]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/wireless/rt2x00/rt61pci.c
rt2x00: Only disable beaconing just before beacon update
[karo-tx-linux.git] / drivers / net / wireless / rt2x00 / rt61pci.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt61pci
23         Abstract: rt61pci device specific routines.
24         Supported chipsets: RT2561, RT2561s, RT2661.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34
35 #include "rt2x00.h"
36 #include "rt2x00pci.h"
37 #include "rt61pci.h"
38
39 /*
40  * Register access.
41  * BBP and RF register require indirect register access,
42  * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
43  * These indirect registers work with busy bits,
44  * and we will try maximal REGISTER_BUSY_COUNT times to access
45  * the register while taking a REGISTER_BUSY_DELAY us delay
46  * between each attampt. When the busy bit is still set at that time,
47  * the access attempt is considered to have failed,
48  * and we will print an error.
49  */
50 static u32 rt61pci_bbp_check(struct rt2x00_dev *rt2x00dev)
51 {
52         u32 reg;
53         unsigned int i;
54
55         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
56                 rt2x00pci_register_read(rt2x00dev, PHY_CSR3, &reg);
57                 if (!rt2x00_get_field32(reg, PHY_CSR3_BUSY))
58                         break;
59                 udelay(REGISTER_BUSY_DELAY);
60         }
61
62         return reg;
63 }
64
65 static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
66                               const unsigned int word, const u8 value)
67 {
68         u32 reg;
69
70         /*
71          * Wait until the BBP becomes ready.
72          */
73         reg = rt61pci_bbp_check(rt2x00dev);
74         if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
75                 ERROR(rt2x00dev, "PHY_CSR3 register busy. Write failed.\n");
76                 return;
77         }
78
79         /*
80          * Write the data into the BBP.
81          */
82         reg = 0;
83         rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
84         rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
85         rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
86         rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
87
88         rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
89 }
90
91 static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
92                              const unsigned int word, u8 *value)
93 {
94         u32 reg;
95
96         /*
97          * Wait until the BBP becomes ready.
98          */
99         reg = rt61pci_bbp_check(rt2x00dev);
100         if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
101                 ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
102                 return;
103         }
104
105         /*
106          * Write the request into the BBP.
107          */
108         reg = 0;
109         rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
110         rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
111         rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
112
113         rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
114
115         /*
116          * Wait until the BBP becomes ready.
117          */
118         reg = rt61pci_bbp_check(rt2x00dev);
119         if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
120                 ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
121                 *value = 0xff;
122                 return;
123         }
124
125         *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
126 }
127
128 static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
129                              const unsigned int word, const u32 value)
130 {
131         u32 reg;
132         unsigned int i;
133
134         if (!word)
135                 return;
136
137         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
138                 rt2x00pci_register_read(rt2x00dev, PHY_CSR4, &reg);
139                 if (!rt2x00_get_field32(reg, PHY_CSR4_BUSY))
140                         goto rf_write;
141                 udelay(REGISTER_BUSY_DELAY);
142         }
143
144         ERROR(rt2x00dev, "PHY_CSR4 register busy. Write failed.\n");
145         return;
146
147 rf_write:
148         reg = 0;
149         rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
150         rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
151         rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
152         rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
153
154         rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
155         rt2x00_rf_write(rt2x00dev, word, value);
156 }
157
158 #ifdef CONFIG_RT61PCI_LEDS
159 /*
160  * This function is only called from rt61pci_led_brightness()
161  * make gcc happy by placing this function inside the
162  * same ifdef statement as the caller.
163  */
164 static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
165                                 const u8 command, const u8 token,
166                                 const u8 arg0, const u8 arg1)
167 {
168         u32 reg;
169
170         rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CSR, &reg);
171
172         if (rt2x00_get_field32(reg, H2M_MAILBOX_CSR_OWNER)) {
173                 ERROR(rt2x00dev, "mcu request error. "
174                       "Request 0x%02x failed for token 0x%02x.\n",
175                       command, token);
176                 return;
177         }
178
179         rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
180         rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
181         rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
182         rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
183         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
184
185         rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
186         rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
187         rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
188         rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
189 }
190 #endif /* CONFIG_RT61PCI_LEDS */
191
192 static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
193 {
194         struct rt2x00_dev *rt2x00dev = eeprom->data;
195         u32 reg;
196
197         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
198
199         eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
200         eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
201         eeprom->reg_data_clock =
202             !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
203         eeprom->reg_chip_select =
204             !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
205 }
206
207 static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
208 {
209         struct rt2x00_dev *rt2x00dev = eeprom->data;
210         u32 reg = 0;
211
212         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
213         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
214         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
215                            !!eeprom->reg_data_clock);
216         rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
217                            !!eeprom->reg_chip_select);
218
219         rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
220 }
221
222 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
223 #define CSR_OFFSET(__word)      ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
224
225 static void rt61pci_read_csr(struct rt2x00_dev *rt2x00dev,
226                              const unsigned int word, u32 *data)
227 {
228         rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
229 }
230
231 static void rt61pci_write_csr(struct rt2x00_dev *rt2x00dev,
232                               const unsigned int word, u32 data)
233 {
234         rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
235 }
236
237 static const struct rt2x00debug rt61pci_rt2x00debug = {
238         .owner  = THIS_MODULE,
239         .csr    = {
240                 .read           = rt61pci_read_csr,
241                 .write          = rt61pci_write_csr,
242                 .word_size      = sizeof(u32),
243                 .word_count     = CSR_REG_SIZE / sizeof(u32),
244         },
245         .eeprom = {
246                 .read           = rt2x00_eeprom_read,
247                 .write          = rt2x00_eeprom_write,
248                 .word_size      = sizeof(u16),
249                 .word_count     = EEPROM_SIZE / sizeof(u16),
250         },
251         .bbp    = {
252                 .read           = rt61pci_bbp_read,
253                 .write          = rt61pci_bbp_write,
254                 .word_size      = sizeof(u8),
255                 .word_count     = BBP_SIZE / sizeof(u8),
256         },
257         .rf     = {
258                 .read           = rt2x00_rf_read,
259                 .write          = rt61pci_rf_write,
260                 .word_size      = sizeof(u32),
261                 .word_count     = RF_SIZE / sizeof(u32),
262         },
263 };
264 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
265
266 #ifdef CONFIG_RT61PCI_RFKILL
267 static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
268 {
269         u32 reg;
270
271         rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
272         return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
273 }
274 #else
275 #define rt61pci_rfkill_poll     NULL
276 #endif /* CONFIG_RT61PCI_RFKILL */
277
278 #ifdef CONFIG_RT61PCI_LEDS
279 static void rt61pci_led_brightness(struct led_classdev *led_cdev,
280                                    enum led_brightness brightness)
281 {
282         struct rt2x00_led *led =
283             container_of(led_cdev, struct rt2x00_led, led_dev);
284         unsigned int enabled = brightness != LED_OFF;
285         unsigned int a_mode =
286             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
287         unsigned int bg_mode =
288             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
289
290         if (led->type == LED_TYPE_RADIO) {
291                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
292                                    MCU_LEDCS_RADIO_STATUS, enabled);
293
294                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
295                                     (led->rt2x00dev->led_mcu_reg & 0xff),
296                                     ((led->rt2x00dev->led_mcu_reg >> 8)));
297         } else if (led->type == LED_TYPE_ASSOC) {
298                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
299                                    MCU_LEDCS_LINK_BG_STATUS, bg_mode);
300                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
301                                    MCU_LEDCS_LINK_A_STATUS, a_mode);
302
303                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
304                                     (led->rt2x00dev->led_mcu_reg & 0xff),
305                                     ((led->rt2x00dev->led_mcu_reg >> 8)));
306         } else if (led->type == LED_TYPE_QUALITY) {
307                 /*
308                  * The brightness is divided into 6 levels (0 - 5),
309                  * this means we need to convert the brightness
310                  * argument into the matching level within that range.
311                  */
312                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
313                                     brightness / (LED_FULL / 6), 0);
314         }
315 }
316 #else
317 #define rt61pci_led_brightness  NULL
318 #endif /* CONFIG_RT61PCI_LEDS */
319
320 /*
321  * Configuration handlers.
322  */
323 static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
324                                 struct rt2x00_intf *intf,
325                                 struct rt2x00intf_conf *conf,
326                                 const unsigned int flags)
327 {
328         unsigned int beacon_base;
329         u32 reg;
330
331         if (flags & CONFIG_UPDATE_TYPE) {
332                 /*
333                  * Clear current synchronisation setup.
334                  * For the Beacon base registers we only need to clear
335                  * the first byte since that byte contains the VALID and OWNER
336                  * bits which (when set to 0) will invalidate the entire beacon.
337                  */
338                 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
339                 rt2x00pci_register_write(rt2x00dev, beacon_base, 0);
340
341                 /*
342                  * Enable synchronisation.
343                  */
344                 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
345                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
346                 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
347         }
348
349         if (flags & CONFIG_UPDATE_MAC) {
350                 reg = le32_to_cpu(conf->mac[1]);
351                 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
352                 conf->mac[1] = cpu_to_le32(reg);
353
354                 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
355                                               conf->mac, sizeof(conf->mac));
356         }
357
358         if (flags & CONFIG_UPDATE_BSSID) {
359                 reg = le32_to_cpu(conf->bssid[1]);
360                 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
361                 conf->bssid[1] = cpu_to_le32(reg);
362
363                 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
364                                               conf->bssid, sizeof(conf->bssid));
365         }
366 }
367
368 static int rt61pci_config_preamble(struct rt2x00_dev *rt2x00dev,
369                                    const int short_preamble,
370                                    const int ack_timeout,
371                                    const int ack_consume_time)
372 {
373         u32 reg;
374
375         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
376         rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, ack_timeout);
377         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
378
379         rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
380         rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
381                            !!short_preamble);
382         rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
383
384         return 0;
385 }
386
387 static void rt61pci_config_phymode(struct rt2x00_dev *rt2x00dev,
388                                    const int basic_rate_mask)
389 {
390         rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, basic_rate_mask);
391 }
392
393 static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
394                                    struct rf_channel *rf, const int txpower)
395 {
396         u8 r3;
397         u8 r94;
398         u8 smart;
399
400         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
401         rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
402
403         smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
404                   rt2x00_rf(&rt2x00dev->chip, RF2527));
405
406         rt61pci_bbp_read(rt2x00dev, 3, &r3);
407         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
408         rt61pci_bbp_write(rt2x00dev, 3, r3);
409
410         r94 = 6;
411         if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
412                 r94 += txpower - MAX_TXPOWER;
413         else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
414                 r94 += txpower;
415         rt61pci_bbp_write(rt2x00dev, 94, r94);
416
417         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
418         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
419         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
420         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
421
422         udelay(200);
423
424         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
425         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
426         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
427         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
428
429         udelay(200);
430
431         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
432         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
433         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
434         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
435
436         msleep(1);
437 }
438
439 static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
440                                    const int txpower)
441 {
442         struct rf_channel rf;
443
444         rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
445         rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
446         rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
447         rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
448
449         rt61pci_config_channel(rt2x00dev, &rf, txpower);
450 }
451
452 static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
453                                       struct antenna_setup *ant)
454 {
455         u8 r3;
456         u8 r4;
457         u8 r77;
458
459         rt61pci_bbp_read(rt2x00dev, 3, &r3);
460         rt61pci_bbp_read(rt2x00dev, 4, &r4);
461         rt61pci_bbp_read(rt2x00dev, 77, &r77);
462
463         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
464                           rt2x00_rf(&rt2x00dev->chip, RF5325));
465
466         /*
467          * Configure the RX antenna.
468          */
469         switch (ant->rx) {
470         case ANTENNA_HW_DIVERSITY:
471                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
472                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
473                                   (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
474                 break;
475         case ANTENNA_A:
476                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
477                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
478                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
479                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
480                 else
481                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
482                 break;
483         case ANTENNA_SW_DIVERSITY:
484                 /*
485                  * NOTE: We should never come here because rt2x00lib is
486                  * supposed to catch this and send us the correct antenna
487                  * explicitely. However we are nog going to bug about this.
488                  * Instead, just default to antenna B.
489                  */
490         case ANTENNA_B:
491                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
492                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
493                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
494                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
495                 else
496                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
497                 break;
498         }
499
500         rt61pci_bbp_write(rt2x00dev, 77, r77);
501         rt61pci_bbp_write(rt2x00dev, 3, r3);
502         rt61pci_bbp_write(rt2x00dev, 4, r4);
503 }
504
505 static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
506                                       struct antenna_setup *ant)
507 {
508         u8 r3;
509         u8 r4;
510         u8 r77;
511
512         rt61pci_bbp_read(rt2x00dev, 3, &r3);
513         rt61pci_bbp_read(rt2x00dev, 4, &r4);
514         rt61pci_bbp_read(rt2x00dev, 77, &r77);
515
516         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
517                           rt2x00_rf(&rt2x00dev->chip, RF2529));
518         rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
519                           !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
520
521         /*
522          * Configure the RX antenna.
523          */
524         switch (ant->rx) {
525         case ANTENNA_HW_DIVERSITY:
526                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
527                 break;
528         case ANTENNA_A:
529                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
530                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
531                 break;
532         case ANTENNA_SW_DIVERSITY:
533                 /*
534                  * NOTE: We should never come here because rt2x00lib is
535                  * supposed to catch this and send us the correct antenna
536                  * explicitely. However we are nog going to bug about this.
537                  * Instead, just default to antenna B.
538                  */
539         case ANTENNA_B:
540                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
541                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
542                 break;
543         }
544
545         rt61pci_bbp_write(rt2x00dev, 77, r77);
546         rt61pci_bbp_write(rt2x00dev, 3, r3);
547         rt61pci_bbp_write(rt2x00dev, 4, r4);
548 }
549
550 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
551                                            const int p1, const int p2)
552 {
553         u32 reg;
554
555         rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
556
557         rt2x00_set_field32(&reg, MAC_CSR13_BIT4, p1);
558         rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);
559
560         rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
561         rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);
562
563         rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
564 }
565
566 static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
567                                         struct antenna_setup *ant)
568 {
569         u8 r3;
570         u8 r4;
571         u8 r77;
572
573         rt61pci_bbp_read(rt2x00dev, 3, &r3);
574         rt61pci_bbp_read(rt2x00dev, 4, &r4);
575         rt61pci_bbp_read(rt2x00dev, 77, &r77);
576
577         /* FIXME: Antenna selection for the rf 2529 is very confusing in the
578          * legacy driver. The code below should be ok for non-diversity setups.
579          */
580
581         /*
582          * Configure the RX antenna.
583          */
584         switch (ant->rx) {
585         case ANTENNA_A:
586                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
587                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
588                 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
589                 break;
590         case ANTENNA_SW_DIVERSITY:
591         case ANTENNA_HW_DIVERSITY:
592                 /*
593                  * NOTE: We should never come here because rt2x00lib is
594                  * supposed to catch this and send us the correct antenna
595                  * explicitely. However we are nog going to bug about this.
596                  * Instead, just default to antenna B.
597                  */
598         case ANTENNA_B:
599                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
600                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
601                 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
602                 break;
603         }
604
605         rt61pci_bbp_write(rt2x00dev, 77, r77);
606         rt61pci_bbp_write(rt2x00dev, 3, r3);
607         rt61pci_bbp_write(rt2x00dev, 4, r4);
608 }
609
610 struct antenna_sel {
611         u8 word;
612         /*
613          * value[0] -> non-LNA
614          * value[1] -> LNA
615          */
616         u8 value[2];
617 };
618
619 static const struct antenna_sel antenna_sel_a[] = {
620         { 96,  { 0x58, 0x78 } },
621         { 104, { 0x38, 0x48 } },
622         { 75,  { 0xfe, 0x80 } },
623         { 86,  { 0xfe, 0x80 } },
624         { 88,  { 0xfe, 0x80 } },
625         { 35,  { 0x60, 0x60 } },
626         { 97,  { 0x58, 0x58 } },
627         { 98,  { 0x58, 0x58 } },
628 };
629
630 static const struct antenna_sel antenna_sel_bg[] = {
631         { 96,  { 0x48, 0x68 } },
632         { 104, { 0x2c, 0x3c } },
633         { 75,  { 0xfe, 0x80 } },
634         { 86,  { 0xfe, 0x80 } },
635         { 88,  { 0xfe, 0x80 } },
636         { 35,  { 0x50, 0x50 } },
637         { 97,  { 0x48, 0x48 } },
638         { 98,  { 0x48, 0x48 } },
639 };
640
641 static void rt61pci_config_antenna(struct rt2x00_dev *rt2x00dev,
642                                    struct antenna_setup *ant)
643 {
644         const struct antenna_sel *sel;
645         unsigned int lna;
646         unsigned int i;
647         u32 reg;
648
649         if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
650                 sel = antenna_sel_a;
651                 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
652         } else {
653                 sel = antenna_sel_bg;
654                 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
655         }
656
657         for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
658                 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
659
660         rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);
661
662         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
663                            rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
664         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
665                            rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
666
667         rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
668
669         if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
670             rt2x00_rf(&rt2x00dev->chip, RF5325))
671                 rt61pci_config_antenna_5x(rt2x00dev, ant);
672         else if (rt2x00_rf(&rt2x00dev->chip, RF2527))
673                 rt61pci_config_antenna_2x(rt2x00dev, ant);
674         else if (rt2x00_rf(&rt2x00dev->chip, RF2529)) {
675                 if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
676                         rt61pci_config_antenna_2x(rt2x00dev, ant);
677                 else
678                         rt61pci_config_antenna_2529(rt2x00dev, ant);
679         }
680 }
681
682 static void rt61pci_config_duration(struct rt2x00_dev *rt2x00dev,
683                                     struct rt2x00lib_conf *libconf)
684 {
685         u32 reg;
686
687         rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
688         rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, libconf->slot_time);
689         rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
690
691         rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
692         rt2x00_set_field32(&reg, MAC_CSR8_SIFS, libconf->sifs);
693         rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
694         rt2x00_set_field32(&reg, MAC_CSR8_EIFS, libconf->eifs);
695         rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
696
697         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
698         rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
699         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
700
701         rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
702         rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
703         rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
704
705         rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
706         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
707                            libconf->conf->beacon_int * 16);
708         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
709 }
710
711 static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
712                            struct rt2x00lib_conf *libconf,
713                            const unsigned int flags)
714 {
715         if (flags & CONFIG_UPDATE_PHYMODE)
716                 rt61pci_config_phymode(rt2x00dev, libconf->basic_rates);
717         if (flags & CONFIG_UPDATE_CHANNEL)
718                 rt61pci_config_channel(rt2x00dev, &libconf->rf,
719                                        libconf->conf->power_level);
720         if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
721                 rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
722         if (flags & CONFIG_UPDATE_ANTENNA)
723                 rt61pci_config_antenna(rt2x00dev, &libconf->ant);
724         if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
725                 rt61pci_config_duration(rt2x00dev, libconf);
726 }
727
728 /*
729  * Link tuning
730  */
731 static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
732                                struct link_qual *qual)
733 {
734         u32 reg;
735
736         /*
737          * Update FCS error count from register.
738          */
739         rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
740         qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
741
742         /*
743          * Update False CCA count from register.
744          */
745         rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
746         qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
747 }
748
749 static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
750 {
751         rt61pci_bbp_write(rt2x00dev, 17, 0x20);
752         rt2x00dev->link.vgc_level = 0x20;
753 }
754
755 static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev)
756 {
757         int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
758         u8 r17;
759         u8 up_bound;
760         u8 low_bound;
761
762         rt61pci_bbp_read(rt2x00dev, 17, &r17);
763
764         /*
765          * Determine r17 bounds.
766          */
767         if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
768                 low_bound = 0x28;
769                 up_bound = 0x48;
770                 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
771                         low_bound += 0x10;
772                         up_bound += 0x10;
773                 }
774         } else {
775                 low_bound = 0x20;
776                 up_bound = 0x40;
777                 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
778                         low_bound += 0x10;
779                         up_bound += 0x10;
780                 }
781         }
782
783         /*
784          * If we are not associated, we should go straight to the
785          * dynamic CCA tuning.
786          */
787         if (!rt2x00dev->intf_associated)
788                 goto dynamic_cca_tune;
789
790         /*
791          * Special big-R17 for very short distance
792          */
793         if (rssi >= -35) {
794                 if (r17 != 0x60)
795                         rt61pci_bbp_write(rt2x00dev, 17, 0x60);
796                 return;
797         }
798
799         /*
800          * Special big-R17 for short distance
801          */
802         if (rssi >= -58) {
803                 if (r17 != up_bound)
804                         rt61pci_bbp_write(rt2x00dev, 17, up_bound);
805                 return;
806         }
807
808         /*
809          * Special big-R17 for middle-short distance
810          */
811         if (rssi >= -66) {
812                 low_bound += 0x10;
813                 if (r17 != low_bound)
814                         rt61pci_bbp_write(rt2x00dev, 17, low_bound);
815                 return;
816         }
817
818         /*
819          * Special mid-R17 for middle distance
820          */
821         if (rssi >= -74) {
822                 low_bound += 0x08;
823                 if (r17 != low_bound)
824                         rt61pci_bbp_write(rt2x00dev, 17, low_bound);
825                 return;
826         }
827
828         /*
829          * Special case: Change up_bound based on the rssi.
830          * Lower up_bound when rssi is weaker then -74 dBm.
831          */
832         up_bound -= 2 * (-74 - rssi);
833         if (low_bound > up_bound)
834                 up_bound = low_bound;
835
836         if (r17 > up_bound) {
837                 rt61pci_bbp_write(rt2x00dev, 17, up_bound);
838                 return;
839         }
840
841 dynamic_cca_tune:
842
843         /*
844          * r17 does not yet exceed upper limit, continue and base
845          * the r17 tuning on the false CCA count.
846          */
847         if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
848                 if (++r17 > up_bound)
849                         r17 = up_bound;
850                 rt61pci_bbp_write(rt2x00dev, 17, r17);
851         } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
852                 if (--r17 < low_bound)
853                         r17 = low_bound;
854                 rt61pci_bbp_write(rt2x00dev, 17, r17);
855         }
856 }
857
858 /*
859  * Firmware name function.
860  */
861 static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
862 {
863         char *fw_name;
864
865         switch (rt2x00dev->chip.rt) {
866         case RT2561:
867                 fw_name = FIRMWARE_RT2561;
868                 break;
869         case RT2561s:
870                 fw_name = FIRMWARE_RT2561s;
871                 break;
872         case RT2661:
873                 fw_name = FIRMWARE_RT2661;
874                 break;
875         default:
876                 fw_name = NULL;
877                 break;
878         }
879
880         return fw_name;
881 }
882
883 /*
884  * Initialization functions.
885  */
886 static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev, void *data,
887                                  const size_t len)
888 {
889         int i;
890         u32 reg;
891
892         /*
893          * Wait for stable hardware.
894          */
895         for (i = 0; i < 100; i++) {
896                 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
897                 if (reg)
898                         break;
899                 msleep(1);
900         }
901
902         if (!reg) {
903                 ERROR(rt2x00dev, "Unstable hardware.\n");
904                 return -EBUSY;
905         }
906
907         /*
908          * Prepare MCU and mailbox for firmware loading.
909          */
910         reg = 0;
911         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
912         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
913         rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
914         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
915         rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
916
917         /*
918          * Write firmware to device.
919          */
920         reg = 0;
921         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
922         rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
923         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
924
925         rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
926                                       data, len);
927
928         rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
929         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
930
931         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
932         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
933
934         for (i = 0; i < 100; i++) {
935                 rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
936                 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
937                         break;
938                 msleep(1);
939         }
940
941         if (i == 100) {
942                 ERROR(rt2x00dev, "MCU Control register not ready.\n");
943                 return -EBUSY;
944         }
945
946         /*
947          * Reset MAC and BBP registers.
948          */
949         reg = 0;
950         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
951         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
952         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
953
954         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
955         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
956         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
957         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
958
959         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
960         rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
961         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
962
963         return 0;
964 }
965
966 static void rt61pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
967                                  struct queue_entry *entry)
968 {
969         struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
970         u32 word;
971
972         rt2x00_desc_read(priv_rx->desc, 5, &word);
973         rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
974                            priv_rx->data_dma);
975         rt2x00_desc_write(priv_rx->desc, 5, word);
976
977         rt2x00_desc_read(priv_rx->desc, 0, &word);
978         rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
979         rt2x00_desc_write(priv_rx->desc, 0, word);
980 }
981
982 static void rt61pci_init_txentry(struct rt2x00_dev *rt2x00dev,
983                                  struct queue_entry *entry)
984 {
985         struct queue_entry_priv_pci_tx *priv_tx = entry->priv_data;
986         u32 word;
987
988         rt2x00_desc_read(priv_tx->desc, 1, &word);
989         rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
990         rt2x00_desc_write(priv_tx->desc, 1, word);
991
992         rt2x00_desc_read(priv_tx->desc, 5, &word);
993         rt2x00_set_field32(&word, TXD_W5_PID_TYPE, entry->queue->qid);
994         rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE, entry->entry_idx);
995         rt2x00_desc_write(priv_tx->desc, 5, word);
996
997         rt2x00_desc_read(priv_tx->desc, 6, &word);
998         rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
999                            priv_tx->data_dma);
1000         rt2x00_desc_write(priv_tx->desc, 6, word);
1001
1002         rt2x00_desc_read(priv_tx->desc, 0, &word);
1003         rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1004         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1005         rt2x00_desc_write(priv_tx->desc, 0, word);
1006 }
1007
1008 static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1009 {
1010         struct queue_entry_priv_pci_rx *priv_rx;
1011         struct queue_entry_priv_pci_tx *priv_tx;
1012         u32 reg;
1013
1014         /*
1015          * Initialize registers.
1016          */
1017         rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1018         rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1019                            rt2x00dev->tx[0].limit);
1020         rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1021                            rt2x00dev->tx[1].limit);
1022         rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1023                            rt2x00dev->tx[2].limit);
1024         rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1025                            rt2x00dev->tx[3].limit);
1026         rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
1027
1028         rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
1029         rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1030                            rt2x00dev->tx[0].desc_size / 4);
1031         rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
1032
1033         priv_tx = rt2x00dev->tx[0].entries[0].priv_data;
1034         rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1035         rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1036                            priv_tx->desc_dma);
1037         rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1038
1039         priv_tx = rt2x00dev->tx[1].entries[0].priv_data;
1040         rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1041         rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1042                            priv_tx->desc_dma);
1043         rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1044
1045         priv_tx = rt2x00dev->tx[2].entries[0].priv_data;
1046         rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1047         rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1048                            priv_tx->desc_dma);
1049         rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1050
1051         priv_tx = rt2x00dev->tx[3].entries[0].priv_data;
1052         rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1053         rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1054                            priv_tx->desc_dma);
1055         rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1056
1057         rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
1058         rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1059         rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1060                            rt2x00dev->rx->desc_size / 4);
1061         rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1062         rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
1063
1064         priv_rx = rt2x00dev->rx->entries[0].priv_data;
1065         rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1066         rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1067                            priv_rx->desc_dma);
1068         rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
1069
1070         rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1071         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1072         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1073         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1074         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1075         rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1076
1077         rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1078         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1079         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1080         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1081         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1082         rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1083
1084         rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1085         rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1086         rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1087
1088         return 0;
1089 }
1090
1091 static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1092 {
1093         u32 reg;
1094
1095         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1096         rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1097         rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1098         rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1099         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1100
1101         rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
1102         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1103         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1104         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1105         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1106         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1107         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1108         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1109         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1110         rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
1111
1112         /*
1113          * CCK TXD BBP registers
1114          */
1115         rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
1116         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1117         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1118         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1119         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1120         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1121         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1122         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1123         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1124         rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
1125
1126         /*
1127          * OFDM TXD BBP registers
1128          */
1129         rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
1130         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1131         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1132         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1133         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1134         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1135         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1136         rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
1137
1138         rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
1139         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1140         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1141         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1142         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1143         rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
1144
1145         rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
1146         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1147         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1148         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1149         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1150         rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
1151
1152         rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1153
1154         rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1155
1156         rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
1157         rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1158         rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
1159
1160         rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1161
1162         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1163                 return -EBUSY;
1164
1165         rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1166
1167         rt2x00pci_register_read(rt2x00dev, MAC_CSR14, &reg);
1168         rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, 70);
1169         rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, 30);
1170         rt2x00pci_register_write(rt2x00dev, MAC_CSR14, reg);
1171
1172         /*
1173          * Invalidate all Shared Keys (SEC_CSR0),
1174          * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1175          */
1176         rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1177         rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1178         rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1179
1180         rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1181         rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1182         rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1183         rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1184
1185         rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1186
1187         rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1188
1189         rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1190
1191         rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR0, &reg);
1192         rt2x00_set_field32(&reg, AC_TXOP_CSR0_AC0_TX_OP, 0);
1193         rt2x00_set_field32(&reg, AC_TXOP_CSR0_AC1_TX_OP, 0);
1194         rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR0, reg);
1195
1196         rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR1, &reg);
1197         rt2x00_set_field32(&reg, AC_TXOP_CSR1_AC2_TX_OP, 192);
1198         rt2x00_set_field32(&reg, AC_TXOP_CSR1_AC3_TX_OP, 48);
1199         rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR1, reg);
1200
1201         /*
1202          * Clear all beacons
1203          * For the Beacon base registers we only need to clear
1204          * the first byte since that byte contains the VALID and OWNER
1205          * bits which (when set to 0) will invalidate the entire beacon.
1206          */
1207         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1208         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1209         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1210         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1211
1212         /*
1213          * We must clear the error counters.
1214          * These registers are cleared on read,
1215          * so we may pass a useless variable to store the value.
1216          */
1217         rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1218         rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1219         rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);
1220
1221         /*
1222          * Reset MAC and BBP registers.
1223          */
1224         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1225         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1226         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1227         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1228
1229         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1230         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1231         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1232         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1233
1234         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1235         rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1236         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1237
1238         return 0;
1239 }
1240
1241 static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1242 {
1243         unsigned int i;
1244         u16 eeprom;
1245         u8 reg_id;
1246         u8 value;
1247
1248         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1249                 rt61pci_bbp_read(rt2x00dev, 0, &value);
1250                 if ((value != 0xff) && (value != 0x00))
1251                         goto continue_csr_init;
1252                 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
1253                 udelay(REGISTER_BUSY_DELAY);
1254         }
1255
1256         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1257         return -EACCES;
1258
1259 continue_csr_init:
1260         rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1261         rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1262         rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1263         rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1264         rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1265         rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1266         rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1267         rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1268         rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1269         rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1270         rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1271         rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1272         rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1273         rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1274         rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1275         rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1276         rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1277         rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1278         rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1279         rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1280         rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1281         rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1282         rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1283         rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1284
1285         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1286                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1287
1288                 if (eeprom != 0xffff && eeprom != 0x0000) {
1289                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1290                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1291                         rt61pci_bbp_write(rt2x00dev, reg_id, value);
1292                 }
1293         }
1294
1295         return 0;
1296 }
1297
1298 /*
1299  * Device state switch handlers.
1300  */
1301 static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1302                               enum dev_state state)
1303 {
1304         u32 reg;
1305
1306         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1307         rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
1308                            state == STATE_RADIO_RX_OFF);
1309         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1310 }
1311
1312 static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1313                                enum dev_state state)
1314 {
1315         int mask = (state == STATE_RADIO_IRQ_OFF);
1316         u32 reg;
1317
1318         /*
1319          * When interrupts are being enabled, the interrupt registers
1320          * should clear the register to assure a clean state.
1321          */
1322         if (state == STATE_RADIO_IRQ_ON) {
1323                 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1324                 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1325
1326                 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1327                 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1328         }
1329
1330         /*
1331          * Only toggle the interrupts bits we are going to use.
1332          * Non-checked interrupt bits are disabled by default.
1333          */
1334         rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1335         rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1336         rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1337         rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1338         rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1339         rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1340
1341         rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1342         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1343         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1344         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1345         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1346         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1347         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1348         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1349         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1350         rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1351 }
1352
1353 static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1354 {
1355         u32 reg;
1356
1357         /*
1358          * Initialize all registers.
1359          */
1360         if (rt61pci_init_queues(rt2x00dev) ||
1361             rt61pci_init_registers(rt2x00dev) ||
1362             rt61pci_init_bbp(rt2x00dev)) {
1363                 ERROR(rt2x00dev, "Register initialization failed.\n");
1364                 return -EIO;
1365         }
1366
1367         /*
1368          * Enable interrupts.
1369          */
1370         rt61pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
1371
1372         /*
1373          * Enable RX.
1374          */
1375         rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1376         rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1377         rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1378
1379         return 0;
1380 }
1381
1382 static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1383 {
1384         u32 reg;
1385
1386         rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1387
1388         /*
1389          * Disable synchronisation.
1390          */
1391         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
1392
1393         /*
1394          * Cancel RX and TX.
1395          */
1396         rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1397         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1398         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1399         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1400         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
1401         rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1402
1403         /*
1404          * Disable interrupts.
1405          */
1406         rt61pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
1407 }
1408
1409 static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1410 {
1411         u32 reg;
1412         unsigned int i;
1413         char put_to_sleep;
1414         char current_state;
1415
1416         put_to_sleep = (state != STATE_AWAKE);
1417
1418         rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1419         rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1420         rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1421         rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1422
1423         /*
1424          * Device is not guaranteed to be in the requested state yet.
1425          * We must wait until the register indicates that the
1426          * device has entered the correct state.
1427          */
1428         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1429                 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1430                 current_state =
1431                     rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
1432                 if (current_state == !put_to_sleep)
1433                         return 0;
1434                 msleep(10);
1435         }
1436
1437         NOTICE(rt2x00dev, "Device failed to enter state %d, "
1438                "current device state %d.\n", !put_to_sleep, current_state);
1439
1440         return -EBUSY;
1441 }
1442
1443 static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1444                                     enum dev_state state)
1445 {
1446         int retval = 0;
1447
1448         switch (state) {
1449         case STATE_RADIO_ON:
1450                 retval = rt61pci_enable_radio(rt2x00dev);
1451                 break;
1452         case STATE_RADIO_OFF:
1453                 rt61pci_disable_radio(rt2x00dev);
1454                 break;
1455         case STATE_RADIO_RX_ON:
1456         case STATE_RADIO_RX_ON_LINK:
1457                 rt61pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
1458                 break;
1459         case STATE_RADIO_RX_OFF:
1460         case STATE_RADIO_RX_OFF_LINK:
1461                 rt61pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
1462                 break;
1463         case STATE_DEEP_SLEEP:
1464         case STATE_SLEEP:
1465         case STATE_STANDBY:
1466         case STATE_AWAKE:
1467                 retval = rt61pci_set_state(rt2x00dev, state);
1468                 break;
1469         default:
1470                 retval = -ENOTSUPP;
1471                 break;
1472         }
1473
1474         return retval;
1475 }
1476
1477 /*
1478  * TX descriptor initialization
1479  */
1480 static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1481                                     struct sk_buff *skb,
1482                                     struct txentry_desc *txdesc,
1483                                     struct ieee80211_tx_control *control)
1484 {
1485         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1486         __le32 *txd = skbdesc->desc;
1487         u32 word;
1488
1489         /*
1490          * Start writing the descriptor words.
1491          */
1492         rt2x00_desc_read(txd, 1, &word);
1493         rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
1494         rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
1495         rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1496         rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1497         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, IEEE80211_HEADER);
1498         rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE, 1);
1499         rt2x00_desc_write(txd, 1, word);
1500
1501         rt2x00_desc_read(txd, 2, &word);
1502         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1503         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1504         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1505         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1506         rt2x00_desc_write(txd, 2, word);
1507
1508         rt2x00_desc_read(txd, 5, &word);
1509         rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1510                            TXPOWER_TO_DEV(rt2x00dev->tx_power));
1511         rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1512         rt2x00_desc_write(txd, 5, word);
1513
1514         if (skbdesc->desc_len > TXINFO_SIZE) {
1515                 rt2x00_desc_read(txd, 11, &word);
1516                 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0, skbdesc->data_len);
1517                 rt2x00_desc_write(txd, 11, word);
1518         }
1519
1520         rt2x00_desc_read(txd, 0, &word);
1521         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1522         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1523         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1524                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1525         rt2x00_set_field32(&word, TXD_W0_ACK,
1526                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1527         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1528                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1529         rt2x00_set_field32(&word, TXD_W0_OFDM,
1530                            test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1531         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1532         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1533                            !!(control->flags &
1534                               IEEE80211_TXCTL_LONG_RETRY_LIMIT));
1535         rt2x00_set_field32(&word, TXD_W0_TKIP_MIC, 0);
1536         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skbdesc->data_len);
1537         rt2x00_set_field32(&word, TXD_W0_BURST,
1538                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1539         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1540         rt2x00_desc_write(txd, 0, word);
1541 }
1542
1543 /*
1544  * TX data initialization
1545  */
1546 static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1547                                   const unsigned int queue)
1548 {
1549         u32 reg;
1550
1551         if (queue == RT2X00_BCN_QUEUE_BEACON) {
1552                 /*
1553                  * For Wi-Fi faily generated beacons between participating
1554                  * stations. Set TBTT phase adaptive adjustment step to 8us.
1555                  */
1556                 rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1557
1558                 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1559                 if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
1560                         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1561                         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1562                         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1563                         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1564                 }
1565                 return;
1566         }
1567
1568         rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1569         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0,
1570                            (queue == IEEE80211_TX_QUEUE_DATA0));
1571         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1,
1572                            (queue == IEEE80211_TX_QUEUE_DATA1));
1573         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2,
1574                            (queue == IEEE80211_TX_QUEUE_DATA2));
1575         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3,
1576                            (queue == IEEE80211_TX_QUEUE_DATA3));
1577         rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1578 }
1579
1580 /*
1581  * RX control handlers
1582  */
1583 static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1584 {
1585         u16 eeprom;
1586         u8 offset;
1587         u8 lna;
1588
1589         lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1590         switch (lna) {
1591         case 3:
1592                 offset = 90;
1593                 break;
1594         case 2:
1595                 offset = 74;
1596                 break;
1597         case 1:
1598                 offset = 64;
1599                 break;
1600         default:
1601                 return 0;
1602         }
1603
1604         if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1605                 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
1606                         offset += 14;
1607
1608                 if (lna == 3 || lna == 2)
1609                         offset += 10;
1610
1611                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
1612                 offset -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
1613         } else {
1614                 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
1615                         offset += 14;
1616
1617                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
1618                 offset -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
1619         }
1620
1621         return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1622 }
1623
1624 static void rt61pci_fill_rxdone(struct queue_entry *entry,
1625                                 struct rxdone_entry_desc *rxdesc)
1626 {
1627         struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
1628         u32 word0;
1629         u32 word1;
1630
1631         rt2x00_desc_read(priv_rx->desc, 0, &word0);
1632         rt2x00_desc_read(priv_rx->desc, 1, &word1);
1633
1634         rxdesc->flags = 0;
1635         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1636                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1637
1638         /*
1639          * Obtain the status about this packet.
1640          */
1641         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1642         rxdesc->rssi = rt61pci_agc_to_rssi(entry->queue->rt2x00dev, word1);
1643         rxdesc->ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
1644         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1645         rxdesc->my_bss = !!rt2x00_get_field32(word0, RXD_W0_MY_BSS);
1646 }
1647
1648 /*
1649  * Interrupt functions.
1650  */
1651 static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
1652 {
1653         struct data_queue *queue;
1654         struct queue_entry *entry;
1655         struct queue_entry *entry_done;
1656         struct queue_entry_priv_pci_tx *priv_tx;
1657         struct txdone_entry_desc txdesc;
1658         u32 word;
1659         u32 reg;
1660         u32 old_reg;
1661         int type;
1662         int index;
1663
1664         /*
1665          * During each loop we will compare the freshly read
1666          * STA_CSR4 register value with the value read from
1667          * the previous loop. If the 2 values are equal then
1668          * we should stop processing because the chance it
1669          * quite big that the device has been unplugged and
1670          * we risk going into an endless loop.
1671          */
1672         old_reg = 0;
1673
1674         while (1) {
1675                 rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
1676                 if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
1677                         break;
1678
1679                 if (old_reg == reg)
1680                         break;
1681                 old_reg = reg;
1682
1683                 /*
1684                  * Skip this entry when it contains an invalid
1685                  * queue identication number.
1686                  */
1687                 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
1688                 queue = rt2x00queue_get_queue(rt2x00dev, type);
1689                 if (unlikely(!queue))
1690                         continue;
1691
1692                 /*
1693                  * Skip this entry when it contains an invalid
1694                  * index number.
1695                  */
1696                 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
1697                 if (unlikely(index >= queue->limit))
1698                         continue;
1699
1700                 entry = &queue->entries[index];
1701                 priv_tx = entry->priv_data;
1702                 rt2x00_desc_read(priv_tx->desc, 0, &word);
1703
1704                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1705                     !rt2x00_get_field32(word, TXD_W0_VALID))
1706                         return;
1707
1708                 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1709                 while (entry != entry_done) {
1710                         /* Catch up.
1711                          * Just report any entries we missed as failed.
1712                          */
1713                         WARNING(rt2x00dev,
1714                                 "TX status report missed for entry %d\n",
1715                                 entry_done->entry_idx);
1716
1717                         txdesc.status = TX_FAIL_OTHER;
1718                         txdesc.retry = 0;
1719
1720                         rt2x00pci_txdone(rt2x00dev, entry_done, &txdesc);
1721                         entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1722                 }
1723
1724                 /*
1725                  * Obtain the status about this packet.
1726                  */
1727                 txdesc.status = rt2x00_get_field32(reg, STA_CSR4_TX_RESULT);
1728                 txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
1729
1730                 rt2x00pci_txdone(rt2x00dev, entry, &txdesc);
1731         }
1732 }
1733
1734 static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
1735 {
1736         struct rt2x00_dev *rt2x00dev = dev_instance;
1737         u32 reg_mcu;
1738         u32 reg;
1739
1740         /*
1741          * Get the interrupt sources & saved to local variable.
1742          * Write register value back to clear pending interrupts.
1743          */
1744         rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
1745         rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
1746
1747         rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1748         rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1749
1750         if (!reg && !reg_mcu)
1751                 return IRQ_NONE;
1752
1753         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1754                 return IRQ_HANDLED;
1755
1756         /*
1757          * Handle interrupts, walk through all bits
1758          * and run the tasks, the bits are checked in order of
1759          * priority.
1760          */
1761
1762         /*
1763          * 1 - Rx ring done interrupt.
1764          */
1765         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
1766                 rt2x00pci_rxdone(rt2x00dev);
1767
1768         /*
1769          * 2 - Tx ring done interrupt.
1770          */
1771         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
1772                 rt61pci_txdone(rt2x00dev);
1773
1774         /*
1775          * 3 - Handle MCU command done.
1776          */
1777         if (reg_mcu)
1778                 rt2x00pci_register_write(rt2x00dev,
1779                                          M2H_CMD_DONE_CSR, 0xffffffff);
1780
1781         return IRQ_HANDLED;
1782 }
1783
1784 /*
1785  * Device probe functions.
1786  */
1787 static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1788 {
1789         struct eeprom_93cx6 eeprom;
1790         u32 reg;
1791         u16 word;
1792         u8 *mac;
1793         s8 value;
1794
1795         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
1796
1797         eeprom.data = rt2x00dev;
1798         eeprom.register_read = rt61pci_eepromregister_read;
1799         eeprom.register_write = rt61pci_eepromregister_write;
1800         eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
1801             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1802         eeprom.reg_data_in = 0;
1803         eeprom.reg_data_out = 0;
1804         eeprom.reg_data_clock = 0;
1805         eeprom.reg_chip_select = 0;
1806
1807         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1808                                EEPROM_SIZE / sizeof(u16));
1809
1810         /*
1811          * Start validation of the data that has been read.
1812          */
1813         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1814         if (!is_valid_ether_addr(mac)) {
1815                 DECLARE_MAC_BUF(macbuf);
1816
1817                 random_ether_addr(mac);
1818                 EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
1819         }
1820
1821         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1822         if (word == 0xffff) {
1823                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1824                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1825                                    ANTENNA_B);
1826                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1827                                    ANTENNA_B);
1828                 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
1829                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1830                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1831                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
1832                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1833                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1834         }
1835
1836         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1837         if (word == 0xffff) {
1838                 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
1839                 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
1840                 rt2x00_set_field16(&word, EEPROM_NIC_TX_RX_FIXED, 0);
1841                 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
1842                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1843                 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
1844                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1845                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1846         }
1847
1848         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
1849         if (word == 0xffff) {
1850                 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
1851                                    LED_MODE_DEFAULT);
1852                 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
1853                 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
1854         }
1855
1856         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
1857         if (word == 0xffff) {
1858                 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
1859                 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
1860                 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
1861                 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
1862         }
1863
1864         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
1865         if (word == 0xffff) {
1866                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1867                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1868                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1869                 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
1870         } else {
1871                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
1872                 if (value < -10 || value > 10)
1873                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1874                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
1875                 if (value < -10 || value > 10)
1876                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1877                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1878         }
1879
1880         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
1881         if (word == 0xffff) {
1882                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1883                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1884                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1885                 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
1886         } else {
1887                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
1888                 if (value < -10 || value > 10)
1889                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1890                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
1891                 if (value < -10 || value > 10)
1892                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1893                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1894         }
1895
1896         return 0;
1897 }
1898
1899 static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1900 {
1901         u32 reg;
1902         u16 value;
1903         u16 eeprom;
1904         u16 device;
1905
1906         /*
1907          * Read EEPROM word for configuration.
1908          */
1909         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1910
1911         /*
1912          * Identify RF chipset.
1913          * To determine the RT chip we have to read the
1914          * PCI header of the device.
1915          */
1916         pci_read_config_word(rt2x00dev_pci(rt2x00dev),
1917                              PCI_CONFIG_HEADER_DEVICE, &device);
1918         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1919         rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
1920         rt2x00_set_chip(rt2x00dev, device, value, reg);
1921
1922         if (!rt2x00_rf(&rt2x00dev->chip, RF5225) &&
1923             !rt2x00_rf(&rt2x00dev->chip, RF5325) &&
1924             !rt2x00_rf(&rt2x00dev->chip, RF2527) &&
1925             !rt2x00_rf(&rt2x00dev->chip, RF2529)) {
1926                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1927                 return -ENODEV;
1928         }
1929
1930         /*
1931          * Determine number of antenna's.
1932          */
1933         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
1934                 __set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);
1935
1936         /*
1937          * Identify default antenna configuration.
1938          */
1939         rt2x00dev->default_ant.tx =
1940             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1941         rt2x00dev->default_ant.rx =
1942             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1943
1944         /*
1945          * Read the Frame type.
1946          */
1947         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
1948                 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
1949
1950         /*
1951          * Detect if this device has an hardware controlled radio.
1952          */
1953 #ifdef CONFIG_RT61PCI_RFKILL
1954         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1955                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1956 #endif /* CONFIG_RT61PCI_RFKILL */
1957
1958         /*
1959          * Read frequency offset and RF programming sequence.
1960          */
1961         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
1962         if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
1963                 __set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);
1964
1965         rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
1966
1967         /*
1968          * Read external LNA informations.
1969          */
1970         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1971
1972         if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
1973                 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
1974         if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
1975                 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
1976
1977         /*
1978          * When working with a RF2529 chip without double antenna
1979          * the antenna settings should be gathered from the NIC
1980          * eeprom word.
1981          */
1982         if (rt2x00_rf(&rt2x00dev->chip, RF2529) &&
1983             !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) {
1984                 switch (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_RX_FIXED)) {
1985                 case 0:
1986                         rt2x00dev->default_ant.tx = ANTENNA_B;
1987                         rt2x00dev->default_ant.rx = ANTENNA_A;
1988                         break;
1989                 case 1:
1990                         rt2x00dev->default_ant.tx = ANTENNA_B;
1991                         rt2x00dev->default_ant.rx = ANTENNA_B;
1992                         break;
1993                 case 2:
1994                         rt2x00dev->default_ant.tx = ANTENNA_A;
1995                         rt2x00dev->default_ant.rx = ANTENNA_A;
1996                         break;
1997                 case 3:
1998                         rt2x00dev->default_ant.tx = ANTENNA_A;
1999                         rt2x00dev->default_ant.rx = ANTENNA_B;
2000                         break;
2001                 }
2002
2003                 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2004                         rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2005                 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2006                         rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2007         }
2008
2009         /*
2010          * Store led settings, for correct led behaviour.
2011          * If the eeprom value is invalid,
2012          * switch to default led mode.
2013          */
2014 #ifdef CONFIG_RT61PCI_LEDS
2015         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2016
2017         value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2018
2019         switch (value) {
2020         case LED_MODE_TXRX_ACTIVITY:
2021         case LED_MODE_ASUS:
2022         case LED_MODE_ALPHA:
2023         case LED_MODE_DEFAULT:
2024                 rt2x00dev->led_flags =
2025                     LED_SUPPORT_RADIO | LED_SUPPORT_ASSOC;
2026                 break;
2027         case LED_MODE_SIGNAL_STRENGTH:
2028                 rt2x00dev->led_flags =
2029                     LED_SUPPORT_RADIO | LED_SUPPORT_ASSOC |
2030                     LED_SUPPORT_QUALITY;
2031                 break;
2032         }
2033
2034         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2035         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2036                            rt2x00_get_field16(eeprom,
2037                                               EEPROM_LED_POLARITY_GPIO_0));
2038         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2039                            rt2x00_get_field16(eeprom,
2040                                               EEPROM_LED_POLARITY_GPIO_1));
2041         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2042                            rt2x00_get_field16(eeprom,
2043                                               EEPROM_LED_POLARITY_GPIO_2));
2044         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2045                            rt2x00_get_field16(eeprom,
2046                                               EEPROM_LED_POLARITY_GPIO_3));
2047         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2048                            rt2x00_get_field16(eeprom,
2049                                               EEPROM_LED_POLARITY_GPIO_4));
2050         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2051                            rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2052         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2053                            rt2x00_get_field16(eeprom,
2054                                               EEPROM_LED_POLARITY_RDY_G));
2055         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2056                            rt2x00_get_field16(eeprom,
2057                                               EEPROM_LED_POLARITY_RDY_A));
2058 #endif /* CONFIG_RT61PCI_LEDS */
2059
2060         return 0;
2061 }
2062
2063 /*
2064  * RF value list for RF5225 & RF5325
2065  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2066  */
2067 static const struct rf_channel rf_vals_noseq[] = {
2068         { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2069         { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2070         { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2071         { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2072         { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2073         { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2074         { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2075         { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2076         { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2077         { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2078         { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2079         { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2080         { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2081         { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2082
2083         /* 802.11 UNI / HyperLan 2 */
2084         { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2085         { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2086         { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2087         { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2088         { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2089         { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2090         { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2091         { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2092
2093         /* 802.11 HyperLan 2 */
2094         { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2095         { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2096         { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2097         { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2098         { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2099         { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2100         { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2101         { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2102         { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2103         { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2104
2105         /* 802.11 UNII */
2106         { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2107         { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2108         { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2109         { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2110         { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2111         { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2112
2113         /* MMAC(Japan)J52 ch 34,38,42,46 */
2114         { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2115         { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2116         { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2117         { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2118 };
2119
2120 /*
2121  * RF value list for RF5225 & RF5325
2122  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2123  */
2124 static const struct rf_channel rf_vals_seq[] = {
2125         { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2126         { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2127         { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2128         { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2129         { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2130         { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2131         { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2132         { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2133         { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2134         { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2135         { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2136         { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2137         { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2138         { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2139
2140         /* 802.11 UNI / HyperLan 2 */
2141         { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2142         { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2143         { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2144         { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2145         { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2146         { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2147         { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2148         { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2149
2150         /* 802.11 HyperLan 2 */
2151         { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2152         { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2153         { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2154         { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2155         { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2156         { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2157         { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2158         { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2159         { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2160         { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2161
2162         /* 802.11 UNII */
2163         { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2164         { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2165         { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2166         { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2167         { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2168         { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2169
2170         /* MMAC(Japan)J52 ch 34,38,42,46 */
2171         { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2172         { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2173         { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2174         { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2175 };
2176
2177 static void rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2178 {
2179         struct hw_mode_spec *spec = &rt2x00dev->spec;
2180         u8 *txpower;
2181         unsigned int i;
2182
2183         /*
2184          * Initialize all hw fields.
2185          */
2186         rt2x00dev->hw->flags =
2187             IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE |
2188             IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
2189         rt2x00dev->hw->extra_tx_headroom = 0;
2190         rt2x00dev->hw->max_signal = MAX_SIGNAL;
2191         rt2x00dev->hw->max_rssi = MAX_RX_SSI;
2192         rt2x00dev->hw->queues = 4;
2193
2194         SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
2195         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2196                                 rt2x00_eeprom_addr(rt2x00dev,
2197                                                    EEPROM_MAC_ADDR_0));
2198
2199         /*
2200          * Convert tx_power array in eeprom.
2201          */
2202         txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2203         for (i = 0; i < 14; i++)
2204                 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
2205
2206         /*
2207          * Initialize hw_mode information.
2208          */
2209         spec->supported_bands = SUPPORT_BAND_2GHZ;
2210         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2211         spec->tx_power_a = NULL;
2212         spec->tx_power_bg = txpower;
2213         spec->tx_power_default = DEFAULT_TXPOWER;
2214
2215         if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
2216                 spec->num_channels = 14;
2217                 spec->channels = rf_vals_noseq;
2218         } else {
2219                 spec->num_channels = 14;
2220                 spec->channels = rf_vals_seq;
2221         }
2222
2223         if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
2224             rt2x00_rf(&rt2x00dev->chip, RF5325)) {
2225                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2226                 spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2227
2228                 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2229                 for (i = 0; i < 14; i++)
2230                         txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
2231
2232                 spec->tx_power_a = txpower;
2233         }
2234 }
2235
2236 static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2237 {
2238         int retval;
2239
2240         /*
2241          * Allocate eeprom data.
2242          */
2243         retval = rt61pci_validate_eeprom(rt2x00dev);
2244         if (retval)
2245                 return retval;
2246
2247         retval = rt61pci_init_eeprom(rt2x00dev);
2248         if (retval)
2249                 return retval;
2250
2251         /*
2252          * Initialize hw specifications.
2253          */
2254         rt61pci_probe_hw_mode(rt2x00dev);
2255
2256         /*
2257          * This device requires firmware.
2258          */
2259         __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2260         __set_bit(DRIVER_REQUIRE_FIRMWARE_CRC_ITU_T, &rt2x00dev->flags);
2261
2262         /*
2263          * Set the rssi offset.
2264          */
2265         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2266
2267         return 0;
2268 }
2269
2270 /*
2271  * IEEE80211 stack callback functions.
2272  */
2273 static void rt61pci_configure_filter(struct ieee80211_hw *hw,
2274                                      unsigned int changed_flags,
2275                                      unsigned int *total_flags,
2276                                      int mc_count,
2277                                      struct dev_addr_list *mc_list)
2278 {
2279         struct rt2x00_dev *rt2x00dev = hw->priv;
2280         u32 reg;
2281
2282         /*
2283          * Mask off any flags we are going to ignore from
2284          * the total_flags field.
2285          */
2286         *total_flags &=
2287             FIF_ALLMULTI |
2288             FIF_FCSFAIL |
2289             FIF_PLCPFAIL |
2290             FIF_CONTROL |
2291             FIF_OTHER_BSS |
2292             FIF_PROMISC_IN_BSS;
2293
2294         /*
2295          * Apply some rules to the filters:
2296          * - Some filters imply different filters to be set.
2297          * - Some things we can't filter out at all.
2298          */
2299         if (mc_count)
2300                 *total_flags |= FIF_ALLMULTI;
2301         if (*total_flags & FIF_OTHER_BSS ||
2302             *total_flags & FIF_PROMISC_IN_BSS)
2303                 *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
2304
2305         /*
2306          * Check if there is any work left for us.
2307          */
2308         if (rt2x00dev->packet_filter == *total_flags)
2309                 return;
2310         rt2x00dev->packet_filter = *total_flags;
2311
2312         /*
2313          * Start configuration steps.
2314          * Note that the version error will always be dropped
2315          * and broadcast frames will always be accepted since
2316          * there is no filter for it at this time.
2317          */
2318         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
2319         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
2320                            !(*total_flags & FIF_FCSFAIL));
2321         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
2322                            !(*total_flags & FIF_PLCPFAIL));
2323         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
2324                            !(*total_flags & FIF_CONTROL));
2325         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
2326                            !(*total_flags & FIF_PROMISC_IN_BSS));
2327         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
2328                            !(*total_flags & FIF_PROMISC_IN_BSS));
2329         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
2330         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
2331                            !(*total_flags & FIF_ALLMULTI));
2332         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
2333         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
2334                            !(*total_flags & FIF_CONTROL));
2335         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
2336 }
2337
2338 static int rt61pci_set_retry_limit(struct ieee80211_hw *hw,
2339                                    u32 short_retry, u32 long_retry)
2340 {
2341         struct rt2x00_dev *rt2x00dev = hw->priv;
2342         u32 reg;
2343
2344         rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
2345         rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT, long_retry);
2346         rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT, short_retry);
2347         rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
2348
2349         return 0;
2350 }
2351
2352 static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
2353 {
2354         struct rt2x00_dev *rt2x00dev = hw->priv;
2355         u64 tsf;
2356         u32 reg;
2357
2358         rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
2359         tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2360         rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
2361         tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2362
2363         return tsf;
2364 }
2365
2366 static int rt61pci_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb,
2367                           struct ieee80211_tx_control *control)
2368 {
2369         struct rt2x00_dev *rt2x00dev = hw->priv;
2370         struct rt2x00_intf *intf = vif_to_intf(control->vif);
2371         struct skb_frame_desc *skbdesc;
2372         unsigned int beacon_base;
2373         u32 reg;
2374
2375         if (unlikely(!intf->beacon))
2376                 return -ENOBUFS;
2377
2378         /*
2379          * We need to append the descriptor in front of the
2380          * beacon frame.
2381          */
2382         if (skb_headroom(skb) < intf->beacon->queue->desc_size) {
2383                 if (pskb_expand_head(skb, intf->beacon->queue->desc_size,
2384                                      0, GFP_ATOMIC)) {
2385                         dev_kfree_skb(skb);
2386                         return -ENOMEM;
2387                 }
2388         }
2389
2390         /*
2391          * Add the descriptor in front of the skb.
2392          */
2393         skb_push(skb, intf->beacon->queue->desc_size);
2394         memset(skb->data, 0, intf->beacon->queue->desc_size);
2395
2396         /*
2397          * Fill in skb descriptor
2398          */
2399         skbdesc = get_skb_frame_desc(skb);
2400         memset(skbdesc, 0, sizeof(*skbdesc));
2401         skbdesc->flags |= FRAME_DESC_DRIVER_GENERATED;
2402         skbdesc->data = skb->data + intf->beacon->queue->desc_size;
2403         skbdesc->data_len = skb->len - intf->beacon->queue->desc_size;
2404         skbdesc->desc = skb->data;
2405         skbdesc->desc_len = intf->beacon->queue->desc_size;
2406         skbdesc->entry = intf->beacon;
2407
2408         /*
2409          * Disable beaconing while we are reloading the beacon data,
2410          * otherwise we might be sending out invalid data.
2411          */
2412         rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
2413         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
2414         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
2415         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
2416         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
2417
2418         /*
2419          * mac80211 doesn't provide the control->queue variable
2420          * for beacons. Set our own queue identification so
2421          * it can be used during descriptor initialization.
2422          */
2423         control->queue = RT2X00_BCN_QUEUE_BEACON;
2424         rt2x00lib_write_tx_desc(rt2x00dev, skb, control);
2425
2426         /*
2427          * Write entire beacon with descriptor to register,
2428          * and kick the beacon generator.
2429          */
2430         beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
2431         rt2x00pci_register_multiwrite(rt2x00dev, beacon_base,
2432                                       skb->data, skb->len);
2433         rt61pci_kick_tx_queue(rt2x00dev, control->queue);
2434
2435         return 0;
2436 }
2437
2438 static const struct ieee80211_ops rt61pci_mac80211_ops = {
2439         .tx                     = rt2x00mac_tx,
2440         .start                  = rt2x00mac_start,
2441         .stop                   = rt2x00mac_stop,
2442         .add_interface          = rt2x00mac_add_interface,
2443         .remove_interface       = rt2x00mac_remove_interface,
2444         .config                 = rt2x00mac_config,
2445         .config_interface       = rt2x00mac_config_interface,
2446         .configure_filter       = rt61pci_configure_filter,
2447         .get_stats              = rt2x00mac_get_stats,
2448         .set_retry_limit        = rt61pci_set_retry_limit,
2449         .bss_info_changed       = rt2x00mac_bss_info_changed,
2450         .conf_tx                = rt2x00mac_conf_tx,
2451         .get_tx_stats           = rt2x00mac_get_tx_stats,
2452         .get_tsf                = rt61pci_get_tsf,
2453         .beacon_update          = rt61pci_beacon_update,
2454 };
2455
2456 static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2457         .irq_handler            = rt61pci_interrupt,
2458         .probe_hw               = rt61pci_probe_hw,
2459         .get_firmware_name      = rt61pci_get_firmware_name,
2460         .load_firmware          = rt61pci_load_firmware,
2461         .initialize             = rt2x00pci_initialize,
2462         .uninitialize           = rt2x00pci_uninitialize,
2463         .init_rxentry           = rt61pci_init_rxentry,
2464         .init_txentry           = rt61pci_init_txentry,
2465         .set_device_state       = rt61pci_set_device_state,
2466         .rfkill_poll            = rt61pci_rfkill_poll,
2467         .link_stats             = rt61pci_link_stats,
2468         .reset_tuner            = rt61pci_reset_tuner,
2469         .link_tuner             = rt61pci_link_tuner,
2470         .led_brightness         = rt61pci_led_brightness,
2471         .write_tx_desc          = rt61pci_write_tx_desc,
2472         .write_tx_data          = rt2x00pci_write_tx_data,
2473         .kick_tx_queue          = rt61pci_kick_tx_queue,
2474         .fill_rxdone            = rt61pci_fill_rxdone,
2475         .config_intf            = rt61pci_config_intf,
2476         .config_preamble        = rt61pci_config_preamble,
2477         .config                 = rt61pci_config,
2478 };
2479
2480 static const struct data_queue_desc rt61pci_queue_rx = {
2481         .entry_num              = RX_ENTRIES,
2482         .data_size              = DATA_FRAME_SIZE,
2483         .desc_size              = RXD_DESC_SIZE,
2484         .priv_size              = sizeof(struct queue_entry_priv_pci_rx),
2485 };
2486
2487 static const struct data_queue_desc rt61pci_queue_tx = {
2488         .entry_num              = TX_ENTRIES,
2489         .data_size              = DATA_FRAME_SIZE,
2490         .desc_size              = TXD_DESC_SIZE,
2491         .priv_size              = sizeof(struct queue_entry_priv_pci_tx),
2492 };
2493
2494 static const struct data_queue_desc rt61pci_queue_bcn = {
2495         .entry_num              = 4 * BEACON_ENTRIES,
2496         .data_size              = MGMT_FRAME_SIZE,
2497         .desc_size              = TXINFO_SIZE,
2498         .priv_size              = sizeof(struct queue_entry_priv_pci_tx),
2499 };
2500
2501 static const struct rt2x00_ops rt61pci_ops = {
2502         .name           = KBUILD_MODNAME,
2503         .max_sta_intf   = 1,
2504         .max_ap_intf    = 4,
2505         .eeprom_size    = EEPROM_SIZE,
2506         .rf_size        = RF_SIZE,
2507         .rx             = &rt61pci_queue_rx,
2508         .tx             = &rt61pci_queue_tx,
2509         .bcn            = &rt61pci_queue_bcn,
2510         .lib            = &rt61pci_rt2x00_ops,
2511         .hw             = &rt61pci_mac80211_ops,
2512 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2513         .debugfs        = &rt61pci_rt2x00debug,
2514 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2515 };
2516
2517 /*
2518  * RT61pci module information.
2519  */
2520 static struct pci_device_id rt61pci_device_table[] = {
2521         /* RT2561s */
2522         { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
2523         /* RT2561 v2 */
2524         { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
2525         /* RT2661 */
2526         { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
2527         { 0, }
2528 };
2529
2530 MODULE_AUTHOR(DRV_PROJECT);
2531 MODULE_VERSION(DRV_VERSION);
2532 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
2533 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
2534                         "PCI & PCMCIA chipset based cards");
2535 MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
2536 MODULE_FIRMWARE(FIRMWARE_RT2561);
2537 MODULE_FIRMWARE(FIRMWARE_RT2561s);
2538 MODULE_FIRMWARE(FIRMWARE_RT2661);
2539 MODULE_LICENSE("GPL");
2540
2541 static struct pci_driver rt61pci_driver = {
2542         .name           = KBUILD_MODNAME,
2543         .id_table       = rt61pci_device_table,
2544         .probe          = rt2x00pci_probe,
2545         .remove         = __devexit_p(rt2x00pci_remove),
2546         .suspend        = rt2x00pci_suspend,
2547         .resume         = rt2x00pci_resume,
2548 };
2549
2550 static int __init rt61pci_init(void)
2551 {
2552         return pci_register_driver(&rt61pci_driver);
2553 }
2554
2555 static void __exit rt61pci_exit(void)
2556 {
2557         pci_unregister_driver(&rt61pci_driver);
2558 }
2559
2560 module_init(rt61pci_init);
2561 module_exit(rt61pci_exit);