                 else
384                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
385         }
386
387         /*
388          * Only send the status report to mac80211 when it's a frame
389          * that originated in mac80211. If this was a extra frame coming
390          * through a mac80211 library call (RTS/CTS) then we should not
391          * send the status report back.
392          */
393         if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
394                 if (test_bit(DRIVER_REQUIRE_TASKLET_CONTEXT, &rt2x00dev->flags))
395                         ieee80211_tx_status(rt2x00dev->hw, entry->skb);
396                 else
397                         ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
398         } else
399                 dev_kfree_skb_any(entry->skb);
400
401         /*
402          * Make this entry available for reuse.
403          */
404         entry->skb = NULL;
405         entry->flags = 0;
406
407         rt2x00dev->ops->lib->clear_entry(entry);
408
409         rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
410
411         /*
412          * If the data queue was below the threshold before the txdone
413          * handler we must make sure the packet queue in the mac80211 stack
414          * is reenabled when the txdone handler has finished.
415          */
416         if (!rt2x00queue_threshold(entry->queue))
417                 ieee80211_wake_queue(rt2x00dev->hw, qid);
418 }
419 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
420
421 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
422 {
423         struct txdone_entry_desc txdesc;
424
425         txdesc.flags = 0;
426         __set_bit(status, &txdesc.flags);
427         txdesc.retry = 0;
428
429         rt2x00lib_txdone(entry, &txdesc);
430 }
431 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
432
433 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
434                                         struct rxdone_entry_desc *rxdesc)
435 {
436         struct ieee80211_supported_band *sband;
437         const struct rt2x00_rate *rate;
438         unsigned int i;
439         int signal = rxdesc->signal;
440         int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
441
442         switch (rxdesc->rate_mode) {
443         case RATE_MODE_CCK:
444         case RATE_MODE_OFDM:
445                 /*
446                  * For non-HT rates the MCS value needs to contain the
447                  * actually used rate modulation (CCK or OFDM).
448                  */
449                 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
450                         signal = RATE_MCS(rxdesc->rate_mode, signal);
451
452                 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
453                 for (i = 0; i < sband->n_bitrates; i++) {
454                         rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
455                         if (((type == RXDONE_SIGNAL_PLCP) &&
456                              (rate->plcp == signal)) ||
457                             ((type == RXDONE_SIGNAL_BITRATE) &&
458                               (rate->bitrate == signal)) ||
459                             ((type == RXDONE_SIGNAL_MCS) &&
460                               (rate->mcs == signal))) {
461                                 return i;
462                         }
463                 }
464                 break;
465         case RATE_MODE_HT_MIX:
466         case RATE_MODE_HT_GREENFIELD:
467                 if (signal >= 0 && signal <= 76)
468                         return signal;
469                 break;
470         default:
471                 break;
472         }
473
474         WARNING(rt2x00dev, "Frame received with unrecognized signal, "
475                 "mode=0x%.4x, signal=0x%.4x, type=%d.\n",
476                 rxdesc->rate_mode, signal, type);
477         return 0;
478 }
479
480 void rt2x00lib_rxdone(struct queue_entry *entry)
481 {
482         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
483         struct rxdone_entry_desc rxdesc;
484         struct sk_buff *skb;
485         struct ieee80211_rx_status *rx_status;
486         unsigned int header_length;
487         int rate_idx;
488
489         if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
490                 goto submit_entry;
491
492         /*
493          * Allocate a new sk_buffer. If no new buffer available, drop the
494          * received frame and reuse the existing buffer.
495          */
496         skb = rt2x00queue_alloc_rxskb(entry);
497         if (!skb)
498                 goto submit_entry;
499
500         /*
501          * Unmap the skb.
502          */
503         rt2x00queue_unmap_skb(entry);
504
505         /*
506          * Extract the RXD details.
507          */
508         memset(&rxdesc, 0, sizeof(rxdesc));
509         rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
510
511         /*
512          * The data behind the ieee80211 header must be
513          * aligned on a 4 byte boundary.
514          */
515         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
516
517         /*
518          * Hardware might have stripped the IV/EIV/ICV data,
519          * in that case it is possible that the data was
520          * provided separately (through hardware descriptor)
521          * in which case we should reinsert the data into the frame.
522          */
523         if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
524             (rxdesc.flags & RX_FLAG_IV_STRIPPED))
525                 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
526                                           &rxdesc);
527         else if (header_length &&
528                  (rxdesc.size > header_length) &&
529                  (rxdesc.dev_flags & RXDONE_L2PAD))
530                 rt2x00queue_remove_l2pad(entry->skb, header_length);
531         else
532                 rt2x00queue_align_payload(entry->skb, header_length);
533
534         /* Trim buffer to correct size */
535         skb_trim(entry->skb, rxdesc.size);
536
537         /*
538          * Translate the signal to the correct bitrate index.
539          */
540         rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
541         if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
542             rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
543                 rxdesc.flags |= RX_FLAG_HT;
544
545         /*
546          * Update extra components
547          */
548         rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
549         rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
550         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
551
552         /*
553          * Initialize RX status information, and send frame
554          * to mac80211.
555          */
556         rx_status = IEEE80211_SKB_RXCB(entry->skb);
557         rx_status->mactime = rxdesc.timestamp;
558         rx_status->band = rt2x00dev->curr_band;
559         rx_status->freq = rt2x00dev->curr_freq;
560         rx_status->rate_idx = rate_idx;
561         rx_status->signal = rxdesc.rssi;
562         rx_status->flag = rxdesc.flags;
563         rx_status->antenna = rt2x00dev->link.ant.active.rx;
564
565         ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
566
567         /*
568          * Replace the skb with the freshly allocated one.
569          */
570         entry->skb = skb;
571
572 submit_entry:
573         rt2x00dev->ops->lib->clear_entry(entry);
574         rt2x00queue_index_inc(entry->queue, Q_INDEX);
575         rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
576 }
577 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
578
579 /*
580  * Driver initialization handlers.
581  */
582 const struct rt2x00_rate rt2x00_supported_rates[12] = {
583         {
584                 .flags = DEV_RATE_CCK,
585                 .bitrate = 10,
586                 .ratemask = BIT(0),
587                 .plcp = 0x00,
588                 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
589         },
590         {
591                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
592                 .bitrate = 20,
593                 .ratemask = BIT(1),
594                 .plcp = 0x01,
595                 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
596         },
597         {
598                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
599                 .bitrate = 55,
600                 .ratemask = BIT(2),
601                 .plcp = 0x02,
602                 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
603         },
604         {
605                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
606                 .bitrate = 110,
607                 .ratemask = BIT(3),
608                 .plcp = 0x03,
609                 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
610         },
611         {
612                 .flags = DEV_RATE_OFDM,
613                 .bitrate = 60,
614                 .ratemask = BIT(4),
615                 .plcp = 0x0b,
616                 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
617         },
618         {
619                 .flags = DEV_RATE_OFDM,
620                 .bitrate = 90,
621                 .ratemask = BIT(5),
622                 .plcp = 0x0f,
623                 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
624         },
625         {
626                 .flags = DEV_RATE_OFDM,
627                 .bitrate = 120,
628                 .ratemask = BIT(6),
629                 .plcp = 0x0a,
630                 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
631         },
632         {
633                 .flags = DEV_RATE_OFDM,
634                 .bitrate = 180,
635                 .ratemask = BIT(7),
636                 .plcp = 0x0e,
637                 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
638         },
639         {
640                 .flags = DEV_RATE_OFDM,
641                 .bitrate = 240,
642                 .ratemask = BIT(8),
643                 .plcp = 0x09,
644                 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
645         },
646         {
647                 .flags = DEV_RATE_OFDM,
648                 .bitrate = 360,
649                 .ratemask = BIT(9),
650                 .plcp = 0x0d,
651                 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
652         },
653         {
654                 .flags = DEV_RATE_OFDM,
655                 .bitrate = 480,
656                 .ratemask = BIT(10),
657                 .plcp = 0x08,
658                 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
659         },
660         {
661                 .flags = DEV_RATE_OFDM,
662                 .bitrate = 540,
663                 .ratemask = BIT(11),
664                 .plcp = 0x0c,
665                 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
666         },
667 };
668
669 static void rt2x00lib_channel(struct ieee80211_channel *entry,
670                               const int channel, const int tx_power,
671                               const int value)
672 {
673         entry->center_freq = ieee80211_channel_to_frequency(channel);
674         entry->hw_value = value;
675         entry->max_power = tx_power;
676         entry->max_antenna_gain = 0xff;
677 }
678
679 static void rt2x00lib_rate(struct ieee80211_rate *entry,
680                            const u16 index, const struct rt2x00_rate *rate)
681 {
682         entry->flags = 0;
683         entry->bitrate = rate->bitrate;
684         entry->hw_value =index;
685         entry->hw_value_short = index;
686
687         if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
688                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
689 }
690
691 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
692                                     struct hw_mode_spec *spec)
693 {
694         struct ieee80211_hw *hw = rt2x00dev->hw;
695         struct ieee80211_channel *channels;
696         struct ieee80211_rate *rates;
697         unsigned int num_rates;
698         unsigned int i;
699
700         num_rates = 0;
701         if (spec->supported_rates & SUPPORT_RATE_CCK)
702                 num_rates += 4;
703         if (spec->supported_rates & SUPPORT_RATE_OFDM)
704                 num_rates += 8;
705
706         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
707         if (!channels)
708                 return -ENOMEM;
709
710         rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
711         if (!rates)
712                 goto exit_free_channels;
713
714         /*
715          * Initialize Rate list.
716          */
717         for (i = 0; i < num_rates; i++)
718                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
719
720         /*
721          * Initialize Channel list.
722          */
723         for (i = 0; i < spec->num_channels; i++) {
724                 rt2x00lib_channel(&channels[i],
725                                   spec->channels[i].channel,
726                                   spec->channels_info[i].max_power, i);
727         }
728
729         /*
730          * Intitialize 802.11b, 802.11g
731          * Rates: CCK, OFDM.
732          * Channels: 2.4 GHz
733          */
734         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
735                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
736                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
737                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
738                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
739                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
740                     &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
741                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
742                        &spec->ht, sizeof(spec->ht));
743         }
744
745         /*
746          * Intitialize 802.11a
747          * Rates: OFDM.
748          * Channels: OFDM, UNII, HiperLAN2.
749          */
750         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
751                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
752                     spec->num_channels - 14;
753                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
754                     num_rates - 4;
755                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
756                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
757                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
758                     &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
759                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
760                        &spec->ht, sizeof(spec->ht));
761         }
762
763         return 0;
764
765  exit_free_channels:
766         kfree(channels);
767         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
768         return -ENOMEM;
769 }
770
771 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
772 {
773         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
774                 ieee80211_unregister_hw(rt2x00dev->hw);
775
776         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
777                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
778                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
779                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
780                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
781         }
782
783         kfree(rt2x00dev->spec.channels_info);
784 }
785
786 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
787 {
788         struct hw_mode_spec *spec = &rt2x00dev->spec;
789         int status;
790
791         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
792                 return 0;
793
794         /*
795          * Initialize HW modes.
796          */
797         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
798         if (status)
799                 return status;
800
801         /*
802          * Initialize HW fields.
803          */
804         rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
805
806         /*
807          * Initialize extra TX headroom required.
808          */
809         rt2x00dev->hw->extra_tx_headroom =
810                 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
811                       rt2x00dev->ops->extra_tx_headroom);
812
813         /*
814          * Take TX headroom required for alignment into account.
815          */
816         if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
817                 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
818         else if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags))
819                 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
820
821         /*
822          * Allocate tx status FIFO for driver use.
823          */
824         if (test_bit(DRIVER_REQUIRE_TXSTATUS_FIFO, &rt2x00dev->flags) &&
825             rt2x00dev->ops->lib->txstatus_tasklet) {
826                 /*
827                  * Allocate txstatus fifo and tasklet, we use a size of 512
828                  * for the kfifo which is big enough to store 512/4=128 tx
829                  * status reports. In the worst case (tx status for all tx
830                  * queues gets reported before we've got a chance to handle
831                  * them) 24*4=384 tx status reports need to be cached.
832                  */
833                 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, 512,
834                                      GFP_KERNEL);
835                 if (status)
836                         return status;
837
838                 /* tasklet for processing the tx status reports. */
839                 tasklet_init(&rt2x00dev->txstatus_tasklet,
840                              rt2x00dev->ops->lib->txstatus_tasklet,
841                              (unsigned long)rt2x00dev);
842
843         }
844
845         /*
846          * Register HW.
847          */
848         status = ieee80211_register_hw(rt2x00dev->hw);
849         if (status)
850                 return status;
851
852         set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
853
854         return 0;
855 }
856
857 /*
858  * Initialization/uninitialization handlers.
859  */
860 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
861 {
862         if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
863                 return;
864
865         /*
866          * Unregister extra components.
867          */
868         rt2x00rfkill_unregister(rt2x00dev);
869
870         /*
871          * Allow the HW to uninitialize.
872          */
873         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
874
875         /*
876          * Free allocated queue entries.
877          */
878         rt2x00queue_uninitialize(rt2x00dev);
879 }
880
881 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
882 {
883         int status;
884
885         if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
886                 return 0;
887
888         /*
889          * Allocate all queue entries.
890          */
891         status = rt2x00queue_initialize(rt2x00dev);
892         if (status)
893                 return status;
894
895         /*
896          * Initialize the device.
897          */
898         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
899         if (status) {
900                 rt2x00queue_uninitialize(rt2x00dev);
901                 return status;
902         }
903
904         set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
905
906         /*
907          * Register the extra components.
908          */
909         rt2x00rfkill_register(rt2x00dev);
910
911         return 0;
912 }
913
914 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
915 {
916         int retval;
917
918         if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
919                 return 0;
920
921         /*
922          * If this is the first interface which is added,
923          * we should load the firmware now.
924          */
925         retval = rt2x00lib_load_firmware(rt2x00dev);
926         if (retval)
927                 return retval;
928
929         /*
930          * Initialize the device.
931          */
932         retval = rt2x00lib_initialize(rt2x00dev);
933         if (retval)
934                 return retval;
935
936         rt2x00dev->intf_ap_count = 0;
937         rt2x00dev->intf_sta_count = 0;
938         rt2x00dev->intf_associated = 0;
939
940         /* Enable the radio */
941         retval = rt2x00lib_enable_radio(rt2x00dev);
942         if (retval)
943                 return retval;
944
945         set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
946
947         return 0;
948 }
949
950 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
951 {
952         if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
953                 return;
954
955         /*
956          * Perhaps we can add something smarter here,
957          * but for now just disabling the radio should do.
958          */
959         rt2x00lib_disable_radio(rt2x00dev);
960
961         rt2x00dev->intf_ap_count = 0;
962         rt2x00dev->intf_sta_count = 0;
963         rt2x00dev->intf_associated = 0;
964 }
965
966 /*
967  * driver allocation handlers.
968  */
969 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
970 {
971         int retval = -ENOMEM;
972
973         mutex_init(&rt2x00dev->csr_mutex);
974
975         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
976
977         /*
978          * Make room for rt2x00_intf inside the per-interface
979          * structure ieee80211_vif.
980          */
981         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
982
983         /*
984          * Determine which operating modes are supported, all modes
985          * which require beaconing, depend on the availability of
986          * beacon entries.
987          */
988         rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
989         if (rt2x00dev->ops->bcn->entry_num > 0)
990                 rt2x00dev->hw->wiphy->interface_modes |=
991                     BIT(NL80211_IFTYPE_ADHOC) |
992                     BIT(NL80211_IFTYPE_AP) |
993                     BIT(NL80211_IFTYPE_MESH_POINT) |
994                     BIT(NL80211_IFTYPE_WDS);
995
996         /*
997          * Initialize configuration work.
998          */
999         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1000
1001         /*
1002          * Let the driver probe the device to detect the capabilities.
1003          */
1004         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1005         if (retval) {
1006                 ERROR(rt2x00dev, "Failed to allocate device.\n");
1007                 goto exit;
1008         }
1009
1010         /*
1011          * Allocate queue array.
1012          */
1013         retval = rt2x00queue_allocate(rt2x00dev);
1014         if (retval)
1015                 goto exit;
1016
1017         /*
1018          * Initialize ieee80211 structure.
1019          */
1020         retval = rt2x00lib_probe_hw(rt2x00dev);
1021         if (retval) {
1022                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1023                 goto exit;
1024         }
1025
1026         /*
1027          * Register extra components.
1028          */
1029         rt2x00link_register(rt2x00dev);
1030         rt2x00leds_register(rt2x00dev);
1031         rt2x00debug_register(rt2x00dev);
1032
1033         return 0;
1034
1035 exit:
1036         rt2x00lib_remove_dev(rt2x00dev);
1037
1038         return retval;
1039 }
1040 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1041
1042 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1043 {
1044         clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1045
1046         /*
1047          * Disable radio.
1048          */
1049         rt2x00lib_disable_radio(rt2x00dev);
1050
1051         /*
1052          * Stop all work.
1053          */
1054         cancel_work_sync(&rt2x00dev->intf_work);
1055         cancel_work_sync(&rt2x00dev->rxdone_work);
1056         cancel_work_sync(&rt2x00dev->txdone_work);
1057
1058         /*
1059          * Free the tx status fifo.
1060          */
1061         kfifo_free(&rt2x00dev->txstatus_fifo);
1062
1063         /*
1064          * Kill the tx status tasklet.
1065          */
1066         tasklet_kill(&rt2x00dev->txstatus_tasklet);
1067
1068         /*
1069          * Uninitialize device.
1070          */
1071         rt2x00lib_uninitialize(rt2x00dev);
1072
1073         /*
1074          * Free extra components
1075          */
1076         rt2x00debug_deregister(rt2x00dev);
1077         rt2x00leds_unregister(rt2x00dev);
1078
1079         /*
1080          * Free ieee80211_hw memory.
1081          */
1082         rt2x00lib_remove_hw(rt2x00dev);
1083
1084         /*
1085          * Free firmware image.
1086          */
1087         rt2x00lib_free_firmware(rt2x00dev);
1088
1089         /*
1090          * Free queue structures.
1091          */
1092         rt2x00queue_free(rt2x00dev);
1093 }
1094 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1095
1096 /*
1097  * Device state handlers
1098  */
1099 #ifdef CONFIG_PM
1100 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1101 {
1102         NOTICE(rt2x00dev, "Going to sleep.\n");
1103
1104         /*
1105          * Prevent mac80211 from accessing driver while suspended.
1106          */
1107         if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1108                 return 0;
1109
1110         /*
1111          * Cleanup as much as possible.
1112          */
1113         rt2x00lib_uninitialize(rt2x00dev);
1114
1115         /*
1116          * Suspend/disable extra components.
1117          */
1118         rt2x00leds_suspend(rt2x00dev);
1119         rt2x00debug_deregister(rt2x00dev);
1120
1121         /*
1122          * Set device mode to sleep for power management,
1123          * on some hardware this call seems to consistently fail.
1124          * From the specifications it is hard to tell why it fails,
1125          * and if this is a "bad thing".
1126          * Overall it is safe to just ignore the failure and
1127          * continue suspending. The only downside is that the
1128          * device will not be in optimal power save mode, but with
1129          * the radio and the other components already disabled the
1130          * device is as good as disabled.
1131          */
1132         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1133                 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1134                         "continue suspending.\n");
1135
1136         return 0;
1137 }
1138 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1139
1140 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1141 {
1142         NOTICE(rt2x00dev, "Waking up.\n");
1143
1144         /*
1145          * Restore/enable extra components.
1146          */
1147         rt2x00debug_register(rt2x00dev);
1148         rt2x00leds_resume(rt2x00dev);
1149
1150         /*
1151          * We are ready again to receive requests from mac80211.
1152          */
1153         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1154
1155         return 0;
1156 }
1157 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1158 #endif /* CONFIG_PM */
1159
1160 /*
1161  * rt2x00lib module information.
1162  */
1163 MODULE_AUTHOR(DRV_PROJECT);
1164 MODULE_VERSION(DRV_VERSION);
1165 MODULE_DESCRIPTION("rt2x00 library");
1166 MODULE_LICENSE("GPL");