]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/net/wireless/rt2x00/rt2x00dev.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[mv-sheeva.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2x00lib
23         Abstract: rt2x00 generic device routines.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29
30 #include "rt2x00.h"
31 #include "rt2x00lib.h"
32
33 /*
34  * Radio control handlers.
35  */
36 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
37 {
38         int status;
39
40         /*
41          * Don't enable the radio twice.
42          * And check if the hardware button has been disabled.
43          */
44         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
45                 return 0;
46
47         /*
48          * Initialize all data queues.
49          */
50         rt2x00queue_init_queues(rt2x00dev);
51
52         /*
53          * Enable radio.
54          */
55         status =
56             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
57         if (status)
58                 return status;
59
60         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
61
62         rt2x00leds_led_radio(rt2x00dev, true);
63         rt2x00led_led_activity(rt2x00dev, true);
64
65         set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
66
67         /*
68          * Enable RX.
69          */
70         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
71
72         /*
73          * Start the TX queues.
74          */
75         ieee80211_wake_queues(rt2x00dev->hw);
76
77         return 0;
78 }
79
80 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
81 {
82         if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
83                 return;
84
85         /*
86          * Stop the TX queues in mac80211.
87          */
88         ieee80211_stop_queues(rt2x00dev->hw);
89         rt2x00queue_stop_queues(rt2x00dev);
90
91         /*
92          * Disable RX.
93          */
94         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
95
96         /*
97          * Disable radio.
98          */
99         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
100         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
101         rt2x00led_led_activity(rt2x00dev, false);
102         rt2x00leds_led_radio(rt2x00dev, false);
103 }
104
105 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
106 {
107         /*
108          * When we are disabling the RX, we should also stop the link tuner.
109          */
110         if (state == STATE_RADIO_RX_OFF)
111                 rt2x00link_stop_tuner(rt2x00dev);
112
113         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
114
115         /*
116          * When we are enabling the RX, we should also start the link tuner.
117          */
118         if (state == STATE_RADIO_RX_ON)
119                 rt2x00link_start_tuner(rt2x00dev);
120 }
121
122 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
123                                           struct ieee80211_vif *vif)
124 {
125         struct rt2x00_dev *rt2x00dev = data;
126         struct rt2x00_intf *intf = vif_to_intf(vif);
127         int delayed_flags;
128
129         /*
130          * Copy all data we need during this action under the protection
131          * of a spinlock. Otherwise race conditions might occur which results
132          * into an invalid configuration.
133          */
134         spin_lock(&intf->lock);
135
136         delayed_flags = intf->delayed_flags;
137         intf->delayed_flags = 0;
138
139         spin_unlock(&intf->lock);
140
141         /*
142          * It is possible the radio was disabled while the work had been
143          * scheduled. If that happens we should return here immediately,
144          * note that in the spinlock protected area above the delayed_flags
145          * have been cleared correctly.
146          */
147         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
148                 return;
149
150         if (delayed_flags & DELAYED_UPDATE_BEACON)
151                 rt2x00queue_update_beacon(rt2x00dev, vif, true);
152 }
153
154 static void rt2x00lib_intf_scheduled(struct work_struct *work)
155 {
156         struct rt2x00_dev *rt2x00dev =
157             container_of(work, struct rt2x00_dev, intf_work);
158
159         /*
160          * Iterate over each interface and perform the
161          * requested configurations.
162          */
163         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
164                                             rt2x00lib_intf_scheduled_iter,
165                                             rt2x00dev);
166 }
167
168 /*
169  * Interrupt context handlers.
170  */
171 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
172                                       struct ieee80211_vif *vif)
173 {
174         struct rt2x00_intf *intf = vif_to_intf(vif);
175
176         if (vif->type != NL80211_IFTYPE_AP &&
177             vif->type != NL80211_IFTYPE_ADHOC &&
178             vif->type != NL80211_IFTYPE_MESH_POINT &&
179             vif->type != NL80211_IFTYPE_WDS)
180                 return;
181
182         spin_lock(&intf->lock);
183         intf->delayed_flags |= DELAYED_UPDATE_BEACON;
184         spin_unlock(&intf->lock);
185 }
186
187 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
188 {
189         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
190                 return;
191
192         ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
193                                                    rt2x00lib_beacondone_iter,
194                                                    rt2x00dev);
195
196         ieee80211_queue_work(rt2x00dev->hw, &rt2x00dev->intf_work);
197 }
198 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
199
200 void rt2x00lib_txdone(struct queue_entry *entry,
201                       struct txdone_entry_desc *txdesc)
202 {
203         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
204         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
205         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
206         enum data_queue_qid qid = skb_get_queue_mapping(entry->skb);
207         unsigned int header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
208         u8 rate_idx, rate_flags, retry_rates;
209         u8 skbdesc_flags = skbdesc->flags;
210         unsigned int i;
211         bool success;
212
213         /*
214          * Unmap the skb.
215          */
216         rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
217
218         /*
219          * Remove L2 padding which was added during
220          */
221         if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
222                 rt2x00queue_remove_l2pad(entry->skb, header_length);
223
224         /*
225          * If the IV/EIV data was stripped from the frame before it was
226          * passed to the hardware, we should now reinsert it again because
227          * mac80211 will expect the the same data to be present it the
228          * frame as it was passed to us.
229          */
230         if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags))
231                 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
232
233         /*
234          * Send frame to debugfs immediately, after this call is completed
235          * we are going to overwrite the skb->cb array.
236          */
237         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
238
239         /*
240          * Determine if the frame has been successfully transmitted.
241          */
242         success =
243             test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
244             test_bit(TXDONE_UNKNOWN, &txdesc->flags) ||
245             test_bit(TXDONE_FALLBACK, &txdesc->flags);
246
247         /*
248          * Update TX statistics.
249          */
250         rt2x00dev->link.qual.tx_success += success;
251         rt2x00dev->link.qual.tx_failed += !success;
252
253         rate_idx = skbdesc->tx_rate_idx;
254         rate_flags = skbdesc->tx_rate_flags;
255         retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
256             (txdesc->retry + 1) : 1;
257
258         /*
259          * Initialize TX status
260          */
261         memset(&tx_info->status, 0, sizeof(tx_info->status));
262         tx_info->status.ack_signal = 0;
263
264         /*
265          * Frame was send with retries, hardware tried
266          * different rates to send out the frame, at each
267          * retry it lowered the rate 1 step.
268          */
269         for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
270                 tx_info->status.rates[i].idx = rate_idx - i;
271                 tx_info->status.rates[i].flags = rate_flags;
272                 tx_info->status.rates[i].count = 1;
273         }
274         if (i < (IEEE80211_TX_MAX_RATES - 1))
275                 tx_info->status.rates[i].idx = -1; /* terminate */
276
277         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
278                 if (success)
279                         tx_info->flags |= IEEE80211_TX_STAT_ACK;
280                 else
281                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
282         }
283
284         if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
285                 if (success)
286                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
287                 else
288                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
289         }
290
291         /*
292          * Only send the status report to mac80211 when it's a frame
293          * that originated in mac80211. If this was a extra frame coming
294          * through a mac80211 library call (RTS/CTS) then we should not
295          * send the status report back.
296          */
297         if (!(skbdesc_flags & SKBDESC_NOT_MAC80211))
298                 ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb);
299         else
300                 dev_kfree_skb_irq(entry->skb);
301
302         /*
303          * Make this entry available for reuse.
304          */
305         entry->skb = NULL;
306         entry->flags = 0;
307
308         rt2x00dev->ops->lib->clear_entry(entry);
309
310         clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
311         rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
312
313         /*
314          * If the data queue was below the threshold before the txdone
315          * handler we must make sure the packet queue in the mac80211 stack
316          * is reenabled when the txdone handler has finished.
317          */
318         if (!rt2x00queue_threshold(entry->queue))
319                 ieee80211_wake_queue(rt2x00dev->hw, qid);
320 }
321 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
322
323 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
324                                         struct rxdone_entry_desc *rxdesc)
325 {
326         struct ieee80211_supported_band *sband;
327         const struct rt2x00_rate *rate;
328         unsigned int i;
329         int signal;
330         int type;
331
332         /*
333          * For non-HT rates the MCS value needs to contain the
334          * actually used rate modulation (CCK or OFDM).
335          */
336         if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
337                 signal = RATE_MCS(rxdesc->rate_mode, rxdesc->signal);
338         else
339                 signal = rxdesc->signal;
340
341         type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
342
343         sband = &rt2x00dev->bands[rt2x00dev->curr_band];
344         for (i = 0; i < sband->n_bitrates; i++) {
345                 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
346
347                 if (((type == RXDONE_SIGNAL_PLCP) &&
348                      (rate->plcp == signal)) ||
349                     ((type == RXDONE_SIGNAL_BITRATE) &&
350                       (rate->bitrate == signal)) ||
351                     ((type == RXDONE_SIGNAL_MCS) &&
352                       (rate->mcs == signal))) {
353                         return i;
354                 }
355         }
356
357         WARNING(rt2x00dev, "Frame received with unrecognized signal, "
358                 "signal=0x%.4x, type=%d.\n", signal, type);
359         return 0;
360 }
361
362 void rt2x00lib_rxdone(struct rt2x00_dev *rt2x00dev,
363                       struct queue_entry *entry)
364 {
365         struct rxdone_entry_desc rxdesc;
366         struct sk_buff *skb;
367         struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
368         unsigned int header_length;
369         int rate_idx;
370         /*
371          * Allocate a new sk_buffer. If no new buffer available, drop the
372          * received frame and reuse the existing buffer.
373          */
374         skb = rt2x00queue_alloc_rxskb(rt2x00dev, entry);
375         if (!skb)
376                 return;
377
378         /*
379          * Unmap the skb.
380          */
381         rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
382
383         /*
384          * Extract the RXD details.
385          */
386         memset(&rxdesc, 0, sizeof(rxdesc));
387         rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
388
389         /*
390          * The data behind the ieee80211 header must be
391          * aligned on a 4 byte boundary.
392          */
393         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
394
395         /*
396          * Hardware might have stripped the IV/EIV/ICV data,
397          * in that case it is possible that the data was
398          * provided separately (through hardware descriptor)
399          * in which case we should reinsert the data into the frame.
400          */
401         if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
402             (rxdesc.flags & RX_FLAG_IV_STRIPPED))
403                 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
404                                           &rxdesc);
405         else if (header_length &&
406                  (rxdesc.size > header_length) &&
407                  (rxdesc.dev_flags & RXDONE_L2PAD))
408                 rt2x00queue_remove_l2pad(entry->skb, header_length);
409         else
410                 rt2x00queue_align_payload(entry->skb, header_length);
411
412         /* Trim buffer to correct size */
413         skb_trim(entry->skb, rxdesc.size);
414
415         /*
416          * Check if the frame was received using HT. In that case,
417          * the rate is the MCS index and should be passed to mac80211
418          * directly. Otherwise we need to translate the signal to
419          * the correct bitrate index.
420          */
421         if (rxdesc.rate_mode == RATE_MODE_CCK ||
422             rxdesc.rate_mode == RATE_MODE_OFDM) {
423                 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
424         } else {
425                 rxdesc.flags |= RX_FLAG_HT;
426                 rate_idx = rxdesc.signal;
427         }
428
429         /*
430          * Update extra components
431          */
432         rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
433         rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
434
435         rx_status->mactime = rxdesc.timestamp;
436         rx_status->rate_idx = rate_idx;
437         rx_status->signal = rxdesc.rssi;
438         rx_status->noise = rxdesc.noise;
439         rx_status->flag = rxdesc.flags;
440         rx_status->antenna = rt2x00dev->link.ant.active.rx;
441
442         /*
443          * Send frame to mac80211 & debugfs.
444          * mac80211 will clean up the skb structure.
445          */
446         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
447         memcpy(IEEE80211_SKB_RXCB(entry->skb), rx_status, sizeof(*rx_status));
448         ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb);
449
450         /*
451          * Replace the skb with the freshly allocated one.
452          */
453         entry->skb = skb;
454         entry->flags = 0;
455
456         rt2x00dev->ops->lib->clear_entry(entry);
457
458         rt2x00queue_index_inc(entry->queue, Q_INDEX);
459 }
460 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
461
462 /*
463  * Driver initialization handlers.
464  */
465 const struct rt2x00_rate rt2x00_supported_rates[12] = {
466         {
467                 .flags = DEV_RATE_CCK,
468                 .bitrate = 10,
469                 .ratemask = BIT(0),
470                 .plcp = 0x00,
471                 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
472         },
473         {
474                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
475                 .bitrate = 20,
476                 .ratemask = BIT(1),
477                 .plcp = 0x01,
478                 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
479         },
480         {
481                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
482                 .bitrate = 55,
483                 .ratemask = BIT(2),
484                 .plcp = 0x02,
485                 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
486         },
487         {
488                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
489                 .bitrate = 110,
490                 .ratemask = BIT(3),
491                 .plcp = 0x03,
492                 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
493         },
494         {
495                 .flags = DEV_RATE_OFDM,
496                 .bitrate = 60,
497                 .ratemask = BIT(4),
498                 .plcp = 0x0b,
499                 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
500         },
501         {
502                 .flags = DEV_RATE_OFDM,
503                 .bitrate = 90,
504                 .ratemask = BIT(5),
505                 .plcp = 0x0f,
506                 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
507         },
508         {
509                 .flags = DEV_RATE_OFDM,
510                 .bitrate = 120,
511                 .ratemask = BIT(6),
512                 .plcp = 0x0a,
513                 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
514         },
515         {
516                 .flags = DEV_RATE_OFDM,
517                 .bitrate = 180,
518                 .ratemask = BIT(7),
519                 .plcp = 0x0e,
520                 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
521         },
522         {
523                 .flags = DEV_RATE_OFDM,
524                 .bitrate = 240,
525                 .ratemask = BIT(8),
526                 .plcp = 0x09,
527                 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
528         },
529         {
530                 .flags = DEV_RATE_OFDM,
531                 .bitrate = 360,
532                 .ratemask = BIT(9),
533                 .plcp = 0x0d,
534                 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
535         },
536         {
537                 .flags = DEV_RATE_OFDM,
538                 .bitrate = 480,
539                 .ratemask = BIT(10),
540                 .plcp = 0x08,
541                 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
542         },
543         {
544                 .flags = DEV_RATE_OFDM,
545                 .bitrate = 540,
546                 .ratemask = BIT(11),
547                 .plcp = 0x0c,
548                 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
549         },
550 };
551
552 static void rt2x00lib_channel(struct ieee80211_channel *entry,
553                               const int channel, const int tx_power,
554                               const int value)
555 {
556         entry->center_freq = ieee80211_channel_to_frequency(channel);
557         entry->hw_value = value;
558         entry->max_power = tx_power;
559         entry->max_antenna_gain = 0xff;
560 }
561
562 static void rt2x00lib_rate(struct ieee80211_rate *entry,
563                            const u16 index, const struct rt2x00_rate *rate)
564 {
565         entry->flags = 0;
566         entry->bitrate = rate->bitrate;
567         entry->hw_value =index;
568         entry->hw_value_short = index;
569
570         if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
571                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
572 }
573
574 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
575                                     struct hw_mode_spec *spec)
576 {
577         struct ieee80211_hw *hw = rt2x00dev->hw;
578         struct ieee80211_channel *channels;
579         struct ieee80211_rate *rates;
580         unsigned int num_rates;
581         unsigned int i;
582
583         num_rates = 0;
584         if (spec->supported_rates & SUPPORT_RATE_CCK)
585                 num_rates += 4;
586         if (spec->supported_rates & SUPPORT_RATE_OFDM)
587                 num_rates += 8;
588
589         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
590         if (!channels)
591                 return -ENOMEM;
592
593         rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
594         if (!rates)
595                 goto exit_free_channels;
596
597         /*
598          * Initialize Rate list.
599          */
600         for (i = 0; i < num_rates; i++)
601                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
602
603         /*
604          * Initialize Channel list.
605          */
606         for (i = 0; i < spec->num_channels; i++) {
607                 rt2x00lib_channel(&channels[i],
608                                   spec->channels[i].channel,
609                                   spec->channels_info[i].tx_power1, i);
610         }
611
612         /*
613          * Intitialize 802.11b, 802.11g
614          * Rates: CCK, OFDM.
615          * Channels: 2.4 GHz
616          */
617         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
618                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
619                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
620                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
621                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
622                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
623                     &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
624                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
625                        &spec->ht, sizeof(spec->ht));
626         }
627
628         /*
629          * Intitialize 802.11a
630          * Rates: OFDM.
631          * Channels: OFDM, UNII, HiperLAN2.
632          */
633         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
634                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
635                     spec->num_channels - 14;
636                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
637                     num_rates - 4;
638                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
639                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
640                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
641                     &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
642                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
643                        &spec->ht, sizeof(spec->ht));
644         }
645
646         return 0;
647
648  exit_free_channels:
649         kfree(channels);
650         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
651         return -ENOMEM;
652 }
653
654 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
655 {
656         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
657                 ieee80211_unregister_hw(rt2x00dev->hw);
658
659         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
660                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
661                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
662                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
663                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
664         }
665
666         kfree(rt2x00dev->spec.channels_info);
667 }
668
669 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
670 {
671         struct hw_mode_spec *spec = &rt2x00dev->spec;
672         int status;
673
674         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
675                 return 0;
676
677         /*
678          * Initialize HW modes.
679          */
680         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
681         if (status)
682                 return status;
683
684         /*
685          * Initialize HW fields.
686          */
687         rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
688
689         /*
690          * Initialize extra TX headroom required.
691          */
692         rt2x00dev->hw->extra_tx_headroom =
693                 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
694                       rt2x00dev->ops->extra_tx_headroom);
695
696         /*
697          * Take TX headroom required for alignment into account.
698          */
699         if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
700                 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
701         else if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags))
702                 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
703
704         /*
705          * Register HW.
706          */
707         status = ieee80211_register_hw(rt2x00dev->hw);
708         if (status)
709                 return status;
710
711         set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
712
713         return 0;
714 }
715
716 /*
717  * Initialization/uninitialization handlers.
718  */
719 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
720 {
721         if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
722                 return;
723
724         /*
725          * Unregister extra components.
726          */
727         rt2x00rfkill_unregister(rt2x00dev);
728
729         /*
730          * Allow the HW to uninitialize.
731          */
732         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
733
734         /*
735          * Free allocated queue entries.
736          */
737         rt2x00queue_uninitialize(rt2x00dev);
738 }
739
740 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
741 {
742         int status;
743
744         if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
745                 return 0;
746
747         /*
748          * Allocate all queue entries.
749          */
750         status = rt2x00queue_initialize(rt2x00dev);
751         if (status)
752                 return status;
753
754         /*
755          * Initialize the device.
756          */
757         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
758         if (status) {
759                 rt2x00queue_uninitialize(rt2x00dev);
760                 return status;
761         }
762
763         set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
764
765         /*
766          * Register the extra components.
767          */
768         rt2x00rfkill_register(rt2x00dev);
769
770         return 0;
771 }
772
773 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
774 {
775         int retval;
776
777         if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
778                 return 0;
779
780         /*
781          * If this is the first interface which is added,
782          * we should load the firmware now.
783          */
784         retval = rt2x00lib_load_firmware(rt2x00dev);
785         if (retval)
786                 return retval;
787
788         /*
789          * Initialize the device.
790          */
791         retval = rt2x00lib_initialize(rt2x00dev);
792         if (retval)
793                 return retval;
794
795         rt2x00dev->intf_ap_count = 0;
796         rt2x00dev->intf_sta_count = 0;
797         rt2x00dev->intf_associated = 0;
798
799         /* Enable the radio */
800         retval = rt2x00lib_enable_radio(rt2x00dev);
801         if (retval) {
802                 rt2x00queue_uninitialize(rt2x00dev);
803                 return retval;
804         }
805
806         set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
807
808         return 0;
809 }
810
811 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
812 {
813         if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
814                 return;
815
816         /*
817          * Perhaps we can add something smarter here,
818          * but for now just disabling the radio should do.
819          */
820         rt2x00lib_disable_radio(rt2x00dev);
821
822         rt2x00dev->intf_ap_count = 0;
823         rt2x00dev->intf_sta_count = 0;
824         rt2x00dev->intf_associated = 0;
825 }
826
827 /*
828  * driver allocation handlers.
829  */
830 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
831 {
832         int retval = -ENOMEM;
833
834         mutex_init(&rt2x00dev->csr_mutex);
835
836         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
837
838         /*
839          * Make room for rt2x00_intf inside the per-interface
840          * structure ieee80211_vif.
841          */
842         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
843
844         /*
845          * Determine which operating modes are supported, all modes
846          * which require beaconing, depend on the availability of
847          * beacon entries.
848          */
849         rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
850         if (rt2x00dev->ops->bcn->entry_num > 0)
851                 rt2x00dev->hw->wiphy->interface_modes |=
852                     BIT(NL80211_IFTYPE_ADHOC) |
853                     BIT(NL80211_IFTYPE_AP) |
854                     BIT(NL80211_IFTYPE_MESH_POINT) |
855                     BIT(NL80211_IFTYPE_WDS);
856
857         /*
858          * Let the driver probe the device to detect the capabilities.
859          */
860         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
861         if (retval) {
862                 ERROR(rt2x00dev, "Failed to allocate device.\n");
863                 goto exit;
864         }
865
866         /*
867          * Initialize configuration work.
868          */
869         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
870
871         /*
872          * Allocate queue array.
873          */
874         retval = rt2x00queue_allocate(rt2x00dev);
875         if (retval)
876                 goto exit;
877
878         /*
879          * Initialize ieee80211 structure.
880          */
881         retval = rt2x00lib_probe_hw(rt2x00dev);
882         if (retval) {
883                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
884                 goto exit;
885         }
886
887         /*
888          * Register extra components.
889          */
890         rt2x00link_register(rt2x00dev);
891         rt2x00leds_register(rt2x00dev);
892         rt2x00debug_register(rt2x00dev);
893
894         return 0;
895
896 exit:
897         rt2x00lib_remove_dev(rt2x00dev);
898
899         return retval;
900 }
901 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
902
903 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
904 {
905         clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
906
907         /*
908          * Disable radio.
909          */
910         rt2x00lib_disable_radio(rt2x00dev);
911
912         /*
913          * Stop all work.
914          */
915         cancel_work_sync(&rt2x00dev->intf_work);
916
917         /*
918          * Uninitialize device.
919          */
920         rt2x00lib_uninitialize(rt2x00dev);
921
922         /*
923          * Free extra components
924          */
925         rt2x00debug_deregister(rt2x00dev);
926         rt2x00leds_unregister(rt2x00dev);
927
928         /*
929          * Free ieee80211_hw memory.
930          */
931         rt2x00lib_remove_hw(rt2x00dev);
932
933         /*
934          * Free firmware image.
935          */
936         rt2x00lib_free_firmware(rt2x00dev);
937
938         /*
939          * Free queue structures.
940          */
941         rt2x00queue_free(rt2x00dev);
942 }
943 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
944
945 /*
946  * Device state handlers
947  */
948 #ifdef CONFIG_PM
949 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
950 {
951         NOTICE(rt2x00dev, "Going to sleep.\n");
952
953         /*
954          * Prevent mac80211 from accessing driver while suspended.
955          */
956         if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
957                 return 0;
958
959         /*
960          * Cleanup as much as possible.
961          */
962         rt2x00lib_uninitialize(rt2x00dev);
963
964         /*
965          * Suspend/disable extra components.
966          */
967         rt2x00leds_suspend(rt2x00dev);
968         rt2x00debug_deregister(rt2x00dev);
969
970         /*
971          * Set device mode to sleep for power management,
972          * on some hardware this call seems to consistently fail.
973          * From the specifications it is hard to tell why it fails,
974          * and if this is a "bad thing".
975          * Overall it is safe to just ignore the failure and
976          * continue suspending. The only downside is that the
977          * device will not be in optimal power save mode, but with
978          * the radio and the other components already disabled the
979          * device is as good as disabled.
980          */
981         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
982                 WARNING(rt2x00dev, "Device failed to enter sleep state, "
983                         "continue suspending.\n");
984
985         return 0;
986 }
987 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
988
989 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
990 {
991         NOTICE(rt2x00dev, "Waking up.\n");
992
993         /*
994          * Restore/enable extra components.
995          */
996         rt2x00debug_register(rt2x00dev);
997         rt2x00leds_resume(rt2x00dev);
998
999         /*
1000          * We are ready again to receive requests from mac80211.
1001          */
1002         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1003
1004         return 0;
1005 }
1006 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1007 #endif /* CONFIG_PM */
1008
1009 /*
1010  * rt2x00lib module information.
1011  */
1012 MODULE_AUTHOR(DRV_PROJECT);
1013 MODULE_VERSION(DRV_VERSION);
1014 MODULE_DESCRIPTION("rt2x00 library");
1015 MODULE_LICENSE("GPL");