]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/net/wireless/rt2x00/rt61pci.c
rt2x00: Fix race condition when using inderect registers
[mv-sheeva.git] / drivers / net / wireless / rt2x00 / rt61pci.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt61pci
23         Abstract: rt61pci device specific routines.
24         Supported chipsets: RT2561, RT2561s, RT2661.
25  */
26
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/pci.h>
34 #include <linux/eeprom_93cx6.h>
35
36 #include "rt2x00.h"
37 #include "rt2x00pci.h"
38 #include "rt61pci.h"
39
40 /*
41  * Allow hardware encryption to be disabled.
42  */
43 static int modparam_nohwcrypt = 0;
44 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
45 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
46
47 /*
48  * Register access.
49  * BBP and RF register require indirect register access,
50  * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
51  * These indirect registers work with busy bits,
52  * and we will try maximal REGISTER_BUSY_COUNT times to access
53  * the register while taking a REGISTER_BUSY_DELAY us delay
54  * between each attampt. When the busy bit is still set at that time,
55  * the access attempt is considered to have failed,
56  * and we will print an error.
57  */
58 static u32 rt61pci_bbp_check(struct rt2x00_dev *rt2x00dev)
59 {
60         u32 reg;
61         unsigned int i;
62
63         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
64                 rt2x00pci_register_read(rt2x00dev, PHY_CSR3, &reg);
65                 if (!rt2x00_get_field32(reg, PHY_CSR3_BUSY))
66                         break;
67                 udelay(REGISTER_BUSY_DELAY);
68         }
69
70         return reg;
71 }
72
73 static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
74                               const unsigned int word, const u8 value)
75 {
76         u32 reg;
77
78         mutex_lock(&rt2x00dev->csr_mutex);
79
80         /*
81          * Wait until the BBP becomes ready.
82          */
83         reg = rt61pci_bbp_check(rt2x00dev);
84         if (rt2x00_get_field32(reg, PHY_CSR3_BUSY))
85                 goto exit_fail;
86
87         /*
88          * Write the data into the BBP.
89          */
90         reg = 0;
91         rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
92         rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
93         rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
94         rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
95
96         rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
97         mutex_unlock(&rt2x00dev->csr_mutex);
98
99         return;
100
101 exit_fail:
102         mutex_unlock(&rt2x00dev->csr_mutex);
103
104         ERROR(rt2x00dev, "PHY_CSR3 register busy. Write failed.\n");
105 }
106
107 static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
108                              const unsigned int word, u8 *value)
109 {
110         u32 reg;
111
112         mutex_lock(&rt2x00dev->csr_mutex);
113
114         /*
115          * Wait until the BBP becomes ready.
116          */
117         reg = rt61pci_bbp_check(rt2x00dev);
118         if (rt2x00_get_field32(reg, PHY_CSR3_BUSY))
119                 goto exit_fail;
120
121         /*
122          * Write the request into the BBP.
123          */
124         reg = 0;
125         rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
126         rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
127         rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
128
129         rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
130
131         /*
132          * Wait until the BBP becomes ready.
133          */
134         reg = rt61pci_bbp_check(rt2x00dev);
135         if (rt2x00_get_field32(reg, PHY_CSR3_BUSY))
136                 goto exit_fail;
137
138         *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
139         mutex_unlock(&rt2x00dev->csr_mutex);
140
141         return;
142
143 exit_fail:
144         mutex_unlock(&rt2x00dev->csr_mutex);
145
146         ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
147         *value = 0xff;
148 }
149
150 static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
151                              const unsigned int word, const u32 value)
152 {
153         u32 reg;
154         unsigned int i;
155
156         if (!word)
157                 return;
158
159         mutex_lock(&rt2x00dev->csr_mutex);
160
161         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
162                 rt2x00pci_register_read(rt2x00dev, PHY_CSR4, &reg);
163                 if (!rt2x00_get_field32(reg, PHY_CSR4_BUSY))
164                         goto rf_write;
165                 udelay(REGISTER_BUSY_DELAY);
166         }
167
168         mutex_unlock(&rt2x00dev->csr_mutex);
169         ERROR(rt2x00dev, "PHY_CSR4 register busy. Write failed.\n");
170         return;
171
172 rf_write:
173         reg = 0;
174         rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
175         rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
176         rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
177         rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
178
179         rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
180         rt2x00_rf_write(rt2x00dev, word, value);
181
182         mutex_unlock(&rt2x00dev->csr_mutex);
183 }
184
185 #ifdef CONFIG_RT2X00_LIB_LEDS
186 /*
187  * This function is only called from rt61pci_led_brightness()
188  * make gcc happy by placing this function inside the
189  * same ifdef statement as the caller.
190  */
191 static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
192                                 const u8 command, const u8 token,
193                                 const u8 arg0, const u8 arg1)
194 {
195         u32 reg;
196
197         mutex_lock(&rt2x00dev->csr_mutex);
198
199         rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CSR, &reg);
200
201         if (rt2x00_get_field32(reg, H2M_MAILBOX_CSR_OWNER))
202                 goto exit_fail;
203
204         rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
205         rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
206         rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
207         rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
208         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
209
210         rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
211         rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
212         rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
213         rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
214
215         mutex_unlock(&rt2x00dev->csr_mutex);
216
217         return;
218
219 exit_fail:
220         mutex_unlock(&rt2x00dev->csr_mutex);
221
222         ERROR(rt2x00dev,
223               "mcu request error. Request 0x%02x failed for token 0x%02x.\n",
224               command, token);
225 }
226 #endif /* CONFIG_RT2X00_LIB_LEDS */
227
228 static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
229 {
230         struct rt2x00_dev *rt2x00dev = eeprom->data;
231         u32 reg;
232
233         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
234
235         eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
236         eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
237         eeprom->reg_data_clock =
238             !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
239         eeprom->reg_chip_select =
240             !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
241 }
242
243 static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
244 {
245         struct rt2x00_dev *rt2x00dev = eeprom->data;
246         u32 reg = 0;
247
248         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
249         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
250         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
251                            !!eeprom->reg_data_clock);
252         rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
253                            !!eeprom->reg_chip_select);
254
255         rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
256 }
257
258 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
259 static const struct rt2x00debug rt61pci_rt2x00debug = {
260         .owner  = THIS_MODULE,
261         .csr    = {
262                 .read           = rt2x00pci_register_read,
263                 .write          = rt2x00pci_register_write,
264                 .flags          = RT2X00DEBUGFS_OFFSET,
265                 .word_base      = CSR_REG_BASE,
266                 .word_size      = sizeof(u32),
267                 .word_count     = CSR_REG_SIZE / sizeof(u32),
268         },
269         .eeprom = {
270                 .read           = rt2x00_eeprom_read,
271                 .write          = rt2x00_eeprom_write,
272                 .word_base      = EEPROM_BASE,
273                 .word_size      = sizeof(u16),
274                 .word_count     = EEPROM_SIZE / sizeof(u16),
275         },
276         .bbp    = {
277                 .read           = rt61pci_bbp_read,
278                 .write          = rt61pci_bbp_write,
279                 .word_base      = BBP_BASE,
280                 .word_size      = sizeof(u8),
281                 .word_count     = BBP_SIZE / sizeof(u8),
282         },
283         .rf     = {
284                 .read           = rt2x00_rf_read,
285                 .write          = rt61pci_rf_write,
286                 .word_base      = RF_BASE,
287                 .word_size      = sizeof(u32),
288                 .word_count     = RF_SIZE / sizeof(u32),
289         },
290 };
291 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
292
293 #ifdef CONFIG_RT2X00_LIB_RFKILL
294 static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
295 {
296         u32 reg;
297
298         rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
299         return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
300 }
301 #else
302 #define rt61pci_rfkill_poll     NULL
303 #endif /* CONFIG_RT2X00_LIB_RFKILL */
304
305 #ifdef CONFIG_RT2X00_LIB_LEDS
306 static void rt61pci_brightness_set(struct led_classdev *led_cdev,
307                                    enum led_brightness brightness)
308 {
309         struct rt2x00_led *led =
310             container_of(led_cdev, struct rt2x00_led, led_dev);
311         unsigned int enabled = brightness != LED_OFF;
312         unsigned int a_mode =
313             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
314         unsigned int bg_mode =
315             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
316
317         if (led->type == LED_TYPE_RADIO) {
318                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
319                                    MCU_LEDCS_RADIO_STATUS, enabled);
320
321                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
322                                     (led->rt2x00dev->led_mcu_reg & 0xff),
323                                     ((led->rt2x00dev->led_mcu_reg >> 8)));
324         } else if (led->type == LED_TYPE_ASSOC) {
325                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
326                                    MCU_LEDCS_LINK_BG_STATUS, bg_mode);
327                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
328                                    MCU_LEDCS_LINK_A_STATUS, a_mode);
329
330                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
331                                     (led->rt2x00dev->led_mcu_reg & 0xff),
332                                     ((led->rt2x00dev->led_mcu_reg >> 8)));
333         } else if (led->type == LED_TYPE_QUALITY) {
334                 /*
335                  * The brightness is divided into 6 levels (0 - 5),
336                  * this means we need to convert the brightness
337                  * argument into the matching level within that range.
338                  */
339                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
340                                     brightness / (LED_FULL / 6), 0);
341         }
342 }
343
344 static int rt61pci_blink_set(struct led_classdev *led_cdev,
345                              unsigned long *delay_on,
346                              unsigned long *delay_off)
347 {
348         struct rt2x00_led *led =
349             container_of(led_cdev, struct rt2x00_led, led_dev);
350         u32 reg;
351
352         rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, &reg);
353         rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
354         rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
355         rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);
356
357         return 0;
358 }
359
360 static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
361                              struct rt2x00_led *led,
362                              enum led_type type)
363 {
364         led->rt2x00dev = rt2x00dev;
365         led->type = type;
366         led->led_dev.brightness_set = rt61pci_brightness_set;
367         led->led_dev.blink_set = rt61pci_blink_set;
368         led->flags = LED_INITIALIZED;
369 }
370 #endif /* CONFIG_RT2X00_LIB_LEDS */
371
372 /*
373  * Configuration handlers.
374  */
375 static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
376                                      struct rt2x00lib_crypto *crypto,
377                                      struct ieee80211_key_conf *key)
378 {
379         struct hw_key_entry key_entry;
380         struct rt2x00_field32 field;
381         u32 mask;
382         u32 reg;
383
384         if (crypto->cmd == SET_KEY) {
385                 /*
386                  * rt2x00lib can't determine the correct free
387                  * key_idx for shared keys. We have 1 register
388                  * with key valid bits. The goal is simple, read
389                  * the register, if that is full we have no slots
390                  * left.
391                  * Note that each BSS is allowed to have up to 4
392                  * shared keys, so put a mask over the allowed
393                  * entries.
394                  */
395                 mask = (0xf << crypto->bssidx);
396
397                 rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
398                 reg &= mask;
399
400                 if (reg && reg == mask)
401                         return -ENOSPC;
402
403                 key->hw_key_idx += reg ? ffz(reg) : 0;
404
405                 /*
406                  * Upload key to hardware
407                  */
408                 memcpy(key_entry.key, crypto->key,
409                        sizeof(key_entry.key));
410                 memcpy(key_entry.tx_mic, crypto->tx_mic,
411                        sizeof(key_entry.tx_mic));
412                 memcpy(key_entry.rx_mic, crypto->rx_mic,
413                        sizeof(key_entry.rx_mic));
414
415                 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
416                 rt2x00pci_register_multiwrite(rt2x00dev, reg,
417                                               &key_entry, sizeof(key_entry));
418
419                 /*
420                  * The cipher types are stored over 2 registers.
421                  * bssidx 0 and 1 keys are stored in SEC_CSR1 and
422                  * bssidx 1 and 2 keys are stored in SEC_CSR5.
423                  * Using the correct defines correctly will cause overhead,
424                  * so just calculate the correct offset.
425                  */
426                 if (key->hw_key_idx < 8) {
427                         field.bit_offset = (3 * key->hw_key_idx);
428                         field.bit_mask = 0x7 << field.bit_offset;
429
430                         rt2x00pci_register_read(rt2x00dev, SEC_CSR1, &reg);
431                         rt2x00_set_field32(&reg, field, crypto->cipher);
432                         rt2x00pci_register_write(rt2x00dev, SEC_CSR1, reg);
433                 } else {
434                         field.bit_offset = (3 * (key->hw_key_idx - 8));
435                         field.bit_mask = 0x7 << field.bit_offset;
436
437                         rt2x00pci_register_read(rt2x00dev, SEC_CSR5, &reg);
438                         rt2x00_set_field32(&reg, field, crypto->cipher);
439                         rt2x00pci_register_write(rt2x00dev, SEC_CSR5, reg);
440                 }
441
442                 /*
443                  * The driver does not support the IV/EIV generation
444                  * in hardware. However it doesn't support the IV/EIV
445                  * inside the ieee80211 frame either, but requires it
446                  * to be provided seperately for the descriptor.
447                  * rt2x00lib will cut the IV/EIV data out of all frames
448                  * given to us by mac80211, but we must tell mac80211
449                  * to generate the IV/EIV data.
450                  */
451                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
452         }
453
454         /*
455          * SEC_CSR0 contains only single-bit fields to indicate
456          * a particular key is valid. Because using the FIELD32()
457          * defines directly will cause a lot of overhead we use
458          * a calculation to determine the correct bit directly.
459          */
460         mask = 1 << key->hw_key_idx;
461
462         rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
463         if (crypto->cmd == SET_KEY)
464                 reg |= mask;
465         else if (crypto->cmd == DISABLE_KEY)
466                 reg &= ~mask;
467         rt2x00pci_register_write(rt2x00dev, SEC_CSR0, reg);
468
469         return 0;
470 }
471
472 static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
473                                        struct rt2x00lib_crypto *crypto,
474                                        struct ieee80211_key_conf *key)
475 {
476         struct hw_pairwise_ta_entry addr_entry;
477         struct hw_key_entry key_entry;
478         u32 mask;
479         u32 reg;
480
481         if (crypto->cmd == SET_KEY) {
482                 /*
483                  * rt2x00lib can't determine the correct free
484                  * key_idx for pairwise keys. We have 2 registers
485                  * with key valid bits. The goal is simple, read
486                  * the first register, if that is full move to
487                  * the next register.
488                  * When both registers are full, we drop the key,
489                  * otherwise we use the first invalid entry.
490                  */
491                 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
492                 if (reg && reg == ~0) {
493                         key->hw_key_idx = 32;
494                         rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
495                         if (reg && reg == ~0)
496                                 return -ENOSPC;
497                 }
498
499                 key->hw_key_idx += reg ? ffz(reg) : 0;
500
501                 /*
502                  * Upload key to hardware
503                  */
504                 memcpy(key_entry.key, crypto->key,
505                        sizeof(key_entry.key));
506                 memcpy(key_entry.tx_mic, crypto->tx_mic,
507                        sizeof(key_entry.tx_mic));
508                 memcpy(key_entry.rx_mic, crypto->rx_mic,
509                        sizeof(key_entry.rx_mic));
510
511                 memset(&addr_entry, 0, sizeof(addr_entry));
512                 memcpy(&addr_entry, crypto->address, ETH_ALEN);
513                 addr_entry.cipher = crypto->cipher;
514
515                 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
516                 rt2x00pci_register_multiwrite(rt2x00dev, reg,
517                                               &key_entry, sizeof(key_entry));
518
519                 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
520                 rt2x00pci_register_multiwrite(rt2x00dev, reg,
521                                               &addr_entry, sizeof(addr_entry));
522
523                 /*
524                  * Enable pairwise lookup table for given BSS idx,
525                  * without this received frames will not be decrypted
526                  * by the hardware.
527                  */
528                 rt2x00pci_register_read(rt2x00dev, SEC_CSR4, &reg);
529                 reg |= (1 << crypto->bssidx);
530                 rt2x00pci_register_write(rt2x00dev, SEC_CSR4, reg);
531
532                 /*
533                  * The driver does not support the IV/EIV generation
534                  * in hardware. However it doesn't support the IV/EIV
535                  * inside the ieee80211 frame either, but requires it
536                  * to be provided seperately for the descriptor.
537                  * rt2x00lib will cut the IV/EIV data out of all frames
538                  * given to us by mac80211, but we must tell mac80211
539                  * to generate the IV/EIV data.
540                  */
541                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
542         }
543
544         /*
545          * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
546          * a particular key is valid. Because using the FIELD32()
547          * defines directly will cause a lot of overhead we use
548          * a calculation to determine the correct bit directly.
549          */
550         if (key->hw_key_idx < 32) {
551                 mask = 1 << key->hw_key_idx;
552
553                 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
554                 if (crypto->cmd == SET_KEY)
555                         reg |= mask;
556                 else if (crypto->cmd == DISABLE_KEY)
557                         reg &= ~mask;
558                 rt2x00pci_register_write(rt2x00dev, SEC_CSR2, reg);
559         } else {
560                 mask = 1 << (key->hw_key_idx - 32);
561
562                 rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
563                 if (crypto->cmd == SET_KEY)
564                         reg |= mask;
565                 else if (crypto->cmd == DISABLE_KEY)
566                         reg &= ~mask;
567                 rt2x00pci_register_write(rt2x00dev, SEC_CSR3, reg);
568         }
569
570         return 0;
571 }
572
573 static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
574                                   const unsigned int filter_flags)
575 {
576         u32 reg;
577
578         /*
579          * Start configuration steps.
580          * Note that the version error will always be dropped
581          * and broadcast frames will always be accepted since
582          * there is no filter for it at this time.
583          */
584         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
585         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
586                            !(filter_flags & FIF_FCSFAIL));
587         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
588                            !(filter_flags & FIF_PLCPFAIL));
589         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
590                            !(filter_flags & FIF_CONTROL));
591         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
592                            !(filter_flags & FIF_PROMISC_IN_BSS));
593         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
594                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
595                            !rt2x00dev->intf_ap_count);
596         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
597         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
598                            !(filter_flags & FIF_ALLMULTI));
599         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
600         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
601                            !(filter_flags & FIF_CONTROL));
602         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
603 }
604
605 static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
606                                 struct rt2x00_intf *intf,
607                                 struct rt2x00intf_conf *conf,
608                                 const unsigned int flags)
609 {
610         unsigned int beacon_base;
611         u32 reg;
612
613         if (flags & CONFIG_UPDATE_TYPE) {
614                 /*
615                  * Clear current synchronisation setup.
616                  * For the Beacon base registers we only need to clear
617                  * the first byte since that byte contains the VALID and OWNER
618                  * bits which (when set to 0) will invalidate the entire beacon.
619                  */
620                 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
621                 rt2x00pci_register_write(rt2x00dev, beacon_base, 0);
622
623                 /*
624                  * Enable synchronisation.
625                  */
626                 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
627                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
628                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
629                 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
630                 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
631         }
632
633         if (flags & CONFIG_UPDATE_MAC) {
634                 reg = le32_to_cpu(conf->mac[1]);
635                 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
636                 conf->mac[1] = cpu_to_le32(reg);
637
638                 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
639                                               conf->mac, sizeof(conf->mac));
640         }
641
642         if (flags & CONFIG_UPDATE_BSSID) {
643                 reg = le32_to_cpu(conf->bssid[1]);
644                 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
645                 conf->bssid[1] = cpu_to_le32(reg);
646
647                 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
648                                               conf->bssid, sizeof(conf->bssid));
649         }
650 }
651
652 static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
653                                struct rt2x00lib_erp *erp)
654 {
655         u32 reg;
656
657         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
658         rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, erp->ack_timeout);
659         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
660
661         rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
662         rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
663                            !!erp->short_preamble);
664         rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
665
666         rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, erp->basic_rates);
667
668         rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
669         rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
670         rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
671
672         rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
673         rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
674         rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
675         rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
676         rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
677 }
678
679 static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
680                                       struct antenna_setup *ant)
681 {
682         u8 r3;
683         u8 r4;
684         u8 r77;
685
686         rt61pci_bbp_read(rt2x00dev, 3, &r3);
687         rt61pci_bbp_read(rt2x00dev, 4, &r4);
688         rt61pci_bbp_read(rt2x00dev, 77, &r77);
689
690         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
691                           rt2x00_rf(&rt2x00dev->chip, RF5325));
692
693         /*
694          * Configure the RX antenna.
695          */
696         switch (ant->rx) {
697         case ANTENNA_HW_DIVERSITY:
698                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
699                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
700                                   (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
701                 break;
702         case ANTENNA_A:
703                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
704                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
705                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
706                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
707                 else
708                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
709                 break;
710         case ANTENNA_B:
711         default:
712                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
713                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
714                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
715                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
716                 else
717                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
718                 break;
719         }
720
721         rt61pci_bbp_write(rt2x00dev, 77, r77);
722         rt61pci_bbp_write(rt2x00dev, 3, r3);
723         rt61pci_bbp_write(rt2x00dev, 4, r4);
724 }
725
726 static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
727                                       struct antenna_setup *ant)
728 {
729         u8 r3;
730         u8 r4;
731         u8 r77;
732
733         rt61pci_bbp_read(rt2x00dev, 3, &r3);
734         rt61pci_bbp_read(rt2x00dev, 4, &r4);
735         rt61pci_bbp_read(rt2x00dev, 77, &r77);
736
737         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
738                           rt2x00_rf(&rt2x00dev->chip, RF2529));
739         rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
740                           !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
741
742         /*
743          * Configure the RX antenna.
744          */
745         switch (ant->rx) {
746         case ANTENNA_HW_DIVERSITY:
747                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
748                 break;
749         case ANTENNA_A:
750                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
751                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
752                 break;
753         case ANTENNA_B:
754         default:
755                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
756                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
757                 break;
758         }
759
760         rt61pci_bbp_write(rt2x00dev, 77, r77);
761         rt61pci_bbp_write(rt2x00dev, 3, r3);
762         rt61pci_bbp_write(rt2x00dev, 4, r4);
763 }
764
765 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
766                                            const int p1, const int p2)
767 {
768         u32 reg;
769
770         rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
771
772         rt2x00_set_field32(&reg, MAC_CSR13_BIT4, p1);
773         rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);
774
775         rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
776         rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);
777
778         rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
779 }
780
781 static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
782                                         struct antenna_setup *ant)
783 {
784         u8 r3;
785         u8 r4;
786         u8 r77;
787
788         rt61pci_bbp_read(rt2x00dev, 3, &r3);
789         rt61pci_bbp_read(rt2x00dev, 4, &r4);
790         rt61pci_bbp_read(rt2x00dev, 77, &r77);
791
792         /*
793          * Configure the RX antenna.
794          */
795         switch (ant->rx) {
796         case ANTENNA_A:
797                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
798                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
799                 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
800                 break;
801         case ANTENNA_HW_DIVERSITY:
802                 /*
803                  * FIXME: Antenna selection for the rf 2529 is very confusing
804                  * in the legacy driver. Just default to antenna B until the
805                  * legacy code can be properly translated into rt2x00 code.
806                  */
807         case ANTENNA_B:
808         default:
809                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
810                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
811                 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
812                 break;
813         }
814
815         rt61pci_bbp_write(rt2x00dev, 77, r77);
816         rt61pci_bbp_write(rt2x00dev, 3, r3);
817         rt61pci_bbp_write(rt2x00dev, 4, r4);
818 }
819
820 struct antenna_sel {
821         u8 word;
822         /*
823          * value[0] -> non-LNA
824          * value[1] -> LNA
825          */
826         u8 value[2];
827 };
828
829 static const struct antenna_sel antenna_sel_a[] = {
830         { 96,  { 0x58, 0x78 } },
831         { 104, { 0x38, 0x48 } },
832         { 75,  { 0xfe, 0x80 } },
833         { 86,  { 0xfe, 0x80 } },
834         { 88,  { 0xfe, 0x80 } },
835         { 35,  { 0x60, 0x60 } },
836         { 97,  { 0x58, 0x58 } },
837         { 98,  { 0x58, 0x58 } },
838 };
839
840 static const struct antenna_sel antenna_sel_bg[] = {
841         { 96,  { 0x48, 0x68 } },
842         { 104, { 0x2c, 0x3c } },
843         { 75,  { 0xfe, 0x80 } },
844         { 86,  { 0xfe, 0x80 } },
845         { 88,  { 0xfe, 0x80 } },
846         { 35,  { 0x50, 0x50 } },
847         { 97,  { 0x48, 0x48 } },
848         { 98,  { 0x48, 0x48 } },
849 };
850
851 static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
852                                struct antenna_setup *ant)
853 {
854         const struct antenna_sel *sel;
855         unsigned int lna;
856         unsigned int i;
857         u32 reg;
858
859         /*
860          * We should never come here because rt2x00lib is supposed
861          * to catch this and send us the correct antenna explicitely.
862          */
863         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
864                ant->tx == ANTENNA_SW_DIVERSITY);
865
866         if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
867                 sel = antenna_sel_a;
868                 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
869         } else {
870                 sel = antenna_sel_bg;
871                 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
872         }
873
874         for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
875                 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
876
877         rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);
878
879         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
880                            rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
881         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
882                            rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
883
884         rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
885
886         if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
887             rt2x00_rf(&rt2x00dev->chip, RF5325))
888                 rt61pci_config_antenna_5x(rt2x00dev, ant);
889         else if (rt2x00_rf(&rt2x00dev->chip, RF2527))
890                 rt61pci_config_antenna_2x(rt2x00dev, ant);
891         else if (rt2x00_rf(&rt2x00dev->chip, RF2529)) {
892                 if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
893                         rt61pci_config_antenna_2x(rt2x00dev, ant);
894                 else
895                         rt61pci_config_antenna_2529(rt2x00dev, ant);
896         }
897 }
898
899 static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
900                                     struct rt2x00lib_conf *libconf)
901 {
902         u16 eeprom;
903         short lna_gain = 0;
904
905         if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
906                 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
907                         lna_gain += 14;
908
909                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
910                 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
911         } else {
912                 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
913                         lna_gain += 14;
914
915                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
916                 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
917         }
918
919         rt2x00dev->lna_gain = lna_gain;
920 }
921
922 static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
923                                    struct rf_channel *rf, const int txpower)
924 {
925         u8 r3;
926         u8 r94;
927         u8 smart;
928
929         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
930         rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
931
932         smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
933                   rt2x00_rf(&rt2x00dev->chip, RF2527));
934
935         rt61pci_bbp_read(rt2x00dev, 3, &r3);
936         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
937         rt61pci_bbp_write(rt2x00dev, 3, r3);
938
939         r94 = 6;
940         if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
941                 r94 += txpower - MAX_TXPOWER;
942         else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
943                 r94 += txpower;
944         rt61pci_bbp_write(rt2x00dev, 94, r94);
945
946         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
947         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
948         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
949         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
950
951         udelay(200);
952
953         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
954         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
955         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
956         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
957
958         udelay(200);
959
960         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
961         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
962         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
963         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
964
965         msleep(1);
966 }
967
968 static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
969                                    const int txpower)
970 {
971         struct rf_channel rf;
972
973         rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
974         rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
975         rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
976         rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
977
978         rt61pci_config_channel(rt2x00dev, &rf, txpower);
979 }
980
981 static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
982                                     struct rt2x00lib_conf *libconf)
983 {
984         u32 reg;
985
986         rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
987         rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
988                            libconf->conf->long_frame_max_tx_count);
989         rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
990                            libconf->conf->short_frame_max_tx_count);
991         rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
992 }
993
994 static void rt61pci_config_duration(struct rt2x00_dev *rt2x00dev,
995                                     struct rt2x00lib_conf *libconf)
996 {
997         u32 reg;
998
999         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1000         rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
1001         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1002
1003         rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
1004         rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
1005         rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
1006
1007         rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1008         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
1009                            libconf->conf->beacon_int * 16);
1010         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1011 }
1012
1013 static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
1014                            struct rt2x00lib_conf *libconf,
1015                            const unsigned int flags)
1016 {
1017         /* Always recalculate LNA gain before changing configuration */
1018         rt61pci_config_lna_gain(rt2x00dev, libconf);
1019
1020         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
1021                 rt61pci_config_channel(rt2x00dev, &libconf->rf,
1022                                        libconf->conf->power_level);
1023         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
1024             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
1025                 rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
1026         if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
1027                 rt61pci_config_retry_limit(rt2x00dev, libconf);
1028         if (flags & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
1029                 rt61pci_config_duration(rt2x00dev, libconf);
1030 }
1031
1032 /*
1033  * Link tuning
1034  */
1035 static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
1036                                struct link_qual *qual)
1037 {
1038         u32 reg;
1039
1040         /*
1041          * Update FCS error count from register.
1042          */
1043         rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1044         qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
1045
1046         /*
1047          * Update False CCA count from register.
1048          */
1049         rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1050         qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
1051 }
1052
1053 static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
1054 {
1055         rt61pci_bbp_write(rt2x00dev, 17, 0x20);
1056         rt2x00dev->link.vgc_level = 0x20;
1057 }
1058
1059 static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev)
1060 {
1061         int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
1062         u8 r17;
1063         u8 up_bound;
1064         u8 low_bound;
1065
1066         rt61pci_bbp_read(rt2x00dev, 17, &r17);
1067
1068         /*
1069          * Determine r17 bounds.
1070          */
1071         if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1072                 low_bound = 0x28;
1073                 up_bound = 0x48;
1074                 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
1075                         low_bound += 0x10;
1076                         up_bound += 0x10;
1077                 }
1078         } else {
1079                 low_bound = 0x20;
1080                 up_bound = 0x40;
1081                 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
1082                         low_bound += 0x10;
1083                         up_bound += 0x10;
1084                 }
1085         }
1086
1087         /*
1088          * If we are not associated, we should go straight to the
1089          * dynamic CCA tuning.
1090          */
1091         if (!rt2x00dev->intf_associated)
1092                 goto dynamic_cca_tune;
1093
1094         /*
1095          * Special big-R17 for very short distance
1096          */
1097         if (rssi >= -35) {
1098                 if (r17 != 0x60)
1099                         rt61pci_bbp_write(rt2x00dev, 17, 0x60);
1100                 return;
1101         }
1102
1103         /*
1104          * Special big-R17 for short distance
1105          */
1106         if (rssi >= -58) {
1107                 if (r17 != up_bound)
1108                         rt61pci_bbp_write(rt2x00dev, 17, up_bound);
1109                 return;
1110         }
1111
1112         /*
1113          * Special big-R17 for middle-short distance
1114          */
1115         if (rssi >= -66) {
1116                 low_bound += 0x10;
1117                 if (r17 != low_bound)
1118                         rt61pci_bbp_write(rt2x00dev, 17, low_bound);
1119                 return;
1120         }
1121
1122         /*
1123          * Special mid-R17 for middle distance
1124          */
1125         if (rssi >= -74) {
1126                 low_bound += 0x08;
1127                 if (r17 != low_bound)
1128                         rt61pci_bbp_write(rt2x00dev, 17, low_bound);
1129                 return;
1130         }
1131
1132         /*
1133          * Special case: Change up_bound based on the rssi.
1134          * Lower up_bound when rssi is weaker then -74 dBm.
1135          */
1136         up_bound -= 2 * (-74 - rssi);
1137         if (low_bound > up_bound)
1138                 up_bound = low_bound;
1139
1140         if (r17 > up_bound) {
1141                 rt61pci_bbp_write(rt2x00dev, 17, up_bound);
1142                 return;
1143         }
1144
1145 dynamic_cca_tune:
1146
1147         /*
1148          * r17 does not yet exceed upper limit, continue and base
1149          * the r17 tuning on the false CCA count.
1150          */
1151         if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
1152                 if (++r17 > up_bound)
1153                         r17 = up_bound;
1154                 rt61pci_bbp_write(rt2x00dev, 17, r17);
1155         } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
1156                 if (--r17 < low_bound)
1157                         r17 = low_bound;
1158                 rt61pci_bbp_write(rt2x00dev, 17, r17);
1159         }
1160 }
1161
1162 /*
1163  * Firmware functions
1164  */
1165 static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1166 {
1167         char *fw_name;
1168
1169         switch (rt2x00dev->chip.rt) {
1170         case RT2561:
1171                 fw_name = FIRMWARE_RT2561;
1172                 break;
1173         case RT2561s:
1174                 fw_name = FIRMWARE_RT2561s;
1175                 break;
1176         case RT2661:
1177                 fw_name = FIRMWARE_RT2661;
1178                 break;
1179         default:
1180                 fw_name = NULL;
1181                 break;
1182         }
1183
1184         return fw_name;
1185 }
1186
1187 static u16 rt61pci_get_firmware_crc(const void *data, const size_t len)
1188 {
1189         u16 crc;
1190
1191         /*
1192          * Use the crc itu-t algorithm.
1193          * The last 2 bytes in the firmware array are the crc checksum itself,
1194          * this means that we should never pass those 2 bytes to the crc
1195          * algorithm.
1196          */
1197         crc = crc_itu_t(0, data, len - 2);
1198         crc = crc_itu_t_byte(crc, 0);
1199         crc = crc_itu_t_byte(crc, 0);
1200
1201         return crc;
1202 }
1203
1204 static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev, const void *data,
1205                                  const size_t len)
1206 {
1207         int i;
1208         u32 reg;
1209
1210         /*
1211          * Wait for stable hardware.
1212          */
1213         for (i = 0; i < 100; i++) {
1214                 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
1215                 if (reg)
1216                         break;
1217                 msleep(1);
1218         }
1219
1220         if (!reg) {
1221                 ERROR(rt2x00dev, "Unstable hardware.\n");
1222                 return -EBUSY;
1223         }
1224
1225         /*
1226          * Prepare MCU and mailbox for firmware loading.
1227          */
1228         reg = 0;
1229         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1230         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1231         rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1232         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1233         rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1234
1235         /*
1236          * Write firmware to device.
1237          */
1238         reg = 0;
1239         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1240         rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1241         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1242
1243         rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1244                                       data, len);
1245
1246         rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1247         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1248
1249         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1250         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1251
1252         for (i = 0; i < 100; i++) {
1253                 rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
1254                 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1255                         break;
1256                 msleep(1);
1257         }
1258
1259         if (i == 100) {
1260                 ERROR(rt2x00dev, "MCU Control register not ready.\n");
1261                 return -EBUSY;
1262         }
1263
1264         /*
1265          * Hardware needs another millisecond before it is ready.
1266          */
1267         msleep(1);
1268
1269         /*
1270          * Reset MAC and BBP registers.
1271          */
1272         reg = 0;
1273         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1274         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1275         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1276
1277         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1278         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1279         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1280         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1281
1282         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1283         rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1284         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1285
1286         return 0;
1287 }
1288
1289 /*
1290  * Initialization functions.
1291  */
1292 static bool rt61pci_get_entry_state(struct queue_entry *entry)
1293 {
1294         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1295         u32 word;
1296
1297         if (entry->queue->qid == QID_RX) {
1298                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1299
1300                 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
1301         } else {
1302                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1303
1304                 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1305                         rt2x00_get_field32(word, TXD_W0_VALID));
1306         }
1307 }
1308
1309 static void rt61pci_clear_entry(struct queue_entry *entry)
1310 {
1311         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1312         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1313         u32 word;
1314
1315         if (entry->queue->qid == QID_RX) {
1316                 rt2x00_desc_read(entry_priv->desc, 5, &word);
1317                 rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1318                                    skbdesc->skb_dma);
1319                 rt2x00_desc_write(entry_priv->desc, 5, word);
1320
1321                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1322                 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1323                 rt2x00_desc_write(entry_priv->desc, 0, word);
1324         } else {
1325                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1326                 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1327                 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1328                 rt2x00_desc_write(entry_priv->desc, 0, word);
1329         }
1330 }
1331
1332 static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1333 {
1334         struct queue_entry_priv_pci *entry_priv;
1335         u32 reg;
1336
1337         /*
1338          * Initialize registers.
1339          */
1340         rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1341         rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1342                            rt2x00dev->tx[0].limit);
1343         rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1344                            rt2x00dev->tx[1].limit);
1345         rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1346                            rt2x00dev->tx[2].limit);
1347         rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1348                            rt2x00dev->tx[3].limit);
1349         rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
1350
1351         rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
1352         rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1353                            rt2x00dev->tx[0].desc_size / 4);
1354         rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
1355
1356         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1357         rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1358         rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1359                            entry_priv->desc_dma);
1360         rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1361
1362         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1363         rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1364         rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1365                            entry_priv->desc_dma);
1366         rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1367
1368         entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1369         rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1370         rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1371                            entry_priv->desc_dma);
1372         rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1373
1374         entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1375         rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1376         rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1377                            entry_priv->desc_dma);
1378         rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1379
1380         rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
1381         rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1382         rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1383                            rt2x00dev->rx->desc_size / 4);
1384         rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1385         rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
1386
1387         entry_priv = rt2x00dev->rx->entries[0].priv_data;
1388         rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1389         rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1390                            entry_priv->desc_dma);
1391         rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
1392
1393         rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1394         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1395         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1396         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1397         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1398         rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1399
1400         rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1401         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1402         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1403         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1404         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1405         rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1406
1407         rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1408         rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1409         rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1410
1411         return 0;
1412 }
1413
1414 static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1415 {
1416         u32 reg;
1417
1418         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1419         rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1420         rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1421         rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1422         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1423
1424         rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
1425         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1426         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1427         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1428         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1429         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1430         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1431         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1432         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1433         rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
1434
1435         /*
1436          * CCK TXD BBP registers
1437          */
1438         rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
1439         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1440         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1441         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1442         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1443         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1444         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1445         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1446         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1447         rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
1448
1449         /*
1450          * OFDM TXD BBP registers
1451          */
1452         rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
1453         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1454         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1455         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1456         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1457         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1458         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1459         rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
1460
1461         rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
1462         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1463         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1464         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1465         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1466         rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
1467
1468         rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
1469         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1470         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1471         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1472         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1473         rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
1474
1475         rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1476         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1477         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1478         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1479         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1480         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1481         rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1482         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1483
1484         rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1485
1486         rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1487
1488         rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
1489         rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1490         rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
1491
1492         rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1493
1494         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1495                 return -EBUSY;
1496
1497         rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1498
1499         /*
1500          * Invalidate all Shared Keys (SEC_CSR0),
1501          * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1502          */
1503         rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1504         rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1505         rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1506
1507         rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1508         rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1509         rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1510         rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1511
1512         rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1513
1514         rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1515
1516         rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1517
1518         /*
1519          * Clear all beacons
1520          * For the Beacon base registers we only need to clear
1521          * the first byte since that byte contains the VALID and OWNER
1522          * bits which (when set to 0) will invalidate the entire beacon.
1523          */
1524         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1525         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1526         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1527         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1528
1529         /*
1530          * We must clear the error counters.
1531          * These registers are cleared on read,
1532          * so we may pass a useless variable to store the value.
1533          */
1534         rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1535         rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1536         rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);
1537
1538         /*
1539          * Reset MAC and BBP registers.
1540          */
1541         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1542         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1543         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1544         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1545
1546         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1547         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1548         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1549         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1550
1551         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1552         rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1553         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1554
1555         return 0;
1556 }
1557
1558 static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1559 {
1560         unsigned int i;
1561         u8 value;
1562
1563         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1564                 rt61pci_bbp_read(rt2x00dev, 0, &value);
1565                 if ((value != 0xff) && (value != 0x00))
1566                         return 0;
1567                 udelay(REGISTER_BUSY_DELAY);
1568         }
1569
1570         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1571         return -EACCES;
1572 }
1573
1574 static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1575 {
1576         unsigned int i;
1577         u16 eeprom;
1578         u8 reg_id;
1579         u8 value;
1580
1581         if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1582                 return -EACCES;
1583
1584         rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1585         rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1586         rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1587         rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1588         rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1589         rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1590         rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1591         rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1592         rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1593         rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1594         rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1595         rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1596         rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1597         rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1598         rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1599         rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1600         rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1601         rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1602         rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1603         rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1604         rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1605         rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1606         rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1607         rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1608
1609         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1610                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1611
1612                 if (eeprom != 0xffff && eeprom != 0x0000) {
1613                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1614                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1615                         rt61pci_bbp_write(rt2x00dev, reg_id, value);
1616                 }
1617         }
1618
1619         return 0;
1620 }
1621
1622 /*
1623  * Device state switch handlers.
1624  */
1625 static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1626                               enum dev_state state)
1627 {
1628         u32 reg;
1629
1630         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1631         rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
1632                            (state == STATE_RADIO_RX_OFF) ||
1633                            (state == STATE_RADIO_RX_OFF_LINK));
1634         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1635 }
1636
1637 static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1638                                enum dev_state state)
1639 {
1640         int mask = (state == STATE_RADIO_IRQ_OFF);
1641         u32 reg;
1642
1643         /*
1644          * When interrupts are being enabled, the interrupt registers
1645          * should clear the register to assure a clean state.
1646          */
1647         if (state == STATE_RADIO_IRQ_ON) {
1648                 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1649                 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1650
1651                 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1652                 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1653         }
1654
1655         /*
1656          * Only toggle the interrupts bits we are going to use.
1657          * Non-checked interrupt bits are disabled by default.
1658          */
1659         rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1660         rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1661         rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1662         rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1663         rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1664         rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1665
1666         rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1667         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1668         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1669         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1670         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1671         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1672         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1673         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1674         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1675         rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1676 }
1677
1678 static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1679 {
1680         u32 reg;
1681
1682         /*
1683          * Initialize all registers.
1684          */
1685         if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1686                      rt61pci_init_registers(rt2x00dev) ||
1687                      rt61pci_init_bbp(rt2x00dev)))
1688                 return -EIO;
1689
1690         /*
1691          * Enable RX.
1692          */
1693         rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1694         rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1695         rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1696
1697         return 0;
1698 }
1699
1700 static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1701 {
1702         u32 reg;
1703
1704         rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1705
1706         /*
1707          * Disable synchronisation.
1708          */
1709         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
1710
1711         /*
1712          * Cancel RX and TX.
1713          */
1714         rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1715         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1716         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1717         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1718         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
1719         rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1720 }
1721
1722 static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1723 {
1724         u32 reg;
1725         unsigned int i;
1726         char put_to_sleep;
1727
1728         put_to_sleep = (state != STATE_AWAKE);
1729
1730         rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1731         rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1732         rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1733         rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1734
1735         /*
1736          * Device is not guaranteed to be in the requested state yet.
1737          * We must wait until the register indicates that the
1738          * device has entered the correct state.
1739          */
1740         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1741                 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1742                 state = rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
1743                 if (state == !put_to_sleep)
1744                         return 0;
1745                 msleep(10);
1746         }
1747
1748         return -EBUSY;
1749 }
1750
1751 static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1752                                     enum dev_state state)
1753 {
1754         int retval = 0;
1755
1756         switch (state) {
1757         case STATE_RADIO_ON:
1758                 retval = rt61pci_enable_radio(rt2x00dev);
1759                 break;
1760         case STATE_RADIO_OFF:
1761                 rt61pci_disable_radio(rt2x00dev);
1762                 break;
1763         case STATE_RADIO_RX_ON:
1764         case STATE_RADIO_RX_ON_LINK:
1765         case STATE_RADIO_RX_OFF:
1766         case STATE_RADIO_RX_OFF_LINK:
1767                 rt61pci_toggle_rx(rt2x00dev, state);
1768                 break;
1769         case STATE_RADIO_IRQ_ON:
1770         case STATE_RADIO_IRQ_OFF:
1771                 rt61pci_toggle_irq(rt2x00dev, state);
1772                 break;
1773         case STATE_DEEP_SLEEP:
1774         case STATE_SLEEP:
1775         case STATE_STANDBY:
1776         case STATE_AWAKE:
1777                 retval = rt61pci_set_state(rt2x00dev, state);
1778                 break;
1779         default:
1780                 retval = -ENOTSUPP;
1781                 break;
1782         }
1783
1784         if (unlikely(retval))
1785                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1786                       state, retval);
1787
1788         return retval;
1789 }
1790
1791 /*
1792  * TX descriptor initialization
1793  */
1794 static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1795                                   struct sk_buff *skb,
1796                                   struct txentry_desc *txdesc)
1797 {
1798         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1799         __le32 *txd = skbdesc->desc;
1800         u32 word;
1801
1802         /*
1803          * Start writing the descriptor words.
1804          */
1805         rt2x00_desc_read(txd, 1, &word);
1806         rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
1807         rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
1808         rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1809         rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1810         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1811         rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1812                            test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1813         rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1814         rt2x00_desc_write(txd, 1, word);
1815
1816         rt2x00_desc_read(txd, 2, &word);
1817         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1818         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1819         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1820         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1821         rt2x00_desc_write(txd, 2, word);
1822
1823         if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1824                 _rt2x00_desc_write(txd, 3, skbdesc->iv);
1825                 _rt2x00_desc_write(txd, 4, skbdesc->eiv);
1826         }
1827
1828         rt2x00_desc_read(txd, 5, &word);
1829         rt2x00_set_field32(&word, TXD_W5_PID_TYPE, skbdesc->entry->queue->qid);
1830         rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1831                            skbdesc->entry->entry_idx);
1832         rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1833                            TXPOWER_TO_DEV(rt2x00dev->tx_power));
1834         rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1835         rt2x00_desc_write(txd, 5, word);
1836
1837         rt2x00_desc_read(txd, 6, &word);
1838         rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1839                            skbdesc->skb_dma);
1840         rt2x00_desc_write(txd, 6, word);
1841
1842         if (skbdesc->desc_len > TXINFO_SIZE) {
1843                 rt2x00_desc_read(txd, 11, &word);
1844                 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0, skb->len);
1845                 rt2x00_desc_write(txd, 11, word);
1846         }
1847
1848         rt2x00_desc_read(txd, 0, &word);
1849         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1850         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1851         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1852                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1853         rt2x00_set_field32(&word, TXD_W0_ACK,
1854                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1855         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1856                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1857         rt2x00_set_field32(&word, TXD_W0_OFDM,
1858                            test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1859         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1860         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1861                            test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1862         rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1863                            test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1864         rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1865                            test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1866         rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1867         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1868         rt2x00_set_field32(&word, TXD_W0_BURST,
1869                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1870         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1871         rt2x00_desc_write(txd, 0, word);
1872 }
1873
1874 /*
1875  * TX data initialization
1876  */
1877 static void rt61pci_write_beacon(struct queue_entry *entry)
1878 {
1879         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1880         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1881         unsigned int beacon_base;
1882         u32 reg;
1883
1884         /*
1885          * Disable beaconing while we are reloading the beacon data,
1886          * otherwise we might be sending out invalid data.
1887          */
1888         rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1889         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1890         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1891         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1892         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1893
1894         /*
1895          * Write entire beacon with descriptor to register.
1896          */
1897         beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1898         rt2x00pci_register_multiwrite(rt2x00dev,
1899                                       beacon_base,
1900                                       skbdesc->desc, skbdesc->desc_len);
1901         rt2x00pci_register_multiwrite(rt2x00dev,
1902                                       beacon_base + skbdesc->desc_len,
1903                                       entry->skb->data, entry->skb->len);
1904
1905         /*
1906          * Clean up beacon skb.
1907          */
1908         dev_kfree_skb_any(entry->skb);
1909         entry->skb = NULL;
1910 }
1911
1912 static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1913                                   const enum data_queue_qid queue)
1914 {
1915         u32 reg;
1916
1917         if (queue == QID_BEACON) {
1918                 /*
1919                  * For Wi-Fi faily generated beacons between participating
1920                  * stations. Set TBTT phase adaptive adjustment step to 8us.
1921                  */
1922                 rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1923
1924                 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1925                 if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
1926                         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1927                         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1928                         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1929                         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1930                 }
1931                 return;
1932         }
1933
1934         rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1935         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, (queue == QID_AC_BE));
1936         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, (queue == QID_AC_BK));
1937         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, (queue == QID_AC_VI));
1938         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, (queue == QID_AC_VO));
1939         rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1940 }
1941
1942 /*
1943  * RX control handlers
1944  */
1945 static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1946 {
1947         u8 offset = rt2x00dev->lna_gain;
1948         u8 lna;
1949
1950         lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1951         switch (lna) {
1952         case 3:
1953                 offset += 90;
1954                 break;
1955         case 2:
1956                 offset += 74;
1957                 break;
1958         case 1:
1959                 offset += 64;
1960                 break;
1961         default:
1962                 return 0;
1963         }
1964
1965         if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1966                 if (lna == 3 || lna == 2)
1967                         offset += 10;
1968         }
1969
1970         return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1971 }
1972
1973 static void rt61pci_fill_rxdone(struct queue_entry *entry,
1974                                 struct rxdone_entry_desc *rxdesc)
1975 {
1976         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1977         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1978         u32 word0;
1979         u32 word1;
1980
1981         rt2x00_desc_read(entry_priv->desc, 0, &word0);
1982         rt2x00_desc_read(entry_priv->desc, 1, &word1);
1983
1984         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1985                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1986
1987         if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
1988                 rxdesc->cipher =
1989                     rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1990                 rxdesc->cipher_status =
1991                     rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1992         }
1993
1994         if (rxdesc->cipher != CIPHER_NONE) {
1995                 _rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv);
1996                 _rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->eiv);
1997                 _rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
1998
1999                 /*
2000                  * Hardware has stripped IV/EIV data from 802.11 frame during
2001                  * decryption. It has provided the data seperately but rt2x00lib
2002                  * should decide if it should be reinserted.
2003                  */
2004                 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
2005
2006                 /*
2007                  * FIXME: Legacy driver indicates that the frame does
2008                  * contain the Michael Mic. Unfortunately, in rt2x00
2009                  * the MIC seems to be missing completely...
2010                  */
2011                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
2012
2013                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
2014                         rxdesc->flags |= RX_FLAG_DECRYPTED;
2015                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
2016                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
2017         }
2018
2019         /*
2020          * Obtain the status about this packet.
2021          * When frame was received with an OFDM bitrate,
2022          * the signal is the PLCP value. If it was received with
2023          * a CCK bitrate the signal is the rate in 100kbit/s.
2024          */
2025         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
2026         rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
2027         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
2028
2029         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
2030                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
2031         else
2032                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
2033         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
2034                 rxdesc->dev_flags |= RXDONE_MY_BSS;
2035 }
2036
2037 /*
2038  * Interrupt functions.
2039  */
2040 static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2041 {
2042         struct data_queue *queue;
2043         struct queue_entry *entry;
2044         struct queue_entry *entry_done;
2045         struct queue_entry_priv_pci *entry_priv;
2046         struct txdone_entry_desc txdesc;
2047         u32 word;
2048         u32 reg;
2049         u32 old_reg;
2050         int type;
2051         int index;
2052
2053         /*
2054          * During each loop we will compare the freshly read
2055          * STA_CSR4 register value with the value read from
2056          * the previous loop. If the 2 values are equal then
2057          * we should stop processing because the chance it
2058          * quite big that the device has been unplugged and
2059          * we risk going into an endless loop.
2060          */
2061         old_reg = 0;
2062
2063         while (1) {
2064                 rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
2065                 if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2066                         break;
2067
2068                 if (old_reg == reg)
2069                         break;
2070                 old_reg = reg;
2071
2072                 /*
2073                  * Skip this entry when it contains an invalid
2074                  * queue identication number.
2075                  */
2076                 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2077                 queue = rt2x00queue_get_queue(rt2x00dev, type);
2078                 if (unlikely(!queue))
2079                         continue;
2080
2081                 /*
2082                  * Skip this entry when it contains an invalid
2083                  * index number.
2084                  */
2085                 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2086                 if (unlikely(index >= queue->limit))
2087                         continue;
2088
2089                 entry = &queue->entries[index];
2090                 entry_priv = entry->priv_data;
2091                 rt2x00_desc_read(entry_priv->desc, 0, &word);
2092
2093                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2094                     !rt2x00_get_field32(word, TXD_W0_VALID))
2095                         return;
2096
2097                 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2098                 while (entry != entry_done) {
2099                         /* Catch up.
2100                          * Just report any entries we missed as failed.
2101                          */
2102                         WARNING(rt2x00dev,
2103                                 "TX status report missed for entry %d\n",
2104                                 entry_done->entry_idx);
2105
2106                         txdesc.flags = 0;
2107                         __set_bit(TXDONE_UNKNOWN, &txdesc.flags);
2108                         txdesc.retry = 0;
2109
2110                         rt2x00lib_txdone(entry_done, &txdesc);
2111                         entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2112                 }
2113
2114                 /*
2115                  * Obtain the status about this packet.
2116                  */
2117                 txdesc.flags = 0;
2118                 switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2119                 case 0: /* Success, maybe with retry */
2120                         __set_bit(TXDONE_SUCCESS, &txdesc.flags);
2121                         break;
2122                 case 6: /* Failure, excessive retries */
2123                         __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2124                         /* Don't break, this is a failed frame! */
2125                 default: /* Failure */
2126                         __set_bit(TXDONE_FAILURE, &txdesc.flags);
2127                 }
2128                 txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2129
2130                 rt2x00lib_txdone(entry, &txdesc);
2131         }
2132 }
2133
2134 static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2135 {
2136         struct rt2x00_dev *rt2x00dev = dev_instance;
2137         u32 reg_mcu;
2138         u32 reg;
2139
2140         /*
2141          * Get the interrupt sources & saved to local variable.
2142          * Write register value back to clear pending interrupts.
2143          */
2144         rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
2145         rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2146
2147         rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
2148         rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2149
2150         if (!reg && !reg_mcu)
2151                 return IRQ_NONE;
2152
2153         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2154                 return IRQ_HANDLED;
2155
2156         /*
2157          * Handle interrupts, walk through all bits
2158          * and run the tasks, the bits are checked in order of
2159          * priority.
2160          */
2161
2162         /*
2163          * 1 - Rx ring done interrupt.
2164          */
2165         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2166                 rt2x00pci_rxdone(rt2x00dev);
2167
2168         /*
2169          * 2 - Tx ring done interrupt.
2170          */
2171         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2172                 rt61pci_txdone(rt2x00dev);
2173
2174         /*
2175          * 3 - Handle MCU command done.
2176          */
2177         if (reg_mcu)
2178                 rt2x00pci_register_write(rt2x00dev,
2179                                          M2H_CMD_DONE_CSR, 0xffffffff);
2180
2181         return IRQ_HANDLED;
2182 }
2183
2184 /*
2185  * Device probe functions.
2186  */
2187 static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2188 {
2189         struct eeprom_93cx6 eeprom;
2190         u32 reg;
2191         u16 word;
2192         u8 *mac;
2193         s8 value;
2194
2195         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
2196
2197         eeprom.data = rt2x00dev;
2198         eeprom.register_read = rt61pci_eepromregister_read;
2199         eeprom.register_write = rt61pci_eepromregister_write;
2200         eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2201             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2202         eeprom.reg_data_in = 0;
2203         eeprom.reg_data_out = 0;
2204         eeprom.reg_data_clock = 0;
2205         eeprom.reg_chip_select = 0;
2206
2207         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2208                                EEPROM_SIZE / sizeof(u16));
2209
2210         /*
2211          * Start validation of the data that has been read.
2212          */
2213         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2214         if (!is_valid_ether_addr(mac)) {
2215                 random_ether_addr(mac);
2216                 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
2217         }
2218
2219         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
2220         if (word == 0xffff) {
2221                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2222                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2223                                    ANTENNA_B);
2224                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2225                                    ANTENNA_B);
2226                 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2227                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2228                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2229                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2230                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2231                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
2232         }
2233
2234         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
2235         if (word == 0xffff) {
2236                 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2237                 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2238                 rt2x00_set_field16(&word, EEPROM_NIC_TX_RX_FIXED, 0);
2239                 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2240                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2241                 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2242                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2243                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
2244         }
2245
2246         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
2247         if (word == 0xffff) {
2248                 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2249                                    LED_MODE_DEFAULT);
2250                 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2251                 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
2252         }
2253
2254         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
2255         if (word == 0xffff) {
2256                 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2257                 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2258                 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2259                 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
2260         }
2261
2262         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
2263         if (word == 0xffff) {
2264                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2265                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2266                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2267                 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2268         } else {
2269                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2270                 if (value < -10 || value > 10)
2271                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2272                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2273                 if (value < -10 || value > 10)
2274                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2275                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2276         }
2277
2278         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
2279         if (word == 0xffff) {
2280                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2281                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2282                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2283                 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2284         } else {
2285                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2286                 if (value < -10 || value > 10)
2287                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2288                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2289                 if (value < -10 || value > 10)
2290                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2291                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2292         }
2293
2294         return 0;
2295 }
2296
2297 static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2298 {
2299         u32 reg;
2300         u16 value;
2301         u16 eeprom;
2302         u16 device;
2303
2304         /*
2305          * Read EEPROM word for configuration.
2306          */
2307         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2308
2309         /*
2310          * Identify RF chipset.
2311          * To determine the RT chip we have to read the
2312          * PCI header of the device.
2313          */
2314         pci_read_config_word(to_pci_dev(rt2x00dev->dev),
2315                              PCI_CONFIG_HEADER_DEVICE, &device);
2316         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2317         rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
2318         rt2x00_set_chip(rt2x00dev, device, value, reg);
2319
2320         if (!rt2x00_rf(&rt2x00dev->chip, RF5225) &&
2321             !rt2x00_rf(&rt2x00dev->chip, RF5325) &&
2322             !rt2x00_rf(&rt2x00dev->chip, RF2527) &&
2323             !rt2x00_rf(&rt2x00dev->chip, RF2529)) {
2324                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
2325                 return -ENODEV;
2326         }
2327
2328         /*
2329          * Determine number of antenna's.
2330          */
2331         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2332                 __set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);
2333
2334         /*
2335          * Identify default antenna configuration.
2336          */
2337         rt2x00dev->default_ant.tx =
2338             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2339         rt2x00dev->default_ant.rx =
2340             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2341
2342         /*
2343          * Read the Frame type.
2344          */
2345         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2346                 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
2347
2348         /*
2349          * Detect if this device has an hardware controlled radio.
2350          */
2351 #ifdef CONFIG_RT2X00_LIB_RFKILL
2352         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2353                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
2354 #endif /* CONFIG_RT2X00_LIB_RFKILL */
2355
2356         /*
2357          * Read frequency offset and RF programming sequence.
2358          */
2359         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2360         if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2361                 __set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);
2362
2363         rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2364
2365         /*
2366          * Read external LNA informations.
2367          */
2368         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2369
2370         if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2371                 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
2372         if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2373                 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
2374
2375         /*
2376          * When working with a RF2529 chip without double antenna
2377          * the antenna settings should be gathered from the NIC
2378          * eeprom word.
2379          */
2380         if (rt2x00_rf(&rt2x00dev->chip, RF2529) &&
2381             !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) {
2382                 switch (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_RX_FIXED)) {
2383                 case 0:
2384                         rt2x00dev->default_ant.tx = ANTENNA_B;
2385                         rt2x00dev->default_ant.rx = ANTENNA_A;
2386                         break;
2387                 case 1:
2388                         rt2x00dev->default_ant.tx = ANTENNA_B;
2389                         rt2x00dev->default_ant.rx = ANTENNA_B;
2390                         break;
2391                 case 2:
2392                         rt2x00dev->default_ant.tx = ANTENNA_A;
2393                         rt2x00dev->default_ant.rx = ANTENNA_A;
2394                         break;
2395                 case 3:
2396                         rt2x00dev->default_ant.tx = ANTENNA_A;
2397                         rt2x00dev->default_ant.rx = ANTENNA_B;
2398                         break;
2399                 }
2400
2401                 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2402                         rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2403                 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2404                         rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2405         }
2406
2407         /*
2408          * Store led settings, for correct led behaviour.
2409          * If the eeprom value is invalid,
2410          * switch to default led mode.
2411          */
2412 #ifdef CONFIG_RT2X00_LIB_LEDS
2413         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2414         value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2415
2416         rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2417         rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2418         if (value == LED_MODE_SIGNAL_STRENGTH)
2419                 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2420                                  LED_TYPE_QUALITY);
2421
2422         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2423         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2424                            rt2x00_get_field16(eeprom,
2425                                               EEPROM_LED_POLARITY_GPIO_0));
2426         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2427                            rt2x00_get_field16(eeprom,
2428                                               EEPROM_LED_POLARITY_GPIO_1));
2429         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2430                            rt2x00_get_field16(eeprom,
2431                                               EEPROM_LED_POLARITY_GPIO_2));
2432         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2433                            rt2x00_get_field16(eeprom,
2434                                               EEPROM_LED_POLARITY_GPIO_3));
2435         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2436                            rt2x00_get_field16(eeprom,
2437                                               EEPROM_LED_POLARITY_GPIO_4));
2438         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2439                            rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2440         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2441                            rt2x00_get_field16(eeprom,
2442                                               EEPROM_LED_POLARITY_RDY_G));
2443         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2444                            rt2x00_get_field16(eeprom,
2445                                               EEPROM_LED_POLARITY_RDY_A));
2446 #endif /* CONFIG_RT2X00_LIB_LEDS */
2447
2448         return 0;
2449 }
2450
2451 /*
2452  * RF value list for RF5225 & RF5325
2453  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2454  */
2455 static const struct rf_channel rf_vals_noseq[] = {
2456         { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2457         { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2458         { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2459         { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2460         { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2461         { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2462         { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2463         { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2464         { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2465         { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2466         { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2467         { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2468         { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2469         { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2470
2471         /* 802.11 UNI / HyperLan 2 */
2472         { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2473         { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2474         { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2475         { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2476         { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2477         { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2478         { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2479         { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2480
2481         /* 802.11 HyperLan 2 */
2482         { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2483         { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2484         { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2485         { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2486         { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2487         { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2488         { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2489         { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2490         { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2491         { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2492
2493         /* 802.11 UNII */
2494         { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2495         { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2496         { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2497         { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2498         { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2499         { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2500
2501         /* MMAC(Japan)J52 ch 34,38,42,46 */
2502         { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2503         { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2504         { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2505         { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2506 };
2507
2508 /*
2509  * RF value list for RF5225 & RF5325
2510  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2511  */
2512 static const struct rf_channel rf_vals_seq[] = {
2513         { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2514         { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2515         { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2516         { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2517         { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2518         { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2519         { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2520         { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2521         { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2522         { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2523         { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2524         { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2525         { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2526         { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2527
2528         /* 802.11 UNI / HyperLan 2 */
2529         { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2530         { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2531         { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2532         { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2533         { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2534         { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2535         { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2536         { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2537
2538         /* 802.11 HyperLan 2 */
2539         { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2540         { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2541         { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2542         { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2543         { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2544         { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2545         { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2546         { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2547         { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2548         { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2549
2550         /* 802.11 UNII */
2551         { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2552         { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2553         { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2554         { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2555         { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2556         { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2557
2558         /* MMAC(Japan)J52 ch 34,38,42,46 */
2559         { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2560         { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2561         { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2562         { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2563 };
2564
2565 static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2566 {
2567         struct hw_mode_spec *spec = &rt2x00dev->spec;
2568         struct channel_info *info;
2569         char *tx_power;
2570         unsigned int i;
2571
2572         /*
2573          * Initialize all hw fields.
2574          */
2575         rt2x00dev->hw->flags =
2576             IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2577             IEEE80211_HW_SIGNAL_DBM;
2578         rt2x00dev->hw->extra_tx_headroom = 0;
2579
2580         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2581         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2582                                 rt2x00_eeprom_addr(rt2x00dev,
2583                                                    EEPROM_MAC_ADDR_0));
2584
2585         /*
2586          * Initialize hw_mode information.
2587          */
2588         spec->supported_bands = SUPPORT_BAND_2GHZ;
2589         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2590
2591         if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
2592                 spec->num_channels = 14;
2593                 spec->channels = rf_vals_noseq;
2594         } else {
2595                 spec->num_channels = 14;
2596                 spec->channels = rf_vals_seq;
2597         }
2598
2599         if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
2600             rt2x00_rf(&rt2x00dev->chip, RF5325)) {
2601                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2602                 spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2603         }
2604
2605         /*
2606          * Create channel information array
2607          */
2608         info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
2609         if (!info)
2610                 return -ENOMEM;
2611
2612         spec->channels_info = info;
2613
2614         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2615         for (i = 0; i < 14; i++)
2616                 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2617
2618         if (spec->num_channels > 14) {
2619                 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2620                 for (i = 14; i < spec->num_channels; i++)
2621                         info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2622         }
2623
2624         return 0;
2625 }
2626
2627 static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2628 {
2629         int retval;
2630
2631         /*
2632          * Allocate eeprom data.
2633          */
2634         retval = rt61pci_validate_eeprom(rt2x00dev);
2635         if (retval)
2636                 return retval;
2637
2638         retval = rt61pci_init_eeprom(rt2x00dev);
2639         if (retval)
2640                 return retval;
2641
2642         /*
2643          * Initialize hw specifications.
2644          */
2645         retval = rt61pci_probe_hw_mode(rt2x00dev);
2646         if (retval)
2647                 return retval;
2648
2649         /*
2650          * This device requires firmware and DMA mapped skbs.
2651          */
2652         __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2653         __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
2654         if (!modparam_nohwcrypt)
2655                 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
2656
2657         /*
2658          * Set the rssi offset.
2659          */
2660         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2661
2662         return 0;
2663 }
2664
2665 /*
2666  * IEEE80211 stack callback functions.
2667  */
2668 static int rt61pci_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
2669                            const struct ieee80211_tx_queue_params *params)
2670 {
2671         struct rt2x00_dev *rt2x00dev = hw->priv;
2672         struct data_queue *queue;
2673         struct rt2x00_field32 field;
2674         int retval;
2675         u32 reg;
2676
2677         /*
2678          * First pass the configuration through rt2x00lib, that will
2679          * update the queue settings and validate the input. After that
2680          * we are free to update the registers based on the value
2681          * in the queue parameter.
2682          */
2683         retval = rt2x00mac_conf_tx(hw, queue_idx, params);
2684         if (retval)
2685                 return retval;
2686
2687         queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
2688
2689         /* Update WMM TXOP register */
2690         if (queue_idx < 2) {
2691                 field.bit_offset = queue_idx * 16;
2692                 field.bit_mask = 0xffff << field.bit_offset;
2693
2694                 rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR0, &reg);
2695                 rt2x00_set_field32(&reg, field, queue->txop);
2696                 rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR0, reg);
2697         } else if (queue_idx < 4) {
2698                 field.bit_offset = (queue_idx - 2) * 16;
2699                 field.bit_mask = 0xffff << field.bit_offset;
2700
2701                 rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR1, &reg);
2702                 rt2x00_set_field32(&reg, field, queue->txop);
2703                 rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR1, reg);
2704         }
2705
2706         /* Update WMM registers */
2707         field.bit_offset = queue_idx * 4;
2708         field.bit_mask = 0xf << field.bit_offset;
2709
2710         rt2x00pci_register_read(rt2x00dev, AIFSN_CSR, &reg);
2711         rt2x00_set_field32(&reg, field, queue->aifs);
2712         rt2x00pci_register_write(rt2x00dev, AIFSN_CSR, reg);
2713
2714         rt2x00pci_register_read(rt2x00dev, CWMIN_CSR, &reg);
2715         rt2x00_set_field32(&reg, field, queue->cw_min);
2716         rt2x00pci_register_write(rt2x00dev, CWMIN_CSR, reg);
2717
2718         rt2x00pci_register_read(rt2x00dev, CWMAX_CSR, &reg);
2719         rt2x00_set_field32(&reg, field, queue->cw_max);
2720         rt2x00pci_register_write(rt2x00dev, CWMAX_CSR, reg);
2721
2722         return 0;
2723 }
2724
2725 static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
2726 {
2727         struct rt2x00_dev *rt2x00dev = hw->priv;
2728         u64 tsf;
2729         u32 reg;
2730
2731         rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
2732         tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2733         rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
2734         tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2735
2736         return tsf;
2737 }
2738
2739 static const struct ieee80211_ops rt61pci_mac80211_ops = {
2740         .tx                     = rt2x00mac_tx,
2741         .start                  = rt2x00mac_start,
2742         .stop                   = rt2x00mac_stop,
2743         .add_interface          = rt2x00mac_add_interface,
2744         .remove_interface       = rt2x00mac_remove_interface,
2745         .config                 = rt2x00mac_config,
2746         .config_interface       = rt2x00mac_config_interface,
2747         .configure_filter       = rt2x00mac_configure_filter,
2748         .set_key                = rt2x00mac_set_key,
2749         .get_stats              = rt2x00mac_get_stats,
2750         .bss_info_changed       = rt2x00mac_bss_info_changed,
2751         .conf_tx                = rt61pci_conf_tx,
2752         .get_tx_stats           = rt2x00mac_get_tx_stats,
2753         .get_tsf                = rt61pci_get_tsf,
2754 };
2755
2756 static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2757         .irq_handler            = rt61pci_interrupt,
2758         .probe_hw               = rt61pci_probe_hw,
2759         .get_firmware_name      = rt61pci_get_firmware_name,
2760         .get_firmware_crc       = rt61pci_get_firmware_crc,
2761         .load_firmware          = rt61pci_load_firmware,
2762         .initialize             = rt2x00pci_initialize,
2763         .uninitialize           = rt2x00pci_uninitialize,
2764         .get_entry_state        = rt61pci_get_entry_state,
2765         .clear_entry            = rt61pci_clear_entry,
2766         .set_device_state       = rt61pci_set_device_state,
2767         .rfkill_poll            = rt61pci_rfkill_poll,
2768         .link_stats             = rt61pci_link_stats,
2769         .reset_tuner            = rt61pci_reset_tuner,
2770         .link_tuner             = rt61pci_link_tuner,
2771         .write_tx_desc          = rt61pci_write_tx_desc,
2772         .write_tx_data          = rt2x00pci_write_tx_data,
2773         .write_beacon           = rt61pci_write_beacon,
2774         .kick_tx_queue          = rt61pci_kick_tx_queue,
2775         .fill_rxdone            = rt61pci_fill_rxdone,
2776         .config_shared_key      = rt61pci_config_shared_key,
2777         .config_pairwise_key    = rt61pci_config_pairwise_key,
2778         .config_filter          = rt61pci_config_filter,
2779         .config_intf            = rt61pci_config_intf,
2780         .config_erp             = rt61pci_config_erp,
2781         .config_ant             = rt61pci_config_ant,
2782         .config                 = rt61pci_config,
2783 };
2784
2785 static const struct data_queue_desc rt61pci_queue_rx = {
2786         .entry_num              = RX_ENTRIES,
2787         .data_size              = DATA_FRAME_SIZE,
2788         .desc_size              = RXD_DESC_SIZE,
2789         .priv_size              = sizeof(struct queue_entry_priv_pci),
2790 };
2791
2792 static const struct data_queue_desc rt61pci_queue_tx = {
2793         .entry_num              = TX_ENTRIES,
2794         .data_size              = DATA_FRAME_SIZE,
2795         .desc_size              = TXD_DESC_SIZE,
2796         .priv_size              = sizeof(struct queue_entry_priv_pci),
2797 };
2798
2799 static const struct data_queue_desc rt61pci_queue_bcn = {
2800         .entry_num              = 4 * BEACON_ENTRIES,
2801         .data_size              = 0, /* No DMA required for beacons */
2802         .desc_size              = TXINFO_SIZE,
2803         .priv_size              = sizeof(struct queue_entry_priv_pci),
2804 };
2805
2806 static const struct rt2x00_ops rt61pci_ops = {
2807         .name           = KBUILD_MODNAME,
2808         .max_sta_intf   = 1,
2809         .max_ap_intf    = 4,
2810         .eeprom_size    = EEPROM_SIZE,
2811         .rf_size        = RF_SIZE,
2812         .tx_queues      = NUM_TX_QUEUES,
2813         .rx             = &rt61pci_queue_rx,
2814         .tx             = &rt61pci_queue_tx,
2815         .bcn            = &rt61pci_queue_bcn,
2816         .lib            = &rt61pci_rt2x00_ops,
2817         .hw             = &rt61pci_mac80211_ops,
2818 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2819         .debugfs        = &rt61pci_rt2x00debug,
2820 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2821 };
2822
2823 /*
2824  * RT61pci module information.
2825  */
2826 static struct pci_device_id rt61pci_device_table[] = {
2827         /* RT2561s */
2828         { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
2829         /* RT2561 v2 */
2830         { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
2831         /* RT2661 */
2832         { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
2833         { 0, }
2834 };
2835
2836 MODULE_AUTHOR(DRV_PROJECT);
2837 MODULE_VERSION(DRV_VERSION);
2838 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
2839 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
2840                         "PCI & PCMCIA chipset based cards");
2841 MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
2842 MODULE_FIRMWARE(FIRMWARE_RT2561);
2843 MODULE_FIRMWARE(FIRMWARE_RT2561s);
2844 MODULE_FIRMWARE(FIRMWARE_RT2661);
2845 MODULE_LICENSE("GPL");
2846
2847 static struct pci_driver rt61pci_driver = {
2848         .name           = KBUILD_MODNAME,
2849         .id_table       = rt61pci_device_table,
2850         .probe          = rt2x00pci_probe,
2851         .remove         = __devexit_p(rt2x00pci_remove),
2852         .suspend        = rt2x00pci_suspend,
2853         .resume         = rt2x00pci_resume,
2854 };
2855
2856 static int __init rt61pci_init(void)
2857 {
2858         return pci_register_driver(&rt61pci_driver);
2859 }
2860
2861 static void __exit rt61pci_exit(void)
2862 {
2863         pci_unregister_driver(&rt61pci_driver);
2864 }
2865
2866 module_init(rt61pci_init);
2867 module_exit(rt61pci_exit);