]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/net/wireless/rt2x00/rt61pci.c
Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[mv-sheeva.git] / drivers / net / wireless / rt2x00 / rt61pci.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt61pci
23         Abstract: rt61pci device specific routines.
24         Supported chipsets: RT2561, RT2561s, RT2661.
25  */
26
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/pci.h>
34 #include <linux/eeprom_93cx6.h>
35
36 #include "rt2x00.h"
37 #include "rt2x00pci.h"
38 #include "rt61pci.h"
39
40 /*
41  * Allow hardware encryption to be disabled.
42  */
43 static int modparam_nohwcrypt = 0;
44 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
45 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
46
47 /*
48  * Register access.
49  * BBP and RF register require indirect register access,
50  * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
51  * These indirect registers work with busy bits,
52  * and we will try maximal REGISTER_BUSY_COUNT times to access
53  * the register while taking a REGISTER_BUSY_DELAY us delay
54  * between each attampt. When the busy bit is still set at that time,
55  * the access attempt is considered to have failed,
56  * and we will print an error.
57  */
58 static u32 rt61pci_bbp_check(struct rt2x00_dev *rt2x00dev)
59 {
60         u32 reg;
61         unsigned int i;
62
63         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
64                 rt2x00pci_register_read(rt2x00dev, PHY_CSR3, &reg);
65                 if (!rt2x00_get_field32(reg, PHY_CSR3_BUSY))
66                         break;
67                 udelay(REGISTER_BUSY_DELAY);
68         }
69
70         return reg;
71 }
72
73 static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
74                               const unsigned int word, const u8 value)
75 {
76         u32 reg;
77
78         /*
79          * Wait until the BBP becomes ready.
80          */
81         reg = rt61pci_bbp_check(rt2x00dev);
82         if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
83                 ERROR(rt2x00dev, "PHY_CSR3 register busy. Write failed.\n");
84                 return;
85         }
86
87         /*
88          * Write the data into the BBP.
89          */
90         reg = 0;
91         rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
92         rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
93         rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
94         rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
95
96         rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
97 }
98
99 static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
100                              const unsigned int word, u8 *value)
101 {
102         u32 reg;
103
104         /*
105          * Wait until the BBP becomes ready.
106          */
107         reg = rt61pci_bbp_check(rt2x00dev);
108         if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
109                 ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
110                 return;
111         }
112
113         /*
114          * Write the request into the BBP.
115          */
116         reg = 0;
117         rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
118         rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
119         rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
120
121         rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
122
123         /*
124          * Wait until the BBP becomes ready.
125          */
126         reg = rt61pci_bbp_check(rt2x00dev);
127         if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
128                 ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
129                 *value = 0xff;
130                 return;
131         }
132
133         *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
134 }
135
136 static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
137                              const unsigned int word, const u32 value)
138 {
139         u32 reg;
140         unsigned int i;
141
142         if (!word)
143                 return;
144
145         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
146                 rt2x00pci_register_read(rt2x00dev, PHY_CSR4, &reg);
147                 if (!rt2x00_get_field32(reg, PHY_CSR4_BUSY))
148                         goto rf_write;
149                 udelay(REGISTER_BUSY_DELAY);
150         }
151
152         ERROR(rt2x00dev, "PHY_CSR4 register busy. Write failed.\n");
153         return;
154
155 rf_write:
156         reg = 0;
157         rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
158         rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
159         rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
160         rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
161
162         rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
163         rt2x00_rf_write(rt2x00dev, word, value);
164 }
165
166 #ifdef CONFIG_RT2X00_LIB_LEDS
167 /*
168  * This function is only called from rt61pci_led_brightness()
169  * make gcc happy by placing this function inside the
170  * same ifdef statement as the caller.
171  */
172 static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
173                                 const u8 command, const u8 token,
174                                 const u8 arg0, const u8 arg1)
175 {
176         u32 reg;
177
178         rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CSR, &reg);
179
180         if (rt2x00_get_field32(reg, H2M_MAILBOX_CSR_OWNER)) {
181                 ERROR(rt2x00dev, "mcu request error. "
182                       "Request 0x%02x failed for token 0x%02x.\n",
183                       command, token);
184                 return;
185         }
186
187         rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
188         rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
189         rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
190         rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
191         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
192
193         rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
194         rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
195         rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
196         rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
197 }
198 #endif /* CONFIG_RT2X00_LIB_LEDS */
199
200 static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
201 {
202         struct rt2x00_dev *rt2x00dev = eeprom->data;
203         u32 reg;
204
205         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
206
207         eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
208         eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
209         eeprom->reg_data_clock =
210             !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
211         eeprom->reg_chip_select =
212             !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
213 }
214
215 static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
216 {
217         struct rt2x00_dev *rt2x00dev = eeprom->data;
218         u32 reg = 0;
219
220         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
221         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
222         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
223                            !!eeprom->reg_data_clock);
224         rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
225                            !!eeprom->reg_chip_select);
226
227         rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
228 }
229
230 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
231 static const struct rt2x00debug rt61pci_rt2x00debug = {
232         .owner  = THIS_MODULE,
233         .csr    = {
234                 .read           = rt2x00pci_register_read,
235                 .write          = rt2x00pci_register_write,
236                 .flags          = RT2X00DEBUGFS_OFFSET,
237                 .word_base      = CSR_REG_BASE,
238                 .word_size      = sizeof(u32),
239                 .word_count     = CSR_REG_SIZE / sizeof(u32),
240         },
241         .eeprom = {
242                 .read           = rt2x00_eeprom_read,
243                 .write          = rt2x00_eeprom_write,
244                 .word_base      = EEPROM_BASE,
245                 .word_size      = sizeof(u16),
246                 .word_count     = EEPROM_SIZE / sizeof(u16),
247         },
248         .bbp    = {
249                 .read           = rt61pci_bbp_read,
250                 .write          = rt61pci_bbp_write,
251                 .word_base      = BBP_BASE,
252                 .word_size      = sizeof(u8),
253                 .word_count     = BBP_SIZE / sizeof(u8),
254         },
255         .rf     = {
256                 .read           = rt2x00_rf_read,
257                 .write          = rt61pci_rf_write,
258                 .word_base      = RF_BASE,
259                 .word_size      = sizeof(u32),
260                 .word_count     = RF_SIZE / sizeof(u32),
261         },
262 };
263 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
264
265 #ifdef CONFIG_RT2X00_LIB_RFKILL
266 static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
267 {
268         u32 reg;
269
270         rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
271         return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
272 }
273 #else
274 #define rt61pci_rfkill_poll     NULL
275 #endif /* CONFIG_RT2X00_LIB_RFKILL */
276
277 #ifdef CONFIG_RT2X00_LIB_LEDS
278 static void rt61pci_brightness_set(struct led_classdev *led_cdev,
279                                    enum led_brightness brightness)
280 {
281         struct rt2x00_led *led =
282             container_of(led_cdev, struct rt2x00_led, led_dev);
283         unsigned int enabled = brightness != LED_OFF;
284         unsigned int a_mode =
285             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
286         unsigned int bg_mode =
287             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
288
289         if (led->type == LED_TYPE_RADIO) {
290                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
291                                    MCU_LEDCS_RADIO_STATUS, enabled);
292
293                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
294                                     (led->rt2x00dev->led_mcu_reg & 0xff),
295                                     ((led->rt2x00dev->led_mcu_reg >> 8)));
296         } else if (led->type == LED_TYPE_ASSOC) {
297                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
298                                    MCU_LEDCS_LINK_BG_STATUS, bg_mode);
299                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
300                                    MCU_LEDCS_LINK_A_STATUS, a_mode);
301
302                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
303                                     (led->rt2x00dev->led_mcu_reg & 0xff),
304                                     ((led->rt2x00dev->led_mcu_reg >> 8)));
305         } else if (led->type == LED_TYPE_QUALITY) {
306                 /*
307                  * The brightness is divided into 6 levels (0 - 5),
308                  * this means we need to convert the brightness
309                  * argument into the matching level within that range.
310                  */
311                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
312                                     brightness / (LED_FULL / 6), 0);
313         }
314 }
315
316 static int rt61pci_blink_set(struct led_classdev *led_cdev,
317                              unsigned long *delay_on,
318                              unsigned long *delay_off)
319 {
320         struct rt2x00_led *led =
321             container_of(led_cdev, struct rt2x00_led, led_dev);
322         u32 reg;
323
324         rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, &reg);
325         rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
326         rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
327         rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);
328
329         return 0;
330 }
331
332 static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
333                              struct rt2x00_led *led,
334                              enum led_type type)
335 {
336         led->rt2x00dev = rt2x00dev;
337         led->type = type;
338         led->led_dev.brightness_set = rt61pci_brightness_set;
339         led->led_dev.blink_set = rt61pci_blink_set;
340         led->flags = LED_INITIALIZED;
341 }
342 #endif /* CONFIG_RT2X00_LIB_LEDS */
343
344 /*
345  * Configuration handlers.
346  */
347 static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
348                                      struct rt2x00lib_crypto *crypto,
349                                      struct ieee80211_key_conf *key)
350 {
351         struct hw_key_entry key_entry;
352         struct rt2x00_field32 field;
353         u32 mask;
354         u32 reg;
355
356         if (crypto->cmd == SET_KEY) {
357                 /*
358                  * rt2x00lib can't determine the correct free
359                  * key_idx for shared keys. We have 1 register
360                  * with key valid bits. The goal is simple, read
361                  * the register, if that is full we have no slots
362                  * left.
363                  * Note that each BSS is allowed to have up to 4
364                  * shared keys, so put a mask over the allowed
365                  * entries.
366                  */
367                 mask = (0xf << crypto->bssidx);
368
369                 rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
370                 reg &= mask;
371
372                 if (reg && reg == mask)
373                         return -ENOSPC;
374
375                 key->hw_key_idx += reg ? ffz(reg) : 0;
376
377                 /*
378                  * Upload key to hardware
379                  */
380                 memcpy(key_entry.key, crypto->key,
381                        sizeof(key_entry.key));
382                 memcpy(key_entry.tx_mic, crypto->tx_mic,
383                        sizeof(key_entry.tx_mic));
384                 memcpy(key_entry.rx_mic, crypto->rx_mic,
385                        sizeof(key_entry.rx_mic));
386
387                 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
388                 rt2x00pci_register_multiwrite(rt2x00dev, reg,
389                                               &key_entry, sizeof(key_entry));
390
391                 /*
392                  * The cipher types are stored over 2 registers.
393                  * bssidx 0 and 1 keys are stored in SEC_CSR1 and
394                  * bssidx 1 and 2 keys are stored in SEC_CSR5.
395                  * Using the correct defines correctly will cause overhead,
396                  * so just calculate the correct offset.
397                  */
398                 if (key->hw_key_idx < 8) {
399                         field.bit_offset = (3 * key->hw_key_idx);
400                         field.bit_mask = 0x7 << field.bit_offset;
401
402                         rt2x00pci_register_read(rt2x00dev, SEC_CSR1, &reg);
403                         rt2x00_set_field32(&reg, field, crypto->cipher);
404                         rt2x00pci_register_write(rt2x00dev, SEC_CSR1, reg);
405                 } else {
406                         field.bit_offset = (3 * (key->hw_key_idx - 8));
407                         field.bit_mask = 0x7 << field.bit_offset;
408
409                         rt2x00pci_register_read(rt2x00dev, SEC_CSR5, &reg);
410                         rt2x00_set_field32(&reg, field, crypto->cipher);
411                         rt2x00pci_register_write(rt2x00dev, SEC_CSR5, reg);
412                 }
413
414                 /*
415                  * The driver does not support the IV/EIV generation
416                  * in hardware. However it doesn't support the IV/EIV
417                  * inside the ieee80211 frame either, but requires it
418                  * to be provided seperately for the descriptor.
419                  * rt2x00lib will cut the IV/EIV data out of all frames
420                  * given to us by mac80211, but we must tell mac80211
421                  * to generate the IV/EIV data.
422                  */
423                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
424         }
425
426         /*
427          * SEC_CSR0 contains only single-bit fields to indicate
428          * a particular key is valid. Because using the FIELD32()
429          * defines directly will cause a lot of overhead we use
430          * a calculation to determine the correct bit directly.
431          */
432         mask = 1 << key->hw_key_idx;
433
434         rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
435         if (crypto->cmd == SET_KEY)
436                 reg |= mask;
437         else if (crypto->cmd == DISABLE_KEY)
438                 reg &= ~mask;
439         rt2x00pci_register_write(rt2x00dev, SEC_CSR0, reg);
440
441         return 0;
442 }
443
444 static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
445                                        struct rt2x00lib_crypto *crypto,
446                                        struct ieee80211_key_conf *key)
447 {
448         struct hw_pairwise_ta_entry addr_entry;
449         struct hw_key_entry key_entry;
450         u32 mask;
451         u32 reg;
452
453         if (crypto->cmd == SET_KEY) {
454                 /*
455                  * rt2x00lib can't determine the correct free
456                  * key_idx for pairwise keys. We have 2 registers
457                  * with key valid bits. The goal is simple, read
458                  * the first register, if that is full move to
459                  * the next register.
460                  * When both registers are full, we drop the key,
461                  * otherwise we use the first invalid entry.
462                  */
463                 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
464                 if (reg && reg == ~0) {
465                         key->hw_key_idx = 32;
466                         rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
467                         if (reg && reg == ~0)
468                                 return -ENOSPC;
469                 }
470
471                 key->hw_key_idx += reg ? ffz(reg) : 0;
472
473                 /*
474                  * Upload key to hardware
475                  */
476                 memcpy(key_entry.key, crypto->key,
477                        sizeof(key_entry.key));
478                 memcpy(key_entry.tx_mic, crypto->tx_mic,
479                        sizeof(key_entry.tx_mic));
480                 memcpy(key_entry.rx_mic, crypto->rx_mic,
481                        sizeof(key_entry.rx_mic));
482
483                 memset(&addr_entry, 0, sizeof(addr_entry));
484                 memcpy(&addr_entry, crypto->address, ETH_ALEN);
485                 addr_entry.cipher = crypto->cipher;
486
487                 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
488                 rt2x00pci_register_multiwrite(rt2x00dev, reg,
489                                               &key_entry, sizeof(key_entry));
490
491                 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
492                 rt2x00pci_register_multiwrite(rt2x00dev, reg,
493                                               &addr_entry, sizeof(addr_entry));
494
495                 /*
496                  * Enable pairwise lookup table for given BSS idx,
497                  * without this received frames will not be decrypted
498                  * by the hardware.
499                  */
500                 rt2x00pci_register_read(rt2x00dev, SEC_CSR4, &reg);
501                 reg |= (1 << crypto->bssidx);
502                 rt2x00pci_register_write(rt2x00dev, SEC_CSR4, reg);
503
504                 /*
505                  * The driver does not support the IV/EIV generation
506                  * in hardware. However it doesn't support the IV/EIV
507                  * inside the ieee80211 frame either, but requires it
508                  * to be provided seperately for the descriptor.
509                  * rt2x00lib will cut the IV/EIV data out of all frames
510                  * given to us by mac80211, but we must tell mac80211
511                  * to generate the IV/EIV data.
512                  */
513                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
514         }
515
516         /*
517          * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
518          * a particular key is valid. Because using the FIELD32()
519          * defines directly will cause a lot of overhead we use
520          * a calculation to determine the correct bit directly.
521          */
522         if (key->hw_key_idx < 32) {
523                 mask = 1 << key->hw_key_idx;
524
525                 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
526                 if (crypto->cmd == SET_KEY)
527                         reg |= mask;
528                 else if (crypto->cmd == DISABLE_KEY)
529                         reg &= ~mask;
530                 rt2x00pci_register_write(rt2x00dev, SEC_CSR2, reg);
531         } else {
532                 mask = 1 << (key->hw_key_idx - 32);
533
534                 rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
535                 if (crypto->cmd == SET_KEY)
536                         reg |= mask;
537                 else if (crypto->cmd == DISABLE_KEY)
538                         reg &= ~mask;
539                 rt2x00pci_register_write(rt2x00dev, SEC_CSR3, reg);
540         }
541
542         return 0;
543 }
544
545 static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
546                                   const unsigned int filter_flags)
547 {
548         u32 reg;
549
550         /*
551          * Start configuration steps.
552          * Note that the version error will always be dropped
553          * and broadcast frames will always be accepted since
554          * there is no filter for it at this time.
555          */
556         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
557         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
558                            !(filter_flags & FIF_FCSFAIL));
559         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
560                            !(filter_flags & FIF_PLCPFAIL));
561         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
562                            !(filter_flags & FIF_CONTROL));
563         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
564                            !(filter_flags & FIF_PROMISC_IN_BSS));
565         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
566                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
567                            !rt2x00dev->intf_ap_count);
568         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
569         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
570                            !(filter_flags & FIF_ALLMULTI));
571         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
572         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
573                            !(filter_flags & FIF_CONTROL));
574         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
575 }
576
577 static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
578                                 struct rt2x00_intf *intf,
579                                 struct rt2x00intf_conf *conf,
580                                 const unsigned int flags)
581 {
582         unsigned int beacon_base;
583         u32 reg;
584
585         if (flags & CONFIG_UPDATE_TYPE) {
586                 /*
587                  * Clear current synchronisation setup.
588                  * For the Beacon base registers we only need to clear
589                  * the first byte since that byte contains the VALID and OWNER
590                  * bits which (when set to 0) will invalidate the entire beacon.
591                  */
592                 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
593                 rt2x00pci_register_write(rt2x00dev, beacon_base, 0);
594
595                 /*
596                  * Enable synchronisation.
597                  */
598                 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
599                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
600                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
601                 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
602                 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
603         }
604
605         if (flags & CONFIG_UPDATE_MAC) {
606                 reg = le32_to_cpu(conf->mac[1]);
607                 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
608                 conf->mac[1] = cpu_to_le32(reg);
609
610                 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
611                                               conf->mac, sizeof(conf->mac));
612         }
613
614         if (flags & CONFIG_UPDATE_BSSID) {
615                 reg = le32_to_cpu(conf->bssid[1]);
616                 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
617                 conf->bssid[1] = cpu_to_le32(reg);
618
619                 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
620                                               conf->bssid, sizeof(conf->bssid));
621         }
622 }
623
624 static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
625                                struct rt2x00lib_erp *erp)
626 {
627         u32 reg;
628
629         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
630         rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, erp->ack_timeout);
631         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
632
633         rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
634         rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
635                            !!erp->short_preamble);
636         rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
637
638         rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, erp->basic_rates);
639
640         rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
641         rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
642         rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
643
644         rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
645         rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
646         rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
647         rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
648         rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
649 }
650
651 static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
652                                       struct antenna_setup *ant)
653 {
654         u8 r3;
655         u8 r4;
656         u8 r77;
657
658         rt61pci_bbp_read(rt2x00dev, 3, &r3);
659         rt61pci_bbp_read(rt2x00dev, 4, &r4);
660         rt61pci_bbp_read(rt2x00dev, 77, &r77);
661
662         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
663                           rt2x00_rf(&rt2x00dev->chip, RF5325));
664
665         /*
666          * Configure the RX antenna.
667          */
668         switch (ant->rx) {
669         case ANTENNA_HW_DIVERSITY:
670                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
671                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
672                                   (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
673                 break;
674         case ANTENNA_A:
675                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
676                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
677                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
678                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
679                 else
680                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
681                 break;
682         case ANTENNA_B:
683         default:
684                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
685                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
686                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
687                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
688                 else
689                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
690                 break;
691         }
692
693         rt61pci_bbp_write(rt2x00dev, 77, r77);
694         rt61pci_bbp_write(rt2x00dev, 3, r3);
695         rt61pci_bbp_write(rt2x00dev, 4, r4);
696 }
697
698 static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
699                                       struct antenna_setup *ant)
700 {
701         u8 r3;
702         u8 r4;
703         u8 r77;
704
705         rt61pci_bbp_read(rt2x00dev, 3, &r3);
706         rt61pci_bbp_read(rt2x00dev, 4, &r4);
707         rt61pci_bbp_read(rt2x00dev, 77, &r77);
708
709         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
710                           rt2x00_rf(&rt2x00dev->chip, RF2529));
711         rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
712                           !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
713
714         /*
715          * Configure the RX antenna.
716          */
717         switch (ant->rx) {
718         case ANTENNA_HW_DIVERSITY:
719                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
720                 break;
721         case ANTENNA_A:
722                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
723                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
724                 break;
725         case ANTENNA_B:
726         default:
727                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
728                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
729                 break;
730         }
731
732         rt61pci_bbp_write(rt2x00dev, 77, r77);
733         rt61pci_bbp_write(rt2x00dev, 3, r3);
734         rt61pci_bbp_write(rt2x00dev, 4, r4);
735 }
736
737 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
738                                            const int p1, const int p2)
739 {
740         u32 reg;
741
742         rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
743
744         rt2x00_set_field32(&reg, MAC_CSR13_BIT4, p1);
745         rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);
746
747         rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
748         rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);
749
750         rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
751 }
752
753 static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
754                                         struct antenna_setup *ant)
755 {
756         u8 r3;
757         u8 r4;
758         u8 r77;
759
760         rt61pci_bbp_read(rt2x00dev, 3, &r3);
761         rt61pci_bbp_read(rt2x00dev, 4, &r4);
762         rt61pci_bbp_read(rt2x00dev, 77, &r77);
763
764         /*
765          * Configure the RX antenna.
766          */
767         switch (ant->rx) {
768         case ANTENNA_A:
769                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
770                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
771                 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
772                 break;
773         case ANTENNA_HW_DIVERSITY:
774                 /*
775                  * FIXME: Antenna selection for the rf 2529 is very confusing
776                  * in the legacy driver. Just default to antenna B until the
777                  * legacy code can be properly translated into rt2x00 code.
778                  */
779         case ANTENNA_B:
780         default:
781                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
782                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
783                 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
784                 break;
785         }
786
787         rt61pci_bbp_write(rt2x00dev, 77, r77);
788         rt61pci_bbp_write(rt2x00dev, 3, r3);
789         rt61pci_bbp_write(rt2x00dev, 4, r4);
790 }
791
792 struct antenna_sel {
793         u8 word;
794         /*
795          * value[0] -> non-LNA
796          * value[1] -> LNA
797          */
798         u8 value[2];
799 };
800
801 static const struct antenna_sel antenna_sel_a[] = {
802         { 96,  { 0x58, 0x78 } },
803         { 104, { 0x38, 0x48 } },
804         { 75,  { 0xfe, 0x80 } },
805         { 86,  { 0xfe, 0x80 } },
806         { 88,  { 0xfe, 0x80 } },
807         { 35,  { 0x60, 0x60 } },
808         { 97,  { 0x58, 0x58 } },
809         { 98,  { 0x58, 0x58 } },
810 };
811
812 static const struct antenna_sel antenna_sel_bg[] = {
813         { 96,  { 0x48, 0x68 } },
814         { 104, { 0x2c, 0x3c } },
815         { 75,  { 0xfe, 0x80 } },
816         { 86,  { 0xfe, 0x80 } },
817         { 88,  { 0xfe, 0x80 } },
818         { 35,  { 0x50, 0x50 } },
819         { 97,  { 0x48, 0x48 } },
820         { 98,  { 0x48, 0x48 } },
821 };
822
823 static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
824                                struct antenna_setup *ant)
825 {
826         const struct antenna_sel *sel;
827         unsigned int lna;
828         unsigned int i;
829         u32 reg;
830
831         /*
832          * We should never come here because rt2x00lib is supposed
833          * to catch this and send us the correct antenna explicitely.
834          */
835         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
836                ant->tx == ANTENNA_SW_DIVERSITY);
837
838         if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
839                 sel = antenna_sel_a;
840                 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
841         } else {
842                 sel = antenna_sel_bg;
843                 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
844         }
845
846         for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
847                 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
848
849         rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);
850
851         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
852                            rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
853         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
854                            rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
855
856         rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
857
858         if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
859             rt2x00_rf(&rt2x00dev->chip, RF5325))
860                 rt61pci_config_antenna_5x(rt2x00dev, ant);
861         else if (rt2x00_rf(&rt2x00dev->chip, RF2527))
862                 rt61pci_config_antenna_2x(rt2x00dev, ant);
863         else if (rt2x00_rf(&rt2x00dev->chip, RF2529)) {
864                 if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
865                         rt61pci_config_antenna_2x(rt2x00dev, ant);
866                 else
867                         rt61pci_config_antenna_2529(rt2x00dev, ant);
868         }
869 }
870
871 static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
872                                     struct rt2x00lib_conf *libconf)
873 {
874         u16 eeprom;
875         short lna_gain = 0;
876
877         if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
878                 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
879                         lna_gain += 14;
880
881                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
882                 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
883         } else {
884                 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
885                         lna_gain += 14;
886
887                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
888                 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
889         }
890
891         rt2x00dev->lna_gain = lna_gain;
892 }
893
894 static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
895                                    struct rf_channel *rf, const int txpower)
896 {
897         u8 r3;
898         u8 r94;
899         u8 smart;
900
901         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
902         rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
903
904         smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
905                   rt2x00_rf(&rt2x00dev->chip, RF2527));
906
907         rt61pci_bbp_read(rt2x00dev, 3, &r3);
908         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
909         rt61pci_bbp_write(rt2x00dev, 3, r3);
910
911         r94 = 6;
912         if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
913                 r94 += txpower - MAX_TXPOWER;
914         else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
915                 r94 += txpower;
916         rt61pci_bbp_write(rt2x00dev, 94, r94);
917
918         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
919         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
920         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
921         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
922
923         udelay(200);
924
925         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
926         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
927         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
928         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
929
930         udelay(200);
931
932         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
933         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
934         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
935         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
936
937         msleep(1);
938 }
939
940 static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
941                                    const int txpower)
942 {
943         struct rf_channel rf;
944
945         rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
946         rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
947         rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
948         rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
949
950         rt61pci_config_channel(rt2x00dev, &rf, txpower);
951 }
952
953 static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
954                                     struct rt2x00lib_conf *libconf)
955 {
956         u32 reg;
957
958         rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
959         rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
960                            libconf->conf->long_frame_max_tx_count);
961         rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
962                            libconf->conf->short_frame_max_tx_count);
963         rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
964 }
965
966 static void rt61pci_config_duration(struct rt2x00_dev *rt2x00dev,
967                                     struct rt2x00lib_conf *libconf)
968 {
969         u32 reg;
970
971         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
972         rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
973         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
974
975         rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
976         rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
977         rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
978
979         rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
980         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
981                            libconf->conf->beacon_int * 16);
982         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
983 }
984
985 static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
986                            struct rt2x00lib_conf *libconf,
987                            const unsigned int flags)
988 {
989         /* Always recalculate LNA gain before changing configuration */
990         rt61pci_config_lna_gain(rt2x00dev, libconf);
991
992         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
993                 rt61pci_config_channel(rt2x00dev, &libconf->rf,
994                                        libconf->conf->power_level);
995         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
996             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
997                 rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
998         if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
999                 rt61pci_config_retry_limit(rt2x00dev, libconf);
1000         if (flags & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
1001                 rt61pci_config_duration(rt2x00dev, libconf);
1002 }
1003
1004 /*
1005  * Link tuning
1006  */
1007 static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
1008                                struct link_qual *qual)
1009 {
1010         u32 reg;
1011
1012         /*
1013          * Update FCS error count from register.
1014          */
1015         rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1016         qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
1017
1018         /*
1019          * Update False CCA count from register.
1020          */
1021         rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1022         qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
1023 }
1024
1025 static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
1026 {
1027         rt61pci_bbp_write(rt2x00dev, 17, 0x20);
1028         rt2x00dev->link.vgc_level = 0x20;
1029 }
1030
1031 static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev)
1032 {
1033         int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
1034         u8 r17;
1035         u8 up_bound;
1036         u8 low_bound;
1037
1038         rt61pci_bbp_read(rt2x00dev, 17, &r17);
1039
1040         /*
1041          * Determine r17 bounds.
1042          */
1043         if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1044                 low_bound = 0x28;
1045                 up_bound = 0x48;
1046                 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
1047                         low_bound += 0x10;
1048                         up_bound += 0x10;
1049                 }
1050         } else {
1051                 low_bound = 0x20;
1052                 up_bound = 0x40;
1053                 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
1054                         low_bound += 0x10;
1055                         up_bound += 0x10;
1056                 }
1057         }
1058
1059         /*
1060          * If we are not associated, we should go straight to the
1061          * dynamic CCA tuning.
1062          */
1063         if (!rt2x00dev->intf_associated)
1064                 goto dynamic_cca_tune;
1065
1066         /*
1067          * Special big-R17 for very short distance
1068          */
1069         if (rssi >= -35) {
1070                 if (r17 != 0x60)
1071                         rt61pci_bbp_write(rt2x00dev, 17, 0x60);
1072                 return;
1073         }
1074
1075         /*
1076          * Special big-R17 for short distance
1077          */
1078         if (rssi >= -58) {
1079                 if (r17 != up_bound)
1080                         rt61pci_bbp_write(rt2x00dev, 17, up_bound);
1081                 return;
1082         }
1083
1084         /*
1085          * Special big-R17 for middle-short distance
1086          */
1087         if (rssi >= -66) {
1088                 low_bound += 0x10;
1089                 if (r17 != low_bound)
1090                         rt61pci_bbp_write(rt2x00dev, 17, low_bound);
1091                 return;
1092         }
1093
1094         /*
1095          * Special mid-R17 for middle distance
1096          */
1097         if (rssi >= -74) {
1098                 low_bound += 0x08;
1099                 if (r17 != low_bound)
1100                         rt61pci_bbp_write(rt2x00dev, 17, low_bound);
1101                 return;
1102         }
1103
1104         /*
1105          * Special case: Change up_bound based on the rssi.
1106          * Lower up_bound when rssi is weaker then -74 dBm.
1107          */
1108         up_bound -= 2 * (-74 - rssi);
1109         if (low_bound > up_bound)
1110                 up_bound = low_bound;
1111
1112         if (r17 > up_bound) {
1113                 rt61pci_bbp_write(rt2x00dev, 17, up_bound);
1114                 return;
1115         }
1116
1117 dynamic_cca_tune:
1118
1119         /*
1120          * r17 does not yet exceed upper limit, continue and base
1121          * the r17 tuning on the false CCA count.
1122          */
1123         if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
1124                 if (++r17 > up_bound)
1125                         r17 = up_bound;
1126                 rt61pci_bbp_write(rt2x00dev, 17, r17);
1127         } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
1128                 if (--r17 < low_bound)
1129                         r17 = low_bound;
1130                 rt61pci_bbp_write(rt2x00dev, 17, r17);
1131         }
1132 }
1133
1134 /*
1135  * Firmware functions
1136  */
1137 static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1138 {
1139         char *fw_name;
1140
1141         switch (rt2x00dev->chip.rt) {
1142         case RT2561:
1143                 fw_name = FIRMWARE_RT2561;
1144                 break;
1145         case RT2561s:
1146                 fw_name = FIRMWARE_RT2561s;
1147                 break;
1148         case RT2661:
1149                 fw_name = FIRMWARE_RT2661;
1150                 break;
1151         default:
1152                 fw_name = NULL;
1153                 break;
1154         }
1155
1156         return fw_name;
1157 }
1158
1159 static u16 rt61pci_get_firmware_crc(const void *data, const size_t len)
1160 {
1161         u16 crc;
1162
1163         /*
1164          * Use the crc itu-t algorithm.
1165          * The last 2 bytes in the firmware array are the crc checksum itself,
1166          * this means that we should never pass those 2 bytes to the crc
1167          * algorithm.
1168          */
1169         crc = crc_itu_t(0, data, len - 2);
1170         crc = crc_itu_t_byte(crc, 0);
1171         crc = crc_itu_t_byte(crc, 0);
1172
1173         return crc;
1174 }
1175
1176 static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev, const void *data,
1177                                  const size_t len)
1178 {
1179         int i;
1180         u32 reg;
1181
1182         /*
1183          * Wait for stable hardware.
1184          */
1185         for (i = 0; i < 100; i++) {
1186                 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
1187                 if (reg)
1188                         break;
1189                 msleep(1);
1190         }
1191
1192         if (!reg) {
1193                 ERROR(rt2x00dev, "Unstable hardware.\n");
1194                 return -EBUSY;
1195         }
1196
1197         /*
1198          * Prepare MCU and mailbox for firmware loading.
1199          */
1200         reg = 0;
1201         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1202         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1203         rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1204         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1205         rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1206
1207         /*
1208          * Write firmware to device.
1209          */
1210         reg = 0;
1211         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1212         rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1213         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1214
1215         rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1216                                       data, len);
1217
1218         rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1219         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1220
1221         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1222         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1223
1224         for (i = 0; i < 100; i++) {
1225                 rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
1226                 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1227                         break;
1228                 msleep(1);
1229         }
1230
1231         if (i == 100) {
1232                 ERROR(rt2x00dev, "MCU Control register not ready.\n");
1233                 return -EBUSY;
1234         }
1235
1236         /*
1237          * Hardware needs another millisecond before it is ready.
1238          */
1239         msleep(1);
1240
1241         /*
1242          * Reset MAC and BBP registers.
1243          */
1244         reg = 0;
1245         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1246         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1247         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1248
1249         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1250         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1251         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1252         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1253
1254         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1255         rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1256         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1257
1258         return 0;
1259 }
1260
1261 /*
1262  * Initialization functions.
1263  */
1264 static void rt61pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
1265                                  struct queue_entry *entry)
1266 {
1267         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1268         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1269         u32 word;
1270
1271         rt2x00_desc_read(entry_priv->desc, 5, &word);
1272         rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1273                            skbdesc->skb_dma);
1274         rt2x00_desc_write(entry_priv->desc, 5, word);
1275
1276         rt2x00_desc_read(entry_priv->desc, 0, &word);
1277         rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1278         rt2x00_desc_write(entry_priv->desc, 0, word);
1279 }
1280
1281 static void rt61pci_init_txentry(struct rt2x00_dev *rt2x00dev,
1282                                  struct queue_entry *entry)
1283 {
1284         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1285         u32 word;
1286
1287         rt2x00_desc_read(entry_priv->desc, 0, &word);
1288         rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1289         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1290         rt2x00_desc_write(entry_priv->desc, 0, word);
1291 }
1292
1293 static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1294 {
1295         struct queue_entry_priv_pci *entry_priv;
1296         u32 reg;
1297
1298         /*
1299          * Initialize registers.
1300          */
1301         rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1302         rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1303                            rt2x00dev->tx[0].limit);
1304         rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1305                            rt2x00dev->tx[1].limit);
1306         rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1307                            rt2x00dev->tx[2].limit);
1308         rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1309                            rt2x00dev->tx[3].limit);
1310         rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
1311
1312         rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
1313         rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1314                            rt2x00dev->tx[0].desc_size / 4);
1315         rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
1316
1317         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1318         rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1319         rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1320                            entry_priv->desc_dma);
1321         rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1322
1323         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1324         rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1325         rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1326                            entry_priv->desc_dma);
1327         rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1328
1329         entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1330         rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1331         rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1332                            entry_priv->desc_dma);
1333         rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1334
1335         entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1336         rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1337         rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1338                            entry_priv->desc_dma);
1339         rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1340
1341         rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
1342         rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1343         rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1344                            rt2x00dev->rx->desc_size / 4);
1345         rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1346         rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
1347
1348         entry_priv = rt2x00dev->rx->entries[0].priv_data;
1349         rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1350         rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1351                            entry_priv->desc_dma);
1352         rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
1353
1354         rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1355         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1356         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1357         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1358         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1359         rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1360
1361         rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1362         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1363         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1364         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1365         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1366         rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1367
1368         rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1369         rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1370         rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1371
1372         return 0;
1373 }
1374
1375 static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1376 {
1377         u32 reg;
1378
1379         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1380         rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1381         rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1382         rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1383         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1384
1385         rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
1386         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1387         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1388         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1389         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1390         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1391         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1392         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1393         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1394         rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
1395
1396         /*
1397          * CCK TXD BBP registers
1398          */
1399         rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
1400         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1401         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1402         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1403         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1404         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1405         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1406         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1407         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1408         rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
1409
1410         /*
1411          * OFDM TXD BBP registers
1412          */
1413         rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
1414         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1415         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1416         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1417         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1418         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1419         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1420         rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
1421
1422         rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
1423         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1424         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1425         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1426         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1427         rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
1428
1429         rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
1430         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1431         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1432         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1433         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1434         rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
1435
1436         rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1437         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1438         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1439         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1440         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1441         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1442         rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1443         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1444
1445         rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1446
1447         rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1448
1449         rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
1450         rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1451         rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
1452
1453         rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1454
1455         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1456                 return -EBUSY;
1457
1458         rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1459
1460         /*
1461          * Invalidate all Shared Keys (SEC_CSR0),
1462          * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1463          */
1464         rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1465         rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1466         rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1467
1468         rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1469         rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1470         rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1471         rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1472
1473         rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1474
1475         rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1476
1477         rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1478
1479         /*
1480          * Clear all beacons
1481          * For the Beacon base registers we only need to clear
1482          * the first byte since that byte contains the VALID and OWNER
1483          * bits which (when set to 0) will invalidate the entire beacon.
1484          */
1485         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1486         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1487         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1488         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1489
1490         /*
1491          * We must clear the error counters.
1492          * These registers are cleared on read,
1493          * so we may pass a useless variable to store the value.
1494          */
1495         rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1496         rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1497         rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);
1498
1499         /*
1500          * Reset MAC and BBP registers.
1501          */
1502         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1503         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1504         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1505         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1506
1507         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1508         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1509         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1510         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1511
1512         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1513         rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1514         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1515
1516         return 0;
1517 }
1518
1519 static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1520 {
1521         unsigned int i;
1522         u8 value;
1523
1524         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1525                 rt61pci_bbp_read(rt2x00dev, 0, &value);
1526                 if ((value != 0xff) && (value != 0x00))
1527                         return 0;
1528                 udelay(REGISTER_BUSY_DELAY);
1529         }
1530
1531         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1532         return -EACCES;
1533 }
1534
1535 static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1536 {
1537         unsigned int i;
1538         u16 eeprom;
1539         u8 reg_id;
1540         u8 value;
1541
1542         if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1543                 return -EACCES;
1544
1545         rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1546         rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1547         rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1548         rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1549         rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1550         rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1551         rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1552         rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1553         rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1554         rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1555         rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1556         rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1557         rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1558         rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1559         rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1560         rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1561         rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1562         rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1563         rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1564         rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1565         rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1566         rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1567         rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1568         rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1569
1570         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1571                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1572
1573                 if (eeprom != 0xffff && eeprom != 0x0000) {
1574                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1575                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1576                         rt61pci_bbp_write(rt2x00dev, reg_id, value);
1577                 }
1578         }
1579
1580         return 0;
1581 }
1582
1583 /*
1584  * Device state switch handlers.
1585  */
1586 static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1587                               enum dev_state state)
1588 {
1589         u32 reg;
1590
1591         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1592         rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
1593                            (state == STATE_RADIO_RX_OFF) ||
1594                            (state == STATE_RADIO_RX_OFF_LINK));
1595         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1596 }
1597
1598 static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1599                                enum dev_state state)
1600 {
1601         int mask = (state == STATE_RADIO_IRQ_OFF);
1602         u32 reg;
1603
1604         /*
1605          * When interrupts are being enabled, the interrupt registers
1606          * should clear the register to assure a clean state.
1607          */
1608         if (state == STATE_RADIO_IRQ_ON) {
1609                 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1610                 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1611
1612                 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1613                 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1614         }
1615
1616         /*
1617          * Only toggle the interrupts bits we are going to use.
1618          * Non-checked interrupt bits are disabled by default.
1619          */
1620         rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1621         rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1622         rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1623         rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1624         rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1625         rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1626
1627         rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1628         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1629         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1630         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1631         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1632         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1633         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1634         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1635         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1636         rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1637 }
1638
1639 static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1640 {
1641         u32 reg;
1642
1643         /*
1644          * Initialize all registers.
1645          */
1646         if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1647                      rt61pci_init_registers(rt2x00dev) ||
1648                      rt61pci_init_bbp(rt2x00dev)))
1649                 return -EIO;
1650
1651         /*
1652          * Enable RX.
1653          */
1654         rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1655         rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1656         rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1657
1658         return 0;
1659 }
1660
1661 static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1662 {
1663         u32 reg;
1664
1665         rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1666
1667         /*
1668          * Disable synchronisation.
1669          */
1670         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
1671
1672         /*
1673          * Cancel RX and TX.
1674          */
1675         rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1676         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1677         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1678         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1679         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
1680         rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1681 }
1682
1683 static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1684 {
1685         u32 reg;
1686         unsigned int i;
1687         char put_to_sleep;
1688
1689         put_to_sleep = (state != STATE_AWAKE);
1690
1691         rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1692         rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1693         rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1694         rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1695
1696         /*
1697          * Device is not guaranteed to be in the requested state yet.
1698          * We must wait until the register indicates that the
1699          * device has entered the correct state.
1700          */
1701         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1702                 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1703                 state = rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
1704                 if (state == !put_to_sleep)
1705                         return 0;
1706                 msleep(10);
1707         }
1708
1709         return -EBUSY;
1710 }
1711
1712 static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1713                                     enum dev_state state)
1714 {
1715         int retval = 0;
1716
1717         switch (state) {
1718         case STATE_RADIO_ON:
1719                 retval = rt61pci_enable_radio(rt2x00dev);
1720                 break;
1721         case STATE_RADIO_OFF:
1722                 rt61pci_disable_radio(rt2x00dev);
1723                 break;
1724         case STATE_RADIO_RX_ON:
1725         case STATE_RADIO_RX_ON_LINK:
1726         case STATE_RADIO_RX_OFF:
1727         case STATE_RADIO_RX_OFF_LINK:
1728                 rt61pci_toggle_rx(rt2x00dev, state);
1729                 break;
1730         case STATE_RADIO_IRQ_ON:
1731         case STATE_RADIO_IRQ_OFF:
1732                 rt61pci_toggle_irq(rt2x00dev, state);
1733                 break;
1734         case STATE_DEEP_SLEEP:
1735         case STATE_SLEEP:
1736         case STATE_STANDBY:
1737         case STATE_AWAKE:
1738                 retval = rt61pci_set_state(rt2x00dev, state);
1739                 break;
1740         default:
1741                 retval = -ENOTSUPP;
1742                 break;
1743         }
1744
1745         if (unlikely(retval))
1746                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1747                       state, retval);
1748
1749         return retval;
1750 }
1751
1752 /*
1753  * TX descriptor initialization
1754  */
1755 static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1756                                   struct sk_buff *skb,
1757                                   struct txentry_desc *txdesc)
1758 {
1759         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1760         __le32 *txd = skbdesc->desc;
1761         u32 word;
1762
1763         /*
1764          * Start writing the descriptor words.
1765          */
1766         rt2x00_desc_read(txd, 1, &word);
1767         rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
1768         rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
1769         rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1770         rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1771         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1772         rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1773                            test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1774         rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1775         rt2x00_desc_write(txd, 1, word);
1776
1777         rt2x00_desc_read(txd, 2, &word);
1778         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1779         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1780         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1781         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1782         rt2x00_desc_write(txd, 2, word);
1783
1784         if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1785                 _rt2x00_desc_write(txd, 3, skbdesc->iv);
1786                 _rt2x00_desc_write(txd, 4, skbdesc->eiv);
1787         }
1788
1789         rt2x00_desc_read(txd, 5, &word);
1790         rt2x00_set_field32(&word, TXD_W5_PID_TYPE, skbdesc->entry->queue->qid);
1791         rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1792                            skbdesc->entry->entry_idx);
1793         rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1794                            TXPOWER_TO_DEV(rt2x00dev->tx_power));
1795         rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1796         rt2x00_desc_write(txd, 5, word);
1797
1798         rt2x00_desc_read(txd, 6, &word);
1799         rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1800                            skbdesc->skb_dma);
1801         rt2x00_desc_write(txd, 6, word);
1802
1803         if (skbdesc->desc_len > TXINFO_SIZE) {
1804                 rt2x00_desc_read(txd, 11, &word);
1805                 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0, skb->len);
1806                 rt2x00_desc_write(txd, 11, word);
1807         }
1808
1809         rt2x00_desc_read(txd, 0, &word);
1810         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1811         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1812         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1813                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1814         rt2x00_set_field32(&word, TXD_W0_ACK,
1815                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1816         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1817                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1818         rt2x00_set_field32(&word, TXD_W0_OFDM,
1819                            test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1820         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1821         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1822                            test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1823         rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1824                            test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1825         rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1826                            test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1827         rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1828         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1829         rt2x00_set_field32(&word, TXD_W0_BURST,
1830                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1831         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1832         rt2x00_desc_write(txd, 0, word);
1833 }
1834
1835 /*
1836  * TX data initialization
1837  */
1838 static void rt61pci_write_beacon(struct queue_entry *entry)
1839 {
1840         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1841         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1842         unsigned int beacon_base;
1843         u32 reg;
1844
1845         /*
1846          * Disable beaconing while we are reloading the beacon data,
1847          * otherwise we might be sending out invalid data.
1848          */
1849         rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1850         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1851         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1852         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1853         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1854
1855         /*
1856          * Write entire beacon with descriptor to register.
1857          */
1858         beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1859         rt2x00pci_register_multiwrite(rt2x00dev,
1860                                       beacon_base,
1861                                       skbdesc->desc, skbdesc->desc_len);
1862         rt2x00pci_register_multiwrite(rt2x00dev,
1863                                       beacon_base + skbdesc->desc_len,
1864                                       entry->skb->data, entry->skb->len);
1865
1866         /*
1867          * Clean up beacon skb.
1868          */
1869         dev_kfree_skb_any(entry->skb);
1870         entry->skb = NULL;
1871 }
1872
1873 static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1874                                   const enum data_queue_qid queue)
1875 {
1876         u32 reg;
1877
1878         if (queue == QID_BEACON) {
1879                 /*
1880                  * For Wi-Fi faily generated beacons between participating
1881                  * stations. Set TBTT phase adaptive adjustment step to 8us.
1882                  */
1883                 rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1884
1885                 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1886                 if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
1887                         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1888                         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1889                         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1890                         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1891                 }
1892                 return;
1893         }
1894
1895         rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1896         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, (queue == QID_AC_BE));
1897         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, (queue == QID_AC_BK));
1898         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, (queue == QID_AC_VI));
1899         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, (queue == QID_AC_VO));
1900         rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1901 }
1902
1903 /*
1904  * RX control handlers
1905  */
1906 static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1907 {
1908         u8 offset = rt2x00dev->lna_gain;
1909         u8 lna;
1910
1911         lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1912         switch (lna) {
1913         case 3:
1914                 offset += 90;
1915                 break;
1916         case 2:
1917                 offset += 74;
1918                 break;
1919         case 1:
1920                 offset += 64;
1921                 break;
1922         default:
1923                 return 0;
1924         }
1925
1926         if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1927                 if (lna == 3 || lna == 2)
1928                         offset += 10;
1929         }
1930
1931         return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1932 }
1933
1934 static void rt61pci_fill_rxdone(struct queue_entry *entry,
1935                                 struct rxdone_entry_desc *rxdesc)
1936 {
1937         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1938         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1939         u32 word0;
1940         u32 word1;
1941
1942         rt2x00_desc_read(entry_priv->desc, 0, &word0);
1943         rt2x00_desc_read(entry_priv->desc, 1, &word1);
1944
1945         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1946                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1947
1948         if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
1949                 rxdesc->cipher =
1950                     rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1951                 rxdesc->cipher_status =
1952                     rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1953         }
1954
1955         if (rxdesc->cipher != CIPHER_NONE) {
1956                 _rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv);
1957                 _rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->eiv);
1958                 _rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
1959
1960                 /*
1961                  * Hardware has stripped IV/EIV data from 802.11 frame during
1962                  * decryption. It has provided the data seperately but rt2x00lib
1963                  * should decide if it should be reinserted.
1964                  */
1965                 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
1966
1967                 /*
1968                  * FIXME: Legacy driver indicates that the frame does
1969                  * contain the Michael Mic. Unfortunately, in rt2x00
1970                  * the MIC seems to be missing completely...
1971                  */
1972                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1973
1974                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1975                         rxdesc->flags |= RX_FLAG_DECRYPTED;
1976                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1977                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1978         }
1979
1980         /*
1981          * Obtain the status about this packet.
1982          * When frame was received with an OFDM bitrate,
1983          * the signal is the PLCP value. If it was received with
1984          * a CCK bitrate the signal is the rate in 100kbit/s.
1985          */
1986         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1987         rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
1988         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1989
1990         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1991                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1992         else
1993                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1994         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1995                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1996 }
1997
1998 /*
1999  * Interrupt functions.
2000  */
2001 static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2002 {
2003         struct data_queue *queue;
2004         struct queue_entry *entry;
2005         struct queue_entry *entry_done;
2006         struct queue_entry_priv_pci *entry_priv;
2007         struct txdone_entry_desc txdesc;
2008         u32 word;
2009         u32 reg;
2010         u32 old_reg;
2011         int type;
2012         int index;
2013
2014         /*
2015          * During each loop we will compare the freshly read
2016          * STA_CSR4 register value with the value read from
2017          * the previous loop. If the 2 values are equal then
2018          * we should stop processing because the chance it
2019          * quite big that the device has been unplugged and
2020          * we risk going into an endless loop.
2021          */
2022         old_reg = 0;
2023
2024         while (1) {
2025                 rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
2026                 if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2027                         break;
2028
2029                 if (old_reg == reg)
2030                         break;
2031                 old_reg = reg;
2032
2033                 /*
2034                  * Skip this entry when it contains an invalid
2035                  * queue identication number.
2036                  */
2037                 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2038                 queue = rt2x00queue_get_queue(rt2x00dev, type);
2039                 if (unlikely(!queue))
2040                         continue;
2041
2042                 /*
2043                  * Skip this entry when it contains an invalid
2044                  * index number.
2045                  */
2046                 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2047                 if (unlikely(index >= queue->limit))
2048                         continue;
2049
2050                 entry = &queue->entries[index];
2051                 entry_priv = entry->priv_data;
2052                 rt2x00_desc_read(entry_priv->desc, 0, &word);
2053
2054                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2055                     !rt2x00_get_field32(word, TXD_W0_VALID))
2056                         return;
2057
2058                 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2059                 while (entry != entry_done) {
2060                         /* Catch up.
2061                          * Just report any entries we missed as failed.
2062                          */
2063                         WARNING(rt2x00dev,
2064                                 "TX status report missed for entry %d\n",
2065                                 entry_done->entry_idx);
2066
2067                         txdesc.flags = 0;
2068                         __set_bit(TXDONE_UNKNOWN, &txdesc.flags);
2069                         txdesc.retry = 0;
2070
2071                         rt2x00lib_txdone(entry_done, &txdesc);
2072                         entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2073                 }
2074
2075                 /*
2076                  * Obtain the status about this packet.
2077                  */
2078                 txdesc.flags = 0;
2079                 switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2080                 case 0: /* Success, maybe with retry */
2081                         __set_bit(TXDONE_SUCCESS, &txdesc.flags);
2082                         break;
2083                 case 6: /* Failure, excessive retries */
2084                         __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2085                         /* Don't break, this is a failed frame! */
2086                 default: /* Failure */
2087                         __set_bit(TXDONE_FAILURE, &txdesc.flags);
2088                 }
2089                 txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2090
2091                 rt2x00lib_txdone(entry, &txdesc);
2092         }
2093 }
2094
2095 static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2096 {
2097         struct rt2x00_dev *rt2x00dev = dev_instance;
2098         u32 reg_mcu;
2099         u32 reg;
2100
2101         /*
2102          * Get the interrupt sources & saved to local variable.
2103          * Write register value back to clear pending interrupts.
2104          */
2105         rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
2106         rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2107
2108         rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
2109         rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2110
2111         if (!reg && !reg_mcu)
2112                 return IRQ_NONE;
2113
2114         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2115                 return IRQ_HANDLED;
2116
2117         /*
2118          * Handle interrupts, walk through all bits
2119          * and run the tasks, the bits are checked in order of
2120          * priority.
2121          */
2122
2123         /*
2124          * 1 - Rx ring done interrupt.
2125          */
2126         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2127                 rt2x00pci_rxdone(rt2x00dev);
2128
2129         /*
2130          * 2 - Tx ring done interrupt.
2131          */
2132         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2133                 rt61pci_txdone(rt2x00dev);
2134
2135         /*
2136          * 3 - Handle MCU command done.
2137          */
2138         if (reg_mcu)
2139                 rt2x00pci_register_write(rt2x00dev,
2140                                          M2H_CMD_DONE_CSR, 0xffffffff);
2141
2142         return IRQ_HANDLED;
2143 }
2144
2145 /*
2146  * Device probe functions.
2147  */
2148 static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2149 {
2150         struct eeprom_93cx6 eeprom;
2151         u32 reg;
2152         u16 word;
2153         u8 *mac;
2154         s8 value;
2155
2156         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
2157
2158         eeprom.data = rt2x00dev;
2159         eeprom.register_read = rt61pci_eepromregister_read;
2160         eeprom.register_write = rt61pci_eepromregister_write;
2161         eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2162             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2163         eeprom.reg_data_in = 0;
2164         eeprom.reg_data_out = 0;
2165         eeprom.reg_data_clock = 0;
2166         eeprom.reg_chip_select = 0;
2167
2168         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2169                                EEPROM_SIZE / sizeof(u16));
2170
2171         /*
2172          * Start validation of the data that has been read.
2173          */
2174         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2175         if (!is_valid_ether_addr(mac)) {
2176                 random_ether_addr(mac);
2177                 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
2178         }
2179
2180         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
2181         if (word == 0xffff) {
2182                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2183                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2184                                    ANTENNA_B);
2185                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2186                                    ANTENNA_B);
2187                 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2188                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2189                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2190                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2191                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2192                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
2193         }
2194
2195         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
2196         if (word == 0xffff) {
2197                 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2198                 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2199                 rt2x00_set_field16(&word, EEPROM_NIC_TX_RX_FIXED, 0);
2200                 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2201                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2202                 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2203                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2204                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
2205         }
2206
2207         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
2208         if (word == 0xffff) {
2209                 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2210                                    LED_MODE_DEFAULT);
2211                 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2212                 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
2213         }
2214
2215         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
2216         if (word == 0xffff) {
2217                 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2218                 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2219                 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2220                 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
2221         }
2222
2223         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
2224         if (word == 0xffff) {
2225                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2226                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2227                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2228                 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2229         } else {
2230                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2231                 if (value < -10 || value > 10)
2232                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2233                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2234                 if (value < -10 || value > 10)
2235                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2236                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2237         }
2238
2239         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
2240         if (word == 0xffff) {
2241                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2242                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2243                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2244                 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2245         } else {
2246                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2247                 if (value < -10 || value > 10)
2248                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2249                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2250                 if (value < -10 || value > 10)
2251                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2252                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2253         }
2254
2255         return 0;
2256 }
2257
2258 static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2259 {
2260         u32 reg;
2261         u16 value;
2262         u16 eeprom;
2263         u16 device;
2264
2265         /*
2266          * Read EEPROM word for configuration.
2267          */
2268         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2269
2270         /*
2271          * Identify RF chipset.
2272          * To determine the RT chip we have to read the
2273          * PCI header of the device.
2274          */
2275         pci_read_config_word(to_pci_dev(rt2x00dev->dev),
2276                              PCI_CONFIG_HEADER_DEVICE, &device);
2277         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2278         rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
2279         rt2x00_set_chip(rt2x00dev, device, value, reg);
2280
2281         if (!rt2x00_rf(&rt2x00dev->chip, RF5225) &&
2282             !rt2x00_rf(&rt2x00dev->chip, RF5325) &&
2283             !rt2x00_rf(&rt2x00dev->chip, RF2527) &&
2284             !rt2x00_rf(&rt2x00dev->chip, RF2529)) {
2285                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
2286                 return -ENODEV;
2287         }
2288
2289         /*
2290          * Determine number of antenna's.
2291          */
2292         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2293                 __set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);
2294
2295         /*
2296          * Identify default antenna configuration.
2297          */
2298         rt2x00dev->default_ant.tx =
2299             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2300         rt2x00dev->default_ant.rx =
2301             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2302
2303         /*
2304          * Read the Frame type.
2305          */
2306         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2307                 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
2308
2309         /*
2310          * Detect if this device has an hardware controlled radio.
2311          */
2312 #ifdef CONFIG_RT2X00_LIB_RFKILL
2313         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2314                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
2315 #endif /* CONFIG_RT2X00_LIB_RFKILL */
2316
2317         /*
2318          * Read frequency offset and RF programming sequence.
2319          */
2320         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2321         if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2322                 __set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);
2323
2324         rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2325
2326         /*
2327          * Read external LNA informations.
2328          */
2329         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2330
2331         if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2332                 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
2333         if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2334                 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
2335
2336         /*
2337          * When working with a RF2529 chip without double antenna
2338          * the antenna settings should be gathered from the NIC
2339          * eeprom word.
2340          */
2341         if (rt2x00_rf(&rt2x00dev->chip, RF2529) &&
2342             !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) {
2343                 switch (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_RX_FIXED)) {
2344                 case 0:
2345                         rt2x00dev->default_ant.tx = ANTENNA_B;
2346                         rt2x00dev->default_ant.rx = ANTENNA_A;
2347                         break;
2348                 case 1:
2349                         rt2x00dev->default_ant.tx = ANTENNA_B;
2350                         rt2x00dev->default_ant.rx = ANTENNA_B;
2351                         break;
2352                 case 2:
2353                         rt2x00dev->default_ant.tx = ANTENNA_A;
2354                         rt2x00dev->default_ant.rx = ANTENNA_A;
2355                         break;
2356                 case 3:
2357                         rt2x00dev->default_ant.tx = ANTENNA_A;
2358                         rt2x00dev->default_ant.rx = ANTENNA_B;
2359                         break;
2360                 }
2361
2362                 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2363                         rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2364                 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2365                         rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2366         }
2367
2368         /*
2369          * Store led settings, for correct led behaviour.
2370          * If the eeprom value is invalid,
2371          * switch to default led mode.
2372          */
2373 #ifdef CONFIG_RT2X00_LIB_LEDS
2374         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2375         value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2376
2377         rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2378         rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2379         if (value == LED_MODE_SIGNAL_STRENGTH)
2380                 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2381                                  LED_TYPE_QUALITY);
2382
2383         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2384         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2385                            rt2x00_get_field16(eeprom,
2386                                               EEPROM_LED_POLARITY_GPIO_0));
2387         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2388                            rt2x00_get_field16(eeprom,
2389                                               EEPROM_LED_POLARITY_GPIO_1));
2390         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2391                            rt2x00_get_field16(eeprom,
2392                                               EEPROM_LED_POLARITY_GPIO_2));
2393         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2394                            rt2x00_get_field16(eeprom,
2395                                               EEPROM_LED_POLARITY_GPIO_3));
2396         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2397                            rt2x00_get_field16(eeprom,
2398                                               EEPROM_LED_POLARITY_GPIO_4));
2399         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2400                            rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2401         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2402                            rt2x00_get_field16(eeprom,
2403                                               EEPROM_LED_POLARITY_RDY_G));
2404         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2405                            rt2x00_get_field16(eeprom,
2406                                               EEPROM_LED_POLARITY_RDY_A));
2407 #endif /* CONFIG_RT2X00_LIB_LEDS */
2408
2409         return 0;
2410 }
2411
2412 /*
2413  * RF value list for RF5225 & RF5325
2414  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2415  */
2416 static const struct rf_channel rf_vals_noseq[] = {
2417         { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2418         { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2419         { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2420         { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2421         { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2422         { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2423         { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2424         { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2425         { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2426         { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2427         { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2428         { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2429         { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2430         { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2431
2432         /* 802.11 UNI / HyperLan 2 */
2433         { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2434         { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2435         { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2436         { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2437         { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2438         { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2439         { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2440         { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2441
2442         /* 802.11 HyperLan 2 */
2443         { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2444         { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2445         { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2446         { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2447         { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2448         { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2449         { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2450         { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2451         { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2452         { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2453
2454         /* 802.11 UNII */
2455         { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2456         { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2457         { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2458         { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2459         { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2460         { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2461
2462         /* MMAC(Japan)J52 ch 34,38,42,46 */
2463         { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2464         { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2465         { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2466         { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2467 };
2468
2469 /*
2470  * RF value list for RF5225 & RF5325
2471  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2472  */
2473 static const struct rf_channel rf_vals_seq[] = {
2474         { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2475         { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2476         { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2477         { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2478         { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2479         { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2480         { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2481         { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2482         { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2483         { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2484         { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2485         { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2486         { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2487         { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2488
2489         /* 802.11 UNI / HyperLan 2 */
2490         { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2491         { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2492         { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2493         { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2494         { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2495         { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2496         { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2497         { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2498
2499         /* 802.11 HyperLan 2 */
2500         { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2501         { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2502         { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2503         { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2504         { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2505         { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2506         { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2507         { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2508         { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2509         { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2510
2511         /* 802.11 UNII */
2512         { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2513         { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2514         { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2515         { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2516         { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2517         { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2518
2519         /* MMAC(Japan)J52 ch 34,38,42,46 */
2520         { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2521         { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2522         { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2523         { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2524 };
2525
2526 static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2527 {
2528         struct hw_mode_spec *spec = &rt2x00dev->spec;
2529         struct channel_info *info;
2530         char *tx_power;
2531         unsigned int i;
2532
2533         /*
2534          * Initialize all hw fields.
2535          */
2536         rt2x00dev->hw->flags =
2537             IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2538             IEEE80211_HW_SIGNAL_DBM;
2539         rt2x00dev->hw->extra_tx_headroom = 0;
2540
2541         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2542         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2543                                 rt2x00_eeprom_addr(rt2x00dev,
2544                                                    EEPROM_MAC_ADDR_0));
2545
2546         /*
2547          * Initialize hw_mode information.
2548          */
2549         spec->supported_bands = SUPPORT_BAND_2GHZ;
2550         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2551
2552         if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
2553                 spec->num_channels = 14;
2554                 spec->channels = rf_vals_noseq;
2555         } else {
2556                 spec->num_channels = 14;
2557                 spec->channels = rf_vals_seq;
2558         }
2559
2560         if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
2561             rt2x00_rf(&rt2x00dev->chip, RF5325)) {
2562                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2563                 spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2564         }
2565
2566         /*
2567          * Create channel information array
2568          */
2569         info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
2570         if (!info)
2571                 return -ENOMEM;
2572
2573         spec->channels_info = info;
2574
2575         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2576         for (i = 0; i < 14; i++)
2577                 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2578
2579         if (spec->num_channels > 14) {
2580                 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2581                 for (i = 14; i < spec->num_channels; i++)
2582                         info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2583         }
2584
2585         return 0;
2586 }
2587
2588 static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2589 {
2590         int retval;
2591
2592         /*
2593          * Allocate eeprom data.
2594          */
2595         retval = rt61pci_validate_eeprom(rt2x00dev);
2596         if (retval)
2597                 return retval;
2598
2599         retval = rt61pci_init_eeprom(rt2x00dev);
2600         if (retval)
2601                 return retval;
2602
2603         /*
2604          * Initialize hw specifications.
2605          */
2606         retval = rt61pci_probe_hw_mode(rt2x00dev);
2607         if (retval)
2608                 return retval;
2609
2610         /*
2611          * This device requires firmware and DMA mapped skbs.
2612          */
2613         __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2614         __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
2615         if (!modparam_nohwcrypt)
2616                 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
2617
2618         /*
2619          * Set the rssi offset.
2620          */
2621         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2622
2623         return 0;
2624 }
2625
2626 /*
2627  * IEEE80211 stack callback functions.
2628  */
2629 static int rt61pci_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
2630                            const struct ieee80211_tx_queue_params *params)
2631 {
2632         struct rt2x00_dev *rt2x00dev = hw->priv;
2633         struct data_queue *queue;
2634         struct rt2x00_field32 field;
2635         int retval;
2636         u32 reg;
2637
2638         /*
2639          * First pass the configuration through rt2x00lib, that will
2640          * update the queue settings and validate the input. After that
2641          * we are free to update the registers based on the value
2642          * in the queue parameter.
2643          */
2644         retval = rt2x00mac_conf_tx(hw, queue_idx, params);
2645         if (retval)
2646                 return retval;
2647
2648         queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
2649
2650         /* Update WMM TXOP register */
2651         if (queue_idx < 2) {
2652                 field.bit_offset = queue_idx * 16;
2653                 field.bit_mask = 0xffff << field.bit_offset;
2654
2655                 rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR0, &reg);
2656                 rt2x00_set_field32(&reg, field, queue->txop);
2657                 rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR0, reg);
2658         } else if (queue_idx < 4) {
2659                 field.bit_offset = (queue_idx - 2) * 16;
2660                 field.bit_mask = 0xffff << field.bit_offset;
2661
2662                 rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR1, &reg);
2663                 rt2x00_set_field32(&reg, field, queue->txop);
2664                 rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR1, reg);
2665         }
2666
2667         /* Update WMM registers */
2668         field.bit_offset = queue_idx * 4;
2669         field.bit_mask = 0xf << field.bit_offset;
2670
2671         rt2x00pci_register_read(rt2x00dev, AIFSN_CSR, &reg);
2672         rt2x00_set_field32(&reg, field, queue->aifs);
2673         rt2x00pci_register_write(rt2x00dev, AIFSN_CSR, reg);
2674
2675         rt2x00pci_register_read(rt2x00dev, CWMIN_CSR, &reg);
2676         rt2x00_set_field32(&reg, field, queue->cw_min);
2677         rt2x00pci_register_write(rt2x00dev, CWMIN_CSR, reg);
2678
2679         rt2x00pci_register_read(rt2x00dev, CWMAX_CSR, &reg);
2680         rt2x00_set_field32(&reg, field, queue->cw_max);
2681         rt2x00pci_register_write(rt2x00dev, CWMAX_CSR, reg);
2682
2683         return 0;
2684 }
2685
2686 static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
2687 {
2688         struct rt2x00_dev *rt2x00dev = hw->priv;
2689         u64 tsf;
2690         u32 reg;
2691
2692         rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
2693         tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2694         rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
2695         tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2696
2697         return tsf;
2698 }
2699
2700 static const struct ieee80211_ops rt61pci_mac80211_ops = {
2701         .tx                     = rt2x00mac_tx,
2702         .start                  = rt2x00mac_start,
2703         .stop                   = rt2x00mac_stop,
2704         .add_interface          = rt2x00mac_add_interface,
2705         .remove_interface       = rt2x00mac_remove_interface,
2706         .config                 = rt2x00mac_config,
2707         .config_interface       = rt2x00mac_config_interface,
2708         .configure_filter       = rt2x00mac_configure_filter,
2709         .set_key                = rt2x00mac_set_key,
2710         .get_stats              = rt2x00mac_get_stats,
2711         .bss_info_changed       = rt2x00mac_bss_info_changed,
2712         .conf_tx                = rt61pci_conf_tx,
2713         .get_tx_stats           = rt2x00mac_get_tx_stats,
2714         .get_tsf                = rt61pci_get_tsf,
2715 };
2716
2717 static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2718         .irq_handler            = rt61pci_interrupt,
2719         .probe_hw               = rt61pci_probe_hw,
2720         .get_firmware_name      = rt61pci_get_firmware_name,
2721         .get_firmware_crc       = rt61pci_get_firmware_crc,
2722         .load_firmware          = rt61pci_load_firmware,
2723         .initialize             = rt2x00pci_initialize,
2724         .uninitialize           = rt2x00pci_uninitialize,
2725         .init_rxentry           = rt61pci_init_rxentry,
2726         .init_txentry           = rt61pci_init_txentry,
2727         .set_device_state       = rt61pci_set_device_state,
2728         .rfkill_poll            = rt61pci_rfkill_poll,
2729         .link_stats             = rt61pci_link_stats,
2730         .reset_tuner            = rt61pci_reset_tuner,
2731         .link_tuner             = rt61pci_link_tuner,
2732         .write_tx_desc          = rt61pci_write_tx_desc,
2733         .write_tx_data          = rt2x00pci_write_tx_data,
2734         .write_beacon           = rt61pci_write_beacon,
2735         .kick_tx_queue          = rt61pci_kick_tx_queue,
2736         .fill_rxdone            = rt61pci_fill_rxdone,
2737         .config_shared_key      = rt61pci_config_shared_key,
2738         .config_pairwise_key    = rt61pci_config_pairwise_key,
2739         .config_filter          = rt61pci_config_filter,
2740         .config_intf            = rt61pci_config_intf,
2741         .config_erp             = rt61pci_config_erp,
2742         .config_ant             = rt61pci_config_ant,
2743         .config                 = rt61pci_config,
2744 };
2745
2746 static const struct data_queue_desc rt61pci_queue_rx = {
2747         .entry_num              = RX_ENTRIES,
2748         .data_size              = DATA_FRAME_SIZE,
2749         .desc_size              = RXD_DESC_SIZE,
2750         .priv_size              = sizeof(struct queue_entry_priv_pci),
2751 };
2752
2753 static const struct data_queue_desc rt61pci_queue_tx = {
2754         .entry_num              = TX_ENTRIES,
2755         .data_size              = DATA_FRAME_SIZE,
2756         .desc_size              = TXD_DESC_SIZE,
2757         .priv_size              = sizeof(struct queue_entry_priv_pci),
2758 };
2759
2760 static const struct data_queue_desc rt61pci_queue_bcn = {
2761         .entry_num              = 4 * BEACON_ENTRIES,
2762         .data_size              = 0, /* No DMA required for beacons */
2763         .desc_size              = TXINFO_SIZE,
2764         .priv_size              = sizeof(struct queue_entry_priv_pci),
2765 };
2766
2767 static const struct rt2x00_ops rt61pci_ops = {
2768         .name           = KBUILD_MODNAME,
2769         .max_sta_intf   = 1,
2770         .max_ap_intf    = 4,
2771         .eeprom_size    = EEPROM_SIZE,
2772         .rf_size        = RF_SIZE,
2773         .tx_queues      = NUM_TX_QUEUES,
2774         .rx             = &rt61pci_queue_rx,
2775         .tx             = &rt61pci_queue_tx,
2776         .bcn            = &rt61pci_queue_bcn,
2777         .lib            = &rt61pci_rt2x00_ops,
2778         .hw             = &rt61pci_mac80211_ops,
2779 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2780         .debugfs        = &rt61pci_rt2x00debug,
2781 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2782 };
2783
2784 /*
2785  * RT61pci module information.
2786  */
2787 static struct pci_device_id rt61pci_device_table[] = {
2788         /* RT2561s */
2789         { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
2790         /* RT2561 v2 */
2791         { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
2792         /* RT2661 */
2793         { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
2794         { 0, }
2795 };
2796
2797 MODULE_AUTHOR(DRV_PROJECT);
2798 MODULE_VERSION(DRV_VERSION);
2799 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
2800 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
2801                         "PCI & PCMCIA chipset based cards");
2802 MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
2803 MODULE_FIRMWARE(FIRMWARE_RT2561);
2804 MODULE_FIRMWARE(FIRMWARE_RT2561s);
2805 MODULE_FIRMWARE(FIRMWARE_RT2661);
2806 MODULE_LICENSE("GPL");
2807
2808 static struct pci_driver rt61pci_driver = {
2809         .name           = KBUILD_MODNAME,
2810         .id_table       = rt61pci_device_table,
2811         .probe          = rt2x00pci_probe,
2812         .remove         = __devexit_p(rt2x00pci_remove),
2813         .suspend        = rt2x00pci_suspend,
2814         .resume         = rt2x00pci_resume,
2815 };
2816
2817 static int __init rt61pci_init(void)
2818 {
2819         return pci_register_driver(&rt61pci_driver);
2820 }
2821
2822 static void __exit rt61pci_exit(void)
2823 {
2824         pci_unregister_driver(&rt61pci_driver);
2825 }
2826
2827 module_init(rt61pci_init);
2828 module_exit(rt61pci_exit);