]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/net/wireless/rt2x00/rt2x00dev.c
rt2x00: Add helper function for reporting tx status
[mv-sheeva.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3         Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4         <http://rt2x00.serialmonkey.com>
5
6         This program is free software; you can redistribute it and/or modify
7         it under the terms of the GNU General Public License as published by
8         the Free Software Foundation; either version 2 of the License, or
9         (at your option) any later version.
10
11         This program is distributed in the hope that it will be useful,
12         but WITHOUT ANY WARRANTY; without even the implied warranty of
13         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14         GNU General Public License for more details.
15
16         You should have received a copy of the GNU General Public License
17         along with this program; if not, write to the
18         Free Software Foundation, Inc.,
19         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20  */
21
22 /*
23         Module: rt2x00lib
24         Abstract: rt2x00 generic device routines.
25  */
26
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30
31 #include "rt2x00.h"
32 #include "rt2x00lib.h"
33
34 /*
35  * Radio control handlers.
36  */
37 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
38 {
39         int status;
40
41         /*
42          * Don't enable the radio twice.
43          * And check if the hardware button has been disabled.
44          */
45         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
46                 return 0;
47
48         /*
49          * Initialize all data queues.
50          */
51         rt2x00queue_init_queues(rt2x00dev);
52
53         /*
54          * Enable radio.
55          */
56         status =
57             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
58         if (status)
59                 return status;
60
61         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
62
63         rt2x00leds_led_radio(rt2x00dev, true);
64         rt2x00led_led_activity(rt2x00dev, true);
65
66         set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
67
68         /*
69          * Enable RX.
70          */
71         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
72
73         /*
74          * Start watchdog monitoring.
75          */
76         rt2x00link_start_watchdog(rt2x00dev);
77
78         /*
79          * Start the TX queues.
80          */
81         ieee80211_wake_queues(rt2x00dev->hw);
82
83         return 0;
84 }
85
86 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
87 {
88         if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
89                 return;
90
91         /*
92          * Stop the TX queues in mac80211.
93          */
94         ieee80211_stop_queues(rt2x00dev->hw);
95         rt2x00queue_stop_queues(rt2x00dev);
96
97         /*
98          * Stop watchdog monitoring.
99          */
100         rt2x00link_stop_watchdog(rt2x00dev);
101
102         /*
103          * Disable RX.
104          */
105         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
106
107         /*
108          * Disable radio.
109          */
110         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
111         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
112         rt2x00led_led_activity(rt2x00dev, false);
113         rt2x00leds_led_radio(rt2x00dev, false);
114 }
115
116 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
117 {
118         /*
119          * When we are disabling the RX, we should also stop the link tuner.
120          */
121         if (state == STATE_RADIO_RX_OFF)
122                 rt2x00link_stop_tuner(rt2x00dev);
123
124         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
125
126         /*
127          * When we are enabling the RX, we should also start the link tuner.
128          */
129         if (state == STATE_RADIO_RX_ON)
130                 rt2x00link_start_tuner(rt2x00dev);
131 }
132
133 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
134                                           struct ieee80211_vif *vif)
135 {
136         struct rt2x00_dev *rt2x00dev = data;
137         struct rt2x00_intf *intf = vif_to_intf(vif);
138         int delayed_flags;
139
140         /*
141          * Copy all data we need during this action under the protection
142          * of a spinlock. Otherwise race conditions might occur which results
143          * into an invalid configuration.
144          */
145         spin_lock(&intf->lock);
146
147         delayed_flags = intf->delayed_flags;
148         intf->delayed_flags = 0;
149
150         spin_unlock(&intf->lock);
151
152         /*
153          * It is possible the radio was disabled while the work had been
154          * scheduled. If that happens we should return here immediately,
155          * note that in the spinlock protected area above the delayed_flags
156          * have been cleared correctly.
157          */
158         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
159                 return;
160
161         if (delayed_flags & DELAYED_UPDATE_BEACON)
162                 rt2x00queue_update_beacon(rt2x00dev, vif, true);
163 }
164
165 static void rt2x00lib_intf_scheduled(struct work_struct *work)
166 {
167         struct rt2x00_dev *rt2x00dev =
168             container_of(work, struct rt2x00_dev, intf_work);
169
170         /*
171          * Iterate over each interface and perform the
172          * requested configurations.
173          */
174         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
175                                             rt2x00lib_intf_scheduled_iter,
176                                             rt2x00dev);
177 }
178
179 /*
180  * Interrupt context handlers.
181  */
182 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
183                                      struct ieee80211_vif *vif)
184 {
185         struct rt2x00_dev *rt2x00dev = data;
186         struct sk_buff *skb;
187
188         /*
189          * Only AP mode interfaces do broad- and multicast buffering
190          */
191         if (vif->type != NL80211_IFTYPE_AP)
192                 return;
193
194         /*
195          * Send out buffered broad- and multicast frames
196          */
197         skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
198         while (skb) {
199                 rt2x00mac_tx(rt2x00dev->hw, skb);
200                 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
201         }
202 }
203
204 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
205                                         struct ieee80211_vif *vif)
206 {
207         struct rt2x00_dev *rt2x00dev = data;
208
209         if (vif->type != NL80211_IFTYPE_AP &&
210             vif->type != NL80211_IFTYPE_ADHOC &&
211             vif->type != NL80211_IFTYPE_MESH_POINT &&
212             vif->type != NL80211_IFTYPE_WDS)
213                 return;
214
215         rt2x00queue_update_beacon(rt2x00dev, vif, true);
216 }
217
218 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
219 {
220         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
221                 return;
222
223         /* send buffered bc/mc frames out for every bssid */
224         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
225                                             rt2x00lib_bc_buffer_iter,
226                                             rt2x00dev);
227         /*
228          * Devices with pre tbtt interrupt don't need to update the beacon
229          * here as they will fetch the next beacon directly prior to
230          * transmission.
231          */
232         if (test_bit(DRIVER_SUPPORT_PRE_TBTT_INTERRUPT, &rt2x00dev->flags))
233                 return;
234
235         /* fetch next beacon */
236         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
237                                             rt2x00lib_beaconupdate_iter,
238                                             rt2x00dev);
239 }
240 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
241
242 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
243 {
244         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
245                 return;
246
247         /* fetch next beacon */
248         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
249                                             rt2x00lib_beaconupdate_iter,
250                                             rt2x00dev);
251 }
252 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
253
254 void rt2x00lib_txdone(struct queue_entry *entry,
255                       struct txdone_entry_desc *txdesc)
256 {
257         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
258         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
259         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
260         enum data_queue_qid qid = skb_get_queue_mapping(entry->skb);
261         unsigned int header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
262         u8 rate_idx, rate_flags, retry_rates;
263         u8 skbdesc_flags = skbdesc->flags;
264         unsigned int i;
265         bool success;
266
267         /*
268          * Unmap the skb.
269          */
270         rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
271
272         /*
273          * Remove the extra tx headroom from the skb.
274          */
275         skb_pull(entry->skb, rt2x00dev->ops->extra_tx_headroom);
276
277         /*
278          * Signal that the TX descriptor is no longer in the skb.
279          */
280         skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
281
282         /*
283          * Remove L2 padding which was added during
284          */
285         if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
286                 rt2x00queue_remove_l2pad(entry->skb, header_length);
287
288         /*
289          * If the IV/EIV data was stripped from the frame before it was
290          * passed to the hardware, we should now reinsert it again because
291          * mac80211 will expect the same data to be present it the
292          * frame as it was passed to us.
293          */
294         if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags))
295                 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
296
297         /*
298          * Send frame to debugfs immediately, after this call is completed
299          * we are going to overwrite the skb->cb array.
300          */
301         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
302
303         /*
304          * Determine if the frame has been successfully transmitted.
305          */
306         success =
307             test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
308             test_bit(TXDONE_UNKNOWN, &txdesc->flags);
309
310         /*
311          * Update TX statistics.
312          */
313         rt2x00dev->link.qual.tx_success += success;
314         rt2x00dev->link.qual.tx_failed += !success;
315
316         rate_idx = skbdesc->tx_rate_idx;
317         rate_flags = skbdesc->tx_rate_flags;
318         retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
319             (txdesc->retry + 1) : 1;
320
321         /*
322          * Initialize TX status
323          */
324         memset(&tx_info->status, 0, sizeof(tx_info->status));
325         tx_info->status.ack_signal = 0;
326
327         /*
328          * Frame was send with retries, hardware tried
329          * different rates to send out the frame, at each
330          * retry it lowered the rate 1 step except when the
331          * lowest rate was used.
332          */
333         for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
334                 tx_info->status.rates[i].idx = rate_idx - i;
335                 tx_info->status.rates[i].flags = rate_flags;
336
337                 if (rate_idx - i == 0) {
338                         /*
339                          * The lowest rate (index 0) was used until the
340                          * number of max retries was reached.
341                          */
342                         tx_info->status.rates[i].count = retry_rates - i;
343                         i++;
344                         break;
345                 }
346                 tx_info->status.rates[i].count = 1;
347         }
348         if (i < (IEEE80211_TX_MAX_RATES - 1))
349                 tx_info->status.rates[i].idx = -1; /* terminate */
350
351         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
352                 if (success)
353                         tx_info->flags |= IEEE80211_TX_STAT_ACK;
354                 else
355                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
356         }
357
358         /*
359          * Every single frame has it's own tx status, hence report
360          * every frame as ampdu of size 1.
361          *
362          * TODO: if we can find out how many frames were aggregated
363          * by the hw we could provide the real ampdu_len to mac80211
364          * which would allow the rc algorithm to better decide on
365          * which rates are suitable.
366          */
367         if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
368                 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
369                 tx_info->status.ampdu_len = 1;
370                 tx_info->status.ampdu_ack_len = success ? 1 : 0;
371         }
372
373         if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
374                 if (success)
375                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
376                 else
377                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
378         }
379
380         /*
381          * Only send the status report to mac80211 when it's a frame
382          * that originated in mac80211. If this was a extra frame coming
383          * through a mac80211 library call (RTS/CTS) then we should not
384          * send the status report back.
385          */
386         if (!(skbdesc_flags & SKBDESC_NOT_MAC80211))
387                 ieee80211_tx_status(rt2x00dev->hw, entry->skb);
388         else
389                 dev_kfree_skb_any(entry->skb);
390
391         /*
392          * Make this entry available for reuse.
393          */
394         entry->skb = NULL;
395         entry->flags = 0;
396
397         rt2x00dev->ops->lib->clear_entry(entry);
398
399         rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
400
401         /*
402          * If the data queue was below the threshold before the txdone
403          * handler we must make sure the packet queue in the mac80211 stack
404          * is reenabled when the txdone handler has finished.
405          */
406         if (!rt2x00queue_threshold(entry->queue))
407                 ieee80211_wake_queue(rt2x00dev->hw, qid);
408 }
409 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
410
411 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
412 {
413         struct txdone_entry_desc txdesc;
414
415         txdesc.flags = 0;
416         __set_bit(status, &txdesc.flags);
417         txdesc.retry = 0;
418
419         rt2x00lib_txdone(entry, &txdesc);
420 }
421 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
422
423 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
424                                         struct rxdone_entry_desc *rxdesc)
425 {
426         struct ieee80211_supported_band *sband;
427         const struct rt2x00_rate *rate;
428         unsigned int i;
429         int signal;
430         int type;
431
432         /*
433          * For non-HT rates the MCS value needs to contain the
434          * actually used rate modulation (CCK or OFDM).
435          */
436         if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
437                 signal = RATE_MCS(rxdesc->rate_mode, rxdesc->signal);
438         else
439                 signal = rxdesc->signal;
440
441         type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
442
443         sband = &rt2x00dev->bands[rt2x00dev->curr_band];
444         for (i = 0; i < sband->n_bitrates; i++) {
445                 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
446
447                 if (((type == RXDONE_SIGNAL_PLCP) &&
448                      (rate->plcp == signal)) ||
449                     ((type == RXDONE_SIGNAL_BITRATE) &&
450                       (rate->bitrate == signal)) ||
451                     ((type == RXDONE_SIGNAL_MCS) &&
452                       (rate->mcs == signal))) {
453                         return i;
454                 }
455         }
456
457         WARNING(rt2x00dev, "Frame received with unrecognized signal, "
458                 "signal=0x%.4x, type=%d.\n", signal, type);
459         return 0;
460 }
461
462 void rt2x00lib_rxdone(struct rt2x00_dev *rt2x00dev,
463                       struct queue_entry *entry)
464 {
465         struct rxdone_entry_desc rxdesc;
466         struct sk_buff *skb;
467         struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
468         unsigned int header_length;
469         int rate_idx;
470
471         if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
472                 goto submit_entry;
473
474         /*
475          * Allocate a new sk_buffer. If no new buffer available, drop the
476          * received frame and reuse the existing buffer.
477          */
478         skb = rt2x00queue_alloc_rxskb(rt2x00dev, entry);
479         if (!skb)
480                 return;
481
482         /*
483          * Unmap the skb.
484          */
485         rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
486
487         /*
488          * Extract the RXD details.
489          */
490         memset(&rxdesc, 0, sizeof(rxdesc));
491         rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
492
493         /*
494          * The data behind the ieee80211 header must be
495          * aligned on a 4 byte boundary.
496          */
497         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
498
499         /*
500          * Hardware might have stripped the IV/EIV/ICV data,
501          * in that case it is possible that the data was
502          * provided separately (through hardware descriptor)
503          * in which case we should reinsert the data into the frame.
504          */
505         if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
506             (rxdesc.flags & RX_FLAG_IV_STRIPPED))
507                 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
508                                           &rxdesc);
509         else if (header_length &&
510                  (rxdesc.size > header_length) &&
511                  (rxdesc.dev_flags & RXDONE_L2PAD))
512                 rt2x00queue_remove_l2pad(entry->skb, header_length);
513         else
514                 rt2x00queue_align_payload(entry->skb, header_length);
515
516         /* Trim buffer to correct size */
517         skb_trim(entry->skb, rxdesc.size);
518
519         /*
520          * Check if the frame was received using HT. In that case,
521          * the rate is the MCS index and should be passed to mac80211
522          * directly. Otherwise we need to translate the signal to
523          * the correct bitrate index.
524          */
525         if (rxdesc.rate_mode == RATE_MODE_CCK ||
526             rxdesc.rate_mode == RATE_MODE_OFDM) {
527                 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
528         } else {
529                 rxdesc.flags |= RX_FLAG_HT;
530                 rate_idx = rxdesc.signal;
531         }
532
533         /*
534          * Update extra components
535          */
536         rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
537         rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
538
539         rx_status->mactime = rxdesc.timestamp;
540         rx_status->rate_idx = rate_idx;
541         rx_status->signal = rxdesc.rssi;
542         rx_status->flag = rxdesc.flags;
543         rx_status->antenna = rt2x00dev->link.ant.active.rx;
544
545         /*
546          * Send frame to mac80211 & debugfs.
547          * mac80211 will clean up the skb structure.
548          */
549         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
550         memcpy(IEEE80211_SKB_RXCB(entry->skb), rx_status, sizeof(*rx_status));
551         ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
552
553         /*
554          * Replace the skb with the freshly allocated one.
555          */
556         entry->skb = skb;
557
558 submit_entry:
559         rt2x00dev->ops->lib->clear_entry(entry);
560         rt2x00queue_index_inc(entry->queue, Q_INDEX);
561         rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
562 }
563 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
564
565 /*
566  * Driver initialization handlers.
567  */
568 const struct rt2x00_rate rt2x00_supported_rates[12] = {
569         {
570                 .flags = DEV_RATE_CCK,
571                 .bitrate = 10,
572                 .ratemask = BIT(0),
573                 .plcp = 0x00,
574                 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
575         },
576         {
577                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
578                 .bitrate = 20,
579                 .ratemask = BIT(1),
580                 .plcp = 0x01,
581                 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
582         },
583         {
584                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
585                 .bitrate = 55,
586                 .ratemask = BIT(2),
587                 .plcp = 0x02,
588                 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
589         },
590         {
591                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
592                 .bitrate = 110,
593                 .ratemask = BIT(3),
594                 .plcp = 0x03,
595                 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
596         },
597         {
598                 .flags = DEV_RATE_OFDM,
599                 .bitrate = 60,
600                 .ratemask = BIT(4),
601                 .plcp = 0x0b,
602                 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
603         },
604         {
605                 .flags = DEV_RATE_OFDM,
606                 .bitrate = 90,
607                 .ratemask = BIT(5),
608                 .plcp = 0x0f,
609                 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
610         },
611         {
612                 .flags = DEV_RATE_OFDM,
613                 .bitrate = 120,
614                 .ratemask = BIT(6),
615                 .plcp = 0x0a,
616                 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
617         },
618         {
619                 .flags = DEV_RATE_OFDM,
620                 .bitrate = 180,
621                 .ratemask = BIT(7),
622                 .plcp = 0x0e,
623                 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
624         },
625         {
626                 .flags = DEV_RATE_OFDM,
627                 .bitrate = 240,
628                 .ratemask = BIT(8),
629                 .plcp = 0x09,
630                 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
631         },
632         {
633                 .flags = DEV_RATE_OFDM,
634                 .bitrate = 360,
635                 .ratemask = BIT(9),
636                 .plcp = 0x0d,
637                 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
638         },
639         {
640                 .flags = DEV_RATE_OFDM,
641                 .bitrate = 480,
642                 .ratemask = BIT(10),
643                 .plcp = 0x08,
644                 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
645         },
646         {
647                 .flags = DEV_RATE_OFDM,
648                 .bitrate = 540,
649                 .ratemask = BIT(11),
650                 .plcp = 0x0c,
651                 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
652         },
653 };
654
655 static void rt2x00lib_channel(struct ieee80211_channel *entry,
656                               const int channel, const int tx_power,
657                               const int value)
658 {
659         entry->center_freq = ieee80211_channel_to_frequency(channel);
660         entry->hw_value = value;
661         entry->max_power = tx_power;
662         entry->max_antenna_gain = 0xff;
663 }
664
665 static void rt2x00lib_rate(struct ieee80211_rate *entry,
666                            const u16 index, const struct rt2x00_rate *rate)
667 {
668         entry->flags = 0;
669         entry->bitrate = rate->bitrate;
670         entry->hw_value =index;
671         entry->hw_value_short = index;
672
673         if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
674                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
675 }
676
677 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
678                                     struct hw_mode_spec *spec)
679 {
680         struct ieee80211_hw *hw = rt2x00dev->hw;
681         struct ieee80211_channel *channels;
682         struct ieee80211_rate *rates;
683         unsigned int num_rates;
684         unsigned int i;
685
686         num_rates = 0;
687         if (spec->supported_rates & SUPPORT_RATE_CCK)
688                 num_rates += 4;
689         if (spec->supported_rates & SUPPORT_RATE_OFDM)
690                 num_rates += 8;
691
692         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
693         if (!channels)
694                 return -ENOMEM;
695
696         rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
697         if (!rates)
698                 goto exit_free_channels;
699
700         /*
701          * Initialize Rate list.
702          */
703         for (i = 0; i < num_rates; i++)
704                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
705
706         /*
707          * Initialize Channel list.
708          */
709         for (i = 0; i < spec->num_channels; i++) {
710                 rt2x00lib_channel(&channels[i],
711                                   spec->channels[i].channel,
712                                   spec->channels_info[i].tx_power1, i);
713         }
714
715         /*
716          * Intitialize 802.11b, 802.11g
717          * Rates: CCK, OFDM.
718          * Channels: 2.4 GHz
719          */
720         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
721                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
722                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
723                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
724                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
725                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
726                     &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
727                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
728                        &spec->ht, sizeof(spec->ht));
729         }
730
731         /*
732          * Intitialize 802.11a
733          * Rates: OFDM.
734          * Channels: OFDM, UNII, HiperLAN2.
735          */
736         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
737                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
738                     spec->num_channels - 14;
739                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
740                     num_rates - 4;
741                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
742                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
743                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
744                     &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
745                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
746                        &spec->ht, sizeof(spec->ht));
747         }
748
749         return 0;
750
751  exit_free_channels:
752         kfree(channels);
753         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
754         return -ENOMEM;
755 }
756
757 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
758 {
759         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
760                 ieee80211_unregister_hw(rt2x00dev->hw);
761
762         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
763                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
764                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
765                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
766                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
767         }
768
769         kfree(rt2x00dev->spec.channels_info);
770 }
771
772 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
773 {
774         struct hw_mode_spec *spec = &rt2x00dev->spec;
775         int status;
776
777         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
778                 return 0;
779
780         /*
781          * Initialize HW modes.
782          */
783         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
784         if (status)
785                 return status;
786
787         /*
788          * Initialize HW fields.
789          */
790         rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
791
792         /*
793          * Initialize extra TX headroom required.
794          */
795         rt2x00dev->hw->extra_tx_headroom =
796                 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
797                       rt2x00dev->ops->extra_tx_headroom);
798
799         /*
800          * Take TX headroom required for alignment into account.
801          */
802         if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
803                 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
804         else if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags))
805                 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
806
807         /*
808          * Register HW.
809          */
810         status = ieee80211_register_hw(rt2x00dev->hw);
811         if (status)
812                 return status;
813
814         set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
815
816         return 0;
817 }
818
819 /*
820  * Initialization/uninitialization handlers.
821  */
822 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
823 {
824         if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
825                 return;
826
827         /*
828          * Unregister extra components.
829          */
830         rt2x00rfkill_unregister(rt2x00dev);
831
832         /*
833          * Allow the HW to uninitialize.
834          */
835         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
836
837         /*
838          * Free allocated queue entries.
839          */
840         rt2x00queue_uninitialize(rt2x00dev);
841 }
842
843 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
844 {
845         int status;
846
847         if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
848                 return 0;
849
850         /*
851          * Allocate all queue entries.
852          */
853         status = rt2x00queue_initialize(rt2x00dev);
854         if (status)
855                 return status;
856
857         /*
858          * Initialize the device.
859          */
860         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
861         if (status) {
862                 rt2x00queue_uninitialize(rt2x00dev);
863                 return status;
864         }
865
866         set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
867
868         /*
869          * Register the extra components.
870          */
871         rt2x00rfkill_register(rt2x00dev);
872
873         return 0;
874 }
875
876 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
877 {
878         int retval;
879
880         if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
881                 return 0;
882
883         /*
884          * If this is the first interface which is added,
885          * we should load the firmware now.
886          */
887         retval = rt2x00lib_load_firmware(rt2x00dev);
888         if (retval)
889                 return retval;
890
891         /*
892          * Initialize the device.
893          */
894         retval = rt2x00lib_initialize(rt2x00dev);
895         if (retval)
896                 return retval;
897
898         rt2x00dev->intf_ap_count = 0;
899         rt2x00dev->intf_sta_count = 0;
900         rt2x00dev->intf_associated = 0;
901
902         /* Enable the radio */
903         retval = rt2x00lib_enable_radio(rt2x00dev);
904         if (retval) {
905                 rt2x00queue_uninitialize(rt2x00dev);
906                 return retval;
907         }
908
909         set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
910
911         return 0;
912 }
913
914 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
915 {
916         if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
917                 return;
918
919         /*
920          * Perhaps we can add something smarter here,
921          * but for now just disabling the radio should do.
922          */
923         rt2x00lib_disable_radio(rt2x00dev);
924
925         rt2x00dev->intf_ap_count = 0;
926         rt2x00dev->intf_sta_count = 0;
927         rt2x00dev->intf_associated = 0;
928 }
929
930 /*
931  * driver allocation handlers.
932  */
933 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
934 {
935         int retval = -ENOMEM;
936
937         mutex_init(&rt2x00dev->csr_mutex);
938
939         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
940
941         /*
942          * Make room for rt2x00_intf inside the per-interface
943          * structure ieee80211_vif.
944          */
945         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
946
947         /*
948          * Determine which operating modes are supported, all modes
949          * which require beaconing, depend on the availability of
950          * beacon entries.
951          */
952         rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
953         if (rt2x00dev->ops->bcn->entry_num > 0)
954                 rt2x00dev->hw->wiphy->interface_modes |=
955                     BIT(NL80211_IFTYPE_ADHOC) |
956                     BIT(NL80211_IFTYPE_AP) |
957                     BIT(NL80211_IFTYPE_MESH_POINT) |
958                     BIT(NL80211_IFTYPE_WDS);
959
960         /*
961          * Initialize configuration work.
962          */
963         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
964
965         /*
966          * Let the driver probe the device to detect the capabilities.
967          */
968         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
969         if (retval) {
970                 ERROR(rt2x00dev, "Failed to allocate device.\n");
971                 goto exit;
972         }
973
974         /*
975          * Allocate queue array.
976          */
977         retval = rt2x00queue_allocate(rt2x00dev);
978         if (retval)
979                 goto exit;
980
981         /*
982          * Initialize ieee80211 structure.
983          */
984         retval = rt2x00lib_probe_hw(rt2x00dev);
985         if (retval) {
986                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
987                 goto exit;
988         }
989
990         /*
991          * Register extra components.
992          */
993         rt2x00link_register(rt2x00dev);
994         rt2x00leds_register(rt2x00dev);
995         rt2x00debug_register(rt2x00dev);
996
997         return 0;
998
999 exit:
1000         rt2x00lib_remove_dev(rt2x00dev);
1001
1002         return retval;
1003 }
1004 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1005
1006 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1007 {
1008         clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1009
1010         /*
1011          * Disable radio.
1012          */
1013         rt2x00lib_disable_radio(rt2x00dev);
1014
1015         /*
1016          * Stop all work.
1017          */
1018         cancel_work_sync(&rt2x00dev->intf_work);
1019         cancel_work_sync(&rt2x00dev->rxdone_work);
1020         cancel_work_sync(&rt2x00dev->txdone_work);
1021
1022         /*
1023          * Uninitialize device.
1024          */
1025         rt2x00lib_uninitialize(rt2x00dev);
1026
1027         /*
1028          * Free extra components
1029          */
1030         rt2x00debug_deregister(rt2x00dev);
1031         rt2x00leds_unregister(rt2x00dev);
1032
1033         /*
1034          * Free ieee80211_hw memory.
1035          */
1036         rt2x00lib_remove_hw(rt2x00dev);
1037
1038         /*
1039          * Free firmware image.
1040          */
1041         rt2x00lib_free_firmware(rt2x00dev);
1042
1043         /*
1044          * Free queue structures.
1045          */
1046         rt2x00queue_free(rt2x00dev);
1047 }
1048 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1049
1050 /*
1051  * Device state handlers
1052  */
1053 #ifdef CONFIG_PM
1054 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1055 {
1056         NOTICE(rt2x00dev, "Going to sleep.\n");
1057
1058         /*
1059          * Prevent mac80211 from accessing driver while suspended.
1060          */
1061         if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1062                 return 0;
1063
1064         /*
1065          * Cleanup as much as possible.
1066          */
1067         rt2x00lib_uninitialize(rt2x00dev);
1068
1069         /*
1070          * Suspend/disable extra components.
1071          */
1072         rt2x00leds_suspend(rt2x00dev);
1073         rt2x00debug_deregister(rt2x00dev);
1074
1075         /*
1076          * Set device mode to sleep for power management,
1077          * on some hardware this call seems to consistently fail.
1078          * From the specifications it is hard to tell why it fails,
1079          * and if this is a "bad thing".
1080          * Overall it is safe to just ignore the failure and
1081          * continue suspending. The only downside is that the
1082          * device will not be in optimal power save mode, but with
1083          * the radio and the other components already disabled the
1084          * device is as good as disabled.
1085          */
1086         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1087                 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1088                         "continue suspending.\n");
1089
1090         return 0;
1091 }
1092 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1093
1094 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1095 {
1096         NOTICE(rt2x00dev, "Waking up.\n");
1097
1098         /*
1099          * Restore/enable extra components.
1100          */
1101         rt2x00debug_register(rt2x00dev);
1102         rt2x00leds_resume(rt2x00dev);
1103
1104         /*
1105          * We are ready again to receive requests from mac80211.
1106          */
1107         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1108
1109         return 0;
1110 }
1111 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1112 #endif /* CONFIG_PM */
1113
1114 /*
1115  * rt2x00lib module information.
1116  */
1117 MODULE_AUTHOR(DRV_PROJECT);
1118 MODULE_VERSION(DRV_VERSION);
1119 MODULE_DESCRIPTION("rt2x00 library");
1120 MODULE_LICENSE("GPL");