]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/wireless/rt2x00/rt2x00dev.c
Revert: "rt2x00: Don't let mac80211 send a BAR when an AMPDU subframe fails"
[karo-tx-linux.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3         Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4         <http://rt2x00.serialmonkey.com>
5
6         This program is free software; you can redistribute it and/or modify
7         it under the terms of the GNU General Public License as published by
8         the Free Software Foundation; either version 2 of the License, or
9         (at your option) any later version.
10
11         This program is distributed in the hope that it will be useful,
12         but WITHOUT ANY WARRANTY; without even the implied warranty of
13         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14         GNU General Public License for more details.
15
16         You should have received a copy of the GNU General Public License
17         along with this program; if not, write to the
18         Free Software Foundation, Inc.,
19         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20  */
21
22 /*
23         Module: rt2x00lib
24         Abstract: rt2x00 generic device routines.
25  */
26
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/log2.h>
31
32 #include "rt2x00.h"
33 #include "rt2x00lib.h"
34
35 /*
36  * Utility functions.
37  */
38 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
39                          struct ieee80211_vif *vif)
40 {
41         /*
42          * When in STA mode, bssidx is always 0 otherwise local_address[5]
43          * contains the bss number, see BSS_ID_MASK comments for details.
44          */
45         if (rt2x00dev->intf_sta_count)
46                 return 0;
47         return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
48 }
49 EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
50
51 /*
52  * Radio control handlers.
53  */
54 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
55 {
56         int status;
57
58         /*
59          * Don't enable the radio twice.
60          * And check if the hardware button has been disabled.
61          */
62         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
63                 return 0;
64
65         /*
66          * Initialize all data queues.
67          */
68         rt2x00queue_init_queues(rt2x00dev);
69
70         /*
71          * Enable radio.
72          */
73         status =
74             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
75         if (status)
76                 return status;
77
78         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
79
80         rt2x00leds_led_radio(rt2x00dev, true);
81         rt2x00led_led_activity(rt2x00dev, true);
82
83         set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
84
85         /*
86          * Enable queues.
87          */
88         rt2x00queue_start_queues(rt2x00dev);
89         rt2x00link_start_tuner(rt2x00dev);
90         rt2x00link_start_agc(rt2x00dev);
91         if (test_bit(CAPABILITY_VCO_RECALIBRATION, &rt2x00dev->cap_flags))
92                 rt2x00link_start_vcocal(rt2x00dev);
93
94         /*
95          * Start watchdog monitoring.
96          */
97         rt2x00link_start_watchdog(rt2x00dev);
98
99         return 0;
100 }
101
102 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
103 {
104         if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
105                 return;
106
107         /*
108          * Stop watchdog monitoring.
109          */
110         rt2x00link_stop_watchdog(rt2x00dev);
111
112         /*
113          * Stop all queues
114          */
115         rt2x00link_stop_agc(rt2x00dev);
116         if (test_bit(CAPABILITY_VCO_RECALIBRATION, &rt2x00dev->cap_flags))
117                 rt2x00link_stop_vcocal(rt2x00dev);
118         rt2x00link_stop_tuner(rt2x00dev);
119         rt2x00queue_stop_queues(rt2x00dev);
120         rt2x00queue_flush_queues(rt2x00dev, true);
121
122         /*
123          * Disable radio.
124          */
125         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
126         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
127         rt2x00led_led_activity(rt2x00dev, false);
128         rt2x00leds_led_radio(rt2x00dev, false);
129 }
130
131 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
132                                           struct ieee80211_vif *vif)
133 {
134         struct rt2x00_dev *rt2x00dev = data;
135         struct rt2x00_intf *intf = vif_to_intf(vif);
136
137         /*
138          * It is possible the radio was disabled while the work had been
139          * scheduled. If that happens we should return here immediately,
140          * note that in the spinlock protected area above the delayed_flags
141          * have been cleared correctly.
142          */
143         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
144                 return;
145
146         if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags))
147                 rt2x00queue_update_beacon(rt2x00dev, vif);
148 }
149
150 static void rt2x00lib_intf_scheduled(struct work_struct *work)
151 {
152         struct rt2x00_dev *rt2x00dev =
153             container_of(work, struct rt2x00_dev, intf_work);
154
155         /*
156          * Iterate over each interface and perform the
157          * requested configurations.
158          */
159         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
160                                             rt2x00lib_intf_scheduled_iter,
161                                             rt2x00dev);
162 }
163
164 static void rt2x00lib_autowakeup(struct work_struct *work)
165 {
166         struct rt2x00_dev *rt2x00dev =
167             container_of(work, struct rt2x00_dev, autowakeup_work.work);
168
169         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
170                 return;
171
172         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
173                 ERROR(rt2x00dev, "Device failed to wakeup.\n");
174         clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
175 }
176
177 /*
178  * Interrupt context handlers.
179  */
180 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
181                                      struct ieee80211_vif *vif)
182 {
183         struct rt2x00_dev *rt2x00dev = data;
184         struct sk_buff *skb;
185
186         /*
187          * Only AP mode interfaces do broad- and multicast buffering
188          */
189         if (vif->type != NL80211_IFTYPE_AP)
190                 return;
191
192         /*
193          * Send out buffered broad- and multicast frames
194          */
195         skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
196         while (skb) {
197                 rt2x00mac_tx(rt2x00dev->hw, NULL, skb);
198                 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
199         }
200 }
201
202 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
203                                         struct ieee80211_vif *vif)
204 {
205         struct rt2x00_dev *rt2x00dev = data;
206
207         if (vif->type != NL80211_IFTYPE_AP &&
208             vif->type != NL80211_IFTYPE_ADHOC &&
209             vif->type != NL80211_IFTYPE_MESH_POINT &&
210             vif->type != NL80211_IFTYPE_WDS)
211                 return;
212
213         /*
214          * Update the beacon without locking. This is safe on PCI devices
215          * as they only update the beacon periodically here. This should
216          * never be called for USB devices.
217          */
218         WARN_ON(rt2x00_is_usb(rt2x00dev));
219         rt2x00queue_update_beacon_locked(rt2x00dev, vif);
220 }
221
222 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
223 {
224         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
225                 return;
226
227         /* send buffered bc/mc frames out for every bssid */
228         ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
229                                                    rt2x00lib_bc_buffer_iter,
230                                                    rt2x00dev);
231         /*
232          * Devices with pre tbtt interrupt don't need to update the beacon
233          * here as they will fetch the next beacon directly prior to
234          * transmission.
235          */
236         if (test_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags))
237                 return;
238
239         /* fetch next beacon */
240         ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
241                                                    rt2x00lib_beaconupdate_iter,
242                                                    rt2x00dev);
243 }
244 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
245
246 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
247 {
248         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
249                 return;
250
251         /* fetch next beacon */
252         ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
253                                                    rt2x00lib_beaconupdate_iter,
254                                                    rt2x00dev);
255 }
256 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
257
258 void rt2x00lib_dmastart(struct queue_entry *entry)
259 {
260         set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
261         rt2x00queue_index_inc(entry, Q_INDEX);
262 }
263 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
264
265 void rt2x00lib_dmadone(struct queue_entry *entry)
266 {
267         set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
268         clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
269         rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
270 }
271 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
272
273 void rt2x00lib_txdone(struct queue_entry *entry,
274                       struct txdone_entry_desc *txdesc)
275 {
276         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
277         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
278         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
279         unsigned int header_length, i;
280         u8 rate_idx, rate_flags, retry_rates;
281         u8 skbdesc_flags = skbdesc->flags;
282         bool success;
283
284         /*
285          * Unmap the skb.
286          */
287         rt2x00queue_unmap_skb(entry);
288
289         /*
290          * Remove the extra tx headroom from the skb.
291          */
292         skb_pull(entry->skb, rt2x00dev->ops->extra_tx_headroom);
293
294         /*
295          * Signal that the TX descriptor is no longer in the skb.
296          */
297         skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
298
299         /*
300          * Determine the length of 802.11 header.
301          */
302         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
303
304         /*
305          * Remove L2 padding which was added during
306          */
307         if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
308                 rt2x00queue_remove_l2pad(entry->skb, header_length);
309
310         /*
311          * If the IV/EIV data was stripped from the frame before it was
312          * passed to the hardware, we should now reinsert it again because
313          * mac80211 will expect the same data to be present it the
314          * frame as it was passed to us.
315          */
316         if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags))
317                 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
318
319         /*
320          * Send frame to debugfs immediately, after this call is completed
321          * we are going to overwrite the skb->cb array.
322          */
323         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
324
325         /*
326          * Determine if the frame has been successfully transmitted.
327          */
328         success =
329             test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
330             test_bit(TXDONE_UNKNOWN, &txdesc->flags);
331
332         /*
333          * Update TX statistics.
334          */
335         rt2x00dev->link.qual.tx_success += success;
336         rt2x00dev->link.qual.tx_failed += !success;
337
338         rate_idx = skbdesc->tx_rate_idx;
339         rate_flags = skbdesc->tx_rate_flags;
340         retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
341             (txdesc->retry + 1) : 1;
342
343         /*
344          * Initialize TX status
345          */
346         memset(&tx_info->status, 0, sizeof(tx_info->status));
347         tx_info->status.ack_signal = 0;
348
349         /*
350          * Frame was send with retries, hardware tried
351          * different rates to send out the frame, at each
352          * retry it lowered the rate 1 step except when the
353          * lowest rate was used.
354          */
355         for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
356                 tx_info->status.rates[i].idx = rate_idx - i;
357                 tx_info->status.rates[i].flags = rate_flags;
358
359                 if (rate_idx - i == 0) {
360                         /*
361                          * The lowest rate (index 0) was used until the
362                          * number of max retries was reached.
363                          */
364                         tx_info->status.rates[i].count = retry_rates - i;
365                         i++;
366                         break;
367                 }
368                 tx_info->status.rates[i].count = 1;
369         }
370         if (i < (IEEE80211_TX_MAX_RATES - 1))
371                 tx_info->status.rates[i].idx = -1; /* terminate */
372
373         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
374                 if (success)
375                         tx_info->flags |= IEEE80211_TX_STAT_ACK;
376                 else
377                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
378         }
379
380         /*
381          * Every single frame has it's own tx status, hence report
382          * every frame as ampdu of size 1.
383          *
384          * TODO: if we can find out how many frames were aggregated
385          * by the hw we could provide the real ampdu_len to mac80211
386          * which would allow the rc algorithm to better decide on
387          * which rates are suitable.
388          */
389         if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
390             tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
391                 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
392                 tx_info->status.ampdu_len = 1;
393                 tx_info->status.ampdu_ack_len = success ? 1 : 0;
394
395                 if (!success)
396                         tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
397         }
398
399         if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
400                 if (success)
401                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
402                 else
403                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
404         }
405
406         /*
407          * Only send the status report to mac80211 when it's a frame
408          * that originated in mac80211. If this was a extra frame coming
409          * through a mac80211 library call (RTS/CTS) then we should not
410          * send the status report back.
411          */
412         if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
413                 if (test_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags))
414                         ieee80211_tx_status(rt2x00dev->hw, entry->skb);
415                 else
416                         ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
417         } else
418                 dev_kfree_skb_any(entry->skb);
419
420         /*
421          * Make this entry available for reuse.
422          */
423         entry->skb = NULL;
424         entry->flags = 0;
425
426         rt2x00dev->ops->lib->clear_entry(entry);
427
428         rt2x00queue_index_inc(entry, Q_INDEX_DONE);
429
430         /*
431          * If the data queue was below the threshold before the txdone
432          * handler we must make sure the packet queue in the mac80211 stack
433          * is reenabled when the txdone handler has finished. This has to be
434          * serialized with rt2x00mac_tx(), otherwise we can wake up queue
435          * before it was stopped.
436          */
437         spin_lock_bh(&entry->queue->tx_lock);
438         if (!rt2x00queue_threshold(entry->queue))
439                 rt2x00queue_unpause_queue(entry->queue);
440         spin_unlock_bh(&entry->queue->tx_lock);
441 }
442 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
443
444 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
445 {
446         struct txdone_entry_desc txdesc;
447
448         txdesc.flags = 0;
449         __set_bit(status, &txdesc.flags);
450         txdesc.retry = 0;
451
452         rt2x00lib_txdone(entry, &txdesc);
453 }
454 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
455
456 static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
457 {
458         struct ieee80211_mgmt *mgmt = (void *)data;
459         u8 *pos, *end;
460
461         pos = (u8 *)mgmt->u.beacon.variable;
462         end = data + len;
463         while (pos < end) {
464                 if (pos + 2 + pos[1] > end)
465                         return NULL;
466
467                 if (pos[0] == ie)
468                         return pos;
469
470                 pos += 2 + pos[1];
471         }
472
473         return NULL;
474 }
475
476 static void rt2x00lib_sleep(struct work_struct *work)
477 {
478         struct rt2x00_dev *rt2x00dev =
479             container_of(work, struct rt2x00_dev, sleep_work);
480
481         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
482                 return;
483
484         /*
485          * Check again is powersaving is enabled, to prevent races from delayed
486          * work execution.
487          */
488         if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
489                 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
490                                  IEEE80211_CONF_CHANGE_PS);
491 }
492
493 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
494                                       struct sk_buff *skb,
495                                       struct rxdone_entry_desc *rxdesc)
496 {
497         struct ieee80211_hdr *hdr = (void *) skb->data;
498         struct ieee80211_tim_ie *tim_ie;
499         u8 *tim;
500         u8 tim_len;
501         bool cam;
502
503         /* If this is not a beacon, or if mac80211 has no powersaving
504          * configured, or if the device is already in powersaving mode
505          * we can exit now. */
506         if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
507                    !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
508                 return;
509
510         /* min. beacon length + FCS_LEN */
511         if (skb->len <= 40 + FCS_LEN)
512                 return;
513
514         /* and only beacons from the associated BSSID, please */
515         if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
516             !rt2x00dev->aid)
517                 return;
518
519         rt2x00dev->last_beacon = jiffies;
520
521         tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
522         if (!tim)
523                 return;
524
525         if (tim[1] < sizeof(*tim_ie))
526                 return;
527
528         tim_len = tim[1];
529         tim_ie = (struct ieee80211_tim_ie *) &tim[2];
530
531         /* Check whenever the PHY can be turned off again. */
532
533         /* 1. What about buffered unicast traffic for our AID? */
534         cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
535
536         /* 2. Maybe the AP wants to send multicast/broadcast data? */
537         cam |= (tim_ie->bitmap_ctrl & 0x01);
538
539         if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
540                 queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
541 }
542
543 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
544                                         struct rxdone_entry_desc *rxdesc)
545 {
546         struct ieee80211_supported_band *sband;
547         const struct rt2x00_rate *rate;
548         unsigned int i;
549         int signal = rxdesc->signal;
550         int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
551
552         switch (rxdesc->rate_mode) {
553         case RATE_MODE_CCK:
554         case RATE_MODE_OFDM:
555                 /*
556                  * For non-HT rates the MCS value needs to contain the
557                  * actually used rate modulation (CCK or OFDM).
558                  */
559                 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
560                         signal = RATE_MCS(rxdesc->rate_mode, signal);
561
562                 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
563                 for (i = 0; i < sband->n_bitrates; i++) {
564                         rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
565                         if (((type == RXDONE_SIGNAL_PLCP) &&
566                              (rate->plcp == signal)) ||
567                             ((type == RXDONE_SIGNAL_BITRATE) &&
568                               (rate->bitrate == signal)) ||
569                             ((type == RXDONE_SIGNAL_MCS) &&
570                               (rate->mcs == signal))) {
571                                 return i;
572                         }
573                 }
574                 break;
575         case RATE_MODE_HT_MIX:
576         case RATE_MODE_HT_GREENFIELD:
577                 if (signal >= 0 && signal <= 76)
578                         return signal;
579                 break;
580         default:
581                 break;
582         }
583
584         WARNING(rt2x00dev, "Frame received with unrecognized signal, "
585                 "mode=0x%.4x, signal=0x%.4x, type=%d.\n",
586                 rxdesc->rate_mode, signal, type);
587         return 0;
588 }
589
590 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp)
591 {
592         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
593         struct rxdone_entry_desc rxdesc;
594         struct sk_buff *skb;
595         struct ieee80211_rx_status *rx_status;
596         unsigned int header_length;
597         int rate_idx;
598
599         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
600             !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
601                 goto submit_entry;
602
603         if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
604                 goto submit_entry;
605
606         /*
607          * Allocate a new sk_buffer. If no new buffer available, drop the
608          * received frame and reuse the existing buffer.
609          */
610         skb = rt2x00queue_alloc_rxskb(entry, gfp);
611         if (!skb)
612                 goto submit_entry;
613
614         /*
615          * Unmap the skb.
616          */
617         rt2x00queue_unmap_skb(entry);
618
619         /*
620          * Extract the RXD details.
621          */
622         memset(&rxdesc, 0, sizeof(rxdesc));
623         rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
624
625         /*
626          * Check for valid size in case we get corrupted descriptor from
627          * hardware.
628          */
629         if (unlikely(rxdesc.size == 0 ||
630                      rxdesc.size > entry->queue->data_size)) {
631                 ERROR(rt2x00dev, "Wrong frame size %d max %d.\n",
632                         rxdesc.size, entry->queue->data_size);
633                 dev_kfree_skb(entry->skb);
634                 goto renew_skb;
635         }
636
637         /*
638          * The data behind the ieee80211 header must be
639          * aligned on a 4 byte boundary.
640          */
641         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
642
643         /*
644          * Hardware might have stripped the IV/EIV/ICV data,
645          * in that case it is possible that the data was
646          * provided separately (through hardware descriptor)
647          * in which case we should reinsert the data into the frame.
648          */
649         if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
650             (rxdesc.flags & RX_FLAG_IV_STRIPPED))
651                 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
652                                           &rxdesc);
653         else if (header_length &&
654                  (rxdesc.size > header_length) &&
655                  (rxdesc.dev_flags & RXDONE_L2PAD))
656                 rt2x00queue_remove_l2pad(entry->skb, header_length);
657
658         /* Trim buffer to correct size */
659         skb_trim(entry->skb, rxdesc.size);
660
661         /*
662          * Translate the signal to the correct bitrate index.
663          */
664         rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
665         if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
666             rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
667                 rxdesc.flags |= RX_FLAG_HT;
668
669         /*
670          * Check if this is a beacon, and more frames have been
671          * buffered while we were in powersaving mode.
672          */
673         rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
674
675         /*
676          * Update extra components
677          */
678         rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
679         rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
680         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
681
682         /*
683          * Initialize RX status information, and send frame
684          * to mac80211.
685          */
686         rx_status = IEEE80211_SKB_RXCB(entry->skb);
687         rx_status->mactime = rxdesc.timestamp;
688         rx_status->band = rt2x00dev->curr_band;
689         rx_status->freq = rt2x00dev->curr_freq;
690         rx_status->rate_idx = rate_idx;
691         rx_status->signal = rxdesc.rssi;
692         rx_status->flag = rxdesc.flags;
693         rx_status->antenna = rt2x00dev->link.ant.active.rx;
694
695         ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
696
697 renew_skb:
698         /*
699          * Replace the skb with the freshly allocated one.
700          */
701         entry->skb = skb;
702
703 submit_entry:
704         entry->flags = 0;
705         rt2x00queue_index_inc(entry, Q_INDEX_DONE);
706         if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
707             test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
708                 rt2x00dev->ops->lib->clear_entry(entry);
709 }
710 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
711
712 /*
713  * Driver initialization handlers.
714  */
715 const struct rt2x00_rate rt2x00_supported_rates[12] = {
716         {
717                 .flags = DEV_RATE_CCK,
718                 .bitrate = 10,
719                 .ratemask = BIT(0),
720                 .plcp = 0x00,
721                 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
722         },
723         {
724                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
725                 .bitrate = 20,
726                 .ratemask = BIT(1),
727                 .plcp = 0x01,
728                 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
729         },
730         {
731                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
732                 .bitrate = 55,
733                 .ratemask = BIT(2),
734                 .plcp = 0x02,
735                 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
736         },
737         {
738                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
739                 .bitrate = 110,
740                 .ratemask = BIT(3),
741                 .plcp = 0x03,
742                 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
743         },
744         {
745                 .flags = DEV_RATE_OFDM,
746                 .bitrate = 60,
747                 .ratemask = BIT(4),
748                 .plcp = 0x0b,
749                 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
750         },
751         {
752                 .flags = DEV_RATE_OFDM,
753                 .bitrate = 90,
754                 .ratemask = BIT(5),
755                 .plcp = 0x0f,
756                 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
757         },
758         {
759                 .flags = DEV_RATE_OFDM,
760                 .bitrate = 120,
761                 .ratemask = BIT(6),
762                 .plcp = 0x0a,
763                 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
764         },
765         {
766                 .flags = DEV_RATE_OFDM,
767                 .bitrate = 180,
768                 .ratemask = BIT(7),
769                 .plcp = 0x0e,
770                 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
771         },
772         {
773                 .flags = DEV_RATE_OFDM,
774                 .bitrate = 240,
775                 .ratemask = BIT(8),
776                 .plcp = 0x09,
777                 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
778         },
779         {
780                 .flags = DEV_RATE_OFDM,
781                 .bitrate = 360,
782                 .ratemask = BIT(9),
783                 .plcp = 0x0d,
784                 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
785         },
786         {
787                 .flags = DEV_RATE_OFDM,
788                 .bitrate = 480,
789                 .ratemask = BIT(10),
790                 .plcp = 0x08,
791                 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
792         },
793         {
794                 .flags = DEV_RATE_OFDM,
795                 .bitrate = 540,
796                 .ratemask = BIT(11),
797                 .plcp = 0x0c,
798                 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
799         },
800 };
801
802 static void rt2x00lib_channel(struct ieee80211_channel *entry,
803                               const int channel, const int tx_power,
804                               const int value)
805 {
806         /* XXX: this assumption about the band is wrong for 802.11j */
807         entry->band = channel <= 14 ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
808         entry->center_freq = ieee80211_channel_to_frequency(channel,
809                                                             entry->band);
810         entry->hw_value = value;
811         entry->max_power = tx_power;
812         entry->max_antenna_gain = 0xff;
813 }
814
815 static void rt2x00lib_rate(struct ieee80211_rate *entry,
816                            const u16 index, const struct rt2x00_rate *rate)
817 {
818         entry->flags = 0;
819         entry->bitrate = rate->bitrate;
820         entry->hw_value = index;
821         entry->hw_value_short = index;
822
823         if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
824                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
825 }
826
827 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
828                                     struct hw_mode_spec *spec)
829 {
830         struct ieee80211_hw *hw = rt2x00dev->hw;
831         struct ieee80211_channel *channels;
832         struct ieee80211_rate *rates;
833         unsigned int num_rates;
834         unsigned int i;
835
836         num_rates = 0;
837         if (spec->supported_rates & SUPPORT_RATE_CCK)
838                 num_rates += 4;
839         if (spec->supported_rates & SUPPORT_RATE_OFDM)
840                 num_rates += 8;
841
842         channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
843         if (!channels)
844                 return -ENOMEM;
845
846         rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
847         if (!rates)
848                 goto exit_free_channels;
849
850         /*
851          * Initialize Rate list.
852          */
853         for (i = 0; i < num_rates; i++)
854                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
855
856         /*
857          * Initialize Channel list.
858          */
859         for (i = 0; i < spec->num_channels; i++) {
860                 rt2x00lib_channel(&channels[i],
861                                   spec->channels[i].channel,
862                                   spec->channels_info[i].max_power, i);
863         }
864
865         /*
866          * Intitialize 802.11b, 802.11g
867          * Rates: CCK, OFDM.
868          * Channels: 2.4 GHz
869          */
870         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
871                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
872                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
873                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
874                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
875                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
876                     &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
877                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
878                        &spec->ht, sizeof(spec->ht));
879         }
880
881         /*
882          * Intitialize 802.11a
883          * Rates: OFDM.
884          * Channels: OFDM, UNII, HiperLAN2.
885          */
886         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
887                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
888                     spec->num_channels - 14;
889                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
890                     num_rates - 4;
891                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
892                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
893                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
894                     &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
895                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
896                        &spec->ht, sizeof(spec->ht));
897         }
898
899         return 0;
900
901  exit_free_channels:
902         kfree(channels);
903         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
904         return -ENOMEM;
905 }
906
907 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
908 {
909         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
910                 ieee80211_unregister_hw(rt2x00dev->hw);
911
912         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
913                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
914                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
915                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
916                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
917         }
918
919         kfree(rt2x00dev->spec.channels_info);
920 }
921
922 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
923 {
924         struct hw_mode_spec *spec = &rt2x00dev->spec;
925         int status;
926
927         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
928                 return 0;
929
930         /*
931          * Initialize HW modes.
932          */
933         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
934         if (status)
935                 return status;
936
937         /*
938          * Initialize HW fields.
939          */
940         rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
941
942         /*
943          * Initialize extra TX headroom required.
944          */
945         rt2x00dev->hw->extra_tx_headroom =
946                 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
947                       rt2x00dev->ops->extra_tx_headroom);
948
949         /*
950          * Take TX headroom required for alignment into account.
951          */
952         if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
953                 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
954         else if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags))
955                 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
956
957         /*
958          * Tell mac80211 about the size of our private STA structure.
959          */
960         rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
961
962         /*
963          * Allocate tx status FIFO for driver use.
964          */
965         if (test_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags)) {
966                 /*
967                  * Allocate the txstatus fifo. In the worst case the tx
968                  * status fifo has to hold the tx status of all entries
969                  * in all tx queues. Hence, calculate the kfifo size as
970                  * tx_queues * entry_num and round up to the nearest
971                  * power of 2.
972                  */
973                 int kfifo_size =
974                         roundup_pow_of_two(rt2x00dev->ops->tx_queues *
975                                            rt2x00dev->ops->tx->entry_num *
976                                            sizeof(u32));
977
978                 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
979                                      GFP_KERNEL);
980                 if (status)
981                         return status;
982         }
983
984         /*
985          * Initialize tasklets if used by the driver. Tasklets are
986          * disabled until the interrupts are turned on. The driver
987          * has to handle that.
988          */
989 #define RT2X00_TASKLET_INIT(taskletname) \
990         if (rt2x00dev->ops->lib->taskletname) { \
991                 tasklet_init(&rt2x00dev->taskletname, \
992                              rt2x00dev->ops->lib->taskletname, \
993                              (unsigned long)rt2x00dev); \
994         }
995
996         RT2X00_TASKLET_INIT(txstatus_tasklet);
997         RT2X00_TASKLET_INIT(pretbtt_tasklet);
998         RT2X00_TASKLET_INIT(tbtt_tasklet);
999         RT2X00_TASKLET_INIT(rxdone_tasklet);
1000         RT2X00_TASKLET_INIT(autowake_tasklet);
1001
1002 #undef RT2X00_TASKLET_INIT
1003
1004         /*
1005          * Register HW.
1006          */
1007         status = ieee80211_register_hw(rt2x00dev->hw);
1008         if (status)
1009                 return status;
1010
1011         set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
1012
1013         return 0;
1014 }
1015
1016 /*
1017  * Initialization/uninitialization handlers.
1018  */
1019 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1020 {
1021         if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1022                 return;
1023
1024         /*
1025          * Unregister extra components.
1026          */
1027         rt2x00rfkill_unregister(rt2x00dev);
1028
1029         /*
1030          * Allow the HW to uninitialize.
1031          */
1032         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1033
1034         /*
1035          * Free allocated queue entries.
1036          */
1037         rt2x00queue_uninitialize(rt2x00dev);
1038 }
1039
1040 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1041 {
1042         int status;
1043
1044         if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1045                 return 0;
1046
1047         /*
1048          * Allocate all queue entries.
1049          */
1050         status = rt2x00queue_initialize(rt2x00dev);
1051         if (status)
1052                 return status;
1053
1054         /*
1055          * Initialize the device.
1056          */
1057         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1058         if (status) {
1059                 rt2x00queue_uninitialize(rt2x00dev);
1060                 return status;
1061         }
1062
1063         set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1064
1065         return 0;
1066 }
1067
1068 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1069 {
1070         int retval;
1071
1072         if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1073                 return 0;
1074
1075         /*
1076          * If this is the first interface which is added,
1077          * we should load the firmware now.
1078          */
1079         retval = rt2x00lib_load_firmware(rt2x00dev);
1080         if (retval)
1081                 return retval;
1082
1083         /*
1084          * Initialize the device.
1085          */
1086         retval = rt2x00lib_initialize(rt2x00dev);
1087         if (retval)
1088                 return retval;
1089
1090         rt2x00dev->intf_ap_count = 0;
1091         rt2x00dev->intf_sta_count = 0;
1092         rt2x00dev->intf_associated = 0;
1093
1094         /* Enable the radio */
1095         retval = rt2x00lib_enable_radio(rt2x00dev);
1096         if (retval)
1097                 return retval;
1098
1099         set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1100
1101         return 0;
1102 }
1103
1104 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1105 {
1106         if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1107                 return;
1108
1109         /*
1110          * Perhaps we can add something smarter here,
1111          * but for now just disabling the radio should do.
1112          */
1113         rt2x00lib_disable_radio(rt2x00dev);
1114
1115         rt2x00dev->intf_ap_count = 0;
1116         rt2x00dev->intf_sta_count = 0;
1117         rt2x00dev->intf_associated = 0;
1118 }
1119
1120 static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev)
1121 {
1122         struct ieee80211_iface_limit *if_limit;
1123         struct ieee80211_iface_combination *if_combination;
1124
1125         if (rt2x00dev->ops->max_ap_intf < 2)
1126                 return;
1127
1128         /*
1129          * Build up AP interface limits structure.
1130          */
1131         if_limit = &rt2x00dev->if_limits_ap;
1132         if_limit->max = rt2x00dev->ops->max_ap_intf;
1133         if_limit->types = BIT(NL80211_IFTYPE_AP);
1134
1135         /*
1136          * Build up AP interface combinations structure.
1137          */
1138         if_combination = &rt2x00dev->if_combinations[IF_COMB_AP];
1139         if_combination->limits = if_limit;
1140         if_combination->n_limits = 1;
1141         if_combination->max_interfaces = if_limit->max;
1142         if_combination->num_different_channels = 1;
1143
1144         /*
1145          * Finally, specify the possible combinations to mac80211.
1146          */
1147         rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations;
1148         rt2x00dev->hw->wiphy->n_iface_combinations = 1;
1149 }
1150
1151 /*
1152  * driver allocation handlers.
1153  */
1154 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1155 {
1156         int retval = -ENOMEM;
1157
1158         /*
1159          * Set possible interface combinations.
1160          */
1161         rt2x00lib_set_if_combinations(rt2x00dev);
1162
1163         /*
1164          * Allocate the driver data memory, if necessary.
1165          */
1166         if (rt2x00dev->ops->drv_data_size > 0) {
1167                 rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size,
1168                                               GFP_KERNEL);
1169                 if (!rt2x00dev->drv_data) {
1170                         retval = -ENOMEM;
1171                         goto exit;
1172                 }
1173         }
1174
1175         spin_lock_init(&rt2x00dev->irqmask_lock);
1176         mutex_init(&rt2x00dev->csr_mutex);
1177
1178         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1179
1180         /*
1181          * Make room for rt2x00_intf inside the per-interface
1182          * structure ieee80211_vif.
1183          */
1184         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1185
1186         /*
1187          * Determine which operating modes are supported, all modes
1188          * which require beaconing, depend on the availability of
1189          * beacon entries.
1190          */
1191         rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1192         if (rt2x00dev->ops->bcn->entry_num > 0)
1193                 rt2x00dev->hw->wiphy->interface_modes |=
1194                     BIT(NL80211_IFTYPE_ADHOC) |
1195                     BIT(NL80211_IFTYPE_AP) |
1196                     BIT(NL80211_IFTYPE_MESH_POINT) |
1197                     BIT(NL80211_IFTYPE_WDS);
1198
1199         rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
1200
1201         /*
1202          * Initialize work.
1203          */
1204         rt2x00dev->workqueue =
1205             alloc_ordered_workqueue(wiphy_name(rt2x00dev->hw->wiphy), 0);
1206         if (!rt2x00dev->workqueue) {
1207                 retval = -ENOMEM;
1208                 goto exit;
1209         }
1210
1211         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1212         INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1213         INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
1214
1215         /*
1216          * Let the driver probe the device to detect the capabilities.
1217          */
1218         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1219         if (retval) {
1220                 ERROR(rt2x00dev, "Failed to allocate device.\n");
1221                 goto exit;
1222         }
1223
1224         /*
1225          * Allocate queue array.
1226          */
1227         retval = rt2x00queue_allocate(rt2x00dev);
1228         if (retval)
1229                 goto exit;
1230
1231         /*
1232          * Initialize ieee80211 structure.
1233          */
1234         retval = rt2x00lib_probe_hw(rt2x00dev);
1235         if (retval) {
1236                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1237                 goto exit;
1238         }
1239
1240         /*
1241          * Register extra components.
1242          */
1243         rt2x00link_register(rt2x00dev);
1244         rt2x00leds_register(rt2x00dev);
1245         rt2x00debug_register(rt2x00dev);
1246         rt2x00rfkill_register(rt2x00dev);
1247
1248         return 0;
1249
1250 exit:
1251         rt2x00lib_remove_dev(rt2x00dev);
1252
1253         return retval;
1254 }
1255 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1256
1257 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1258 {
1259         clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1260
1261         /*
1262          * Disable radio.
1263          */
1264         rt2x00lib_disable_radio(rt2x00dev);
1265
1266         /*
1267          * Stop all work.
1268          */
1269         cancel_work_sync(&rt2x00dev->intf_work);
1270         cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1271         cancel_work_sync(&rt2x00dev->sleep_work);
1272         if (rt2x00_is_usb(rt2x00dev)) {
1273                 hrtimer_cancel(&rt2x00dev->txstatus_timer);
1274                 cancel_work_sync(&rt2x00dev->rxdone_work);
1275                 cancel_work_sync(&rt2x00dev->txdone_work);
1276         }
1277         if (rt2x00dev->workqueue)
1278                 destroy_workqueue(rt2x00dev->workqueue);
1279
1280         /*
1281          * Free the tx status fifo.
1282          */
1283         kfifo_free(&rt2x00dev->txstatus_fifo);
1284
1285         /*
1286          * Kill the tx status tasklet.
1287          */
1288         tasklet_kill(&rt2x00dev->txstatus_tasklet);
1289         tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1290         tasklet_kill(&rt2x00dev->tbtt_tasklet);
1291         tasklet_kill(&rt2x00dev->rxdone_tasklet);
1292         tasklet_kill(&rt2x00dev->autowake_tasklet);
1293
1294         /*
1295          * Uninitialize device.
1296          */
1297         rt2x00lib_uninitialize(rt2x00dev);
1298
1299         /*
1300          * Free extra components
1301          */
1302         rt2x00debug_deregister(rt2x00dev);
1303         rt2x00leds_unregister(rt2x00dev);
1304
1305         /*
1306          * Free ieee80211_hw memory.
1307          */
1308         rt2x00lib_remove_hw(rt2x00dev);
1309
1310         /*
1311          * Free firmware image.
1312          */
1313         rt2x00lib_free_firmware(rt2x00dev);
1314
1315         /*
1316          * Free queue structures.
1317          */
1318         rt2x00queue_free(rt2x00dev);
1319
1320         /*
1321          * Free the driver data.
1322          */
1323         if (rt2x00dev->drv_data)
1324                 kfree(rt2x00dev->drv_data);
1325 }
1326 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1327
1328 /*
1329  * Device state handlers
1330  */
1331 #ifdef CONFIG_PM
1332 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1333 {
1334         NOTICE(rt2x00dev, "Going to sleep.\n");
1335
1336         /*
1337          * Prevent mac80211 from accessing driver while suspended.
1338          */
1339         if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1340                 return 0;
1341
1342         /*
1343          * Cleanup as much as possible.
1344          */
1345         rt2x00lib_uninitialize(rt2x00dev);
1346
1347         /*
1348          * Suspend/disable extra components.
1349          */
1350         rt2x00leds_suspend(rt2x00dev);
1351         rt2x00debug_deregister(rt2x00dev);
1352
1353         /*
1354          * Set device mode to sleep for power management,
1355          * on some hardware this call seems to consistently fail.
1356          * From the specifications it is hard to tell why it fails,
1357          * and if this is a "bad thing".
1358          * Overall it is safe to just ignore the failure and
1359          * continue suspending. The only downside is that the
1360          * device will not be in optimal power save mode, but with
1361          * the radio and the other components already disabled the
1362          * device is as good as disabled.
1363          */
1364         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1365                 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1366                         "continue suspending.\n");
1367
1368         return 0;
1369 }
1370 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1371
1372 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1373 {
1374         NOTICE(rt2x00dev, "Waking up.\n");
1375
1376         /*
1377          * Restore/enable extra components.
1378          */
1379         rt2x00debug_register(rt2x00dev);
1380         rt2x00leds_resume(rt2x00dev);
1381
1382         /*
1383          * We are ready again to receive requests from mac80211.
1384          */
1385         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1386
1387         return 0;
1388 }
1389 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1390 #endif /* CONFIG_PM */
1391
1392 /*
1393  * rt2x00lib module information.
1394  */
1395 MODULE_AUTHOR(DRV_PROJECT);
1396 MODULE_VERSION(DRV_VERSION);
1397 MODULE_DESCRIPTION("rt2x00 library");
1398 MODULE_LICENSE("GPL");