]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/net/wireless/rt2x00/rt61pci.c
rt2x00: Register frame length in TX entry descriptor instead of L2PAD.
[mv-sheeva.git] / drivers / net / wireless / rt2x00 / rt61pci.c
1 /*
2         Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt61pci
23         Abstract: rt61pci device specific routines.
24         Supported chipsets: RT2561, RT2561s, RT2661.
25  */
26
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/pci.h>
34 #include <linux/eeprom_93cx6.h>
35
36 #include "rt2x00.h"
37 #include "rt2x00pci.h"
38 #include "rt61pci.h"
39
40 /*
41  * Allow hardware encryption to be disabled.
42  */
43 static int modparam_nohwcrypt = 0;
44 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
45 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
46
47 /*
48  * Register access.
49  * BBP and RF register require indirect register access,
50  * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
51  * These indirect registers work with busy bits,
52  * and we will try maximal REGISTER_BUSY_COUNT times to access
53  * the register while taking a REGISTER_BUSY_DELAY us delay
54  * between each attempt. When the busy bit is still set at that time,
55  * the access attempt is considered to have failed,
56  * and we will print an error.
57  */
58 #define WAIT_FOR_BBP(__dev, __reg) \
59         rt2x00pci_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
60 #define WAIT_FOR_RF(__dev, __reg) \
61         rt2x00pci_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
62 #define WAIT_FOR_MCU(__dev, __reg) \
63         rt2x00pci_regbusy_read((__dev), H2M_MAILBOX_CSR, \
64                                H2M_MAILBOX_CSR_OWNER, (__reg))
65
66 static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
67                               const unsigned int word, const u8 value)
68 {
69         u32 reg;
70
71         mutex_lock(&rt2x00dev->csr_mutex);
72
73         /*
74          * Wait until the BBP becomes available, afterwards we
75          * can safely write the new data into the register.
76          */
77         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
78                 reg = 0;
79                 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
80                 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
81                 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
82                 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
83
84                 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
85         }
86
87         mutex_unlock(&rt2x00dev->csr_mutex);
88 }
89
90 static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
91                              const unsigned int word, u8 *value)
92 {
93         u32 reg;
94
95         mutex_lock(&rt2x00dev->csr_mutex);
96
97         /*
98          * Wait until the BBP becomes available, afterwards we
99          * can safely write the read request into the register.
100          * After the data has been written, we wait until hardware
101          * returns the correct value, if at any time the register
102          * doesn't become available in time, reg will be 0xffffffff
103          * which means we return 0xff to the caller.
104          */
105         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
106                 reg = 0;
107                 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
108                 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
109                 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
110
111                 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
112
113                 WAIT_FOR_BBP(rt2x00dev, &reg);
114         }
115
116         *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
117
118         mutex_unlock(&rt2x00dev->csr_mutex);
119 }
120
121 static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
122                              const unsigned int word, const u32 value)
123 {
124         u32 reg;
125
126         mutex_lock(&rt2x00dev->csr_mutex);
127
128         /*
129          * Wait until the RF becomes available, afterwards we
130          * can safely write the new data into the register.
131          */
132         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
133                 reg = 0;
134                 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
135                 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
136                 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
137                 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
138
139                 rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
140                 rt2x00_rf_write(rt2x00dev, word, value);
141         }
142
143         mutex_unlock(&rt2x00dev->csr_mutex);
144 }
145
146 static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
147                                 const u8 command, const u8 token,
148                                 const u8 arg0, const u8 arg1)
149 {
150         u32 reg;
151
152         mutex_lock(&rt2x00dev->csr_mutex);
153
154         /*
155          * Wait until the MCU becomes available, afterwards we
156          * can safely write the new data into the register.
157          */
158         if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
159                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
160                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
161                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
162                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
163                 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
164
165                 rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
166                 rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
167                 rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
168                 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
169         }
170
171         mutex_unlock(&rt2x00dev->csr_mutex);
172
173 }
174
175 static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
176 {
177         struct rt2x00_dev *rt2x00dev = eeprom->data;
178         u32 reg;
179
180         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
181
182         eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
183         eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
184         eeprom->reg_data_clock =
185             !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
186         eeprom->reg_chip_select =
187             !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
188 }
189
190 static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
191 {
192         struct rt2x00_dev *rt2x00dev = eeprom->data;
193         u32 reg = 0;
194
195         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
196         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
197         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
198                            !!eeprom->reg_data_clock);
199         rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
200                            !!eeprom->reg_chip_select);
201
202         rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
203 }
204
205 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
206 static const struct rt2x00debug rt61pci_rt2x00debug = {
207         .owner  = THIS_MODULE,
208         .csr    = {
209                 .read           = rt2x00pci_register_read,
210                 .write          = rt2x00pci_register_write,
211                 .flags          = RT2X00DEBUGFS_OFFSET,
212                 .word_base      = CSR_REG_BASE,
213                 .word_size      = sizeof(u32),
214                 .word_count     = CSR_REG_SIZE / sizeof(u32),
215         },
216         .eeprom = {
217                 .read           = rt2x00_eeprom_read,
218                 .write          = rt2x00_eeprom_write,
219                 .word_base      = EEPROM_BASE,
220                 .word_size      = sizeof(u16),
221                 .word_count     = EEPROM_SIZE / sizeof(u16),
222         },
223         .bbp    = {
224                 .read           = rt61pci_bbp_read,
225                 .write          = rt61pci_bbp_write,
226                 .word_base      = BBP_BASE,
227                 .word_size      = sizeof(u8),
228                 .word_count     = BBP_SIZE / sizeof(u8),
229         },
230         .rf     = {
231                 .read           = rt2x00_rf_read,
232                 .write          = rt61pci_rf_write,
233                 .word_base      = RF_BASE,
234                 .word_size      = sizeof(u32),
235                 .word_count     = RF_SIZE / sizeof(u32),
236         },
237 };
238 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
239
240 static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
241 {
242         u32 reg;
243
244         rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
245         return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
246 }
247
248 #ifdef CONFIG_RT2X00_LIB_LEDS
249 static void rt61pci_brightness_set(struct led_classdev *led_cdev,
250                                    enum led_brightness brightness)
251 {
252         struct rt2x00_led *led =
253             container_of(led_cdev, struct rt2x00_led, led_dev);
254         unsigned int enabled = brightness != LED_OFF;
255         unsigned int a_mode =
256             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
257         unsigned int bg_mode =
258             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
259
260         if (led->type == LED_TYPE_RADIO) {
261                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
262                                    MCU_LEDCS_RADIO_STATUS, enabled);
263
264                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
265                                     (led->rt2x00dev->led_mcu_reg & 0xff),
266                                     ((led->rt2x00dev->led_mcu_reg >> 8)));
267         } else if (led->type == LED_TYPE_ASSOC) {
268                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
269                                    MCU_LEDCS_LINK_BG_STATUS, bg_mode);
270                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
271                                    MCU_LEDCS_LINK_A_STATUS, a_mode);
272
273                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
274                                     (led->rt2x00dev->led_mcu_reg & 0xff),
275                                     ((led->rt2x00dev->led_mcu_reg >> 8)));
276         } else if (led->type == LED_TYPE_QUALITY) {
277                 /*
278                  * The brightness is divided into 6 levels (0 - 5),
279                  * this means we need to convert the brightness
280                  * argument into the matching level within that range.
281                  */
282                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
283                                     brightness / (LED_FULL / 6), 0);
284         }
285 }
286
287 static int rt61pci_blink_set(struct led_classdev *led_cdev,
288                              unsigned long *delay_on,
289                              unsigned long *delay_off)
290 {
291         struct rt2x00_led *led =
292             container_of(led_cdev, struct rt2x00_led, led_dev);
293         u32 reg;
294
295         rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, &reg);
296         rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
297         rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
298         rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);
299
300         return 0;
301 }
302
303 static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
304                              struct rt2x00_led *led,
305                              enum led_type type)
306 {
307         led->rt2x00dev = rt2x00dev;
308         led->type = type;
309         led->led_dev.brightness_set = rt61pci_brightness_set;
310         led->led_dev.blink_set = rt61pci_blink_set;
311         led->flags = LED_INITIALIZED;
312 }
313 #endif /* CONFIG_RT2X00_LIB_LEDS */
314
315 /*
316  * Configuration handlers.
317  */
318 static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
319                                      struct rt2x00lib_crypto *crypto,
320                                      struct ieee80211_key_conf *key)
321 {
322         struct hw_key_entry key_entry;
323         struct rt2x00_field32 field;
324         u32 mask;
325         u32 reg;
326
327         if (crypto->cmd == SET_KEY) {
328                 /*
329                  * rt2x00lib can't determine the correct free
330                  * key_idx for shared keys. We have 1 register
331                  * with key valid bits. The goal is simple, read
332                  * the register, if that is full we have no slots
333                  * left.
334                  * Note that each BSS is allowed to have up to 4
335                  * shared keys, so put a mask over the allowed
336                  * entries.
337                  */
338                 mask = (0xf << crypto->bssidx);
339
340                 rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
341                 reg &= mask;
342
343                 if (reg && reg == mask)
344                         return -ENOSPC;
345
346                 key->hw_key_idx += reg ? ffz(reg) : 0;
347
348                 /*
349                  * Upload key to hardware
350                  */
351                 memcpy(key_entry.key, crypto->key,
352                        sizeof(key_entry.key));
353                 memcpy(key_entry.tx_mic, crypto->tx_mic,
354                        sizeof(key_entry.tx_mic));
355                 memcpy(key_entry.rx_mic, crypto->rx_mic,
356                        sizeof(key_entry.rx_mic));
357
358                 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
359                 rt2x00pci_register_multiwrite(rt2x00dev, reg,
360                                               &key_entry, sizeof(key_entry));
361
362                 /*
363                  * The cipher types are stored over 2 registers.
364                  * bssidx 0 and 1 keys are stored in SEC_CSR1 and
365                  * bssidx 1 and 2 keys are stored in SEC_CSR5.
366                  * Using the correct defines correctly will cause overhead,
367                  * so just calculate the correct offset.
368                  */
369                 if (key->hw_key_idx < 8) {
370                         field.bit_offset = (3 * key->hw_key_idx);
371                         field.bit_mask = 0x7 << field.bit_offset;
372
373                         rt2x00pci_register_read(rt2x00dev, SEC_CSR1, &reg);
374                         rt2x00_set_field32(&reg, field, crypto->cipher);
375                         rt2x00pci_register_write(rt2x00dev, SEC_CSR1, reg);
376                 } else {
377                         field.bit_offset = (3 * (key->hw_key_idx - 8));
378                         field.bit_mask = 0x7 << field.bit_offset;
379
380                         rt2x00pci_register_read(rt2x00dev, SEC_CSR5, &reg);
381                         rt2x00_set_field32(&reg, field, crypto->cipher);
382                         rt2x00pci_register_write(rt2x00dev, SEC_CSR5, reg);
383                 }
384
385                 /*
386                  * The driver does not support the IV/EIV generation
387                  * in hardware. However it doesn't support the IV/EIV
388                  * inside the ieee80211 frame either, but requires it
389                  * to be provided separately for the descriptor.
390                  * rt2x00lib will cut the IV/EIV data out of all frames
391                  * given to us by mac80211, but we must tell mac80211
392                  * to generate the IV/EIV data.
393                  */
394                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
395         }
396
397         /*
398          * SEC_CSR0 contains only single-bit fields to indicate
399          * a particular key is valid. Because using the FIELD32()
400          * defines directly will cause a lot of overhead, we use
401          * a calculation to determine the correct bit directly.
402          */
403         mask = 1 << key->hw_key_idx;
404
405         rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
406         if (crypto->cmd == SET_KEY)
407                 reg |= mask;
408         else if (crypto->cmd == DISABLE_KEY)
409                 reg &= ~mask;
410         rt2x00pci_register_write(rt2x00dev, SEC_CSR0, reg);
411
412         return 0;
413 }
414
415 static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
416                                        struct rt2x00lib_crypto *crypto,
417                                        struct ieee80211_key_conf *key)
418 {
419         struct hw_pairwise_ta_entry addr_entry;
420         struct hw_key_entry key_entry;
421         u32 mask;
422         u32 reg;
423
424         if (crypto->cmd == SET_KEY) {
425                 /*
426                  * rt2x00lib can't determine the correct free
427                  * key_idx for pairwise keys. We have 2 registers
428                  * with key valid bits. The goal is simple: read
429                  * the first register. If that is full, move to
430                  * the next register.
431                  * When both registers are full, we drop the key.
432                  * Otherwise, we use the first invalid entry.
433                  */
434                 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
435                 if (reg && reg == ~0) {
436                         key->hw_key_idx = 32;
437                         rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
438                         if (reg && reg == ~0)
439                                 return -ENOSPC;
440                 }
441
442                 key->hw_key_idx += reg ? ffz(reg) : 0;
443
444                 /*
445                  * Upload key to hardware
446                  */
447                 memcpy(key_entry.key, crypto->key,
448                        sizeof(key_entry.key));
449                 memcpy(key_entry.tx_mic, crypto->tx_mic,
450                        sizeof(key_entry.tx_mic));
451                 memcpy(key_entry.rx_mic, crypto->rx_mic,
452                        sizeof(key_entry.rx_mic));
453
454                 memset(&addr_entry, 0, sizeof(addr_entry));
455                 memcpy(&addr_entry, crypto->address, ETH_ALEN);
456                 addr_entry.cipher = crypto->cipher;
457
458                 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
459                 rt2x00pci_register_multiwrite(rt2x00dev, reg,
460                                               &key_entry, sizeof(key_entry));
461
462                 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
463                 rt2x00pci_register_multiwrite(rt2x00dev, reg,
464                                               &addr_entry, sizeof(addr_entry));
465
466                 /*
467                  * Enable pairwise lookup table for given BSS idx.
468                  * Without this, received frames will not be decrypted
469                  * by the hardware.
470                  */
471                 rt2x00pci_register_read(rt2x00dev, SEC_CSR4, &reg);
472                 reg |= (1 << crypto->bssidx);
473                 rt2x00pci_register_write(rt2x00dev, SEC_CSR4, reg);
474
475                 /*
476                  * The driver does not support the IV/EIV generation
477                  * in hardware. However it doesn't support the IV/EIV
478                  * inside the ieee80211 frame either, but requires it
479                  * to be provided seperately for the descriptor.
480                  * rt2x00lib will cut the IV/EIV data out of all frames
481                  * given to us by mac80211, but we must tell mac80211
482                  * to generate the IV/EIV data.
483                  */
484                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
485         }
486
487         /*
488          * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
489          * a particular key is valid. Because using the FIELD32()
490          * defines directly will cause a lot of overhead, we use
491          * a calculation to determine the correct bit directly.
492          */
493         if (key->hw_key_idx < 32) {
494                 mask = 1 << key->hw_key_idx;
495
496                 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
497                 if (crypto->cmd == SET_KEY)
498                         reg |= mask;
499                 else if (crypto->cmd == DISABLE_KEY)
500                         reg &= ~mask;
501                 rt2x00pci_register_write(rt2x00dev, SEC_CSR2, reg);
502         } else {
503                 mask = 1 << (key->hw_key_idx - 32);
504
505                 rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
506                 if (crypto->cmd == SET_KEY)
507                         reg |= mask;
508                 else if (crypto->cmd == DISABLE_KEY)
509                         reg &= ~mask;
510                 rt2x00pci_register_write(rt2x00dev, SEC_CSR3, reg);
511         }
512
513         return 0;
514 }
515
516 static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
517                                   const unsigned int filter_flags)
518 {
519         u32 reg;
520
521         /*
522          * Start configuration steps.
523          * Note that the version error will always be dropped
524          * and broadcast frames will always be accepted since
525          * there is no filter for it at this time.
526          */
527         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
528         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
529                            !(filter_flags & FIF_FCSFAIL));
530         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
531                            !(filter_flags & FIF_PLCPFAIL));
532         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
533                            !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
534         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
535                            !(filter_flags & FIF_PROMISC_IN_BSS));
536         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
537                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
538                            !rt2x00dev->intf_ap_count);
539         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
540         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
541                            !(filter_flags & FIF_ALLMULTI));
542         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
543         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
544                            !(filter_flags & FIF_CONTROL));
545         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
546 }
547
548 static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
549                                 struct rt2x00_intf *intf,
550                                 struct rt2x00intf_conf *conf,
551                                 const unsigned int flags)
552 {
553         unsigned int beacon_base;
554         u32 reg;
555
556         if (flags & CONFIG_UPDATE_TYPE) {
557                 /*
558                  * Clear current synchronisation setup.
559                  * For the Beacon base registers, we only need to clear
560                  * the first byte since that byte contains the VALID and OWNER
561                  * bits which (when set to 0) will invalidate the entire beacon.
562                  */
563                 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
564                 rt2x00pci_register_write(rt2x00dev, beacon_base, 0);
565
566                 /*
567                  * Enable synchronisation.
568                  */
569                 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
570                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
571                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
572                 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
573                 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
574         }
575
576         if (flags & CONFIG_UPDATE_MAC) {
577                 reg = le32_to_cpu(conf->mac[1]);
578                 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
579                 conf->mac[1] = cpu_to_le32(reg);
580
581                 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
582                                               conf->mac, sizeof(conf->mac));
583         }
584
585         if (flags & CONFIG_UPDATE_BSSID) {
586                 reg = le32_to_cpu(conf->bssid[1]);
587                 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
588                 conf->bssid[1] = cpu_to_le32(reg);
589
590                 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
591                                               conf->bssid, sizeof(conf->bssid));
592         }
593 }
594
595 static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
596                                struct rt2x00lib_erp *erp)
597 {
598         u32 reg;
599
600         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
601         rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
602         rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
603         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
604
605         rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
606         rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
607         rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
608                            !!erp->short_preamble);
609         rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
610
611         rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, erp->basic_rates);
612
613         rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
614         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
615                            erp->beacon_int * 16);
616         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
617
618         rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
619         rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
620         rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
621
622         rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
623         rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
624         rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
625         rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
626         rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
627 }
628
629 static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
630                                       struct antenna_setup *ant)
631 {
632         u8 r3;
633         u8 r4;
634         u8 r77;
635
636         rt61pci_bbp_read(rt2x00dev, 3, &r3);
637         rt61pci_bbp_read(rt2x00dev, 4, &r4);
638         rt61pci_bbp_read(rt2x00dev, 77, &r77);
639
640         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF5325));
641
642         /*
643          * Configure the RX antenna.
644          */
645         switch (ant->rx) {
646         case ANTENNA_HW_DIVERSITY:
647                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
648                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
649                                   (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
650                 break;
651         case ANTENNA_A:
652                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
653                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
654                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
655                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
656                 else
657                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
658                 break;
659         case ANTENNA_B:
660         default:
661                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
662                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
663                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
664                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
665                 else
666                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
667                 break;
668         }
669
670         rt61pci_bbp_write(rt2x00dev, 77, r77);
671         rt61pci_bbp_write(rt2x00dev, 3, r3);
672         rt61pci_bbp_write(rt2x00dev, 4, r4);
673 }
674
675 static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
676                                       struct antenna_setup *ant)
677 {
678         u8 r3;
679         u8 r4;
680         u8 r77;
681
682         rt61pci_bbp_read(rt2x00dev, 3, &r3);
683         rt61pci_bbp_read(rt2x00dev, 4, &r4);
684         rt61pci_bbp_read(rt2x00dev, 77, &r77);
685
686         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF2529));
687         rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
688                           !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
689
690         /*
691          * Configure the RX antenna.
692          */
693         switch (ant->rx) {
694         case ANTENNA_HW_DIVERSITY:
695                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
696                 break;
697         case ANTENNA_A:
698                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
699                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
700                 break;
701         case ANTENNA_B:
702         default:
703                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
704                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
705                 break;
706         }
707
708         rt61pci_bbp_write(rt2x00dev, 77, r77);
709         rt61pci_bbp_write(rt2x00dev, 3, r3);
710         rt61pci_bbp_write(rt2x00dev, 4, r4);
711 }
712
713 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
714                                            const int p1, const int p2)
715 {
716         u32 reg;
717
718         rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
719
720         rt2x00_set_field32(&reg, MAC_CSR13_BIT4, p1);
721         rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);
722
723         rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
724         rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);
725
726         rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
727 }
728
729 static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
730                                         struct antenna_setup *ant)
731 {
732         u8 r3;
733         u8 r4;
734         u8 r77;
735
736         rt61pci_bbp_read(rt2x00dev, 3, &r3);
737         rt61pci_bbp_read(rt2x00dev, 4, &r4);
738         rt61pci_bbp_read(rt2x00dev, 77, &r77);
739
740         /*
741          * Configure the RX antenna.
742          */
743         switch (ant->rx) {
744         case ANTENNA_A:
745                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
746                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
747                 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
748                 break;
749         case ANTENNA_HW_DIVERSITY:
750                 /*
751                  * FIXME: Antenna selection for the rf 2529 is very confusing
752                  * in the legacy driver. Just default to antenna B until the
753                  * legacy code can be properly translated into rt2x00 code.
754                  */
755         case ANTENNA_B:
756         default:
757                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
758                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
759                 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
760                 break;
761         }
762
763         rt61pci_bbp_write(rt2x00dev, 77, r77);
764         rt61pci_bbp_write(rt2x00dev, 3, r3);
765         rt61pci_bbp_write(rt2x00dev, 4, r4);
766 }
767
768 struct antenna_sel {
769         u8 word;
770         /*
771          * value[0] -> non-LNA
772          * value[1] -> LNA
773          */
774         u8 value[2];
775 };
776
777 static const struct antenna_sel antenna_sel_a[] = {
778         { 96,  { 0x58, 0x78 } },
779         { 104, { 0x38, 0x48 } },
780         { 75,  { 0xfe, 0x80 } },
781         { 86,  { 0xfe, 0x80 } },
782         { 88,  { 0xfe, 0x80 } },
783         { 35,  { 0x60, 0x60 } },
784         { 97,  { 0x58, 0x58 } },
785         { 98,  { 0x58, 0x58 } },
786 };
787
788 static const struct antenna_sel antenna_sel_bg[] = {
789         { 96,  { 0x48, 0x68 } },
790         { 104, { 0x2c, 0x3c } },
791         { 75,  { 0xfe, 0x80 } },
792         { 86,  { 0xfe, 0x80 } },
793         { 88,  { 0xfe, 0x80 } },
794         { 35,  { 0x50, 0x50 } },
795         { 97,  { 0x48, 0x48 } },
796         { 98,  { 0x48, 0x48 } },
797 };
798
799 static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
800                                struct antenna_setup *ant)
801 {
802         const struct antenna_sel *sel;
803         unsigned int lna;
804         unsigned int i;
805         u32 reg;
806
807         /*
808          * We should never come here because rt2x00lib is supposed
809          * to catch this and send us the correct antenna explicitely.
810          */
811         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
812                ant->tx == ANTENNA_SW_DIVERSITY);
813
814         if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
815                 sel = antenna_sel_a;
816                 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
817         } else {
818                 sel = antenna_sel_bg;
819                 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
820         }
821
822         for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
823                 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
824
825         rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);
826
827         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
828                            rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
829         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
830                            rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
831
832         rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
833
834         if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325))
835                 rt61pci_config_antenna_5x(rt2x00dev, ant);
836         else if (rt2x00_rf(rt2x00dev, RF2527))
837                 rt61pci_config_antenna_2x(rt2x00dev, ant);
838         else if (rt2x00_rf(rt2x00dev, RF2529)) {
839                 if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
840                         rt61pci_config_antenna_2x(rt2x00dev, ant);
841                 else
842                         rt61pci_config_antenna_2529(rt2x00dev, ant);
843         }
844 }
845
846 static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
847                                     struct rt2x00lib_conf *libconf)
848 {
849         u16 eeprom;
850         short lna_gain = 0;
851
852         if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
853                 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
854                         lna_gain += 14;
855
856                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
857                 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
858         } else {
859                 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
860                         lna_gain += 14;
861
862                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
863                 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
864         }
865
866         rt2x00dev->lna_gain = lna_gain;
867 }
868
869 static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
870                                    struct rf_channel *rf, const int txpower)
871 {
872         u8 r3;
873         u8 r94;
874         u8 smart;
875
876         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
877         rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
878
879         smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
880
881         rt61pci_bbp_read(rt2x00dev, 3, &r3);
882         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
883         rt61pci_bbp_write(rt2x00dev, 3, r3);
884
885         r94 = 6;
886         if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
887                 r94 += txpower - MAX_TXPOWER;
888         else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
889                 r94 += txpower;
890         rt61pci_bbp_write(rt2x00dev, 94, r94);
891
892         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
893         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
894         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
895         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
896
897         udelay(200);
898
899         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
900         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
901         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
902         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
903
904         udelay(200);
905
906         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
907         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
908         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
909         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
910
911         msleep(1);
912 }
913
914 static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
915                                    const int txpower)
916 {
917         struct rf_channel rf;
918
919         rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
920         rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
921         rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
922         rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
923
924         rt61pci_config_channel(rt2x00dev, &rf, txpower);
925 }
926
927 static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
928                                     struct rt2x00lib_conf *libconf)
929 {
930         u32 reg;
931
932         rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
933         rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
934                            libconf->conf->long_frame_max_tx_count);
935         rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
936                            libconf->conf->short_frame_max_tx_count);
937         rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
938 }
939
940 static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
941                                 struct rt2x00lib_conf *libconf)
942 {
943         enum dev_state state =
944             (libconf->conf->flags & IEEE80211_CONF_PS) ?
945                 STATE_SLEEP : STATE_AWAKE;
946         u32 reg;
947
948         if (state == STATE_SLEEP) {
949                 rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
950                 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
951                                    rt2x00dev->beacon_int - 10);
952                 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
953                                    libconf->conf->listen_interval - 1);
954                 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
955
956                 /* We must first disable autowake before it can be enabled */
957                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
958                 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
959
960                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
961                 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
962
963                 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000005);
964                 rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
965                 rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
966
967                 rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
968         } else {
969                 rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
970                 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
971                 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
972                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
973                 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
974                 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
975
976                 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
977                 rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
978                 rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
979
980                 rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
981         }
982 }
983
984 static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
985                            struct rt2x00lib_conf *libconf,
986                            const unsigned int flags)
987 {
988         /* Always recalculate LNA gain before changing configuration */
989         rt61pci_config_lna_gain(rt2x00dev, libconf);
990
991         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
992                 rt61pci_config_channel(rt2x00dev, &libconf->rf,
993                                        libconf->conf->power_level);
994         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
995             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
996                 rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
997         if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
998                 rt61pci_config_retry_limit(rt2x00dev, libconf);
999         if (flags & IEEE80211_CONF_CHANGE_PS)
1000                 rt61pci_config_ps(rt2x00dev, libconf);
1001 }
1002
1003 /*
1004  * Link tuning
1005  */
1006 static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
1007                                struct link_qual *qual)
1008 {
1009         u32 reg;
1010
1011         /*
1012          * Update FCS error count from register.
1013          */
1014         rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1015         qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
1016
1017         /*
1018          * Update False CCA count from register.
1019          */
1020         rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1021         qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
1022 }
1023
1024 static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
1025                                    struct link_qual *qual, u8 vgc_level)
1026 {
1027         if (qual->vgc_level != vgc_level) {
1028                 rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
1029                 qual->vgc_level = vgc_level;
1030                 qual->vgc_level_reg = vgc_level;
1031         }
1032 }
1033
1034 static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
1035                                 struct link_qual *qual)
1036 {
1037         rt61pci_set_vgc(rt2x00dev, qual, 0x20);
1038 }
1039
1040 static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
1041                                struct link_qual *qual, const u32 count)
1042 {
1043         u8 up_bound;
1044         u8 low_bound;
1045
1046         /*
1047          * Determine r17 bounds.
1048          */
1049         if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1050                 low_bound = 0x28;
1051                 up_bound = 0x48;
1052                 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
1053                         low_bound += 0x10;
1054                         up_bound += 0x10;
1055                 }
1056         } else {
1057                 low_bound = 0x20;
1058                 up_bound = 0x40;
1059                 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
1060                         low_bound += 0x10;
1061                         up_bound += 0x10;
1062                 }
1063         }
1064
1065         /*
1066          * If we are not associated, we should go straight to the
1067          * dynamic CCA tuning.
1068          */
1069         if (!rt2x00dev->intf_associated)
1070                 goto dynamic_cca_tune;
1071
1072         /*
1073          * Special big-R17 for very short distance
1074          */
1075         if (qual->rssi >= -35) {
1076                 rt61pci_set_vgc(rt2x00dev, qual, 0x60);
1077                 return;
1078         }
1079
1080         /*
1081          * Special big-R17 for short distance
1082          */
1083         if (qual->rssi >= -58) {
1084                 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1085                 return;
1086         }
1087
1088         /*
1089          * Special big-R17 for middle-short distance
1090          */
1091         if (qual->rssi >= -66) {
1092                 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
1093                 return;
1094         }
1095
1096         /*
1097          * Special mid-R17 for middle distance
1098          */
1099         if (qual->rssi >= -74) {
1100                 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1101                 return;
1102         }
1103
1104         /*
1105          * Special case: Change up_bound based on the rssi.
1106          * Lower up_bound when rssi is weaker then -74 dBm.
1107          */
1108         up_bound -= 2 * (-74 - qual->rssi);
1109         if (low_bound > up_bound)
1110                 up_bound = low_bound;
1111
1112         if (qual->vgc_level > up_bound) {
1113                 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1114                 return;
1115         }
1116
1117 dynamic_cca_tune:
1118
1119         /*
1120          * r17 does not yet exceed upper limit, continue and base
1121          * the r17 tuning on the false CCA count.
1122          */
1123         if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1124                 rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
1125         else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1126                 rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
1127 }
1128
1129 /*
1130  * Firmware functions
1131  */
1132 static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1133 {
1134         u16 chip;
1135         char *fw_name;
1136
1137         pci_read_config_word(to_pci_dev(rt2x00dev->dev), PCI_DEVICE_ID, &chip);
1138         switch (chip) {
1139         case RT2561_PCI_ID:
1140                 fw_name = FIRMWARE_RT2561;
1141                 break;
1142         case RT2561s_PCI_ID:
1143                 fw_name = FIRMWARE_RT2561s;
1144                 break;
1145         case RT2661_PCI_ID:
1146                 fw_name = FIRMWARE_RT2661;
1147                 break;
1148         default:
1149                 fw_name = NULL;
1150                 break;
1151         }
1152
1153         return fw_name;
1154 }
1155
1156 static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
1157                                   const u8 *data, const size_t len)
1158 {
1159         u16 fw_crc;
1160         u16 crc;
1161
1162         /*
1163          * Only support 8kb firmware files.
1164          */
1165         if (len != 8192)
1166                 return FW_BAD_LENGTH;
1167
1168         /*
1169          * The last 2 bytes in the firmware array are the crc checksum itself.
1170          * This means that we should never pass those 2 bytes to the crc
1171          * algorithm.
1172          */
1173         fw_crc = (data[len - 2] << 8 | data[len - 1]);
1174
1175         /*
1176          * Use the crc itu-t algorithm.
1177          */
1178         crc = crc_itu_t(0, data, len - 2);
1179         crc = crc_itu_t_byte(crc, 0);
1180         crc = crc_itu_t_byte(crc, 0);
1181
1182         return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1183 }
1184
1185 static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
1186                                  const u8 *data, const size_t len)
1187 {
1188         int i;
1189         u32 reg;
1190
1191         /*
1192          * Wait for stable hardware.
1193          */
1194         for (i = 0; i < 100; i++) {
1195                 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
1196                 if (reg)
1197                         break;
1198                 msleep(1);
1199         }
1200
1201         if (!reg) {
1202                 ERROR(rt2x00dev, "Unstable hardware.\n");
1203                 return -EBUSY;
1204         }
1205
1206         /*
1207          * Prepare MCU and mailbox for firmware loading.
1208          */
1209         reg = 0;
1210         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1211         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1212         rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1213         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1214         rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1215
1216         /*
1217          * Write firmware to device.
1218          */
1219         reg = 0;
1220         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1221         rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1222         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1223
1224         rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1225                                       data, len);
1226
1227         rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1228         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1229
1230         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1231         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1232
1233         for (i = 0; i < 100; i++) {
1234                 rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
1235                 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1236                         break;
1237                 msleep(1);
1238         }
1239
1240         if (i == 100) {
1241                 ERROR(rt2x00dev, "MCU Control register not ready.\n");
1242                 return -EBUSY;
1243         }
1244
1245         /*
1246          * Hardware needs another millisecond before it is ready.
1247          */
1248         msleep(1);
1249
1250         /*
1251          * Reset MAC and BBP registers.
1252          */
1253         reg = 0;
1254         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1255         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1256         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1257
1258         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1259         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1260         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1261         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1262
1263         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1264         rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1265         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1266
1267         return 0;
1268 }
1269
1270 /*
1271  * Initialization functions.
1272  */
1273 static bool rt61pci_get_entry_state(struct queue_entry *entry)
1274 {
1275         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1276         u32 word;
1277
1278         if (entry->queue->qid == QID_RX) {
1279                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1280
1281                 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
1282         } else {
1283                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1284
1285                 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1286                         rt2x00_get_field32(word, TXD_W0_VALID));
1287         }
1288 }
1289
1290 static void rt61pci_clear_entry(struct queue_entry *entry)
1291 {
1292         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1293         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1294         u32 word;
1295
1296         if (entry->queue->qid == QID_RX) {
1297                 rt2x00_desc_read(entry_priv->desc, 5, &word);
1298                 rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1299                                    skbdesc->skb_dma);
1300                 rt2x00_desc_write(entry_priv->desc, 5, word);
1301
1302                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1303                 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1304                 rt2x00_desc_write(entry_priv->desc, 0, word);
1305         } else {
1306                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1307                 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1308                 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1309                 rt2x00_desc_write(entry_priv->desc, 0, word);
1310         }
1311 }
1312
1313 static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1314 {
1315         struct queue_entry_priv_pci *entry_priv;
1316         u32 reg;
1317
1318         /*
1319          * Initialize registers.
1320          */
1321         rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1322         rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1323                            rt2x00dev->tx[0].limit);
1324         rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1325                            rt2x00dev->tx[1].limit);
1326         rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1327                            rt2x00dev->tx[2].limit);
1328         rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1329                            rt2x00dev->tx[3].limit);
1330         rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
1331
1332         rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
1333         rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1334                            rt2x00dev->tx[0].desc_size / 4);
1335         rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
1336
1337         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1338         rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1339         rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1340                            entry_priv->desc_dma);
1341         rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1342
1343         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1344         rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1345         rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1346                            entry_priv->desc_dma);
1347         rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1348
1349         entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1350         rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1351         rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1352                            entry_priv->desc_dma);
1353         rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1354
1355         entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1356         rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1357         rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1358                            entry_priv->desc_dma);
1359         rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1360
1361         rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
1362         rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1363         rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1364                            rt2x00dev->rx->desc_size / 4);
1365         rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1366         rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
1367
1368         entry_priv = rt2x00dev->rx->entries[0].priv_data;
1369         rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1370         rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1371                            entry_priv->desc_dma);
1372         rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
1373
1374         rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1375         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1376         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1377         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1378         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1379         rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1380
1381         rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1382         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1383         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1384         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1385         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1386         rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1387
1388         rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1389         rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1390         rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1391
1392         return 0;
1393 }
1394
1395 static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1396 {
1397         u32 reg;
1398
1399         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1400         rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1401         rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1402         rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1403         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1404
1405         rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
1406         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1407         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1408         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1409         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1410         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1411         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1412         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1413         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1414         rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
1415
1416         /*
1417          * CCK TXD BBP registers
1418          */
1419         rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
1420         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1421         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1422         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1423         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1424         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1425         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1426         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1427         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1428         rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
1429
1430         /*
1431          * OFDM TXD BBP registers
1432          */
1433         rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
1434         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1435         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1436         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1437         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1438         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1439         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1440         rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
1441
1442         rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
1443         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1444         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1445         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1446         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1447         rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
1448
1449         rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
1450         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1451         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1452         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1453         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1454         rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
1455
1456         rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1457         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1458         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1459         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1460         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1461         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1462         rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1463         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1464
1465         rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1466
1467         rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1468
1469         rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
1470         rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1471         rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
1472
1473         rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1474
1475         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1476                 return -EBUSY;
1477
1478         rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1479
1480         /*
1481          * Invalidate all Shared Keys (SEC_CSR0),
1482          * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1483          */
1484         rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1485         rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1486         rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1487
1488         rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1489         rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1490         rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1491         rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1492
1493         rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1494
1495         rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1496
1497         rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1498
1499         /*
1500          * Clear all beacons
1501          * For the Beacon base registers we only need to clear
1502          * the first byte since that byte contains the VALID and OWNER
1503          * bits which (when set to 0) will invalidate the entire beacon.
1504          */
1505         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1506         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1507         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1508         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1509
1510         /*
1511          * We must clear the error counters.
1512          * These registers are cleared on read,
1513          * so we may pass a useless variable to store the value.
1514          */
1515         rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1516         rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1517         rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);
1518
1519         /*
1520          * Reset MAC and BBP registers.
1521          */
1522         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1523         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1524         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1525         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1526
1527         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1528         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1529         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1530         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1531
1532         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1533         rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1534         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1535
1536         return 0;
1537 }
1538
1539 static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1540 {
1541         unsigned int i;
1542         u8 value;
1543
1544         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1545                 rt61pci_bbp_read(rt2x00dev, 0, &value);
1546                 if ((value != 0xff) && (value != 0x00))
1547                         return 0;
1548                 udelay(REGISTER_BUSY_DELAY);
1549         }
1550
1551         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1552         return -EACCES;
1553 }
1554
1555 static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1556 {
1557         unsigned int i;
1558         u16 eeprom;
1559         u8 reg_id;
1560         u8 value;
1561
1562         if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1563                 return -EACCES;
1564
1565         rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1566         rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1567         rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1568         rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1569         rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1570         rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1571         rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1572         rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1573         rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1574         rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1575         rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1576         rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1577         rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1578         rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1579         rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1580         rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1581         rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1582         rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1583         rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1584         rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1585         rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1586         rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1587         rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1588         rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1589
1590         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1591                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1592
1593                 if (eeprom != 0xffff && eeprom != 0x0000) {
1594                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1595                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1596                         rt61pci_bbp_write(rt2x00dev, reg_id, value);
1597                 }
1598         }
1599
1600         return 0;
1601 }
1602
1603 /*
1604  * Device state switch handlers.
1605  */
1606 static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1607                               enum dev_state state)
1608 {
1609         u32 reg;
1610
1611         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1612         rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
1613                            (state == STATE_RADIO_RX_OFF) ||
1614                            (state == STATE_RADIO_RX_OFF_LINK));
1615         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1616 }
1617
1618 static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1619                                enum dev_state state)
1620 {
1621         int mask = (state == STATE_RADIO_IRQ_OFF);
1622         u32 reg;
1623
1624         /*
1625          * When interrupts are being enabled, the interrupt registers
1626          * should clear the register to assure a clean state.
1627          */
1628         if (state == STATE_RADIO_IRQ_ON) {
1629                 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1630                 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1631
1632                 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1633                 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1634         }
1635
1636         /*
1637          * Only toggle the interrupts bits we are going to use.
1638          * Non-checked interrupt bits are disabled by default.
1639          */
1640         rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1641         rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1642         rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1643         rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1644         rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1645         rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1646
1647         rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1648         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1649         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1650         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1651         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1652         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1653         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1654         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1655         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1656         rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1657 }
1658
1659 static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1660 {
1661         u32 reg;
1662
1663         /*
1664          * Initialize all registers.
1665          */
1666         if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1667                      rt61pci_init_registers(rt2x00dev) ||
1668                      rt61pci_init_bbp(rt2x00dev)))
1669                 return -EIO;
1670
1671         /*
1672          * Enable RX.
1673          */
1674         rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1675         rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1676         rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1677
1678         return 0;
1679 }
1680
1681 static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1682 {
1683         /*
1684          * Disable power
1685          */
1686         rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1687 }
1688
1689 static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1690 {
1691         u32 reg;
1692         unsigned int i;
1693         char put_to_sleep;
1694
1695         put_to_sleep = (state != STATE_AWAKE);
1696
1697         rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1698         rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1699         rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1700         rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1701
1702         /*
1703          * Device is not guaranteed to be in the requested state yet.
1704          * We must wait until the register indicates that the
1705          * device has entered the correct state.
1706          */
1707         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1708                 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1709                 state = rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
1710                 if (state == !put_to_sleep)
1711                         return 0;
1712                 msleep(10);
1713         }
1714
1715         return -EBUSY;
1716 }
1717
1718 static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1719                                     enum dev_state state)
1720 {
1721         int retval = 0;
1722
1723         switch (state) {
1724         case STATE_RADIO_ON:
1725                 retval = rt61pci_enable_radio(rt2x00dev);
1726                 break;
1727         case STATE_RADIO_OFF:
1728                 rt61pci_disable_radio(rt2x00dev);
1729                 break;
1730         case STATE_RADIO_RX_ON:
1731         case STATE_RADIO_RX_ON_LINK:
1732         case STATE_RADIO_RX_OFF:
1733         case STATE_RADIO_RX_OFF_LINK:
1734                 rt61pci_toggle_rx(rt2x00dev, state);
1735                 break;
1736         case STATE_RADIO_IRQ_ON:
1737         case STATE_RADIO_IRQ_OFF:
1738                 rt61pci_toggle_irq(rt2x00dev, state);
1739                 break;
1740         case STATE_DEEP_SLEEP:
1741         case STATE_SLEEP:
1742         case STATE_STANDBY:
1743         case STATE_AWAKE:
1744                 retval = rt61pci_set_state(rt2x00dev, state);
1745                 break;
1746         default:
1747                 retval = -ENOTSUPP;
1748                 break;
1749         }
1750
1751         if (unlikely(retval))
1752                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1753                       state, retval);
1754
1755         return retval;
1756 }
1757
1758 /*
1759  * TX descriptor initialization
1760  */
1761 static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1762                                   struct sk_buff *skb,
1763                                   struct txentry_desc *txdesc)
1764 {
1765         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1766         __le32 *txd = skbdesc->desc;
1767         u32 word;
1768
1769         /*
1770          * Start writing the descriptor words.
1771          */
1772         rt2x00_desc_read(txd, 1, &word);
1773         rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
1774         rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
1775         rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1776         rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1777         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1778         rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1779                            test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1780         rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1781         rt2x00_desc_write(txd, 1, word);
1782
1783         rt2x00_desc_read(txd, 2, &word);
1784         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1785         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1786         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1787         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1788         rt2x00_desc_write(txd, 2, word);
1789
1790         if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1791                 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1792                 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1793         }
1794
1795         rt2x00_desc_read(txd, 5, &word);
1796         rt2x00_set_field32(&word, TXD_W5_PID_TYPE, skbdesc->entry->queue->qid);
1797         rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1798                            skbdesc->entry->entry_idx);
1799         rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1800                            TXPOWER_TO_DEV(rt2x00dev->tx_power));
1801         rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1802         rt2x00_desc_write(txd, 5, word);
1803
1804         rt2x00_desc_read(txd, 6, &word);
1805         rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1806                            skbdesc->skb_dma);
1807         rt2x00_desc_write(txd, 6, word);
1808
1809         if (skbdesc->desc_len > TXINFO_SIZE) {
1810                 rt2x00_desc_read(txd, 11, &word);
1811                 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0,
1812                                    txdesc->length);
1813                 rt2x00_desc_write(txd, 11, word);
1814         }
1815
1816         rt2x00_desc_read(txd, 0, &word);
1817         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1818         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1819         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1820                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1821         rt2x00_set_field32(&word, TXD_W0_ACK,
1822                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1823         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1824                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1825         rt2x00_set_field32(&word, TXD_W0_OFDM,
1826                            (txdesc->rate_mode == RATE_MODE_OFDM));
1827         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1828         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1829                            test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1830         rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1831                            test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1832         rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1833                            test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1834         rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1835         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1836         rt2x00_set_field32(&word, TXD_W0_BURST,
1837                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1838         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1839         rt2x00_desc_write(txd, 0, word);
1840 }
1841
1842 /*
1843  * TX data initialization
1844  */
1845 static void rt61pci_write_beacon(struct queue_entry *entry)
1846 {
1847         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1848         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1849         unsigned int beacon_base;
1850         u32 reg;
1851
1852         /*
1853          * Disable beaconing while we are reloading the beacon data,
1854          * otherwise we might be sending out invalid data.
1855          */
1856         rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1857         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1858         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1859
1860         /*
1861          * Write entire beacon with descriptor to register.
1862          */
1863         beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1864         rt2x00pci_register_multiwrite(rt2x00dev,
1865                                       beacon_base,
1866                                       skbdesc->desc, skbdesc->desc_len);
1867         rt2x00pci_register_multiwrite(rt2x00dev,
1868                                       beacon_base + skbdesc->desc_len,
1869                                       entry->skb->data, entry->skb->len);
1870
1871         /*
1872          * Clean up beacon skb.
1873          */
1874         dev_kfree_skb_any(entry->skb);
1875         entry->skb = NULL;
1876 }
1877
1878 static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1879                                   const enum data_queue_qid queue)
1880 {
1881         u32 reg;
1882
1883         if (queue == QID_BEACON) {
1884                 /*
1885                  * For Wi-Fi faily generated beacons between participating
1886                  * stations. Set TBTT phase adaptive adjustment step to 8us.
1887                  */
1888                 rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1889
1890                 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1891                 if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
1892                         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1893                         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1894                         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1895                         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1896                 }
1897                 return;
1898         }
1899
1900         rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1901         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, (queue == QID_AC_BE));
1902         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, (queue == QID_AC_BK));
1903         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, (queue == QID_AC_VI));
1904         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, (queue == QID_AC_VO));
1905         rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1906 }
1907
1908 static void rt61pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
1909                                   const enum data_queue_qid qid)
1910 {
1911         u32 reg;
1912
1913         if (qid == QID_BEACON) {
1914                 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
1915                 return;
1916         }
1917
1918         rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1919         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, (qid == QID_AC_BE));
1920         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, (qid == QID_AC_BK));
1921         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, (qid == QID_AC_VI));
1922         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, (qid == QID_AC_VO));
1923         rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1924 }
1925
1926 /*
1927  * RX control handlers
1928  */
1929 static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1930 {
1931         u8 offset = rt2x00dev->lna_gain;
1932         u8 lna;
1933
1934         lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1935         switch (lna) {
1936         case 3:
1937                 offset += 90;
1938                 break;
1939         case 2:
1940                 offset += 74;
1941                 break;
1942         case 1:
1943                 offset += 64;
1944                 break;
1945         default:
1946                 return 0;
1947         }
1948
1949         if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1950                 if (lna == 3 || lna == 2)
1951                         offset += 10;
1952         }
1953
1954         return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1955 }
1956
1957 static void rt61pci_fill_rxdone(struct queue_entry *entry,
1958                                 struct rxdone_entry_desc *rxdesc)
1959 {
1960         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1961         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1962         u32 word0;
1963         u32 word1;
1964
1965         rt2x00_desc_read(entry_priv->desc, 0, &word0);
1966         rt2x00_desc_read(entry_priv->desc, 1, &word1);
1967
1968         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1969                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1970
1971         if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
1972                 rxdesc->cipher =
1973                     rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1974                 rxdesc->cipher_status =
1975                     rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1976         }
1977
1978         if (rxdesc->cipher != CIPHER_NONE) {
1979                 _rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]);
1980                 _rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]);
1981                 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1982
1983                 _rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
1984                 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
1985
1986                 /*
1987                  * Hardware has stripped IV/EIV data from 802.11 frame during
1988                  * decryption. It has provided the data separately but rt2x00lib
1989                  * should decide if it should be reinserted.
1990                  */
1991                 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
1992
1993                 /*
1994                  * FIXME: Legacy driver indicates that the frame does
1995                  * contain the Michael Mic. Unfortunately, in rt2x00
1996                  * the MIC seems to be missing completely...
1997                  */
1998                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1999
2000                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
2001                         rxdesc->flags |= RX_FLAG_DECRYPTED;
2002                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
2003                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
2004         }
2005
2006         /*
2007          * Obtain the status about this packet.
2008          * When frame was received with an OFDM bitrate,
2009          * the signal is the PLCP value. If it was received with
2010          * a CCK bitrate the signal is the rate in 100kbit/s.
2011          */
2012         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
2013         rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
2014         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
2015
2016         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
2017                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
2018         else
2019                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
2020         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
2021                 rxdesc->dev_flags |= RXDONE_MY_BSS;
2022 }
2023
2024 /*
2025  * Interrupt functions.
2026  */
2027 static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2028 {
2029         struct data_queue *queue;
2030         struct queue_entry *entry;
2031         struct queue_entry *entry_done;
2032         struct queue_entry_priv_pci *entry_priv;
2033         struct txdone_entry_desc txdesc;
2034         u32 word;
2035         u32 reg;
2036         u32 old_reg;
2037         int type;
2038         int index;
2039
2040         /*
2041          * During each loop we will compare the freshly read
2042          * STA_CSR4 register value with the value read from
2043          * the previous loop. If the 2 values are equal then
2044          * we should stop processing because the chance is
2045          * quite big that the device has been unplugged and
2046          * we risk going into an endless loop.
2047          */
2048         old_reg = 0;
2049
2050         while (1) {
2051                 rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
2052                 if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2053                         break;
2054
2055                 if (old_reg == reg)
2056                         break;
2057                 old_reg = reg;
2058
2059                 /*
2060                  * Skip this entry when it contains an invalid
2061                  * queue identication number.
2062                  */
2063                 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2064                 queue = rt2x00queue_get_queue(rt2x00dev, type);
2065                 if (unlikely(!queue))
2066                         continue;
2067
2068                 /*
2069                  * Skip this entry when it contains an invalid
2070                  * index number.
2071                  */
2072                 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2073                 if (unlikely(index >= queue->limit))
2074                         continue;
2075
2076                 entry = &queue->entries[index];
2077                 entry_priv = entry->priv_data;
2078                 rt2x00_desc_read(entry_priv->desc, 0, &word);
2079
2080                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2081                     !rt2x00_get_field32(word, TXD_W0_VALID))
2082                         return;
2083
2084                 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2085                 while (entry != entry_done) {
2086                         /* Catch up.
2087                          * Just report any entries we missed as failed.
2088                          */
2089                         WARNING(rt2x00dev,
2090                                 "TX status report missed for entry %d\n",
2091                                 entry_done->entry_idx);
2092
2093                         txdesc.flags = 0;
2094                         __set_bit(TXDONE_UNKNOWN, &txdesc.flags);
2095                         txdesc.retry = 0;
2096
2097                         rt2x00lib_txdone(entry_done, &txdesc);
2098                         entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2099                 }
2100
2101                 /*
2102                  * Obtain the status about this packet.
2103                  */
2104                 txdesc.flags = 0;
2105                 switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2106                 case 0: /* Success, maybe with retry */
2107                         __set_bit(TXDONE_SUCCESS, &txdesc.flags);
2108                         break;
2109                 case 6: /* Failure, excessive retries */
2110                         __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2111                         /* Don't break, this is a failed frame! */
2112                 default: /* Failure */
2113                         __set_bit(TXDONE_FAILURE, &txdesc.flags);
2114                 }
2115                 txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2116
2117                 rt2x00lib_txdone(entry, &txdesc);
2118         }
2119 }
2120
2121 static void rt61pci_wakeup(struct rt2x00_dev *rt2x00dev)
2122 {
2123         struct ieee80211_conf conf = { .flags = 0 };
2124         struct rt2x00lib_conf libconf = { .conf = &conf };
2125
2126         rt61pci_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
2127 }
2128
2129 static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2130 {
2131         struct rt2x00_dev *rt2x00dev = dev_instance;
2132         u32 reg_mcu;
2133         u32 reg;
2134
2135         /*
2136          * Get the interrupt sources & saved to local variable.
2137          * Write register value back to clear pending interrupts.
2138          */
2139         rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
2140         rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2141
2142         rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
2143         rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2144
2145         if (!reg && !reg_mcu)
2146                 return IRQ_NONE;
2147
2148         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2149                 return IRQ_HANDLED;
2150
2151         /*
2152          * Handle interrupts, walk through all bits
2153          * and run the tasks, the bits are checked in order of
2154          * priority.
2155          */
2156
2157         /*
2158          * 1 - Rx ring done interrupt.
2159          */
2160         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2161                 rt2x00pci_rxdone(rt2x00dev);
2162
2163         /*
2164          * 2 - Tx ring done interrupt.
2165          */
2166         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2167                 rt61pci_txdone(rt2x00dev);
2168
2169         /*
2170          * 3 - Handle MCU command done.
2171          */
2172         if (reg_mcu)
2173                 rt2x00pci_register_write(rt2x00dev,
2174                                          M2H_CMD_DONE_CSR, 0xffffffff);
2175
2176         /*
2177          * 4 - MCU Autowakeup interrupt.
2178          */
2179         if (rt2x00_get_field32(reg_mcu, MCU_INT_SOURCE_CSR_TWAKEUP))
2180                 rt61pci_wakeup(rt2x00dev);
2181
2182         return IRQ_HANDLED;
2183 }
2184
2185 /*
2186  * Device probe functions.
2187  */
2188 static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2189 {
2190         struct eeprom_93cx6 eeprom;
2191         u32 reg;
2192         u16 word;
2193         u8 *mac;
2194         s8 value;
2195
2196         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
2197
2198         eeprom.data = rt2x00dev;
2199         eeprom.register_read = rt61pci_eepromregister_read;
2200         eeprom.register_write = rt61pci_eepromregister_write;
2201         eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2202             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2203         eeprom.reg_data_in = 0;
2204         eeprom.reg_data_out = 0;
2205         eeprom.reg_data_clock = 0;
2206         eeprom.reg_chip_select = 0;
2207
2208         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2209                                EEPROM_SIZE / sizeof(u16));
2210
2211         /*
2212          * Start validation of the data that has been read.
2213          */
2214         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2215         if (!is_valid_ether_addr(mac)) {
2216                 random_ether_addr(mac);
2217                 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
2218         }
2219
2220         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
2221         if (word == 0xffff) {
2222                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2223                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2224                                    ANTENNA_B);
2225                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2226                                    ANTENNA_B);
2227                 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2228                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2229                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2230                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2231                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2232                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
2233         }
2234
2235         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
2236         if (word == 0xffff) {
2237                 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2238                 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2239                 rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
2240                 rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
2241                 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2242                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2243                 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2244                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2245                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
2246         }
2247
2248         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
2249         if (word == 0xffff) {
2250                 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2251                                    LED_MODE_DEFAULT);
2252                 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2253                 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
2254         }
2255
2256         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
2257         if (word == 0xffff) {
2258                 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2259                 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2260                 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2261                 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
2262         }
2263
2264         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
2265         if (word == 0xffff) {
2266                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2267                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2268                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2269                 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2270         } else {
2271                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2272                 if (value < -10 || value > 10)
2273                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2274                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2275                 if (value < -10 || value > 10)
2276                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2277                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2278         }
2279
2280         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
2281         if (word == 0xffff) {
2282                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2283                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2284                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2285                 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2286         } else {
2287                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2288                 if (value < -10 || value > 10)
2289                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2290                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2291                 if (value < -10 || value > 10)
2292                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2293                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2294         }
2295
2296         return 0;
2297 }
2298
2299 static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2300 {
2301         u32 reg;
2302         u16 value;
2303         u16 eeprom;
2304
2305         /*
2306          * Read EEPROM word for configuration.
2307          */
2308         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2309
2310         /*
2311          * Identify RF chipset.
2312          */
2313         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2314         rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
2315         rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
2316                         value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
2317
2318         if (!rt2x00_rf(rt2x00dev, RF5225) &&
2319             !rt2x00_rf(rt2x00dev, RF5325) &&
2320             !rt2x00_rf(rt2x00dev, RF2527) &&
2321             !rt2x00_rf(rt2x00dev, RF2529)) {
2322                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
2323                 return -ENODEV;
2324         }
2325
2326         /*
2327          * Determine number of antennas.
2328          */
2329         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2330                 __set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);
2331
2332         /*
2333          * Identify default antenna configuration.
2334          */
2335         rt2x00dev->default_ant.tx =
2336             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2337         rt2x00dev->default_ant.rx =
2338             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2339
2340         /*
2341          * Read the Frame type.
2342          */
2343         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2344                 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
2345
2346         /*
2347          * Detect if this device has a hardware controlled radio.
2348          */
2349         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2350                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
2351
2352         /*
2353          * Read frequency offset and RF programming sequence.
2354          */
2355         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2356         if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2357                 __set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);
2358
2359         rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2360
2361         /*
2362          * Read external LNA informations.
2363          */
2364         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2365
2366         if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2367                 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
2368         if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2369                 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
2370
2371         /*
2372          * When working with a RF2529 chip without double antenna,
2373          * the antenna settings should be gathered from the NIC
2374          * eeprom word.
2375          */
2376         if (rt2x00_rf(rt2x00dev, RF2529) &&
2377             !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) {
2378                 rt2x00dev->default_ant.rx =
2379                     ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
2380                 rt2x00dev->default_ant.tx =
2381                     ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
2382
2383                 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2384                         rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2385                 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2386                         rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2387         }
2388
2389         /*
2390          * Store led settings, for correct led behaviour.
2391          * If the eeprom value is invalid,
2392          * switch to default led mode.
2393          */
2394 #ifdef CONFIG_RT2X00_LIB_LEDS
2395         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2396         value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2397
2398         rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2399         rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2400         if (value == LED_MODE_SIGNAL_STRENGTH)
2401                 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2402                                  LED_TYPE_QUALITY);
2403
2404         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2405         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2406                            rt2x00_get_field16(eeprom,
2407                                               EEPROM_LED_POLARITY_GPIO_0));
2408         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2409                            rt2x00_get_field16(eeprom,
2410                                               EEPROM_LED_POLARITY_GPIO_1));
2411         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2412                            rt2x00_get_field16(eeprom,
2413                                               EEPROM_LED_POLARITY_GPIO_2));
2414         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2415                            rt2x00_get_field16(eeprom,
2416                                               EEPROM_LED_POLARITY_GPIO_3));
2417         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2418                            rt2x00_get_field16(eeprom,
2419                                               EEPROM_LED_POLARITY_GPIO_4));
2420         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2421                            rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2422         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2423                            rt2x00_get_field16(eeprom,
2424                                               EEPROM_LED_POLARITY_RDY_G));
2425         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2426                            rt2x00_get_field16(eeprom,
2427                                               EEPROM_LED_POLARITY_RDY_A));
2428 #endif /* CONFIG_RT2X00_LIB_LEDS */
2429
2430         return 0;
2431 }
2432
2433 /*
2434  * RF value list for RF5225 & RF5325
2435  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2436  */
2437 static const struct rf_channel rf_vals_noseq[] = {
2438         { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2439         { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2440         { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2441         { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2442         { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2443         { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2444         { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2445         { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2446         { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2447         { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2448         { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2449         { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2450         { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2451         { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2452
2453         /* 802.11 UNI / HyperLan 2 */
2454         { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2455         { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2456         { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2457         { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2458         { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2459         { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2460         { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2461         { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2462
2463         /* 802.11 HyperLan 2 */
2464         { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2465         { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2466         { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2467         { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2468         { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2469         { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2470         { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2471         { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2472         { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2473         { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2474
2475         /* 802.11 UNII */
2476         { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2477         { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2478         { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2479         { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2480         { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2481         { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2482
2483         /* MMAC(Japan)J52 ch 34,38,42,46 */
2484         { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2485         { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2486         { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2487         { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2488 };
2489
2490 /*
2491  * RF value list for RF5225 & RF5325
2492  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2493  */
2494 static const struct rf_channel rf_vals_seq[] = {
2495         { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2496         { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2497         { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2498         { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2499         { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2500         { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2501         { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2502         { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2503         { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2504         { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2505         { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2506         { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2507         { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2508         { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2509
2510         /* 802.11 UNI / HyperLan 2 */
2511         { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2512         { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2513         { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2514         { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2515         { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2516         { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2517         { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2518         { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2519
2520         /* 802.11 HyperLan 2 */
2521         { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2522         { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2523         { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2524         { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2525         { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2526         { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2527         { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2528         { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2529         { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2530         { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2531
2532         /* 802.11 UNII */
2533         { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2534         { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2535         { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2536         { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2537         { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2538         { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2539
2540         /* MMAC(Japan)J52 ch 34,38,42,46 */
2541         { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2542         { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2543         { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2544         { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2545 };
2546
2547 static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2548 {
2549         struct hw_mode_spec *spec = &rt2x00dev->spec;
2550         struct channel_info *info;
2551         char *tx_power;
2552         unsigned int i;
2553
2554         /*
2555          * Disable powersaving as default.
2556          */
2557         rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
2558
2559         /*
2560          * Initialize all hw fields.
2561          */
2562         rt2x00dev->hw->flags =
2563             IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2564             IEEE80211_HW_SIGNAL_DBM |
2565             IEEE80211_HW_SUPPORTS_PS |
2566             IEEE80211_HW_PS_NULLFUNC_STACK;
2567
2568         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2569         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2570                                 rt2x00_eeprom_addr(rt2x00dev,
2571                                                    EEPROM_MAC_ADDR_0));
2572
2573         /*
2574          * Initialize hw_mode information.
2575          */
2576         spec->supported_bands = SUPPORT_BAND_2GHZ;
2577         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2578
2579         if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
2580                 spec->num_channels = 14;
2581                 spec->channels = rf_vals_noseq;
2582         } else {
2583                 spec->num_channels = 14;
2584                 spec->channels = rf_vals_seq;
2585         }
2586
2587         if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) {
2588                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2589                 spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2590         }
2591
2592         /*
2593          * Create channel information array
2594          */
2595         info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
2596         if (!info)
2597                 return -ENOMEM;
2598
2599         spec->channels_info = info;
2600
2601         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2602         for (i = 0; i < 14; i++)
2603                 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2604
2605         if (spec->num_channels > 14) {
2606                 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2607                 for (i = 14; i < spec->num_channels; i++)
2608                         info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2609         }
2610
2611         return 0;
2612 }
2613
2614 static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2615 {
2616         int retval;
2617
2618         /*
2619          * Disable power saving.
2620          */
2621         rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
2622
2623         /*
2624          * Allocate eeprom data.
2625          */
2626         retval = rt61pci_validate_eeprom(rt2x00dev);
2627         if (retval)
2628                 return retval;
2629
2630         retval = rt61pci_init_eeprom(rt2x00dev);
2631         if (retval)
2632                 return retval;
2633
2634         /*
2635          * Initialize hw specifications.
2636          */
2637         retval = rt61pci_probe_hw_mode(rt2x00dev);
2638         if (retval)
2639                 return retval;
2640
2641         /*
2642          * This device has multiple filters for control frames,
2643          * but has no a separate filter for PS Poll frames.
2644          */
2645         __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
2646
2647         /*
2648          * This device requires firmware and DMA mapped skbs.
2649          */
2650         __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2651         __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
2652         if (!modparam_nohwcrypt)
2653                 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
2654
2655         /*
2656          * Set the rssi offset.
2657          */
2658         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2659
2660         return 0;
2661 }
2662
2663 /*
2664  * IEEE80211 stack callback functions.
2665  */
2666 static int rt61pci_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
2667                            const struct ieee80211_tx_queue_params *params)
2668 {
2669         struct rt2x00_dev *rt2x00dev = hw->priv;
2670         struct data_queue *queue;
2671         struct rt2x00_field32 field;
2672         int retval;
2673         u32 reg;
2674         u32 offset;
2675
2676         /*
2677          * First pass the configuration through rt2x00lib, that will
2678          * update the queue settings and validate the input. After that
2679          * we are free to update the registers based on the value
2680          * in the queue parameter.
2681          */
2682         retval = rt2x00mac_conf_tx(hw, queue_idx, params);
2683         if (retval)
2684                 return retval;
2685
2686         /*
2687          * We only need to perform additional register initialization
2688          * for WMM queues.
2689          */
2690         if (queue_idx >= 4)
2691                 return 0;
2692
2693         queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
2694
2695         /* Update WMM TXOP register */
2696         offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2697         field.bit_offset = (queue_idx & 1) * 16;
2698         field.bit_mask = 0xffff << field.bit_offset;
2699
2700         rt2x00pci_register_read(rt2x00dev, offset, &reg);
2701         rt2x00_set_field32(&reg, field, queue->txop);
2702         rt2x00pci_register_write(rt2x00dev, offset, reg);
2703
2704         /* Update WMM registers */
2705         field.bit_offset = queue_idx * 4;
2706         field.bit_mask = 0xf << field.bit_offset;
2707
2708         rt2x00pci_register_read(rt2x00dev, AIFSN_CSR, &reg);
2709         rt2x00_set_field32(&reg, field, queue->aifs);
2710         rt2x00pci_register_write(rt2x00dev, AIFSN_CSR, reg);
2711
2712         rt2x00pci_register_read(rt2x00dev, CWMIN_CSR, &reg);
2713         rt2x00_set_field32(&reg, field, queue->cw_min);
2714         rt2x00pci_register_write(rt2x00dev, CWMIN_CSR, reg);
2715
2716         rt2x00pci_register_read(rt2x00dev, CWMAX_CSR, &reg);
2717         rt2x00_set_field32(&reg, field, queue->cw_max);
2718         rt2x00pci_register_write(rt2x00dev, CWMAX_CSR, reg);
2719
2720         return 0;
2721 }
2722
2723 static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
2724 {
2725         struct rt2x00_dev *rt2x00dev = hw->priv;
2726         u64 tsf;
2727         u32 reg;
2728
2729         rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
2730         tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2731         rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
2732         tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2733
2734         return tsf;
2735 }
2736
2737 static const struct ieee80211_ops rt61pci_mac80211_ops = {
2738         .tx                     = rt2x00mac_tx,
2739         .start                  = rt2x00mac_start,
2740         .stop                   = rt2x00mac_stop,
2741         .add_interface          = rt2x00mac_add_interface,
2742         .remove_interface       = rt2x00mac_remove_interface,
2743         .config                 = rt2x00mac_config,
2744         .configure_filter       = rt2x00mac_configure_filter,
2745         .set_tim                = rt2x00mac_set_tim,
2746         .set_key                = rt2x00mac_set_key,
2747         .get_stats              = rt2x00mac_get_stats,
2748         .bss_info_changed       = rt2x00mac_bss_info_changed,
2749         .conf_tx                = rt61pci_conf_tx,
2750         .get_tsf                = rt61pci_get_tsf,
2751         .rfkill_poll            = rt2x00mac_rfkill_poll,
2752 };
2753
2754 static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2755         .irq_handler            = rt61pci_interrupt,
2756         .probe_hw               = rt61pci_probe_hw,
2757         .get_firmware_name      = rt61pci_get_firmware_name,
2758         .check_firmware         = rt61pci_check_firmware,
2759         .load_firmware          = rt61pci_load_firmware,
2760         .initialize             = rt2x00pci_initialize,
2761         .uninitialize           = rt2x00pci_uninitialize,
2762         .get_entry_state        = rt61pci_get_entry_state,
2763         .clear_entry            = rt61pci_clear_entry,
2764         .set_device_state       = rt61pci_set_device_state,
2765         .rfkill_poll            = rt61pci_rfkill_poll,
2766         .link_stats             = rt61pci_link_stats,
2767         .reset_tuner            = rt61pci_reset_tuner,
2768         .link_tuner             = rt61pci_link_tuner,
2769         .write_tx_desc          = rt61pci_write_tx_desc,
2770         .write_tx_data          = rt2x00pci_write_tx_data,
2771         .write_beacon           = rt61pci_write_beacon,
2772         .kick_tx_queue          = rt61pci_kick_tx_queue,
2773         .kill_tx_queue          = rt61pci_kill_tx_queue,
2774         .fill_rxdone            = rt61pci_fill_rxdone,
2775         .config_shared_key      = rt61pci_config_shared_key,
2776         .config_pairwise_key    = rt61pci_config_pairwise_key,
2777         .config_filter          = rt61pci_config_filter,
2778         .config_intf            = rt61pci_config_intf,
2779         .config_erp             = rt61pci_config_erp,
2780         .config_ant             = rt61pci_config_ant,
2781         .config                 = rt61pci_config,
2782 };
2783
2784 static const struct data_queue_desc rt61pci_queue_rx = {
2785         .entry_num              = RX_ENTRIES,
2786         .data_size              = DATA_FRAME_SIZE,
2787         .desc_size              = RXD_DESC_SIZE,
2788         .priv_size              = sizeof(struct queue_entry_priv_pci),
2789 };
2790
2791 static const struct data_queue_desc rt61pci_queue_tx = {
2792         .entry_num              = TX_ENTRIES,
2793         .data_size              = DATA_FRAME_SIZE,
2794         .desc_size              = TXD_DESC_SIZE,
2795         .priv_size              = sizeof(struct queue_entry_priv_pci),
2796 };
2797
2798 static const struct data_queue_desc rt61pci_queue_bcn = {
2799         .entry_num              = 4 * BEACON_ENTRIES,
2800         .data_size              = 0, /* No DMA required for beacons */
2801         .desc_size              = TXINFO_SIZE,
2802         .priv_size              = sizeof(struct queue_entry_priv_pci),
2803 };
2804
2805 static const struct rt2x00_ops rt61pci_ops = {
2806         .name                   = KBUILD_MODNAME,
2807         .max_sta_intf           = 1,
2808         .max_ap_intf            = 4,
2809         .eeprom_size            = EEPROM_SIZE,
2810         .rf_size                = RF_SIZE,
2811         .tx_queues              = NUM_TX_QUEUES,
2812         .extra_tx_headroom      = 0,
2813         .rx                     = &rt61pci_queue_rx,
2814         .tx                     = &rt61pci_queue_tx,
2815         .bcn                    = &rt61pci_queue_bcn,
2816         .lib                    = &rt61pci_rt2x00_ops,
2817         .hw                     = &rt61pci_mac80211_ops,
2818 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2819         .debugfs                = &rt61pci_rt2x00debug,
2820 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2821 };
2822
2823 /*
2824  * RT61pci module information.
2825  */
2826 static DEFINE_PCI_DEVICE_TABLE(rt61pci_device_table) = {
2827         /* RT2561s */
2828         { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
2829         /* RT2561 v2 */
2830         { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
2831         /* RT2661 */
2832         { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
2833         { 0, }
2834 };
2835
2836 MODULE_AUTHOR(DRV_PROJECT);
2837 MODULE_VERSION(DRV_VERSION);
2838 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
2839 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
2840                         "PCI & PCMCIA chipset based cards");
2841 MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
2842 MODULE_FIRMWARE(FIRMWARE_RT2561);
2843 MODULE_FIRMWARE(FIRMWARE_RT2561s);
2844 MODULE_FIRMWARE(FIRMWARE_RT2661);
2845 MODULE_LICENSE("GPL");
2846
2847 static struct pci_driver rt61pci_driver = {
2848         .name           = KBUILD_MODNAME,
2849         .id_table       = rt61pci_device_table,
2850         .probe          = rt2x00pci_probe,
2851         .remove         = __devexit_p(rt2x00pci_remove),
2852         .suspend        = rt2x00pci_suspend,
2853         .resume         = rt2x00pci_resume,
2854 };
2855
2856 static int __init rt61pci_init(void)
2857 {
2858         return pci_register_driver(&rt61pci_driver);
2859 }
2860
2861 static void __exit rt61pci_exit(void)
2862 {
2863         pci_unregister_driver(&rt61pci_driver);
2864 }
2865
2866 module_init(rt61pci_init);
2867 module_exit(rt61pci_exit);