]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/net/wireless/rt2x00/rt61pci.c
rt2x00: Optimize configuration handling
[mv-sheeva.git] / drivers / net / wireless / rt2x00 / rt61pci.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt61pci
23         Abstract: rt61pci device specific routines.
24         Supported chipsets: RT2561, RT2561s, RT2661.
25  */
26
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/pci.h>
34 #include <linux/eeprom_93cx6.h>
35
36 #include "rt2x00.h"
37 #include "rt2x00pci.h"
38 #include "rt61pci.h"
39
40 /*
41  * Allow hardware encryption to be disabled.
42  */
43 static int modparam_nohwcrypt = 0;
44 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
45 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
46
47 /*
48  * Register access.
49  * BBP and RF register require indirect register access,
50  * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
51  * These indirect registers work with busy bits,
52  * and we will try maximal REGISTER_BUSY_COUNT times to access
53  * the register while taking a REGISTER_BUSY_DELAY us delay
54  * between each attampt. When the busy bit is still set at that time,
55  * the access attempt is considered to have failed,
56  * and we will print an error.
57  */
58 static u32 rt61pci_bbp_check(struct rt2x00_dev *rt2x00dev)
59 {
60         u32 reg;
61         unsigned int i;
62
63         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
64                 rt2x00pci_register_read(rt2x00dev, PHY_CSR3, &reg);
65                 if (!rt2x00_get_field32(reg, PHY_CSR3_BUSY))
66                         break;
67                 udelay(REGISTER_BUSY_DELAY);
68         }
69
70         return reg;
71 }
72
73 static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
74                               const unsigned int word, const u8 value)
75 {
76         u32 reg;
77
78         /*
79          * Wait until the BBP becomes ready.
80          */
81         reg = rt61pci_bbp_check(rt2x00dev);
82         if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
83                 ERROR(rt2x00dev, "PHY_CSR3 register busy. Write failed.\n");
84                 return;
85         }
86
87         /*
88          * Write the data into the BBP.
89          */
90         reg = 0;
91         rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
92         rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
93         rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
94         rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
95
96         rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
97 }
98
99 static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
100                              const unsigned int word, u8 *value)
101 {
102         u32 reg;
103
104         /*
105          * Wait until the BBP becomes ready.
106          */
107         reg = rt61pci_bbp_check(rt2x00dev);
108         if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
109                 ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
110                 return;
111         }
112
113         /*
114          * Write the request into the BBP.
115          */
116         reg = 0;
117         rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
118         rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
119         rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
120
121         rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
122
123         /*
124          * Wait until the BBP becomes ready.
125          */
126         reg = rt61pci_bbp_check(rt2x00dev);
127         if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
128                 ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
129                 *value = 0xff;
130                 return;
131         }
132
133         *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
134 }
135
136 static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
137                              const unsigned int word, const u32 value)
138 {
139         u32 reg;
140         unsigned int i;
141
142         if (!word)
143                 return;
144
145         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
146                 rt2x00pci_register_read(rt2x00dev, PHY_CSR4, &reg);
147                 if (!rt2x00_get_field32(reg, PHY_CSR4_BUSY))
148                         goto rf_write;
149                 udelay(REGISTER_BUSY_DELAY);
150         }
151
152         ERROR(rt2x00dev, "PHY_CSR4 register busy. Write failed.\n");
153         return;
154
155 rf_write:
156         reg = 0;
157         rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
158         rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
159         rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
160         rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
161
162         rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
163         rt2x00_rf_write(rt2x00dev, word, value);
164 }
165
166 #ifdef CONFIG_RT2X00_LIB_LEDS
167 /*
168  * This function is only called from rt61pci_led_brightness()
169  * make gcc happy by placing this function inside the
170  * same ifdef statement as the caller.
171  */
172 static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
173                                 const u8 command, const u8 token,
174                                 const u8 arg0, const u8 arg1)
175 {
176         u32 reg;
177
178         rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CSR, &reg);
179
180         if (rt2x00_get_field32(reg, H2M_MAILBOX_CSR_OWNER)) {
181                 ERROR(rt2x00dev, "mcu request error. "
182                       "Request 0x%02x failed for token 0x%02x.\n",
183                       command, token);
184                 return;
185         }
186
187         rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
188         rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
189         rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
190         rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
191         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
192
193         rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
194         rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
195         rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
196         rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
197 }
198 #endif /* CONFIG_RT2X00_LIB_LEDS */
199
200 static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
201 {
202         struct rt2x00_dev *rt2x00dev = eeprom->data;
203         u32 reg;
204
205         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
206
207         eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
208         eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
209         eeprom->reg_data_clock =
210             !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
211         eeprom->reg_chip_select =
212             !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
213 }
214
215 static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
216 {
217         struct rt2x00_dev *rt2x00dev = eeprom->data;
218         u32 reg = 0;
219
220         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
221         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
222         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
223                            !!eeprom->reg_data_clock);
224         rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
225                            !!eeprom->reg_chip_select);
226
227         rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
228 }
229
230 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
231 #define CSR_OFFSET(__word)      ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
232
233 static void rt61pci_read_csr(struct rt2x00_dev *rt2x00dev,
234                              const unsigned int word, u32 *data)
235 {
236         rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
237 }
238
239 static void rt61pci_write_csr(struct rt2x00_dev *rt2x00dev,
240                               const unsigned int word, u32 data)
241 {
242         rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
243 }
244
245 static const struct rt2x00debug rt61pci_rt2x00debug = {
246         .owner  = THIS_MODULE,
247         .csr    = {
248                 .read           = rt61pci_read_csr,
249                 .write          = rt61pci_write_csr,
250                 .word_size      = sizeof(u32),
251                 .word_count     = CSR_REG_SIZE / sizeof(u32),
252         },
253         .eeprom = {
254                 .read           = rt2x00_eeprom_read,
255                 .write          = rt2x00_eeprom_write,
256                 .word_size      = sizeof(u16),
257                 .word_count     = EEPROM_SIZE / sizeof(u16),
258         },
259         .bbp    = {
260                 .read           = rt61pci_bbp_read,
261                 .write          = rt61pci_bbp_write,
262                 .word_size      = sizeof(u8),
263                 .word_count     = BBP_SIZE / sizeof(u8),
264         },
265         .rf     = {
266                 .read           = rt2x00_rf_read,
267                 .write          = rt61pci_rf_write,
268                 .word_size      = sizeof(u32),
269                 .word_count     = RF_SIZE / sizeof(u32),
270         },
271 };
272 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
273
274 #ifdef CONFIG_RT2X00_LIB_RFKILL
275 static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
276 {
277         u32 reg;
278
279         rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
280         return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
281 }
282 #else
283 #define rt61pci_rfkill_poll     NULL
284 #endif /* CONFIG_RT2X00_LIB_RFKILL */
285
286 #ifdef CONFIG_RT2X00_LIB_LEDS
287 static void rt61pci_brightness_set(struct led_classdev *led_cdev,
288                                    enum led_brightness brightness)
289 {
290         struct rt2x00_led *led =
291             container_of(led_cdev, struct rt2x00_led, led_dev);
292         unsigned int enabled = brightness != LED_OFF;
293         unsigned int a_mode =
294             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
295         unsigned int bg_mode =
296             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
297
298         if (led->type == LED_TYPE_RADIO) {
299                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
300                                    MCU_LEDCS_RADIO_STATUS, enabled);
301
302                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
303                                     (led->rt2x00dev->led_mcu_reg & 0xff),
304                                     ((led->rt2x00dev->led_mcu_reg >> 8)));
305         } else if (led->type == LED_TYPE_ASSOC) {
306                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
307                                    MCU_LEDCS_LINK_BG_STATUS, bg_mode);
308                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
309                                    MCU_LEDCS_LINK_A_STATUS, a_mode);
310
311                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
312                                     (led->rt2x00dev->led_mcu_reg & 0xff),
313                                     ((led->rt2x00dev->led_mcu_reg >> 8)));
314         } else if (led->type == LED_TYPE_QUALITY) {
315                 /*
316                  * The brightness is divided into 6 levels (0 - 5),
317                  * this means we need to convert the brightness
318                  * argument into the matching level within that range.
319                  */
320                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
321                                     brightness / (LED_FULL / 6), 0);
322         }
323 }
324
325 static int rt61pci_blink_set(struct led_classdev *led_cdev,
326                              unsigned long *delay_on,
327                              unsigned long *delay_off)
328 {
329         struct rt2x00_led *led =
330             container_of(led_cdev, struct rt2x00_led, led_dev);
331         u32 reg;
332
333         rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, &reg);
334         rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
335         rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
336         rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);
337
338         return 0;
339 }
340
341 static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
342                              struct rt2x00_led *led,
343                              enum led_type type)
344 {
345         led->rt2x00dev = rt2x00dev;
346         led->type = type;
347         led->led_dev.brightness_set = rt61pci_brightness_set;
348         led->led_dev.blink_set = rt61pci_blink_set;
349         led->flags = LED_INITIALIZED;
350 }
351 #endif /* CONFIG_RT2X00_LIB_LEDS */
352
353 /*
354  * Configuration handlers.
355  */
356 static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
357                                      struct rt2x00lib_crypto *crypto,
358                                      struct ieee80211_key_conf *key)
359 {
360         struct hw_key_entry key_entry;
361         struct rt2x00_field32 field;
362         u32 mask;
363         u32 reg;
364
365         if (crypto->cmd == SET_KEY) {
366                 /*
367                  * rt2x00lib can't determine the correct free
368                  * key_idx for shared keys. We have 1 register
369                  * with key valid bits. The goal is simple, read
370                  * the register, if that is full we have no slots
371                  * left.
372                  * Note that each BSS is allowed to have up to 4
373                  * shared keys, so put a mask over the allowed
374                  * entries.
375                  */
376                 mask = (0xf << crypto->bssidx);
377
378                 rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
379                 reg &= mask;
380
381                 if (reg && reg == mask)
382                         return -ENOSPC;
383
384                 key->hw_key_idx += reg ? ffz(reg) : 0;
385
386                 /*
387                  * Upload key to hardware
388                  */
389                 memcpy(key_entry.key, crypto->key,
390                        sizeof(key_entry.key));
391                 memcpy(key_entry.tx_mic, crypto->tx_mic,
392                        sizeof(key_entry.tx_mic));
393                 memcpy(key_entry.rx_mic, crypto->rx_mic,
394                        sizeof(key_entry.rx_mic));
395
396                 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
397                 rt2x00pci_register_multiwrite(rt2x00dev, reg,
398                                               &key_entry, sizeof(key_entry));
399
400                 /*
401                  * The cipher types are stored over 2 registers.
402                  * bssidx 0 and 1 keys are stored in SEC_CSR1 and
403                  * bssidx 1 and 2 keys are stored in SEC_CSR5.
404                  * Using the correct defines correctly will cause overhead,
405                  * so just calculate the correct offset.
406                  */
407                 if (key->hw_key_idx < 8) {
408                         field.bit_offset = (3 * key->hw_key_idx);
409                         field.bit_mask = 0x7 << field.bit_offset;
410
411                         rt2x00pci_register_read(rt2x00dev, SEC_CSR1, &reg);
412                         rt2x00_set_field32(&reg, field, crypto->cipher);
413                         rt2x00pci_register_write(rt2x00dev, SEC_CSR1, reg);
414                 } else {
415                         field.bit_offset = (3 * (key->hw_key_idx - 8));
416                         field.bit_mask = 0x7 << field.bit_offset;
417
418                         rt2x00pci_register_read(rt2x00dev, SEC_CSR5, &reg);
419                         rt2x00_set_field32(&reg, field, crypto->cipher);
420                         rt2x00pci_register_write(rt2x00dev, SEC_CSR5, reg);
421                 }
422
423                 /*
424                  * The driver does not support the IV/EIV generation
425                  * in hardware. However it doesn't support the IV/EIV
426                  * inside the ieee80211 frame either, but requires it
427                  * to be provided seperately for the descriptor.
428                  * rt2x00lib will cut the IV/EIV data out of all frames
429                  * given to us by mac80211, but we must tell mac80211
430                  * to generate the IV/EIV data.
431                  */
432                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
433         }
434
435         /*
436          * SEC_CSR0 contains only single-bit fields to indicate
437          * a particular key is valid. Because using the FIELD32()
438          * defines directly will cause a lot of overhead we use
439          * a calculation to determine the correct bit directly.
440          */
441         mask = 1 << key->hw_key_idx;
442
443         rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
444         if (crypto->cmd == SET_KEY)
445                 reg |= mask;
446         else if (crypto->cmd == DISABLE_KEY)
447                 reg &= ~mask;
448         rt2x00pci_register_write(rt2x00dev, SEC_CSR0, reg);
449
450         return 0;
451 }
452
453 static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
454                                        struct rt2x00lib_crypto *crypto,
455                                        struct ieee80211_key_conf *key)
456 {
457         struct hw_pairwise_ta_entry addr_entry;
458         struct hw_key_entry key_entry;
459         u32 mask;
460         u32 reg;
461
462         if (crypto->cmd == SET_KEY) {
463                 /*
464                  * rt2x00lib can't determine the correct free
465                  * key_idx for pairwise keys. We have 2 registers
466                  * with key valid bits. The goal is simple, read
467                  * the first register, if that is full move to
468                  * the next register.
469                  * When both registers are full, we drop the key,
470                  * otherwise we use the first invalid entry.
471                  */
472                 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
473                 if (reg && reg == ~0) {
474                         key->hw_key_idx = 32;
475                         rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
476                         if (reg && reg == ~0)
477                                 return -ENOSPC;
478                 }
479
480                 key->hw_key_idx += reg ? ffz(reg) : 0;
481
482                 /*
483                  * Upload key to hardware
484                  */
485                 memcpy(key_entry.key, crypto->key,
486                        sizeof(key_entry.key));
487                 memcpy(key_entry.tx_mic, crypto->tx_mic,
488                        sizeof(key_entry.tx_mic));
489                 memcpy(key_entry.rx_mic, crypto->rx_mic,
490                        sizeof(key_entry.rx_mic));
491
492                 memset(&addr_entry, 0, sizeof(addr_entry));
493                 memcpy(&addr_entry, crypto->address, ETH_ALEN);
494                 addr_entry.cipher = crypto->cipher;
495
496                 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
497                 rt2x00pci_register_multiwrite(rt2x00dev, reg,
498                                               &key_entry, sizeof(key_entry));
499
500                 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
501                 rt2x00pci_register_multiwrite(rt2x00dev, reg,
502                                               &addr_entry, sizeof(addr_entry));
503
504                 /*
505                  * Enable pairwise lookup table for given BSS idx,
506                  * without this received frames will not be decrypted
507                  * by the hardware.
508                  */
509                 rt2x00pci_register_read(rt2x00dev, SEC_CSR4, &reg);
510                 reg |= (1 << crypto->bssidx);
511                 rt2x00pci_register_write(rt2x00dev, SEC_CSR4, reg);
512
513                 /*
514                  * The driver does not support the IV/EIV generation
515                  * in hardware. However it doesn't support the IV/EIV
516                  * inside the ieee80211 frame either, but requires it
517                  * to be provided seperately for the descriptor.
518                  * rt2x00lib will cut the IV/EIV data out of all frames
519                  * given to us by mac80211, but we must tell mac80211
520                  * to generate the IV/EIV data.
521                  */
522                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
523         }
524
525         /*
526          * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
527          * a particular key is valid. Because using the FIELD32()
528          * defines directly will cause a lot of overhead we use
529          * a calculation to determine the correct bit directly.
530          */
531         if (key->hw_key_idx < 32) {
532                 mask = 1 << key->hw_key_idx;
533
534                 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
535                 if (crypto->cmd == SET_KEY)
536                         reg |= mask;
537                 else if (crypto->cmd == DISABLE_KEY)
538                         reg &= ~mask;
539                 rt2x00pci_register_write(rt2x00dev, SEC_CSR2, reg);
540         } else {
541                 mask = 1 << (key->hw_key_idx - 32);
542
543                 rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
544                 if (crypto->cmd == SET_KEY)
545                         reg |= mask;
546                 else if (crypto->cmd == DISABLE_KEY)
547                         reg &= ~mask;
548                 rt2x00pci_register_write(rt2x00dev, SEC_CSR3, reg);
549         }
550
551         return 0;
552 }
553
554 static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
555                                   const unsigned int filter_flags)
556 {
557         u32 reg;
558
559         /*
560          * Start configuration steps.
561          * Note that the version error will always be dropped
562          * and broadcast frames will always be accepted since
563          * there is no filter for it at this time.
564          */
565         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
566         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
567                            !(filter_flags & FIF_FCSFAIL));
568         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
569                            !(filter_flags & FIF_PLCPFAIL));
570         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
571                            !(filter_flags & FIF_CONTROL));
572         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
573                            !(filter_flags & FIF_PROMISC_IN_BSS));
574         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
575                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
576                            !rt2x00dev->intf_ap_count);
577         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
578         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
579                            !(filter_flags & FIF_ALLMULTI));
580         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
581         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
582                            !(filter_flags & FIF_CONTROL));
583         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
584 }
585
586 static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
587                                 struct rt2x00_intf *intf,
588                                 struct rt2x00intf_conf *conf,
589                                 const unsigned int flags)
590 {
591         unsigned int beacon_base;
592         u32 reg;
593
594         if (flags & CONFIG_UPDATE_TYPE) {
595                 /*
596                  * Clear current synchronisation setup.
597                  * For the Beacon base registers we only need to clear
598                  * the first byte since that byte contains the VALID and OWNER
599                  * bits which (when set to 0) will invalidate the entire beacon.
600                  */
601                 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
602                 rt2x00pci_register_write(rt2x00dev, beacon_base, 0);
603
604                 /*
605                  * Enable synchronisation.
606                  */
607                 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
608                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
609                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
610                 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
611                 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
612         }
613
614         if (flags & CONFIG_UPDATE_MAC) {
615                 reg = le32_to_cpu(conf->mac[1]);
616                 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
617                 conf->mac[1] = cpu_to_le32(reg);
618
619                 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
620                                               conf->mac, sizeof(conf->mac));
621         }
622
623         if (flags & CONFIG_UPDATE_BSSID) {
624                 reg = le32_to_cpu(conf->bssid[1]);
625                 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
626                 conf->bssid[1] = cpu_to_le32(reg);
627
628                 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
629                                               conf->bssid, sizeof(conf->bssid));
630         }
631 }
632
633 static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
634                                struct rt2x00lib_erp *erp)
635 {
636         u32 reg;
637
638         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
639         rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, erp->ack_timeout);
640         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
641
642         rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
643         rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
644                            !!erp->short_preamble);
645         rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
646
647         rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, erp->basic_rates);
648
649         rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
650         rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
651         rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
652
653         rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
654         rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
655         rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
656         rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
657         rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
658 }
659
660 static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
661                                       struct antenna_setup *ant)
662 {
663         u8 r3;
664         u8 r4;
665         u8 r77;
666
667         rt61pci_bbp_read(rt2x00dev, 3, &r3);
668         rt61pci_bbp_read(rt2x00dev, 4, &r4);
669         rt61pci_bbp_read(rt2x00dev, 77, &r77);
670
671         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
672                           rt2x00_rf(&rt2x00dev->chip, RF5325));
673
674         /*
675          * Configure the RX antenna.
676          */
677         switch (ant->rx) {
678         case ANTENNA_HW_DIVERSITY:
679                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
680                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
681                                   (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
682                 break;
683         case ANTENNA_A:
684                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
685                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
686                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
687                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
688                 else
689                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
690                 break;
691         case ANTENNA_B:
692         default:
693                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
694                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
695                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
696                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
697                 else
698                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
699                 break;
700         }
701
702         rt61pci_bbp_write(rt2x00dev, 77, r77);
703         rt61pci_bbp_write(rt2x00dev, 3, r3);
704         rt61pci_bbp_write(rt2x00dev, 4, r4);
705 }
706
707 static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
708                                       struct antenna_setup *ant)
709 {
710         u8 r3;
711         u8 r4;
712         u8 r77;
713
714         rt61pci_bbp_read(rt2x00dev, 3, &r3);
715         rt61pci_bbp_read(rt2x00dev, 4, &r4);
716         rt61pci_bbp_read(rt2x00dev, 77, &r77);
717
718         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
719                           rt2x00_rf(&rt2x00dev->chip, RF2529));
720         rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
721                           !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
722
723         /*
724          * Configure the RX antenna.
725          */
726         switch (ant->rx) {
727         case ANTENNA_HW_DIVERSITY:
728                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
729                 break;
730         case ANTENNA_A:
731                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
732                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
733                 break;
734         case ANTENNA_B:
735         default:
736                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
737                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
738                 break;
739         }
740
741         rt61pci_bbp_write(rt2x00dev, 77, r77);
742         rt61pci_bbp_write(rt2x00dev, 3, r3);
743         rt61pci_bbp_write(rt2x00dev, 4, r4);
744 }
745
746 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
747                                            const int p1, const int p2)
748 {
749         u32 reg;
750
751         rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
752
753         rt2x00_set_field32(&reg, MAC_CSR13_BIT4, p1);
754         rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);
755
756         rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
757         rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);
758
759         rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
760 }
761
762 static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
763                                         struct antenna_setup *ant)
764 {
765         u8 r3;
766         u8 r4;
767         u8 r77;
768
769         rt61pci_bbp_read(rt2x00dev, 3, &r3);
770         rt61pci_bbp_read(rt2x00dev, 4, &r4);
771         rt61pci_bbp_read(rt2x00dev, 77, &r77);
772
773         /*
774          * Configure the RX antenna.
775          */
776         switch (ant->rx) {
777         case ANTENNA_A:
778                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
779                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
780                 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
781                 break;
782         case ANTENNA_HW_DIVERSITY:
783                 /*
784                  * FIXME: Antenna selection for the rf 2529 is very confusing
785                  * in the legacy driver. Just default to antenna B until the
786                  * legacy code can be properly translated into rt2x00 code.
787                  */
788         case ANTENNA_B:
789         default:
790                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
791                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
792                 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
793                 break;
794         }
795
796         rt61pci_bbp_write(rt2x00dev, 77, r77);
797         rt61pci_bbp_write(rt2x00dev, 3, r3);
798         rt61pci_bbp_write(rt2x00dev, 4, r4);
799 }
800
801 struct antenna_sel {
802         u8 word;
803         /*
804          * value[0] -> non-LNA
805          * value[1] -> LNA
806          */
807         u8 value[2];
808 };
809
810 static const struct antenna_sel antenna_sel_a[] = {
811         { 96,  { 0x58, 0x78 } },
812         { 104, { 0x38, 0x48 } },
813         { 75,  { 0xfe, 0x80 } },
814         { 86,  { 0xfe, 0x80 } },
815         { 88,  { 0xfe, 0x80 } },
816         { 35,  { 0x60, 0x60 } },
817         { 97,  { 0x58, 0x58 } },
818         { 98,  { 0x58, 0x58 } },
819 };
820
821 static const struct antenna_sel antenna_sel_bg[] = {
822         { 96,  { 0x48, 0x68 } },
823         { 104, { 0x2c, 0x3c } },
824         { 75,  { 0xfe, 0x80 } },
825         { 86,  { 0xfe, 0x80 } },
826         { 88,  { 0xfe, 0x80 } },
827         { 35,  { 0x50, 0x50 } },
828         { 97,  { 0x48, 0x48 } },
829         { 98,  { 0x48, 0x48 } },
830 };
831
832 static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
833                                struct antenna_setup *ant)
834 {
835         const struct antenna_sel *sel;
836         unsigned int lna;
837         unsigned int i;
838         u32 reg;
839
840         /*
841          * We should never come here because rt2x00lib is supposed
842          * to catch this and send us the correct antenna explicitely.
843          */
844         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
845                ant->tx == ANTENNA_SW_DIVERSITY);
846
847         if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
848                 sel = antenna_sel_a;
849                 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
850         } else {
851                 sel = antenna_sel_bg;
852                 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
853         }
854
855         for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
856                 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
857
858         rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);
859
860         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
861                            rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
862         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
863                            rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
864
865         rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
866
867         if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
868             rt2x00_rf(&rt2x00dev->chip, RF5325))
869                 rt61pci_config_antenna_5x(rt2x00dev, ant);
870         else if (rt2x00_rf(&rt2x00dev->chip, RF2527))
871                 rt61pci_config_antenna_2x(rt2x00dev, ant);
872         else if (rt2x00_rf(&rt2x00dev->chip, RF2529)) {
873                 if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
874                         rt61pci_config_antenna_2x(rt2x00dev, ant);
875                 else
876                         rt61pci_config_antenna_2529(rt2x00dev, ant);
877         }
878 }
879
880 static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
881                                     struct rt2x00lib_conf *libconf)
882 {
883         u16 eeprom;
884         short lna_gain = 0;
885
886         if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
887                 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
888                         lna_gain += 14;
889
890                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
891                 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
892         } else {
893                 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
894                         lna_gain += 14;
895
896                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
897                 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
898         }
899
900         rt2x00dev->lna_gain = lna_gain;
901 }
902
903 static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
904                                    struct rf_channel *rf, const int txpower)
905 {
906         u8 r3;
907         u8 r94;
908         u8 smart;
909
910         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
911         rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
912
913         smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
914                   rt2x00_rf(&rt2x00dev->chip, RF2527));
915
916         rt61pci_bbp_read(rt2x00dev, 3, &r3);
917         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
918         rt61pci_bbp_write(rt2x00dev, 3, r3);
919
920         r94 = 6;
921         if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
922                 r94 += txpower - MAX_TXPOWER;
923         else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
924                 r94 += txpower;
925         rt61pci_bbp_write(rt2x00dev, 94, r94);
926
927         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
928         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
929         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
930         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
931
932         udelay(200);
933
934         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
935         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
936         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
937         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
938
939         udelay(200);
940
941         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
942         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
943         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
944         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
945
946         msleep(1);
947 }
948
949 static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
950                                    const int txpower)
951 {
952         struct rf_channel rf;
953
954         rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
955         rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
956         rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
957         rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
958
959         rt61pci_config_channel(rt2x00dev, &rf, txpower);
960 }
961
962 static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
963                                     struct rt2x00lib_conf *libconf)
964 {
965         u32 reg;
966
967         rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
968         rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
969                            libconf->conf->long_frame_max_tx_count);
970         rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
971                            libconf->conf->short_frame_max_tx_count);
972         rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
973 }
974
975 static void rt61pci_config_duration(struct rt2x00_dev *rt2x00dev,
976                                     struct rt2x00lib_conf *libconf)
977 {
978         u32 reg;
979
980         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
981         rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
982         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
983
984         rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
985         rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
986         rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
987
988         rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
989         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
990                            libconf->conf->beacon_int * 16);
991         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
992 }
993
994 static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
995                            struct rt2x00lib_conf *libconf,
996                            const unsigned int flags)
997 {
998         /* Always recalculate LNA gain before changing configuration */
999         rt61pci_config_lna_gain(rt2x00dev, libconf);
1000
1001         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
1002                 rt61pci_config_channel(rt2x00dev, &libconf->rf,
1003                                        libconf->conf->power_level);
1004         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
1005             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
1006                 rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
1007         if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
1008                 rt61pci_config_retry_limit(rt2x00dev, libconf);
1009         if (flags & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
1010                 rt61pci_config_duration(rt2x00dev, libconf);
1011 }
1012
1013 /*
1014  * Link tuning
1015  */
1016 static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
1017                                struct link_qual *qual)
1018 {
1019         u32 reg;
1020
1021         /*
1022          * Update FCS error count from register.
1023          */
1024         rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1025         qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
1026
1027         /*
1028          * Update False CCA count from register.
1029          */
1030         rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1031         qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
1032 }
1033
1034 static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
1035 {
1036         rt61pci_bbp_write(rt2x00dev, 17, 0x20);
1037         rt2x00dev->link.vgc_level = 0x20;
1038 }
1039
1040 static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev)
1041 {
1042         int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
1043         u8 r17;
1044         u8 up_bound;
1045         u8 low_bound;
1046
1047         rt61pci_bbp_read(rt2x00dev, 17, &r17);
1048
1049         /*
1050          * Determine r17 bounds.
1051          */
1052         if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1053                 low_bound = 0x28;
1054                 up_bound = 0x48;
1055                 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
1056                         low_bound += 0x10;
1057                         up_bound += 0x10;
1058                 }
1059         } else {
1060                 low_bound = 0x20;
1061                 up_bound = 0x40;
1062                 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
1063                         low_bound += 0x10;
1064                         up_bound += 0x10;
1065                 }
1066         }
1067
1068         /*
1069          * If we are not associated, we should go straight to the
1070          * dynamic CCA tuning.
1071          */
1072         if (!rt2x00dev->intf_associated)
1073                 goto dynamic_cca_tune;
1074
1075         /*
1076          * Special big-R17 for very short distance
1077          */
1078         if (rssi >= -35) {
1079                 if (r17 != 0x60)
1080                         rt61pci_bbp_write(rt2x00dev, 17, 0x60);
1081                 return;
1082         }
1083
1084         /*
1085          * Special big-R17 for short distance
1086          */
1087         if (rssi >= -58) {
1088                 if (r17 != up_bound)
1089                         rt61pci_bbp_write(rt2x00dev, 17, up_bound);
1090                 return;
1091         }
1092
1093         /*
1094          * Special big-R17 for middle-short distance
1095          */
1096         if (rssi >= -66) {
1097                 low_bound += 0x10;
1098                 if (r17 != low_bound)
1099                         rt61pci_bbp_write(rt2x00dev, 17, low_bound);
1100                 return;
1101         }
1102
1103         /*
1104          * Special mid-R17 for middle distance
1105          */
1106         if (rssi >= -74) {
1107                 low_bound += 0x08;
1108                 if (r17 != low_bound)
1109                         rt61pci_bbp_write(rt2x00dev, 17, low_bound);
1110                 return;
1111         }
1112
1113         /*
1114          * Special case: Change up_bound based on the rssi.
1115          * Lower up_bound when rssi is weaker then -74 dBm.
1116          */
1117         up_bound -= 2 * (-74 - rssi);
1118         if (low_bound > up_bound)
1119                 up_bound = low_bound;
1120
1121         if (r17 > up_bound) {
1122                 rt61pci_bbp_write(rt2x00dev, 17, up_bound);
1123                 return;
1124         }
1125
1126 dynamic_cca_tune:
1127
1128         /*
1129          * r17 does not yet exceed upper limit, continue and base
1130          * the r17 tuning on the false CCA count.
1131          */
1132         if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
1133                 if (++r17 > up_bound)
1134                         r17 = up_bound;
1135                 rt61pci_bbp_write(rt2x00dev, 17, r17);
1136         } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
1137                 if (--r17 < low_bound)
1138                         r17 = low_bound;
1139                 rt61pci_bbp_write(rt2x00dev, 17, r17);
1140         }
1141 }
1142
1143 /*
1144  * Firmware functions
1145  */
1146 static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1147 {
1148         char *fw_name;
1149
1150         switch (rt2x00dev->chip.rt) {
1151         case RT2561:
1152                 fw_name = FIRMWARE_RT2561;
1153                 break;
1154         case RT2561s:
1155                 fw_name = FIRMWARE_RT2561s;
1156                 break;
1157         case RT2661:
1158                 fw_name = FIRMWARE_RT2661;
1159                 break;
1160         default:
1161                 fw_name = NULL;
1162                 break;
1163         }
1164
1165         return fw_name;
1166 }
1167
1168 static u16 rt61pci_get_firmware_crc(const void *data, const size_t len)
1169 {
1170         u16 crc;
1171
1172         /*
1173          * Use the crc itu-t algorithm.
1174          * The last 2 bytes in the firmware array are the crc checksum itself,
1175          * this means that we should never pass those 2 bytes to the crc
1176          * algorithm.
1177          */
1178         crc = crc_itu_t(0, data, len - 2);
1179         crc = crc_itu_t_byte(crc, 0);
1180         crc = crc_itu_t_byte(crc, 0);
1181
1182         return crc;
1183 }
1184
1185 static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev, const void *data,
1186                                  const size_t len)
1187 {
1188         int i;
1189         u32 reg;
1190
1191         /*
1192          * Wait for stable hardware.
1193          */
1194         for (i = 0; i < 100; i++) {
1195                 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
1196                 if (reg)
1197                         break;
1198                 msleep(1);
1199         }
1200
1201         if (!reg) {
1202                 ERROR(rt2x00dev, "Unstable hardware.\n");
1203                 return -EBUSY;
1204         }
1205
1206         /*
1207          * Prepare MCU and mailbox for firmware loading.
1208          */
1209         reg = 0;
1210         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1211         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1212         rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1213         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1214         rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1215
1216         /*
1217          * Write firmware to device.
1218          */
1219         reg = 0;
1220         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1221         rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1222         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1223
1224         rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1225                                       data, len);
1226
1227         rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1228         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1229
1230         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1231         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1232
1233         for (i = 0; i < 100; i++) {
1234                 rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
1235                 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1236                         break;
1237                 msleep(1);
1238         }
1239
1240         if (i == 100) {
1241                 ERROR(rt2x00dev, "MCU Control register not ready.\n");
1242                 return -EBUSY;
1243         }
1244
1245         /*
1246          * Hardware needs another millisecond before it is ready.
1247          */
1248         msleep(1);
1249
1250         /*
1251          * Reset MAC and BBP registers.
1252          */
1253         reg = 0;
1254         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1255         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1256         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1257
1258         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1259         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1260         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1261         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1262
1263         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1264         rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1265         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1266
1267         return 0;
1268 }
1269
1270 /*
1271  * Initialization functions.
1272  */
1273 static void rt61pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
1274                                  struct queue_entry *entry)
1275 {
1276         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1277         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1278         u32 word;
1279
1280         rt2x00_desc_read(entry_priv->desc, 5, &word);
1281         rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1282                            skbdesc->skb_dma);
1283         rt2x00_desc_write(entry_priv->desc, 5, word);
1284
1285         rt2x00_desc_read(entry_priv->desc, 0, &word);
1286         rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1287         rt2x00_desc_write(entry_priv->desc, 0, word);
1288 }
1289
1290 static void rt61pci_init_txentry(struct rt2x00_dev *rt2x00dev,
1291                                  struct queue_entry *entry)
1292 {
1293         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1294         u32 word;
1295
1296         rt2x00_desc_read(entry_priv->desc, 0, &word);
1297         rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1298         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1299         rt2x00_desc_write(entry_priv->desc, 0, word);
1300 }
1301
1302 static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1303 {
1304         struct queue_entry_priv_pci *entry_priv;
1305         u32 reg;
1306
1307         /*
1308          * Initialize registers.
1309          */
1310         rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1311         rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1312                            rt2x00dev->tx[0].limit);
1313         rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1314                            rt2x00dev->tx[1].limit);
1315         rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1316                            rt2x00dev->tx[2].limit);
1317         rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1318                            rt2x00dev->tx[3].limit);
1319         rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
1320
1321         rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
1322         rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1323                            rt2x00dev->tx[0].desc_size / 4);
1324         rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
1325
1326         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1327         rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1328         rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1329                            entry_priv->desc_dma);
1330         rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1331
1332         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1333         rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1334         rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1335                            entry_priv->desc_dma);
1336         rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1337
1338         entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1339         rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1340         rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1341                            entry_priv->desc_dma);
1342         rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1343
1344         entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1345         rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1346         rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1347                            entry_priv->desc_dma);
1348         rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1349
1350         rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
1351         rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1352         rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1353                            rt2x00dev->rx->desc_size / 4);
1354         rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1355         rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
1356
1357         entry_priv = rt2x00dev->rx->entries[0].priv_data;
1358         rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1359         rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1360                            entry_priv->desc_dma);
1361         rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
1362
1363         rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1364         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1365         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1366         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1367         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1368         rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1369
1370         rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1371         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1372         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1373         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1374         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1375         rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1376
1377         rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1378         rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1379         rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1380
1381         return 0;
1382 }
1383
1384 static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1385 {
1386         u32 reg;
1387
1388         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1389         rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1390         rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1391         rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1392         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1393
1394         rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
1395         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1396         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1397         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1398         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1399         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1400         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1401         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1402         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1403         rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
1404
1405         /*
1406          * CCK TXD BBP registers
1407          */
1408         rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
1409         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1410         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1411         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1412         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1413         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1414         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1415         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1416         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1417         rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
1418
1419         /*
1420          * OFDM TXD BBP registers
1421          */
1422         rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
1423         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1424         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1425         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1426         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1427         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1428         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1429         rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
1430
1431         rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
1432         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1433         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1434         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1435         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1436         rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
1437
1438         rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
1439         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1440         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1441         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1442         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1443         rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
1444
1445         rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1446         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1447         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1448         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1449         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1450         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1451         rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1452         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1453
1454         rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1455
1456         rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1457
1458         rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
1459         rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1460         rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
1461
1462         rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1463
1464         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1465                 return -EBUSY;
1466
1467         rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1468
1469         /*
1470          * Invalidate all Shared Keys (SEC_CSR0),
1471          * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1472          */
1473         rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1474         rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1475         rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1476
1477         rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1478         rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1479         rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1480         rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1481
1482         rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1483
1484         rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1485
1486         rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1487
1488         /*
1489          * Clear all beacons
1490          * For the Beacon base registers we only need to clear
1491          * the first byte since that byte contains the VALID and OWNER
1492          * bits which (when set to 0) will invalidate the entire beacon.
1493          */
1494         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1495         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1496         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1497         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1498
1499         /*
1500          * We must clear the error counters.
1501          * These registers are cleared on read,
1502          * so we may pass a useless variable to store the value.
1503          */
1504         rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1505         rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1506         rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);
1507
1508         /*
1509          * Reset MAC and BBP registers.
1510          */
1511         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1512         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1513         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1514         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1515
1516         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1517         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1518         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1519         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1520
1521         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1522         rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1523         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1524
1525         return 0;
1526 }
1527
1528 static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1529 {
1530         unsigned int i;
1531         u8 value;
1532
1533         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1534                 rt61pci_bbp_read(rt2x00dev, 0, &value);
1535                 if ((value != 0xff) && (value != 0x00))
1536                         return 0;
1537                 udelay(REGISTER_BUSY_DELAY);
1538         }
1539
1540         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1541         return -EACCES;
1542 }
1543
1544 static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1545 {
1546         unsigned int i;
1547         u16 eeprom;
1548         u8 reg_id;
1549         u8 value;
1550
1551         if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1552                 return -EACCES;
1553
1554         rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1555         rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1556         rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1557         rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1558         rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1559         rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1560         rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1561         rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1562         rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1563         rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1564         rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1565         rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1566         rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1567         rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1568         rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1569         rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1570         rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1571         rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1572         rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1573         rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1574         rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1575         rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1576         rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1577         rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1578
1579         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1580                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1581
1582                 if (eeprom != 0xffff && eeprom != 0x0000) {
1583                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1584                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1585                         rt61pci_bbp_write(rt2x00dev, reg_id, value);
1586                 }
1587         }
1588
1589         return 0;
1590 }
1591
1592 /*
1593  * Device state switch handlers.
1594  */
1595 static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1596                               enum dev_state state)
1597 {
1598         u32 reg;
1599
1600         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1601         rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
1602                            (state == STATE_RADIO_RX_OFF) ||
1603                            (state == STATE_RADIO_RX_OFF_LINK));
1604         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1605 }
1606
1607 static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1608                                enum dev_state state)
1609 {
1610         int mask = (state == STATE_RADIO_IRQ_OFF);
1611         u32 reg;
1612
1613         /*
1614          * When interrupts are being enabled, the interrupt registers
1615          * should clear the register to assure a clean state.
1616          */
1617         if (state == STATE_RADIO_IRQ_ON) {
1618                 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1619                 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1620
1621                 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1622                 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1623         }
1624
1625         /*
1626          * Only toggle the interrupts bits we are going to use.
1627          * Non-checked interrupt bits are disabled by default.
1628          */
1629         rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1630         rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1631         rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1632         rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1633         rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1634         rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1635
1636         rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1637         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1638         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1639         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1640         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1641         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1642         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1643         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1644         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1645         rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1646 }
1647
1648 static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1649 {
1650         u32 reg;
1651
1652         /*
1653          * Initialize all registers.
1654          */
1655         if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1656                      rt61pci_init_registers(rt2x00dev) ||
1657                      rt61pci_init_bbp(rt2x00dev)))
1658                 return -EIO;
1659
1660         /*
1661          * Enable RX.
1662          */
1663         rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1664         rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1665         rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1666
1667         return 0;
1668 }
1669
1670 static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1671 {
1672         u32 reg;
1673
1674         rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1675
1676         /*
1677          * Disable synchronisation.
1678          */
1679         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
1680
1681         /*
1682          * Cancel RX and TX.
1683          */
1684         rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1685         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1686         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1687         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1688         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
1689         rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1690 }
1691
1692 static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1693 {
1694         u32 reg;
1695         unsigned int i;
1696         char put_to_sleep;
1697
1698         put_to_sleep = (state != STATE_AWAKE);
1699
1700         rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1701         rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1702         rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1703         rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1704
1705         /*
1706          * Device is not guaranteed to be in the requested state yet.
1707          * We must wait until the register indicates that the
1708          * device has entered the correct state.
1709          */
1710         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1711                 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1712                 state = rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
1713                 if (state == !put_to_sleep)
1714                         return 0;
1715                 msleep(10);
1716         }
1717
1718         return -EBUSY;
1719 }
1720
1721 static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1722                                     enum dev_state state)
1723 {
1724         int retval = 0;
1725
1726         switch (state) {
1727         case STATE_RADIO_ON:
1728                 retval = rt61pci_enable_radio(rt2x00dev);
1729                 break;
1730         case STATE_RADIO_OFF:
1731                 rt61pci_disable_radio(rt2x00dev);
1732                 break;
1733         case STATE_RADIO_RX_ON:
1734         case STATE_RADIO_RX_ON_LINK:
1735         case STATE_RADIO_RX_OFF:
1736         case STATE_RADIO_RX_OFF_LINK:
1737                 rt61pci_toggle_rx(rt2x00dev, state);
1738                 break;
1739         case STATE_RADIO_IRQ_ON:
1740         case STATE_RADIO_IRQ_OFF:
1741                 rt61pci_toggle_irq(rt2x00dev, state);
1742                 break;
1743         case STATE_DEEP_SLEEP:
1744         case STATE_SLEEP:
1745         case STATE_STANDBY:
1746         case STATE_AWAKE:
1747                 retval = rt61pci_set_state(rt2x00dev, state);
1748                 break;
1749         default:
1750                 retval = -ENOTSUPP;
1751                 break;
1752         }
1753
1754         if (unlikely(retval))
1755                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1756                       state, retval);
1757
1758         return retval;
1759 }
1760
1761 /*
1762  * TX descriptor initialization
1763  */
1764 static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1765                                   struct sk_buff *skb,
1766                                   struct txentry_desc *txdesc)
1767 {
1768         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1769         __le32 *txd = skbdesc->desc;
1770         u32 word;
1771
1772         /*
1773          * Start writing the descriptor words.
1774          */
1775         rt2x00_desc_read(txd, 1, &word);
1776         rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
1777         rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
1778         rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1779         rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1780         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1781         rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1782                            test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1783         rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1784         rt2x00_desc_write(txd, 1, word);
1785
1786         rt2x00_desc_read(txd, 2, &word);
1787         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1788         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1789         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1790         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1791         rt2x00_desc_write(txd, 2, word);
1792
1793         if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1794                 _rt2x00_desc_write(txd, 3, skbdesc->iv);
1795                 _rt2x00_desc_write(txd, 4, skbdesc->eiv);
1796         }
1797
1798         rt2x00_desc_read(txd, 5, &word);
1799         rt2x00_set_field32(&word, TXD_W5_PID_TYPE, skbdesc->entry->queue->qid);
1800         rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1801                            skbdesc->entry->entry_idx);
1802         rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1803                            TXPOWER_TO_DEV(rt2x00dev->tx_power));
1804         rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1805         rt2x00_desc_write(txd, 5, word);
1806
1807         rt2x00_desc_read(txd, 6, &word);
1808         rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1809                            skbdesc->skb_dma);
1810         rt2x00_desc_write(txd, 6, word);
1811
1812         if (skbdesc->desc_len > TXINFO_SIZE) {
1813                 rt2x00_desc_read(txd, 11, &word);
1814                 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0, skb->len);
1815                 rt2x00_desc_write(txd, 11, word);
1816         }
1817
1818         rt2x00_desc_read(txd, 0, &word);
1819         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1820         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1821         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1822                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1823         rt2x00_set_field32(&word, TXD_W0_ACK,
1824                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1825         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1826                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1827         rt2x00_set_field32(&word, TXD_W0_OFDM,
1828                            test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1829         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1830         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1831                            test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1832         rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1833                            test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1834         rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1835                            test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1836         rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1837         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1838         rt2x00_set_field32(&word, TXD_W0_BURST,
1839                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1840         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1841         rt2x00_desc_write(txd, 0, word);
1842 }
1843
1844 /*
1845  * TX data initialization
1846  */
1847 static void rt61pci_write_beacon(struct queue_entry *entry)
1848 {
1849         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1850         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1851         unsigned int beacon_base;
1852         u32 reg;
1853
1854         /*
1855          * Disable beaconing while we are reloading the beacon data,
1856          * otherwise we might be sending out invalid data.
1857          */
1858         rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1859         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1860         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1861         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1862         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1863
1864         /*
1865          * Write entire beacon with descriptor to register.
1866          */
1867         beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1868         rt2x00pci_register_multiwrite(rt2x00dev,
1869                                       beacon_base,
1870                                       skbdesc->desc, skbdesc->desc_len);
1871         rt2x00pci_register_multiwrite(rt2x00dev,
1872                                       beacon_base + skbdesc->desc_len,
1873                                       entry->skb->data, entry->skb->len);
1874
1875         /*
1876          * Clean up beacon skb.
1877          */
1878         dev_kfree_skb_any(entry->skb);
1879         entry->skb = NULL;
1880 }
1881
1882 static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1883                                   const enum data_queue_qid queue)
1884 {
1885         u32 reg;
1886
1887         if (queue == QID_BEACON) {
1888                 /*
1889                  * For Wi-Fi faily generated beacons between participating
1890                  * stations. Set TBTT phase adaptive adjustment step to 8us.
1891                  */
1892                 rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1893
1894                 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1895                 if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
1896                         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1897                         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1898                         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1899                         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1900                 }
1901                 return;
1902         }
1903
1904         rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1905         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, (queue == QID_AC_BE));
1906         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, (queue == QID_AC_BK));
1907         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, (queue == QID_AC_VI));
1908         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, (queue == QID_AC_VO));
1909         rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1910 }
1911
1912 /*
1913  * RX control handlers
1914  */
1915 static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1916 {
1917         u8 offset = rt2x00dev->lna_gain;
1918         u8 lna;
1919
1920         lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1921         switch (lna) {
1922         case 3:
1923                 offset += 90;
1924                 break;
1925         case 2:
1926                 offset += 74;
1927                 break;
1928         case 1:
1929                 offset += 64;
1930                 break;
1931         default:
1932                 return 0;
1933         }
1934
1935         if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1936                 if (lna == 3 || lna == 2)
1937                         offset += 10;
1938         }
1939
1940         return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1941 }
1942
1943 static void rt61pci_fill_rxdone(struct queue_entry *entry,
1944                                 struct rxdone_entry_desc *rxdesc)
1945 {
1946         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1947         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1948         u32 word0;
1949         u32 word1;
1950
1951         rt2x00_desc_read(entry_priv->desc, 0, &word0);
1952         rt2x00_desc_read(entry_priv->desc, 1, &word1);
1953
1954         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1955                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1956
1957         if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
1958                 rxdesc->cipher =
1959                     rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1960                 rxdesc->cipher_status =
1961                     rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1962         }
1963
1964         if (rxdesc->cipher != CIPHER_NONE) {
1965                 _rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv);
1966                 _rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->eiv);
1967                 _rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
1968
1969                 /*
1970                  * Hardware has stripped IV/EIV data from 802.11 frame during
1971                  * decryption. It has provided the data seperately but rt2x00lib
1972                  * should decide if it should be reinserted.
1973                  */
1974                 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
1975
1976                 /*
1977                  * FIXME: Legacy driver indicates that the frame does
1978                  * contain the Michael Mic. Unfortunately, in rt2x00
1979                  * the MIC seems to be missing completely...
1980                  */
1981                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1982
1983                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1984                         rxdesc->flags |= RX_FLAG_DECRYPTED;
1985                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1986                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1987         }
1988
1989         /*
1990          * Obtain the status about this packet.
1991          * When frame was received with an OFDM bitrate,
1992          * the signal is the PLCP value. If it was received with
1993          * a CCK bitrate the signal is the rate in 100kbit/s.
1994          */
1995         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1996         rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
1997         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1998
1999         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
2000                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
2001         else
2002                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
2003         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
2004                 rxdesc->dev_flags |= RXDONE_MY_BSS;
2005 }
2006
2007 /*
2008  * Interrupt functions.
2009  */
2010 static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2011 {
2012         struct data_queue *queue;
2013         struct queue_entry *entry;
2014         struct queue_entry *entry_done;
2015         struct queue_entry_priv_pci *entry_priv;
2016         struct txdone_entry_desc txdesc;
2017         u32 word;
2018         u32 reg;
2019         u32 old_reg;
2020         int type;
2021         int index;
2022
2023         /*
2024          * During each loop we will compare the freshly read
2025          * STA_CSR4 register value with the value read from
2026          * the previous loop. If the 2 values are equal then
2027          * we should stop processing because the chance it
2028          * quite big that the device has been unplugged and
2029          * we risk going into an endless loop.
2030          */
2031         old_reg = 0;
2032
2033         while (1) {
2034                 rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
2035                 if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2036                         break;
2037
2038                 if (old_reg == reg)
2039                         break;
2040                 old_reg = reg;
2041
2042                 /*
2043                  * Skip this entry when it contains an invalid
2044                  * queue identication number.
2045                  */
2046                 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2047                 queue = rt2x00queue_get_queue(rt2x00dev, type);
2048                 if (unlikely(!queue))
2049                         continue;
2050
2051                 /*
2052                  * Skip this entry when it contains an invalid
2053                  * index number.
2054                  */
2055                 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2056                 if (unlikely(index >= queue->limit))
2057                         continue;
2058
2059                 entry = &queue->entries[index];
2060                 entry_priv = entry->priv_data;
2061                 rt2x00_desc_read(entry_priv->desc, 0, &word);
2062
2063                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2064                     !rt2x00_get_field32(word, TXD_W0_VALID))
2065                         return;
2066
2067                 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2068                 while (entry != entry_done) {
2069                         /* Catch up.
2070                          * Just report any entries we missed as failed.
2071                          */
2072                         WARNING(rt2x00dev,
2073                                 "TX status report missed for entry %d\n",
2074                                 entry_done->entry_idx);
2075
2076                         txdesc.flags = 0;
2077                         __set_bit(TXDONE_UNKNOWN, &txdesc.flags);
2078                         txdesc.retry = 0;
2079
2080                         rt2x00lib_txdone(entry_done, &txdesc);
2081                         entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2082                 }
2083
2084                 /*
2085                  * Obtain the status about this packet.
2086                  */
2087                 txdesc.flags = 0;
2088                 switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2089                 case 0: /* Success, maybe with retry */
2090                         __set_bit(TXDONE_SUCCESS, &txdesc.flags);
2091                         break;
2092                 case 6: /* Failure, excessive retries */
2093                         __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2094                         /* Don't break, this is a failed frame! */
2095                 default: /* Failure */
2096                         __set_bit(TXDONE_FAILURE, &txdesc.flags);
2097                 }
2098                 txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2099
2100                 rt2x00lib_txdone(entry, &txdesc);
2101         }
2102 }
2103
2104 static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2105 {
2106         struct rt2x00_dev *rt2x00dev = dev_instance;
2107         u32 reg_mcu;
2108         u32 reg;
2109
2110         /*
2111          * Get the interrupt sources & saved to local variable.
2112          * Write register value back to clear pending interrupts.
2113          */
2114         rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
2115         rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2116
2117         rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
2118         rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2119
2120         if (!reg && !reg_mcu)
2121                 return IRQ_NONE;
2122
2123         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2124                 return IRQ_HANDLED;
2125
2126         /*
2127          * Handle interrupts, walk through all bits
2128          * and run the tasks, the bits are checked in order of
2129          * priority.
2130          */
2131
2132         /*
2133          * 1 - Rx ring done interrupt.
2134          */
2135         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2136                 rt2x00pci_rxdone(rt2x00dev);
2137
2138         /*
2139          * 2 - Tx ring done interrupt.
2140          */
2141         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2142                 rt61pci_txdone(rt2x00dev);
2143
2144         /*
2145          * 3 - Handle MCU command done.
2146          */
2147         if (reg_mcu)
2148                 rt2x00pci_register_write(rt2x00dev,
2149                                          M2H_CMD_DONE_CSR, 0xffffffff);
2150
2151         return IRQ_HANDLED;
2152 }
2153
2154 /*
2155  * Device probe functions.
2156  */
2157 static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2158 {
2159         struct eeprom_93cx6 eeprom;
2160         u32 reg;
2161         u16 word;
2162         u8 *mac;
2163         s8 value;
2164
2165         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
2166
2167         eeprom.data = rt2x00dev;
2168         eeprom.register_read = rt61pci_eepromregister_read;
2169         eeprom.register_write = rt61pci_eepromregister_write;
2170         eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2171             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2172         eeprom.reg_data_in = 0;
2173         eeprom.reg_data_out = 0;
2174         eeprom.reg_data_clock = 0;
2175         eeprom.reg_chip_select = 0;
2176
2177         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2178                                EEPROM_SIZE / sizeof(u16));
2179
2180         /*
2181          * Start validation of the data that has been read.
2182          */
2183         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2184         if (!is_valid_ether_addr(mac)) {
2185                 random_ether_addr(mac);
2186                 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
2187         }
2188
2189         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
2190         if (word == 0xffff) {
2191                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2192                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2193                                    ANTENNA_B);
2194                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2195                                    ANTENNA_B);
2196                 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2197                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2198                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2199                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2200                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2201                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
2202         }
2203
2204         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
2205         if (word == 0xffff) {
2206                 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2207                 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2208                 rt2x00_set_field16(&word, EEPROM_NIC_TX_RX_FIXED, 0);
2209                 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2210                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2211                 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2212                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2213                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
2214         }
2215
2216         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
2217         if (word == 0xffff) {
2218                 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2219                                    LED_MODE_DEFAULT);
2220                 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2221                 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
2222         }
2223
2224         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
2225         if (word == 0xffff) {
2226                 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2227                 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2228                 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2229                 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
2230         }
2231
2232         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
2233         if (word == 0xffff) {
2234                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2235                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2236                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2237                 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2238         } else {
2239                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2240                 if (value < -10 || value > 10)
2241                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2242                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2243                 if (value < -10 || value > 10)
2244                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2245                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2246         }
2247
2248         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
2249         if (word == 0xffff) {
2250                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2251                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2252                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2253                 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2254         } else {
2255                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2256                 if (value < -10 || value > 10)
2257                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2258                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2259                 if (value < -10 || value > 10)
2260                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2261                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2262         }
2263
2264         return 0;
2265 }
2266
2267 static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2268 {
2269         u32 reg;
2270         u16 value;
2271         u16 eeprom;
2272         u16 device;
2273
2274         /*
2275          * Read EEPROM word for configuration.
2276          */
2277         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2278
2279         /*
2280          * Identify RF chipset.
2281          * To determine the RT chip we have to read the
2282          * PCI header of the device.
2283          */
2284         pci_read_config_word(to_pci_dev(rt2x00dev->dev),
2285                              PCI_CONFIG_HEADER_DEVICE, &device);
2286         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2287         rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
2288         rt2x00_set_chip(rt2x00dev, device, value, reg);
2289
2290         if (!rt2x00_rf(&rt2x00dev->chip, RF5225) &&
2291             !rt2x00_rf(&rt2x00dev->chip, RF5325) &&
2292             !rt2x00_rf(&rt2x00dev->chip, RF2527) &&
2293             !rt2x00_rf(&rt2x00dev->chip, RF2529)) {
2294                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
2295                 return -ENODEV;
2296         }
2297
2298         /*
2299          * Determine number of antenna's.
2300          */
2301         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2302                 __set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);
2303
2304         /*
2305          * Identify default antenna configuration.
2306          */
2307         rt2x00dev->default_ant.tx =
2308             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2309         rt2x00dev->default_ant.rx =
2310             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2311
2312         /*
2313          * Read the Frame type.
2314          */
2315         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2316                 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
2317
2318         /*
2319          * Detect if this device has an hardware controlled radio.
2320          */
2321 #ifdef CONFIG_RT2X00_LIB_RFKILL
2322         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2323                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
2324 #endif /* CONFIG_RT2X00_LIB_RFKILL */
2325
2326         /*
2327          * Read frequency offset and RF programming sequence.
2328          */
2329         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2330         if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2331                 __set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);
2332
2333         rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2334
2335         /*
2336          * Read external LNA informations.
2337          */
2338         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2339
2340         if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2341                 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
2342         if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2343                 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
2344
2345         /*
2346          * When working with a RF2529 chip without double antenna
2347          * the antenna settings should be gathered from the NIC
2348          * eeprom word.
2349          */
2350         if (rt2x00_rf(&rt2x00dev->chip, RF2529) &&
2351             !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) {
2352                 switch (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_RX_FIXED)) {
2353                 case 0:
2354                         rt2x00dev->default_ant.tx = ANTENNA_B;
2355                         rt2x00dev->default_ant.rx = ANTENNA_A;
2356                         break;
2357                 case 1:
2358                         rt2x00dev->default_ant.tx = ANTENNA_B;
2359                         rt2x00dev->default_ant.rx = ANTENNA_B;
2360                         break;
2361                 case 2:
2362                         rt2x00dev->default_ant.tx = ANTENNA_A;
2363                         rt2x00dev->default_ant.rx = ANTENNA_A;
2364                         break;
2365                 case 3:
2366                         rt2x00dev->default_ant.tx = ANTENNA_A;
2367                         rt2x00dev->default_ant.rx = ANTENNA_B;
2368                         break;
2369                 }
2370
2371                 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2372                         rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2373                 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2374                         rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2375         }
2376
2377         /*
2378          * Store led settings, for correct led behaviour.
2379          * If the eeprom value is invalid,
2380          * switch to default led mode.
2381          */
2382 #ifdef CONFIG_RT2X00_LIB_LEDS
2383         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2384         value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2385
2386         rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2387         rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2388         if (value == LED_MODE_SIGNAL_STRENGTH)
2389                 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2390                                  LED_TYPE_QUALITY);
2391
2392         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2393         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2394                            rt2x00_get_field16(eeprom,
2395                                               EEPROM_LED_POLARITY_GPIO_0));
2396         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2397                            rt2x00_get_field16(eeprom,
2398                                               EEPROM_LED_POLARITY_GPIO_1));
2399         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2400                            rt2x00_get_field16(eeprom,
2401                                               EEPROM_LED_POLARITY_GPIO_2));
2402         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2403                            rt2x00_get_field16(eeprom,
2404                                               EEPROM_LED_POLARITY_GPIO_3));
2405         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2406                            rt2x00_get_field16(eeprom,
2407                                               EEPROM_LED_POLARITY_GPIO_4));
2408         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2409                            rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2410         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2411                            rt2x00_get_field16(eeprom,
2412                                               EEPROM_LED_POLARITY_RDY_G));
2413         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2414                            rt2x00_get_field16(eeprom,
2415                                               EEPROM_LED_POLARITY_RDY_A));
2416 #endif /* CONFIG_RT2X00_LIB_LEDS */
2417
2418         return 0;
2419 }
2420
2421 /*
2422  * RF value list for RF5225 & RF5325
2423  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2424  */
2425 static const struct rf_channel rf_vals_noseq[] = {
2426         { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2427         { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2428         { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2429         { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2430         { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2431         { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2432         { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2433         { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2434         { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2435         { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2436         { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2437         { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2438         { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2439         { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2440
2441         /* 802.11 UNI / HyperLan 2 */
2442         { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2443         { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2444         { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2445         { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2446         { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2447         { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2448         { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2449         { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2450
2451         /* 802.11 HyperLan 2 */
2452         { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2453         { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2454         { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2455         { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2456         { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2457         { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2458         { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2459         { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2460         { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2461         { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2462
2463         /* 802.11 UNII */
2464         { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2465         { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2466         { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2467         { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2468         { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2469         { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2470
2471         /* MMAC(Japan)J52 ch 34,38,42,46 */
2472         { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2473         { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2474         { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2475         { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2476 };
2477
2478 /*
2479  * RF value list for RF5225 & RF5325
2480  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2481  */
2482 static const struct rf_channel rf_vals_seq[] = {
2483         { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2484         { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2485         { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2486         { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2487         { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2488         { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2489         { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2490         { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2491         { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2492         { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2493         { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2494         { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2495         { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2496         { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2497
2498         /* 802.11 UNI / HyperLan 2 */
2499         { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2500         { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2501         { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2502         { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2503         { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2504         { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2505         { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2506         { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2507
2508         /* 802.11 HyperLan 2 */
2509         { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2510         { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2511         { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2512         { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2513         { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2514         { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2515         { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2516         { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2517         { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2518         { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2519
2520         /* 802.11 UNII */
2521         { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2522         { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2523         { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2524         { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2525         { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2526         { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2527
2528         /* MMAC(Japan)J52 ch 34,38,42,46 */
2529         { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2530         { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2531         { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2532         { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2533 };
2534
2535 static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2536 {
2537         struct hw_mode_spec *spec = &rt2x00dev->spec;
2538         struct channel_info *info;
2539         char *tx_power;
2540         unsigned int i;
2541
2542         /*
2543          * Initialize all hw fields.
2544          */
2545         rt2x00dev->hw->flags =
2546             IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2547             IEEE80211_HW_SIGNAL_DBM;
2548         rt2x00dev->hw->extra_tx_headroom = 0;
2549
2550         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2551         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2552                                 rt2x00_eeprom_addr(rt2x00dev,
2553                                                    EEPROM_MAC_ADDR_0));
2554
2555         /*
2556          * Initialize hw_mode information.
2557          */
2558         spec->supported_bands = SUPPORT_BAND_2GHZ;
2559         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2560
2561         if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
2562                 spec->num_channels = 14;
2563                 spec->channels = rf_vals_noseq;
2564         } else {
2565                 spec->num_channels = 14;
2566                 spec->channels = rf_vals_seq;
2567         }
2568
2569         if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
2570             rt2x00_rf(&rt2x00dev->chip, RF5325)) {
2571                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2572                 spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2573         }
2574
2575         /*
2576          * Create channel information array
2577          */
2578         info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
2579         if (!info)
2580                 return -ENOMEM;
2581
2582         spec->channels_info = info;
2583
2584         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2585         for (i = 0; i < 14; i++)
2586                 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2587
2588         if (spec->num_channels > 14) {
2589                 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2590                 for (i = 14; i < spec->num_channels; i++)
2591                         info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2592         }
2593
2594         return 0;
2595 }
2596
2597 static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2598 {
2599         int retval;
2600
2601         /*
2602          * Allocate eeprom data.
2603          */
2604         retval = rt61pci_validate_eeprom(rt2x00dev);
2605         if (retval)
2606                 return retval;
2607
2608         retval = rt61pci_init_eeprom(rt2x00dev);
2609         if (retval)
2610                 return retval;
2611
2612         /*
2613          * Initialize hw specifications.
2614          */
2615         retval = rt61pci_probe_hw_mode(rt2x00dev);
2616         if (retval)
2617                 return retval;
2618
2619         /*
2620          * This device requires firmware and DMA mapped skbs.
2621          */
2622         __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2623         __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
2624         if (!modparam_nohwcrypt)
2625                 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
2626
2627         /*
2628          * Set the rssi offset.
2629          */
2630         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2631
2632         return 0;
2633 }
2634
2635 /*
2636  * IEEE80211 stack callback functions.
2637  */
2638 static int rt61pci_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
2639                            const struct ieee80211_tx_queue_params *params)
2640 {
2641         struct rt2x00_dev *rt2x00dev = hw->priv;
2642         struct data_queue *queue;
2643         struct rt2x00_field32 field;
2644         int retval;
2645         u32 reg;
2646
2647         /*
2648          * First pass the configuration through rt2x00lib, that will
2649          * update the queue settings and validate the input. After that
2650          * we are free to update the registers based on the value
2651          * in the queue parameter.
2652          */
2653         retval = rt2x00mac_conf_tx(hw, queue_idx, params);
2654         if (retval)
2655                 return retval;
2656
2657         queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
2658
2659         /* Update WMM TXOP register */
2660         if (queue_idx < 2) {
2661                 field.bit_offset = queue_idx * 16;
2662                 field.bit_mask = 0xffff << field.bit_offset;
2663
2664                 rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR0, &reg);
2665                 rt2x00_set_field32(&reg, field, queue->txop);
2666                 rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR0, reg);
2667         } else if (queue_idx < 4) {
2668                 field.bit_offset = (queue_idx - 2) * 16;
2669                 field.bit_mask = 0xffff << field.bit_offset;
2670
2671                 rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR1, &reg);
2672                 rt2x00_set_field32(&reg, field, queue->txop);
2673                 rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR1, reg);
2674         }
2675
2676         /* Update WMM registers */
2677         field.bit_offset = queue_idx * 4;
2678         field.bit_mask = 0xf << field.bit_offset;
2679
2680         rt2x00pci_register_read(rt2x00dev, AIFSN_CSR, &reg);
2681         rt2x00_set_field32(&reg, field, queue->aifs);
2682         rt2x00pci_register_write(rt2x00dev, AIFSN_CSR, reg);
2683
2684         rt2x00pci_register_read(rt2x00dev, CWMIN_CSR, &reg);
2685         rt2x00_set_field32(&reg, field, queue->cw_min);
2686         rt2x00pci_register_write(rt2x00dev, CWMIN_CSR, reg);
2687
2688         rt2x00pci_register_read(rt2x00dev, CWMAX_CSR, &reg);
2689         rt2x00_set_field32(&reg, field, queue->cw_max);
2690         rt2x00pci_register_write(rt2x00dev, CWMAX_CSR, reg);
2691
2692         return 0;
2693 }
2694
2695 static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
2696 {
2697         struct rt2x00_dev *rt2x00dev = hw->priv;
2698         u64 tsf;
2699         u32 reg;
2700
2701         rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
2702         tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2703         rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
2704         tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2705
2706         return tsf;
2707 }
2708
2709 static const struct ieee80211_ops rt61pci_mac80211_ops = {
2710         .tx                     = rt2x00mac_tx,
2711         .start                  = rt2x00mac_start,
2712         .stop                   = rt2x00mac_stop,
2713         .add_interface          = rt2x00mac_add_interface,
2714         .remove_interface       = rt2x00mac_remove_interface,
2715         .config                 = rt2x00mac_config,
2716         .config_interface       = rt2x00mac_config_interface,
2717         .configure_filter       = rt2x00mac_configure_filter,
2718         .set_key                = rt2x00mac_set_key,
2719         .get_stats              = rt2x00mac_get_stats,
2720         .bss_info_changed       = rt2x00mac_bss_info_changed,
2721         .conf_tx                = rt61pci_conf_tx,
2722         .get_tx_stats           = rt2x00mac_get_tx_stats,
2723         .get_tsf                = rt61pci_get_tsf,
2724 };
2725
2726 static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2727         .irq_handler            = rt61pci_interrupt,
2728         .probe_hw               = rt61pci_probe_hw,
2729         .get_firmware_name      = rt61pci_get_firmware_name,
2730         .get_firmware_crc       = rt61pci_get_firmware_crc,
2731         .load_firmware          = rt61pci_load_firmware,
2732         .initialize             = rt2x00pci_initialize,
2733         .uninitialize           = rt2x00pci_uninitialize,
2734         .init_rxentry           = rt61pci_init_rxentry,
2735         .init_txentry           = rt61pci_init_txentry,
2736         .set_device_state       = rt61pci_set_device_state,
2737         .rfkill_poll            = rt61pci_rfkill_poll,
2738         .link_stats             = rt61pci_link_stats,
2739         .reset_tuner            = rt61pci_reset_tuner,
2740         .link_tuner             = rt61pci_link_tuner,
2741         .write_tx_desc          = rt61pci_write_tx_desc,
2742         .write_tx_data          = rt2x00pci_write_tx_data,
2743         .write_beacon           = rt61pci_write_beacon,
2744         .kick_tx_queue          = rt61pci_kick_tx_queue,
2745         .fill_rxdone            = rt61pci_fill_rxdone,
2746         .config_shared_key      = rt61pci_config_shared_key,
2747         .config_pairwise_key    = rt61pci_config_pairwise_key,
2748         .config_filter          = rt61pci_config_filter,
2749         .config_intf            = rt61pci_config_intf,
2750         .config_erp             = rt61pci_config_erp,
2751         .config_ant             = rt61pci_config_ant,
2752         .config                 = rt61pci_config,
2753 };
2754
2755 static const struct data_queue_desc rt61pci_queue_rx = {
2756         .entry_num              = RX_ENTRIES,
2757         .data_size              = DATA_FRAME_SIZE,
2758         .desc_size              = RXD_DESC_SIZE,
2759         .priv_size              = sizeof(struct queue_entry_priv_pci),
2760 };
2761
2762 static const struct data_queue_desc rt61pci_queue_tx = {
2763         .entry_num              = TX_ENTRIES,
2764         .data_size              = DATA_FRAME_SIZE,
2765         .desc_size              = TXD_DESC_SIZE,
2766         .priv_size              = sizeof(struct queue_entry_priv_pci),
2767 };
2768
2769 static const struct data_queue_desc rt61pci_queue_bcn = {
2770         .entry_num              = 4 * BEACON_ENTRIES,
2771         .data_size              = 0, /* No DMA required for beacons */
2772         .desc_size              = TXINFO_SIZE,
2773         .priv_size              = sizeof(struct queue_entry_priv_pci),
2774 };
2775
2776 static const struct rt2x00_ops rt61pci_ops = {
2777         .name           = KBUILD_MODNAME,
2778         .max_sta_intf   = 1,
2779         .max_ap_intf    = 4,
2780         .eeprom_size    = EEPROM_SIZE,
2781         .rf_size        = RF_SIZE,
2782         .tx_queues      = NUM_TX_QUEUES,
2783         .rx             = &rt61pci_queue_rx,
2784         .tx             = &rt61pci_queue_tx,
2785         .bcn            = &rt61pci_queue_bcn,
2786         .lib            = &rt61pci_rt2x00_ops,
2787         .hw             = &rt61pci_mac80211_ops,
2788 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2789         .debugfs        = &rt61pci_rt2x00debug,
2790 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2791 };
2792
2793 /*
2794  * RT61pci module information.
2795  */
2796 static struct pci_device_id rt61pci_device_table[] = {
2797         /* RT2561s */
2798         { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
2799         /* RT2561 v2 */
2800         { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
2801         /* RT2661 */
2802         { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
2803         { 0, }
2804 };
2805
2806 MODULE_AUTHOR(DRV_PROJECT);
2807 MODULE_VERSION(DRV_VERSION);
2808 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
2809 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
2810                         "PCI & PCMCIA chipset based cards");
2811 MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
2812 MODULE_FIRMWARE(FIRMWARE_RT2561);
2813 MODULE_FIRMWARE(FIRMWARE_RT2561s);
2814 MODULE_FIRMWARE(FIRMWARE_RT2661);
2815 MODULE_LICENSE("GPL");
2816
2817 static struct pci_driver rt61pci_driver = {
2818         .name           = KBUILD_MODNAME,
2819         .id_table       = rt61pci_device_table,
2820         .probe          = rt2x00pci_probe,
2821         .remove         = __devexit_p(rt2x00pci_remove),
2822         .suspend        = rt2x00pci_suspend,
2823         .resume         = rt2x00pci_resume,
2824 };
2825
2826 static int __init rt61pci_init(void)
2827 {
2828         return pci_register_driver(&rt61pci_driver);
2829 }
2830
2831 static void __exit rt61pci_exit(void)
2832 {
2833         pci_unregister_driver(&rt61pci_driver);
2834 }
2835
2836 module_init(rt61pci_init);
2837 module_exit(rt61pci_exit);