]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/net/wireless/rt2x00/rt61pci.c
Merge remote branch 'nouveau/for-airlied' of ../drm-nouveau-next into drm-linus
[mv-sheeva.git] / drivers / net / wireless / rt2x00 / rt61pci.c
1 /*
2         Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt61pci
23         Abstract: rt61pci device specific routines.
24         Supported chipsets: RT2561, RT2561s, RT2661.
25  */
26
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/pci.h>
34 #include <linux/eeprom_93cx6.h>
35
36 #include "rt2x00.h"
37 #include "rt2x00pci.h"
38 #include "rt61pci.h"
39
40 /*
41  * Allow hardware encryption to be disabled.
42  */
43 static int modparam_nohwcrypt = 0;
44 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
45 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
46
47 /*
48  * Register access.
49  * BBP and RF register require indirect register access,
50  * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
51  * These indirect registers work with busy bits,
52  * and we will try maximal REGISTER_BUSY_COUNT times to access
53  * the register while taking a REGISTER_BUSY_DELAY us delay
54  * between each attempt. When the busy bit is still set at that time,
55  * the access attempt is considered to have failed,
56  * and we will print an error.
57  */
58 #define WAIT_FOR_BBP(__dev, __reg) \
59         rt2x00pci_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
60 #define WAIT_FOR_RF(__dev, __reg) \
61         rt2x00pci_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
62 #define WAIT_FOR_MCU(__dev, __reg) \
63         rt2x00pci_regbusy_read((__dev), H2M_MAILBOX_CSR, \
64                                H2M_MAILBOX_CSR_OWNER, (__reg))
65
66 static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
67                               const unsigned int word, const u8 value)
68 {
69         u32 reg;
70
71         mutex_lock(&rt2x00dev->csr_mutex);
72
73         /*
74          * Wait until the BBP becomes available, afterwards we
75          * can safely write the new data into the register.
76          */
77         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
78                 reg = 0;
79                 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
80                 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
81                 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
82                 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
83
84                 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
85         }
86
87         mutex_unlock(&rt2x00dev->csr_mutex);
88 }
89
90 static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
91                              const unsigned int word, u8 *value)
92 {
93         u32 reg;
94
95         mutex_lock(&rt2x00dev->csr_mutex);
96
97         /*
98          * Wait until the BBP becomes available, afterwards we
99          * can safely write the read request into the register.
100          * After the data has been written, we wait until hardware
101          * returns the correct value, if at any time the register
102          * doesn't become available in time, reg will be 0xffffffff
103          * which means we return 0xff to the caller.
104          */
105         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
106                 reg = 0;
107                 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
108                 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
109                 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
110
111                 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
112
113                 WAIT_FOR_BBP(rt2x00dev, &reg);
114         }
115
116         *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
117
118         mutex_unlock(&rt2x00dev->csr_mutex);
119 }
120
121 static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
122                              const unsigned int word, const u32 value)
123 {
124         u32 reg;
125
126         mutex_lock(&rt2x00dev->csr_mutex);
127
128         /*
129          * Wait until the RF becomes available, afterwards we
130          * can safely write the new data into the register.
131          */
132         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
133                 reg = 0;
134                 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
135                 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
136                 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
137                 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
138
139                 rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
140                 rt2x00_rf_write(rt2x00dev, word, value);
141         }
142
143         mutex_unlock(&rt2x00dev->csr_mutex);
144 }
145
146 static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
147                                 const u8 command, const u8 token,
148                                 const u8 arg0, const u8 arg1)
149 {
150         u32 reg;
151
152         mutex_lock(&rt2x00dev->csr_mutex);
153
154         /*
155          * Wait until the MCU becomes available, afterwards we
156          * can safely write the new data into the register.
157          */
158         if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
159                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
160                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
161                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
162                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
163                 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
164
165                 rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
166                 rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
167                 rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
168                 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
169         }
170
171         mutex_unlock(&rt2x00dev->csr_mutex);
172
173 }
174
175 static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
176 {
177         struct rt2x00_dev *rt2x00dev = eeprom->data;
178         u32 reg;
179
180         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
181
182         eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
183         eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
184         eeprom->reg_data_clock =
185             !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
186         eeprom->reg_chip_select =
187             !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
188 }
189
190 static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
191 {
192         struct rt2x00_dev *rt2x00dev = eeprom->data;
193         u32 reg = 0;
194
195         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
196         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
197         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
198                            !!eeprom->reg_data_clock);
199         rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
200                            !!eeprom->reg_chip_select);
201
202         rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
203 }
204
205 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
206 static const struct rt2x00debug rt61pci_rt2x00debug = {
207         .owner  = THIS_MODULE,
208         .csr    = {
209                 .read           = rt2x00pci_register_read,
210                 .write          = rt2x00pci_register_write,
211                 .flags          = RT2X00DEBUGFS_OFFSET,
212                 .word_base      = CSR_REG_BASE,
213                 .word_size      = sizeof(u32),
214                 .word_count     = CSR_REG_SIZE / sizeof(u32),
215         },
216         .eeprom = {
217                 .read           = rt2x00_eeprom_read,
218                 .write          = rt2x00_eeprom_write,
219                 .word_base      = EEPROM_BASE,
220                 .word_size      = sizeof(u16),
221                 .word_count     = EEPROM_SIZE / sizeof(u16),
222         },
223         .bbp    = {
224                 .read           = rt61pci_bbp_read,
225                 .write          = rt61pci_bbp_write,
226                 .word_base      = BBP_BASE,
227                 .word_size      = sizeof(u8),
228                 .word_count     = BBP_SIZE / sizeof(u8),
229         },
230         .rf     = {
231                 .read           = rt2x00_rf_read,
232                 .write          = rt61pci_rf_write,
233                 .word_base      = RF_BASE,
234                 .word_size      = sizeof(u32),
235                 .word_count     = RF_SIZE / sizeof(u32),
236         },
237 };
238 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
239
240 static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
241 {
242         u32 reg;
243
244         rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
245         return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
246 }
247
248 #ifdef CONFIG_RT2X00_LIB_LEDS
249 static void rt61pci_brightness_set(struct led_classdev *led_cdev,
250                                    enum led_brightness brightness)
251 {
252         struct rt2x00_led *led =
253             container_of(led_cdev, struct rt2x00_led, led_dev);
254         unsigned int enabled = brightness != LED_OFF;
255         unsigned int a_mode =
256             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
257         unsigned int bg_mode =
258             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
259
260         if (led->type == LED_TYPE_RADIO) {
261                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
262                                    MCU_LEDCS_RADIO_STATUS, enabled);
263
264                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
265                                     (led->rt2x00dev->led_mcu_reg & 0xff),
266                                     ((led->rt2x00dev->led_mcu_reg >> 8)));
267         } else if (led->type == LED_TYPE_ASSOC) {
268                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
269                                    MCU_LEDCS_LINK_BG_STATUS, bg_mode);
270                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
271                                    MCU_LEDCS_LINK_A_STATUS, a_mode);
272
273                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
274                                     (led->rt2x00dev->led_mcu_reg & 0xff),
275                                     ((led->rt2x00dev->led_mcu_reg >> 8)));
276         } else if (led->type == LED_TYPE_QUALITY) {
277                 /*
278                  * The brightness is divided into 6 levels (0 - 5),
279                  * this means we need to convert the brightness
280                  * argument into the matching level within that range.
281                  */
282                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
283                                     brightness / (LED_FULL / 6), 0);
284         }
285 }
286
287 static int rt61pci_blink_set(struct led_classdev *led_cdev,
288                              unsigned long *delay_on,
289                              unsigned long *delay_off)
290 {
291         struct rt2x00_led *led =
292             container_of(led_cdev, struct rt2x00_led, led_dev);
293         u32 reg;
294
295         rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, &reg);
296         rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
297         rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
298         rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);
299
300         return 0;
301 }
302
303 static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
304                              struct rt2x00_led *led,
305                              enum led_type type)
306 {
307         led->rt2x00dev = rt2x00dev;
308         led->type = type;
309         led->led_dev.brightness_set = rt61pci_brightness_set;
310         led->led_dev.blink_set = rt61pci_blink_set;
311         led->flags = LED_INITIALIZED;
312 }
313 #endif /* CONFIG_RT2X00_LIB_LEDS */
314
315 /*
316  * Configuration handlers.
317  */
318 static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
319                                      struct rt2x00lib_crypto *crypto,
320                                      struct ieee80211_key_conf *key)
321 {
322         struct hw_key_entry key_entry;
323         struct rt2x00_field32 field;
324         u32 mask;
325         u32 reg;
326
327         if (crypto->cmd == SET_KEY) {
328                 /*
329                  * rt2x00lib can't determine the correct free
330                  * key_idx for shared keys. We have 1 register
331                  * with key valid bits. The goal is simple, read
332                  * the register, if that is full we have no slots
333                  * left.
334                  * Note that each BSS is allowed to have up to 4
335                  * shared keys, so put a mask over the allowed
336                  * entries.
337                  */
338                 mask = (0xf << crypto->bssidx);
339
340                 rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
341                 reg &= mask;
342
343                 if (reg && reg == mask)
344                         return -ENOSPC;
345
346                 key->hw_key_idx += reg ? ffz(reg) : 0;
347
348                 /*
349                  * Upload key to hardware
350                  */
351                 memcpy(key_entry.key, crypto->key,
352                        sizeof(key_entry.key));
353                 memcpy(key_entry.tx_mic, crypto->tx_mic,
354                        sizeof(key_entry.tx_mic));
355                 memcpy(key_entry.rx_mic, crypto->rx_mic,
356                        sizeof(key_entry.rx_mic));
357
358                 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
359                 rt2x00pci_register_multiwrite(rt2x00dev, reg,
360                                               &key_entry, sizeof(key_entry));
361
362                 /*
363                  * The cipher types are stored over 2 registers.
364                  * bssidx 0 and 1 keys are stored in SEC_CSR1 and
365                  * bssidx 1 and 2 keys are stored in SEC_CSR5.
366                  * Using the correct defines correctly will cause overhead,
367                  * so just calculate the correct offset.
368                  */
369                 if (key->hw_key_idx < 8) {
370                         field.bit_offset = (3 * key->hw_key_idx);
371                         field.bit_mask = 0x7 << field.bit_offset;
372
373                         rt2x00pci_register_read(rt2x00dev, SEC_CSR1, &reg);
374                         rt2x00_set_field32(&reg, field, crypto->cipher);
375                         rt2x00pci_register_write(rt2x00dev, SEC_CSR1, reg);
376                 } else {
377                         field.bit_offset = (3 * (key->hw_key_idx - 8));
378                         field.bit_mask = 0x7 << field.bit_offset;
379
380                         rt2x00pci_register_read(rt2x00dev, SEC_CSR5, &reg);
381                         rt2x00_set_field32(&reg, field, crypto->cipher);
382                         rt2x00pci_register_write(rt2x00dev, SEC_CSR5, reg);
383                 }
384
385                 /*
386                  * The driver does not support the IV/EIV generation
387                  * in hardware. However it doesn't support the IV/EIV
388                  * inside the ieee80211 frame either, but requires it
389                  * to be provided separately for the descriptor.
390                  * rt2x00lib will cut the IV/EIV data out of all frames
391                  * given to us by mac80211, but we must tell mac80211
392                  * to generate the IV/EIV data.
393                  */
394                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
395         }
396
397         /*
398          * SEC_CSR0 contains only single-bit fields to indicate
399          * a particular key is valid. Because using the FIELD32()
400          * defines directly will cause a lot of overhead, we use
401          * a calculation to determine the correct bit directly.
402          */
403         mask = 1 << key->hw_key_idx;
404
405         rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
406         if (crypto->cmd == SET_KEY)
407                 reg |= mask;
408         else if (crypto->cmd == DISABLE_KEY)
409                 reg &= ~mask;
410         rt2x00pci_register_write(rt2x00dev, SEC_CSR0, reg);
411
412         return 0;
413 }
414
415 static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
416                                        struct rt2x00lib_crypto *crypto,
417                                        struct ieee80211_key_conf *key)
418 {
419         struct hw_pairwise_ta_entry addr_entry;
420         struct hw_key_entry key_entry;
421         u32 mask;
422         u32 reg;
423
424         if (crypto->cmd == SET_KEY) {
425                 /*
426                  * rt2x00lib can't determine the correct free
427                  * key_idx for pairwise keys. We have 2 registers
428                  * with key valid bits. The goal is simple: read
429                  * the first register. If that is full, move to
430                  * the next register.
431                  * When both registers are full, we drop the key.
432                  * Otherwise, we use the first invalid entry.
433                  */
434                 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
435                 if (reg && reg == ~0) {
436                         key->hw_key_idx = 32;
437                         rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
438                         if (reg && reg == ~0)
439                                 return -ENOSPC;
440                 }
441
442                 key->hw_key_idx += reg ? ffz(reg) : 0;
443
444                 /*
445                  * Upload key to hardware
446                  */
447                 memcpy(key_entry.key, crypto->key,
448                        sizeof(key_entry.key));
449                 memcpy(key_entry.tx_mic, crypto->tx_mic,
450                        sizeof(key_entry.tx_mic));
451                 memcpy(key_entry.rx_mic, crypto->rx_mic,
452                        sizeof(key_entry.rx_mic));
453
454                 memset(&addr_entry, 0, sizeof(addr_entry));
455                 memcpy(&addr_entry, crypto->address, ETH_ALEN);
456                 addr_entry.cipher = crypto->cipher;
457
458                 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
459                 rt2x00pci_register_multiwrite(rt2x00dev, reg,
460                                               &key_entry, sizeof(key_entry));
461
462                 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
463                 rt2x00pci_register_multiwrite(rt2x00dev, reg,
464                                               &addr_entry, sizeof(addr_entry));
465
466                 /*
467                  * Enable pairwise lookup table for given BSS idx.
468                  * Without this, received frames will not be decrypted
469                  * by the hardware.
470                  */
471                 rt2x00pci_register_read(rt2x00dev, SEC_CSR4, &reg);
472                 reg |= (1 << crypto->bssidx);
473                 rt2x00pci_register_write(rt2x00dev, SEC_CSR4, reg);
474
475                 /*
476                  * The driver does not support the IV/EIV generation
477                  * in hardware. However it doesn't support the IV/EIV
478                  * inside the ieee80211 frame either, but requires it
479                  * to be provided seperately for the descriptor.
480                  * rt2x00lib will cut the IV/EIV data out of all frames
481                  * given to us by mac80211, but we must tell mac80211
482                  * to generate the IV/EIV data.
483                  */
484                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
485         }
486
487         /*
488          * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
489          * a particular key is valid. Because using the FIELD32()
490          * defines directly will cause a lot of overhead, we use
491          * a calculation to determine the correct bit directly.
492          */
493         if (key->hw_key_idx < 32) {
494                 mask = 1 << key->hw_key_idx;
495
496                 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
497                 if (crypto->cmd == SET_KEY)
498                         reg |= mask;
499                 else if (crypto->cmd == DISABLE_KEY)
500                         reg &= ~mask;
501                 rt2x00pci_register_write(rt2x00dev, SEC_CSR2, reg);
502         } else {
503                 mask = 1 << (key->hw_key_idx - 32);
504
505                 rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
506                 if (crypto->cmd == SET_KEY)
507                         reg |= mask;
508                 else if (crypto->cmd == DISABLE_KEY)
509                         reg &= ~mask;
510                 rt2x00pci_register_write(rt2x00dev, SEC_CSR3, reg);
511         }
512
513         return 0;
514 }
515
516 static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
517                                   const unsigned int filter_flags)
518 {
519         u32 reg;
520
521         /*
522          * Start configuration steps.
523          * Note that the version error will always be dropped
524          * and broadcast frames will always be accepted since
525          * there is no filter for it at this time.
526          */
527         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
528         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
529                            !(filter_flags & FIF_FCSFAIL));
530         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
531                            !(filter_flags & FIF_PLCPFAIL));
532         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
533                            !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
534         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
535                            !(filter_flags & FIF_PROMISC_IN_BSS));
536         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
537                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
538                            !rt2x00dev->intf_ap_count);
539         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
540         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
541                            !(filter_flags & FIF_ALLMULTI));
542         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
543         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
544                            !(filter_flags & FIF_CONTROL));
545         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
546 }
547
548 static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
549                                 struct rt2x00_intf *intf,
550                                 struct rt2x00intf_conf *conf,
551                                 const unsigned int flags)
552 {
553         unsigned int beacon_base;
554         u32 reg;
555
556         if (flags & CONFIG_UPDATE_TYPE) {
557                 /*
558                  * Clear current synchronisation setup.
559                  * For the Beacon base registers, we only need to clear
560                  * the first byte since that byte contains the VALID and OWNER
561                  * bits which (when set to 0) will invalidate the entire beacon.
562                  */
563                 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
564                 rt2x00pci_register_write(rt2x00dev, beacon_base, 0);
565
566                 /*
567                  * Enable synchronisation.
568                  */
569                 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
570                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
571                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
572                 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
573                 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
574         }
575
576         if (flags & CONFIG_UPDATE_MAC) {
577                 reg = le32_to_cpu(conf->mac[1]);
578                 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
579                 conf->mac[1] = cpu_to_le32(reg);
580
581                 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
582                                               conf->mac, sizeof(conf->mac));
583         }
584
585         if (flags & CONFIG_UPDATE_BSSID) {
586                 reg = le32_to_cpu(conf->bssid[1]);
587                 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
588                 conf->bssid[1] = cpu_to_le32(reg);
589
590                 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
591                                               conf->bssid, sizeof(conf->bssid));
592         }
593 }
594
595 static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
596                                struct rt2x00lib_erp *erp)
597 {
598         u32 reg;
599
600         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
601         rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
602         rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
603         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
604
605         rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
606         rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
607         rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
608                            !!erp->short_preamble);
609         rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
610
611         rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, erp->basic_rates);
612
613         rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
614         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
615                            erp->beacon_int * 16);
616         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
617
618         rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
619         rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
620         rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
621
622         rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
623         rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
624         rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
625         rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
626         rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
627 }
628
629 static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
630                                       struct antenna_setup *ant)
631 {
632         u8 r3;
633         u8 r4;
634         u8 r77;
635
636         rt61pci_bbp_read(rt2x00dev, 3, &r3);
637         rt61pci_bbp_read(rt2x00dev, 4, &r4);
638         rt61pci_bbp_read(rt2x00dev, 77, &r77);
639
640         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
641                           rt2x00_rf(&rt2x00dev->chip, RF5325));
642
643         /*
644          * Configure the RX antenna.
645          */
646         switch (ant->rx) {
647         case ANTENNA_HW_DIVERSITY:
648                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
649                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
650                                   (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
651                 break;
652         case ANTENNA_A:
653                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
654                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
655                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
656                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
657                 else
658                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
659                 break;
660         case ANTENNA_B:
661         default:
662                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
663                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
664                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
665                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
666                 else
667                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
668                 break;
669         }
670
671         rt61pci_bbp_write(rt2x00dev, 77, r77);
672         rt61pci_bbp_write(rt2x00dev, 3, r3);
673         rt61pci_bbp_write(rt2x00dev, 4, r4);
674 }
675
676 static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
677                                       struct antenna_setup *ant)
678 {
679         u8 r3;
680         u8 r4;
681         u8 r77;
682
683         rt61pci_bbp_read(rt2x00dev, 3, &r3);
684         rt61pci_bbp_read(rt2x00dev, 4, &r4);
685         rt61pci_bbp_read(rt2x00dev, 77, &r77);
686
687         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
688                           rt2x00_rf(&rt2x00dev->chip, RF2529));
689         rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
690                           !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
691
692         /*
693          * Configure the RX antenna.
694          */
695         switch (ant->rx) {
696         case ANTENNA_HW_DIVERSITY:
697                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
698                 break;
699         case ANTENNA_A:
700                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
701                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
702                 break;
703         case ANTENNA_B:
704         default:
705                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
706                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
707                 break;
708         }
709
710         rt61pci_bbp_write(rt2x00dev, 77, r77);
711         rt61pci_bbp_write(rt2x00dev, 3, r3);
712         rt61pci_bbp_write(rt2x00dev, 4, r4);
713 }
714
715 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
716                                            const int p1, const int p2)
717 {
718         u32 reg;
719
720         rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
721
722         rt2x00_set_field32(&reg, MAC_CSR13_BIT4, p1);
723         rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);
724
725         rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
726         rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);
727
728         rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
729 }
730
731 static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
732                                         struct antenna_setup *ant)
733 {
734         u8 r3;
735         u8 r4;
736         u8 r77;
737
738         rt61pci_bbp_read(rt2x00dev, 3, &r3);
739         rt61pci_bbp_read(rt2x00dev, 4, &r4);
740         rt61pci_bbp_read(rt2x00dev, 77, &r77);
741
742         /*
743          * Configure the RX antenna.
744          */
745         switch (ant->rx) {
746         case ANTENNA_A:
747                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
748                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
749                 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
750                 break;
751         case ANTENNA_HW_DIVERSITY:
752                 /*
753                  * FIXME: Antenna selection for the rf 2529 is very confusing
754                  * in the legacy driver. Just default to antenna B until the
755                  * legacy code can be properly translated into rt2x00 code.
756                  */
757         case ANTENNA_B:
758         default:
759                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
760                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
761                 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
762                 break;
763         }
764
765         rt61pci_bbp_write(rt2x00dev, 77, r77);
766         rt61pci_bbp_write(rt2x00dev, 3, r3);
767         rt61pci_bbp_write(rt2x00dev, 4, r4);
768 }
769
770 struct antenna_sel {
771         u8 word;
772         /*
773          * value[0] -> non-LNA
774          * value[1] -> LNA
775          */
776         u8 value[2];
777 };
778
779 static const struct antenna_sel antenna_sel_a[] = {
780         { 96,  { 0x58, 0x78 } },
781         { 104, { 0x38, 0x48 } },
782         { 75,  { 0xfe, 0x80 } },
783         { 86,  { 0xfe, 0x80 } },
784         { 88,  { 0xfe, 0x80 } },
785         { 35,  { 0x60, 0x60 } },
786         { 97,  { 0x58, 0x58 } },
787         { 98,  { 0x58, 0x58 } },
788 };
789
790 static const struct antenna_sel antenna_sel_bg[] = {
791         { 96,  { 0x48, 0x68 } },
792         { 104, { 0x2c, 0x3c } },
793         { 75,  { 0xfe, 0x80 } },
794         { 86,  { 0xfe, 0x80 } },
795         { 88,  { 0xfe, 0x80 } },
796         { 35,  { 0x50, 0x50 } },
797         { 97,  { 0x48, 0x48 } },
798         { 98,  { 0x48, 0x48 } },
799 };
800
801 static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
802                                struct antenna_setup *ant)
803 {
804         const struct antenna_sel *sel;
805         unsigned int lna;
806         unsigned int i;
807         u32 reg;
808
809         /*
810          * We should never come here because rt2x00lib is supposed
811          * to catch this and send us the correct antenna explicitely.
812          */
813         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
814                ant->tx == ANTENNA_SW_DIVERSITY);
815
816         if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
817                 sel = antenna_sel_a;
818                 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
819         } else {
820                 sel = antenna_sel_bg;
821                 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
822         }
823
824         for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
825                 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
826
827         rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);
828
829         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
830                            rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
831         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
832                            rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
833
834         rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
835
836         if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
837             rt2x00_rf(&rt2x00dev->chip, RF5325))
838                 rt61pci_config_antenna_5x(rt2x00dev, ant);
839         else if (rt2x00_rf(&rt2x00dev->chip, RF2527))
840                 rt61pci_config_antenna_2x(rt2x00dev, ant);
841         else if (rt2x00_rf(&rt2x00dev->chip, RF2529)) {
842                 if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
843                         rt61pci_config_antenna_2x(rt2x00dev, ant);
844                 else
845                         rt61pci_config_antenna_2529(rt2x00dev, ant);
846         }
847 }
848
849 static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
850                                     struct rt2x00lib_conf *libconf)
851 {
852         u16 eeprom;
853         short lna_gain = 0;
854
855         if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
856                 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
857                         lna_gain += 14;
858
859                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
860                 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
861         } else {
862                 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
863                         lna_gain += 14;
864
865                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
866                 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
867         }
868
869         rt2x00dev->lna_gain = lna_gain;
870 }
871
872 static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
873                                    struct rf_channel *rf, const int txpower)
874 {
875         u8 r3;
876         u8 r94;
877         u8 smart;
878
879         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
880         rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
881
882         smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
883                   rt2x00_rf(&rt2x00dev->chip, RF2527));
884
885         rt61pci_bbp_read(rt2x00dev, 3, &r3);
886         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
887         rt61pci_bbp_write(rt2x00dev, 3, r3);
888
889         r94 = 6;
890         if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
891                 r94 += txpower - MAX_TXPOWER;
892         else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
893                 r94 += txpower;
894         rt61pci_bbp_write(rt2x00dev, 94, r94);
895
896         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
897         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
898         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
899         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
900
901         udelay(200);
902
903         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
904         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
905         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
906         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
907
908         udelay(200);
909
910         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
911         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
912         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
913         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
914
915         msleep(1);
916 }
917
918 static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
919                                    const int txpower)
920 {
921         struct rf_channel rf;
922
923         rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
924         rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
925         rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
926         rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
927
928         rt61pci_config_channel(rt2x00dev, &rf, txpower);
929 }
930
931 static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
932                                     struct rt2x00lib_conf *libconf)
933 {
934         u32 reg;
935
936         rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
937         rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
938                            libconf->conf->long_frame_max_tx_count);
939         rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
940                            libconf->conf->short_frame_max_tx_count);
941         rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
942 }
943
944 static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
945                                 struct rt2x00lib_conf *libconf)
946 {
947         enum dev_state state =
948             (libconf->conf->flags & IEEE80211_CONF_PS) ?
949                 STATE_SLEEP : STATE_AWAKE;
950         u32 reg;
951
952         if (state == STATE_SLEEP) {
953                 rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
954                 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
955                                    rt2x00dev->beacon_int - 10);
956                 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
957                                    libconf->conf->listen_interval - 1);
958                 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
959
960                 /* We must first disable autowake before it can be enabled */
961                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
962                 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
963
964                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
965                 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
966
967                 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000005);
968                 rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
969                 rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
970
971                 rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
972         } else {
973                 rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
974                 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
975                 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
976                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
977                 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
978                 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
979
980                 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
981                 rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
982                 rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
983
984                 rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
985         }
986 }
987
988 static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
989                            struct rt2x00lib_conf *libconf,
990                            const unsigned int flags)
991 {
992         /* Always recalculate LNA gain before changing configuration */
993         rt61pci_config_lna_gain(rt2x00dev, libconf);
994
995         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
996                 rt61pci_config_channel(rt2x00dev, &libconf->rf,
997                                        libconf->conf->power_level);
998         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
999             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
1000                 rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
1001         if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
1002                 rt61pci_config_retry_limit(rt2x00dev, libconf);
1003         if (flags & IEEE80211_CONF_CHANGE_PS)
1004                 rt61pci_config_ps(rt2x00dev, libconf);
1005 }
1006
1007 /*
1008  * Link tuning
1009  */
1010 static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
1011                                struct link_qual *qual)
1012 {
1013         u32 reg;
1014
1015         /*
1016          * Update FCS error count from register.
1017          */
1018         rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1019         qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
1020
1021         /*
1022          * Update False CCA count from register.
1023          */
1024         rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1025         qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
1026 }
1027
1028 static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
1029                                    struct link_qual *qual, u8 vgc_level)
1030 {
1031         if (qual->vgc_level != vgc_level) {
1032                 rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
1033                 qual->vgc_level = vgc_level;
1034                 qual->vgc_level_reg = vgc_level;
1035         }
1036 }
1037
1038 static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
1039                                 struct link_qual *qual)
1040 {
1041         rt61pci_set_vgc(rt2x00dev, qual, 0x20);
1042 }
1043
1044 static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
1045                                struct link_qual *qual, const u32 count)
1046 {
1047         u8 up_bound;
1048         u8 low_bound;
1049
1050         /*
1051          * Determine r17 bounds.
1052          */
1053         if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1054                 low_bound = 0x28;
1055                 up_bound = 0x48;
1056                 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
1057                         low_bound += 0x10;
1058                         up_bound += 0x10;
1059                 }
1060         } else {
1061                 low_bound = 0x20;
1062                 up_bound = 0x40;
1063                 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
1064                         low_bound += 0x10;
1065                         up_bound += 0x10;
1066                 }
1067         }
1068
1069         /*
1070          * If we are not associated, we should go straight to the
1071          * dynamic CCA tuning.
1072          */
1073         if (!rt2x00dev->intf_associated)
1074                 goto dynamic_cca_tune;
1075
1076         /*
1077          * Special big-R17 for very short distance
1078          */
1079         if (qual->rssi >= -35) {
1080                 rt61pci_set_vgc(rt2x00dev, qual, 0x60);
1081                 return;
1082         }
1083
1084         /*
1085          * Special big-R17 for short distance
1086          */
1087         if (qual->rssi >= -58) {
1088                 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1089                 return;
1090         }
1091
1092         /*
1093          * Special big-R17 for middle-short distance
1094          */
1095         if (qual->rssi >= -66) {
1096                 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
1097                 return;
1098         }
1099
1100         /*
1101          * Special mid-R17 for middle distance
1102          */
1103         if (qual->rssi >= -74) {
1104                 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1105                 return;
1106         }
1107
1108         /*
1109          * Special case: Change up_bound based on the rssi.
1110          * Lower up_bound when rssi is weaker then -74 dBm.
1111          */
1112         up_bound -= 2 * (-74 - qual->rssi);
1113         if (low_bound > up_bound)
1114                 up_bound = low_bound;
1115
1116         if (qual->vgc_level > up_bound) {
1117                 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1118                 return;
1119         }
1120
1121 dynamic_cca_tune:
1122
1123         /*
1124          * r17 does not yet exceed upper limit, continue and base
1125          * the r17 tuning on the false CCA count.
1126          */
1127         if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1128                 rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
1129         else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1130                 rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
1131 }
1132
1133 /*
1134  * Firmware functions
1135  */
1136 static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1137 {
1138         char *fw_name;
1139
1140         switch (rt2x00dev->chip.rt) {
1141         case RT2561:
1142                 fw_name = FIRMWARE_RT2561;
1143                 break;
1144         case RT2561s:
1145                 fw_name = FIRMWARE_RT2561s;
1146                 break;
1147         case RT2661:
1148                 fw_name = FIRMWARE_RT2661;
1149                 break;
1150         default:
1151                 fw_name = NULL;
1152                 break;
1153         }
1154
1155         return fw_name;
1156 }
1157
1158 static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
1159                                   const u8 *data, const size_t len)
1160 {
1161         u16 fw_crc;
1162         u16 crc;
1163
1164         /*
1165          * Only support 8kb firmware files.
1166          */
1167         if (len != 8192)
1168                 return FW_BAD_LENGTH;
1169
1170         /*
1171          * The last 2 bytes in the firmware array are the crc checksum itself.
1172          * This means that we should never pass those 2 bytes to the crc
1173          * algorithm.
1174          */
1175         fw_crc = (data[len - 2] << 8 | data[len - 1]);
1176
1177         /*
1178          * Use the crc itu-t algorithm.
1179          */
1180         crc = crc_itu_t(0, data, len - 2);
1181         crc = crc_itu_t_byte(crc, 0);
1182         crc = crc_itu_t_byte(crc, 0);
1183
1184         return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1185 }
1186
1187 static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
1188                                  const u8 *data, const size_t len)
1189 {
1190         int i;
1191         u32 reg;
1192
1193         /*
1194          * Wait for stable hardware.
1195          */
1196         for (i = 0; i < 100; i++) {
1197                 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
1198                 if (reg)
1199                         break;
1200                 msleep(1);
1201         }
1202
1203         if (!reg) {
1204                 ERROR(rt2x00dev, "Unstable hardware.\n");
1205                 return -EBUSY;
1206         }
1207
1208         /*
1209          * Prepare MCU and mailbox for firmware loading.
1210          */
1211         reg = 0;
1212         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1213         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1214         rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1215         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1216         rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1217
1218         /*
1219          * Write firmware to device.
1220          */
1221         reg = 0;
1222         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1223         rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1224         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1225
1226         rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1227                                       data, len);
1228
1229         rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1230         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1231
1232         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1233         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1234
1235         for (i = 0; i < 100; i++) {
1236                 rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
1237                 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1238                         break;
1239                 msleep(1);
1240         }
1241
1242         if (i == 100) {
1243                 ERROR(rt2x00dev, "MCU Control register not ready.\n");
1244                 return -EBUSY;
1245         }
1246
1247         /*
1248          * Hardware needs another millisecond before it is ready.
1249          */
1250         msleep(1);
1251
1252         /*
1253          * Reset MAC and BBP registers.
1254          */
1255         reg = 0;
1256         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1257         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1258         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1259
1260         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1261         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1262         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1263         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1264
1265         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1266         rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1267         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1268
1269         return 0;
1270 }
1271
1272 /*
1273  * Initialization functions.
1274  */
1275 static bool rt61pci_get_entry_state(struct queue_entry *entry)
1276 {
1277         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1278         u32 word;
1279
1280         if (entry->queue->qid == QID_RX) {
1281                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1282
1283                 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
1284         } else {
1285                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1286
1287                 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1288                         rt2x00_get_field32(word, TXD_W0_VALID));
1289         }
1290 }
1291
1292 static void rt61pci_clear_entry(struct queue_entry *entry)
1293 {
1294         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1295         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1296         u32 word;
1297
1298         if (entry->queue->qid == QID_RX) {
1299                 rt2x00_desc_read(entry_priv->desc, 5, &word);
1300                 rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1301                                    skbdesc->skb_dma);
1302                 rt2x00_desc_write(entry_priv->desc, 5, word);
1303
1304                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1305                 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1306                 rt2x00_desc_write(entry_priv->desc, 0, word);
1307         } else {
1308                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1309                 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1310                 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1311                 rt2x00_desc_write(entry_priv->desc, 0, word);
1312         }
1313 }
1314
1315 static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1316 {
1317         struct queue_entry_priv_pci *entry_priv;
1318         u32 reg;
1319
1320         /*
1321          * Initialize registers.
1322          */
1323         rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1324         rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1325                            rt2x00dev->tx[0].limit);
1326         rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1327                            rt2x00dev->tx[1].limit);
1328         rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1329                            rt2x00dev->tx[2].limit);
1330         rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1331                            rt2x00dev->tx[3].limit);
1332         rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
1333
1334         rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
1335         rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1336                            rt2x00dev->tx[0].desc_size / 4);
1337         rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
1338
1339         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1340         rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1341         rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1342                            entry_priv->desc_dma);
1343         rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1344
1345         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1346         rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1347         rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1348                            entry_priv->desc_dma);
1349         rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1350
1351         entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1352         rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1353         rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1354                            entry_priv->desc_dma);
1355         rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1356
1357         entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1358         rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1359         rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1360                            entry_priv->desc_dma);
1361         rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1362
1363         rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
1364         rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1365         rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1366                            rt2x00dev->rx->desc_size / 4);
1367         rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1368         rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
1369
1370         entry_priv = rt2x00dev->rx->entries[0].priv_data;
1371         rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1372         rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1373                            entry_priv->desc_dma);
1374         rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
1375
1376         rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1377         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1378         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1379         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1380         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1381         rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1382
1383         rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1384         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1385         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1386         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1387         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1388         rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1389
1390         rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1391         rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1392         rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1393
1394         return 0;
1395 }
1396
1397 static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1398 {
1399         u32 reg;
1400
1401         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1402         rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1403         rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1404         rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1405         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1406
1407         rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
1408         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1409         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1410         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1411         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1412         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1413         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1414         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1415         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1416         rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
1417
1418         /*
1419          * CCK TXD BBP registers
1420          */
1421         rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
1422         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1423         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1424         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1425         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1426         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1427         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1428         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1429         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1430         rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
1431
1432         /*
1433          * OFDM TXD BBP registers
1434          */
1435         rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
1436         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1437         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1438         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1439         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1440         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1441         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1442         rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
1443
1444         rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
1445         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1446         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1447         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1448         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1449         rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
1450
1451         rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
1452         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1453         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1454         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1455         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1456         rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
1457
1458         rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1459         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1460         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1461         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1462         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1463         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1464         rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1465         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1466
1467         rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1468
1469         rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1470
1471         rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
1472         rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1473         rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
1474
1475         rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1476
1477         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1478                 return -EBUSY;
1479
1480         rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1481
1482         /*
1483          * Invalidate all Shared Keys (SEC_CSR0),
1484          * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1485          */
1486         rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1487         rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1488         rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1489
1490         rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1491         rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1492         rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1493         rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1494
1495         rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1496
1497         rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1498
1499         rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1500
1501         /*
1502          * Clear all beacons
1503          * For the Beacon base registers we only need to clear
1504          * the first byte since that byte contains the VALID and OWNER
1505          * bits which (when set to 0) will invalidate the entire beacon.
1506          */
1507         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1508         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1509         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1510         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1511
1512         /*
1513          * We must clear the error counters.
1514          * These registers are cleared on read,
1515          * so we may pass a useless variable to store the value.
1516          */
1517         rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1518         rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1519         rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);
1520
1521         /*
1522          * Reset MAC and BBP registers.
1523          */
1524         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1525         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1526         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1527         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1528
1529         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1530         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1531         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1532         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1533
1534         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1535         rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1536         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1537
1538         return 0;
1539 }
1540
1541 static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1542 {
1543         unsigned int i;
1544         u8 value;
1545
1546         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1547                 rt61pci_bbp_read(rt2x00dev, 0, &value);
1548                 if ((value != 0xff) && (value != 0x00))
1549                         return 0;
1550                 udelay(REGISTER_BUSY_DELAY);
1551         }
1552
1553         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1554         return -EACCES;
1555 }
1556
1557 static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1558 {
1559         unsigned int i;
1560         u16 eeprom;
1561         u8 reg_id;
1562         u8 value;
1563
1564         if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1565                 return -EACCES;
1566
1567         rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1568         rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1569         rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1570         rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1571         rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1572         rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1573         rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1574         rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1575         rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1576         rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1577         rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1578         rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1579         rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1580         rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1581         rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1582         rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1583         rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1584         rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1585         rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1586         rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1587         rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1588         rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1589         rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1590         rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1591
1592         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1593                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1594
1595                 if (eeprom != 0xffff && eeprom != 0x0000) {
1596                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1597                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1598                         rt61pci_bbp_write(rt2x00dev, reg_id, value);
1599                 }
1600         }
1601
1602         return 0;
1603 }
1604
1605 /*
1606  * Device state switch handlers.
1607  */
1608 static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1609                               enum dev_state state)
1610 {
1611         u32 reg;
1612
1613         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1614         rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
1615                            (state == STATE_RADIO_RX_OFF) ||
1616                            (state == STATE_RADIO_RX_OFF_LINK));
1617         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1618 }
1619
1620 static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1621                                enum dev_state state)
1622 {
1623         int mask = (state == STATE_RADIO_IRQ_OFF);
1624         u32 reg;
1625
1626         /*
1627          * When interrupts are being enabled, the interrupt registers
1628          * should clear the register to assure a clean state.
1629          */
1630         if (state == STATE_RADIO_IRQ_ON) {
1631                 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1632                 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1633
1634                 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1635                 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1636         }
1637
1638         /*
1639          * Only toggle the interrupts bits we are going to use.
1640          * Non-checked interrupt bits are disabled by default.
1641          */
1642         rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1643         rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1644         rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1645         rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1646         rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1647         rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1648
1649         rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1650         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1651         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1652         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1653         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1654         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1655         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1656         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1657         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1658         rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1659 }
1660
1661 static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1662 {
1663         u32 reg;
1664
1665         /*
1666          * Initialize all registers.
1667          */
1668         if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1669                      rt61pci_init_registers(rt2x00dev) ||
1670                      rt61pci_init_bbp(rt2x00dev)))
1671                 return -EIO;
1672
1673         /*
1674          * Enable RX.
1675          */
1676         rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1677         rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1678         rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1679
1680         return 0;
1681 }
1682
1683 static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1684 {
1685         /*
1686          * Disable power
1687          */
1688         rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1689 }
1690
1691 static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1692 {
1693         u32 reg;
1694         unsigned int i;
1695         char put_to_sleep;
1696
1697         put_to_sleep = (state != STATE_AWAKE);
1698
1699         rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1700         rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1701         rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1702         rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1703
1704         /*
1705          * Device is not guaranteed to be in the requested state yet.
1706          * We must wait until the register indicates that the
1707          * device has entered the correct state.
1708          */
1709         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1710                 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1711                 state = rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
1712                 if (state == !put_to_sleep)
1713                         return 0;
1714                 msleep(10);
1715         }
1716
1717         return -EBUSY;
1718 }
1719
1720 static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1721                                     enum dev_state state)
1722 {
1723         int retval = 0;
1724
1725         switch (state) {
1726         case STATE_RADIO_ON:
1727                 retval = rt61pci_enable_radio(rt2x00dev);
1728                 break;
1729         case STATE_RADIO_OFF:
1730                 rt61pci_disable_radio(rt2x00dev);
1731                 break;
1732         case STATE_RADIO_RX_ON:
1733         case STATE_RADIO_RX_ON_LINK:
1734         case STATE_RADIO_RX_OFF:
1735         case STATE_RADIO_RX_OFF_LINK:
1736                 rt61pci_toggle_rx(rt2x00dev, state);
1737                 break;
1738         case STATE_RADIO_IRQ_ON:
1739         case STATE_RADIO_IRQ_OFF:
1740                 rt61pci_toggle_irq(rt2x00dev, state);
1741                 break;
1742         case STATE_DEEP_SLEEP:
1743         case STATE_SLEEP:
1744         case STATE_STANDBY:
1745         case STATE_AWAKE:
1746                 retval = rt61pci_set_state(rt2x00dev, state);
1747                 break;
1748         default:
1749                 retval = -ENOTSUPP;
1750                 break;
1751         }
1752
1753         if (unlikely(retval))
1754                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1755                       state, retval);
1756
1757         return retval;
1758 }
1759
1760 /*
1761  * TX descriptor initialization
1762  */
1763 static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1764                                   struct sk_buff *skb,
1765                                   struct txentry_desc *txdesc)
1766 {
1767         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1768         __le32 *txd = skbdesc->desc;
1769         u32 word;
1770
1771         /*
1772          * Start writing the descriptor words.
1773          */
1774         rt2x00_desc_read(txd, 1, &word);
1775         rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
1776         rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
1777         rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1778         rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1779         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1780         rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1781                            test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1782         rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1783         rt2x00_desc_write(txd, 1, word);
1784
1785         rt2x00_desc_read(txd, 2, &word);
1786         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1787         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1788         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1789         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1790         rt2x00_desc_write(txd, 2, word);
1791
1792         if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1793                 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1794                 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1795         }
1796
1797         rt2x00_desc_read(txd, 5, &word);
1798         rt2x00_set_field32(&word, TXD_W5_PID_TYPE, skbdesc->entry->queue->qid);
1799         rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1800                            skbdesc->entry->entry_idx);
1801         rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1802                            TXPOWER_TO_DEV(rt2x00dev->tx_power));
1803         rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1804         rt2x00_desc_write(txd, 5, word);
1805
1806         rt2x00_desc_read(txd, 6, &word);
1807         rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1808                            skbdesc->skb_dma);
1809         rt2x00_desc_write(txd, 6, word);
1810
1811         if (skbdesc->desc_len > TXINFO_SIZE) {
1812                 rt2x00_desc_read(txd, 11, &word);
1813                 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0, skb->len);
1814                 rt2x00_desc_write(txd, 11, word);
1815         }
1816
1817         rt2x00_desc_read(txd, 0, &word);
1818         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1819         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1820         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1821                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1822         rt2x00_set_field32(&word, TXD_W0_ACK,
1823                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1824         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1825                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1826         rt2x00_set_field32(&word, TXD_W0_OFDM,
1827                            (txdesc->rate_mode == RATE_MODE_OFDM));
1828         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1829         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1830                            test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1831         rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1832                            test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1833         rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1834                            test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1835         rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1836         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1837         rt2x00_set_field32(&word, TXD_W0_BURST,
1838                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1839         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1840         rt2x00_desc_write(txd, 0, word);
1841 }
1842
1843 /*
1844  * TX data initialization
1845  */
1846 static void rt61pci_write_beacon(struct queue_entry *entry)
1847 {
1848         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1849         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1850         unsigned int beacon_base;
1851         u32 reg;
1852
1853         /*
1854          * Disable beaconing while we are reloading the beacon data,
1855          * otherwise we might be sending out invalid data.
1856          */
1857         rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1858         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1859         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1860
1861         /*
1862          * Write entire beacon with descriptor to register.
1863          */
1864         beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1865         rt2x00pci_register_multiwrite(rt2x00dev,
1866                                       beacon_base,
1867                                       skbdesc->desc, skbdesc->desc_len);
1868         rt2x00pci_register_multiwrite(rt2x00dev,
1869                                       beacon_base + skbdesc->desc_len,
1870                                       entry->skb->data, entry->skb->len);
1871
1872         /*
1873          * Clean up beacon skb.
1874          */
1875         dev_kfree_skb_any(entry->skb);
1876         entry->skb = NULL;
1877 }
1878
1879 static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1880                                   const enum data_queue_qid queue)
1881 {
1882         u32 reg;
1883
1884         if (queue == QID_BEACON) {
1885                 /*
1886                  * For Wi-Fi faily generated beacons between participating
1887                  * stations. Set TBTT phase adaptive adjustment step to 8us.
1888                  */
1889                 rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1890
1891                 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1892                 if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
1893                         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1894                         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1895                         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1896                         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1897                 }
1898                 return;
1899         }
1900
1901         rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1902         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, (queue == QID_AC_BE));
1903         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, (queue == QID_AC_BK));
1904         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, (queue == QID_AC_VI));
1905         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, (queue == QID_AC_VO));
1906         rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1907 }
1908
1909 static void rt61pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
1910                                   const enum data_queue_qid qid)
1911 {
1912         u32 reg;
1913
1914         if (qid == QID_BEACON) {
1915                 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
1916                 return;
1917         }
1918
1919         rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1920         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, (qid == QID_AC_BE));
1921         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, (qid == QID_AC_BK));
1922         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, (qid == QID_AC_VI));
1923         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, (qid == QID_AC_VO));
1924         rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1925 }
1926
1927 /*
1928  * RX control handlers
1929  */
1930 static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1931 {
1932         u8 offset = rt2x00dev->lna_gain;
1933         u8 lna;
1934
1935         lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1936         switch (lna) {
1937         case 3:
1938                 offset += 90;
1939                 break;
1940         case 2:
1941                 offset += 74;
1942                 break;
1943         case 1:
1944                 offset += 64;
1945                 break;
1946         default:
1947                 return 0;
1948         }
1949
1950         if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1951                 if (lna == 3 || lna == 2)
1952                         offset += 10;
1953         }
1954
1955         return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1956 }
1957
1958 static void rt61pci_fill_rxdone(struct queue_entry *entry,
1959                                 struct rxdone_entry_desc *rxdesc)
1960 {
1961         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1962         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1963         u32 word0;
1964         u32 word1;
1965
1966         rt2x00_desc_read(entry_priv->desc, 0, &word0);
1967         rt2x00_desc_read(entry_priv->desc, 1, &word1);
1968
1969         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1970                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1971
1972         if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
1973                 rxdesc->cipher =
1974                     rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1975                 rxdesc->cipher_status =
1976                     rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1977         }
1978
1979         if (rxdesc->cipher != CIPHER_NONE) {
1980                 _rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]);
1981                 _rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]);
1982                 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1983
1984                 _rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
1985                 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
1986
1987                 /*
1988                  * Hardware has stripped IV/EIV data from 802.11 frame during
1989                  * decryption. It has provided the data separately but rt2x00lib
1990                  * should decide if it should be reinserted.
1991                  */
1992                 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
1993
1994                 /*
1995                  * FIXME: Legacy driver indicates that the frame does
1996                  * contain the Michael Mic. Unfortunately, in rt2x00
1997                  * the MIC seems to be missing completely...
1998                  */
1999                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
2000
2001                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
2002                         rxdesc->flags |= RX_FLAG_DECRYPTED;
2003                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
2004                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
2005         }
2006
2007         /*
2008          * Obtain the status about this packet.
2009          * When frame was received with an OFDM bitrate,
2010          * the signal is the PLCP value. If it was received with
2011          * a CCK bitrate the signal is the rate in 100kbit/s.
2012          */
2013         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
2014         rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
2015         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
2016
2017         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
2018                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
2019         else
2020                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
2021         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
2022                 rxdesc->dev_flags |= RXDONE_MY_BSS;
2023 }
2024
2025 /*
2026  * Interrupt functions.
2027  */
2028 static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2029 {
2030         struct data_queue *queue;
2031         struct queue_entry *entry;
2032         struct queue_entry *entry_done;
2033         struct queue_entry_priv_pci *entry_priv;
2034         struct txdone_entry_desc txdesc;
2035         u32 word;
2036         u32 reg;
2037         u32 old_reg;
2038         int type;
2039         int index;
2040
2041         /*
2042          * During each loop we will compare the freshly read
2043          * STA_CSR4 register value with the value read from
2044          * the previous loop. If the 2 values are equal then
2045          * we should stop processing because the chance is
2046          * quite big that the device has been unplugged and
2047          * we risk going into an endless loop.
2048          */
2049         old_reg = 0;
2050
2051         while (1) {
2052                 rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
2053                 if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2054                         break;
2055
2056                 if (old_reg == reg)
2057                         break;
2058                 old_reg = reg;
2059
2060                 /*
2061                  * Skip this entry when it contains an invalid
2062                  * queue identication number.
2063                  */
2064                 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2065                 queue = rt2x00queue_get_queue(rt2x00dev, type);
2066                 if (unlikely(!queue))
2067                         continue;
2068
2069                 /*
2070                  * Skip this entry when it contains an invalid
2071                  * index number.
2072                  */
2073                 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2074                 if (unlikely(index >= queue->limit))
2075                         continue;
2076
2077                 entry = &queue->entries[index];
2078                 entry_priv = entry->priv_data;
2079                 rt2x00_desc_read(entry_priv->desc, 0, &word);
2080
2081                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2082                     !rt2x00_get_field32(word, TXD_W0_VALID))
2083                         return;
2084
2085                 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2086                 while (entry != entry_done) {
2087                         /* Catch up.
2088                          * Just report any entries we missed as failed.
2089                          */
2090                         WARNING(rt2x00dev,
2091                                 "TX status report missed for entry %d\n",
2092                                 entry_done->entry_idx);
2093
2094                         txdesc.flags = 0;
2095                         __set_bit(TXDONE_UNKNOWN, &txdesc.flags);
2096                         txdesc.retry = 0;
2097
2098                         rt2x00lib_txdone(entry_done, &txdesc);
2099                         entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2100                 }
2101
2102                 /*
2103                  * Obtain the status about this packet.
2104                  */
2105                 txdesc.flags = 0;
2106                 switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2107                 case 0: /* Success, maybe with retry */
2108                         __set_bit(TXDONE_SUCCESS, &txdesc.flags);
2109                         break;
2110                 case 6: /* Failure, excessive retries */
2111                         __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2112                         /* Don't break, this is a failed frame! */
2113                 default: /* Failure */
2114                         __set_bit(TXDONE_FAILURE, &txdesc.flags);
2115                 }
2116                 txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2117
2118                 rt2x00lib_txdone(entry, &txdesc);
2119         }
2120 }
2121
2122 static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2123 {
2124         struct rt2x00_dev *rt2x00dev = dev_instance;
2125         u32 reg_mcu;
2126         u32 reg;
2127
2128         /*
2129          * Get the interrupt sources & saved to local variable.
2130          * Write register value back to clear pending interrupts.
2131          */
2132         rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
2133         rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2134
2135         rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
2136         rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2137
2138         if (!reg && !reg_mcu)
2139                 return IRQ_NONE;
2140
2141         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2142                 return IRQ_HANDLED;
2143
2144         /*
2145          * Handle interrupts, walk through all bits
2146          * and run the tasks, the bits are checked in order of
2147          * priority.
2148          */
2149
2150         /*
2151          * 1 - Rx ring done interrupt.
2152          */
2153         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2154                 rt2x00pci_rxdone(rt2x00dev);
2155
2156         /*
2157          * 2 - Tx ring done interrupt.
2158          */
2159         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2160                 rt61pci_txdone(rt2x00dev);
2161
2162         /*
2163          * 3 - Handle MCU command done.
2164          */
2165         if (reg_mcu)
2166                 rt2x00pci_register_write(rt2x00dev,
2167                                          M2H_CMD_DONE_CSR, 0xffffffff);
2168
2169         return IRQ_HANDLED;
2170 }
2171
2172 /*
2173  * Device probe functions.
2174  */
2175 static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2176 {
2177         struct eeprom_93cx6 eeprom;
2178         u32 reg;
2179         u16 word;
2180         u8 *mac;
2181         s8 value;
2182
2183         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
2184
2185         eeprom.data = rt2x00dev;
2186         eeprom.register_read = rt61pci_eepromregister_read;
2187         eeprom.register_write = rt61pci_eepromregister_write;
2188         eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2189             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2190         eeprom.reg_data_in = 0;
2191         eeprom.reg_data_out = 0;
2192         eeprom.reg_data_clock = 0;
2193         eeprom.reg_chip_select = 0;
2194
2195         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2196                                EEPROM_SIZE / sizeof(u16));
2197
2198         /*
2199          * Start validation of the data that has been read.
2200          */
2201         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2202         if (!is_valid_ether_addr(mac)) {
2203                 random_ether_addr(mac);
2204                 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
2205         }
2206
2207         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
2208         if (word == 0xffff) {
2209                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2210                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2211                                    ANTENNA_B);
2212                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2213                                    ANTENNA_B);
2214                 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2215                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2216                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2217                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2218                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2219                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
2220         }
2221
2222         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
2223         if (word == 0xffff) {
2224                 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2225                 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2226                 rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
2227                 rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
2228                 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2229                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2230                 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2231                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2232                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
2233         }
2234
2235         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
2236         if (word == 0xffff) {
2237                 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2238                                    LED_MODE_DEFAULT);
2239                 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2240                 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
2241         }
2242
2243         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
2244         if (word == 0xffff) {
2245                 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2246                 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2247                 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2248                 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
2249         }
2250
2251         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
2252         if (word == 0xffff) {
2253                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2254                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2255                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2256                 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2257         } else {
2258                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2259                 if (value < -10 || value > 10)
2260                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2261                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2262                 if (value < -10 || value > 10)
2263                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2264                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2265         }
2266
2267         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
2268         if (word == 0xffff) {
2269                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2270                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2271                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2272                 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2273         } else {
2274                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2275                 if (value < -10 || value > 10)
2276                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2277                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2278                 if (value < -10 || value > 10)
2279                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2280                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2281         }
2282
2283         return 0;
2284 }
2285
2286 static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2287 {
2288         u32 reg;
2289         u16 value;
2290         u16 eeprom;
2291
2292         /*
2293          * Read EEPROM word for configuration.
2294          */
2295         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2296
2297         /*
2298          * Identify RF chipset.
2299          */
2300         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2301         rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
2302         rt2x00_set_chip_rf(rt2x00dev, value, reg);
2303         rt2x00_print_chip(rt2x00dev);
2304
2305         if (!rt2x00_rf(&rt2x00dev->chip, RF5225) &&
2306             !rt2x00_rf(&rt2x00dev->chip, RF5325) &&
2307             !rt2x00_rf(&rt2x00dev->chip, RF2527) &&
2308             !rt2x00_rf(&rt2x00dev->chip, RF2529)) {
2309                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
2310                 return -ENODEV;
2311         }
2312
2313         /*
2314          * Determine number of antennas.
2315          */
2316         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2317                 __set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);
2318
2319         /*
2320          * Identify default antenna configuration.
2321          */
2322         rt2x00dev->default_ant.tx =
2323             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2324         rt2x00dev->default_ant.rx =
2325             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2326
2327         /*
2328          * Read the Frame type.
2329          */
2330         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2331                 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
2332
2333         /*
2334          * Detect if this device has a hardware controlled radio.
2335          */
2336         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2337                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
2338
2339         /*
2340          * Read frequency offset and RF programming sequence.
2341          */
2342         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2343         if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2344                 __set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);
2345
2346         rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2347
2348         /*
2349          * Read external LNA informations.
2350          */
2351         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2352
2353         if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2354                 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
2355         if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2356                 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
2357
2358         /*
2359          * When working with a RF2529 chip without double antenna,
2360          * the antenna settings should be gathered from the NIC
2361          * eeprom word.
2362          */
2363         if (rt2x00_rf(&rt2x00dev->chip, RF2529) &&
2364             !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) {
2365                 rt2x00dev->default_ant.rx =
2366                     ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
2367                 rt2x00dev->default_ant.tx =
2368                     ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
2369
2370                 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2371                         rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2372                 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2373                         rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2374         }
2375
2376         /*
2377          * Store led settings, for correct led behaviour.
2378          * If the eeprom value is invalid,
2379          * switch to default led mode.
2380          */
2381 #ifdef CONFIG_RT2X00_LIB_LEDS
2382         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2383         value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2384
2385         rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2386         rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2387         if (value == LED_MODE_SIGNAL_STRENGTH)
2388                 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2389                                  LED_TYPE_QUALITY);
2390
2391         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2392         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2393                            rt2x00_get_field16(eeprom,
2394                                               EEPROM_LED_POLARITY_GPIO_0));
2395         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2396                            rt2x00_get_field16(eeprom,
2397                                               EEPROM_LED_POLARITY_GPIO_1));
2398         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2399                            rt2x00_get_field16(eeprom,
2400                                               EEPROM_LED_POLARITY_GPIO_2));
2401         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2402                            rt2x00_get_field16(eeprom,
2403                                               EEPROM_LED_POLARITY_GPIO_3));
2404         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2405                            rt2x00_get_field16(eeprom,
2406                                               EEPROM_LED_POLARITY_GPIO_4));
2407         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2408                            rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2409         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2410                            rt2x00_get_field16(eeprom,
2411                                               EEPROM_LED_POLARITY_RDY_G));
2412         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2413                            rt2x00_get_field16(eeprom,
2414                                               EEPROM_LED_POLARITY_RDY_A));
2415 #endif /* CONFIG_RT2X00_LIB_LEDS */
2416
2417         return 0;
2418 }
2419
2420 /*
2421  * RF value list for RF5225 & RF5325
2422  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2423  */
2424 static const struct rf_channel rf_vals_noseq[] = {
2425         { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2426         { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2427         { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2428         { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2429         { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2430         { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2431         { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2432         { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2433         { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2434         { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2435         { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2436         { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2437         { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2438         { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2439
2440         /* 802.11 UNI / HyperLan 2 */
2441         { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2442         { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2443         { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2444         { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2445         { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2446         { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2447         { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2448         { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2449
2450         /* 802.11 HyperLan 2 */
2451         { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2452         { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2453         { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2454         { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2455         { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2456         { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2457         { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2458         { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2459         { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2460         { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2461
2462         /* 802.11 UNII */
2463         { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2464         { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2465         { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2466         { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2467         { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2468         { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2469
2470         /* MMAC(Japan)J52 ch 34,38,42,46 */
2471         { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2472         { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2473         { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2474         { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2475 };
2476
2477 /*
2478  * RF value list for RF5225 & RF5325
2479  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2480  */
2481 static const struct rf_channel rf_vals_seq[] = {
2482         { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2483         { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2484         { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2485         { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2486         { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2487         { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2488         { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2489         { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2490         { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2491         { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2492         { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2493         { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2494         { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2495         { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2496
2497         /* 802.11 UNI / HyperLan 2 */
2498         { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2499         { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2500         { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2501         { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2502         { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2503         { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2504         { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2505         { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2506
2507         /* 802.11 HyperLan 2 */
2508         { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2509         { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2510         { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2511         { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2512         { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2513         { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2514         { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2515         { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2516         { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2517         { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2518
2519         /* 802.11 UNII */
2520         { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2521         { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2522         { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2523         { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2524         { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2525         { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2526
2527         /* MMAC(Japan)J52 ch 34,38,42,46 */
2528         { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2529         { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2530         { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2531         { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2532 };
2533
2534 static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2535 {
2536         struct hw_mode_spec *spec = &rt2x00dev->spec;
2537         struct channel_info *info;
2538         char *tx_power;
2539         unsigned int i;
2540
2541         /*
2542          * Disable powersaving as default.
2543          */
2544         rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
2545
2546         /*
2547          * Initialize all hw fields.
2548          */
2549         rt2x00dev->hw->flags =
2550             IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2551             IEEE80211_HW_SIGNAL_DBM |
2552             IEEE80211_HW_SUPPORTS_PS |
2553             IEEE80211_HW_PS_NULLFUNC_STACK;
2554
2555         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2556         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2557                                 rt2x00_eeprom_addr(rt2x00dev,
2558                                                    EEPROM_MAC_ADDR_0));
2559
2560         /*
2561          * Initialize hw_mode information.
2562          */
2563         spec->supported_bands = SUPPORT_BAND_2GHZ;
2564         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2565
2566         if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
2567                 spec->num_channels = 14;
2568                 spec->channels = rf_vals_noseq;
2569         } else {
2570                 spec->num_channels = 14;
2571                 spec->channels = rf_vals_seq;
2572         }
2573
2574         if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
2575             rt2x00_rf(&rt2x00dev->chip, RF5325)) {
2576                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2577                 spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2578         }
2579
2580         /*
2581          * Create channel information array
2582          */
2583         info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
2584         if (!info)
2585                 return -ENOMEM;
2586
2587         spec->channels_info = info;
2588
2589         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2590         for (i = 0; i < 14; i++)
2591                 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2592
2593         if (spec->num_channels > 14) {
2594                 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2595                 for (i = 14; i < spec->num_channels; i++)
2596                         info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2597         }
2598
2599         return 0;
2600 }
2601
2602 static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2603 {
2604         int retval;
2605
2606         /*
2607          * Disable power saving.
2608          */
2609         rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
2610
2611         /*
2612          * Allocate eeprom data.
2613          */
2614         retval = rt61pci_validate_eeprom(rt2x00dev);
2615         if (retval)
2616                 return retval;
2617
2618         retval = rt61pci_init_eeprom(rt2x00dev);
2619         if (retval)
2620                 return retval;
2621
2622         /*
2623          * Initialize hw specifications.
2624          */
2625         retval = rt61pci_probe_hw_mode(rt2x00dev);
2626         if (retval)
2627                 return retval;
2628
2629         /*
2630          * This device has multiple filters for control frames,
2631          * but has no a separate filter for PS Poll frames.
2632          */
2633         __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
2634
2635         /*
2636          * This device requires firmware and DMA mapped skbs.
2637          */
2638         __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2639         __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
2640         if (!modparam_nohwcrypt)
2641                 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
2642
2643         /*
2644          * Set the rssi offset.
2645          */
2646         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2647
2648         return 0;
2649 }
2650
2651 /*
2652  * IEEE80211 stack callback functions.
2653  */
2654 static int rt61pci_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
2655                            const struct ieee80211_tx_queue_params *params)
2656 {
2657         struct rt2x00_dev *rt2x00dev = hw->priv;
2658         struct data_queue *queue;
2659         struct rt2x00_field32 field;
2660         int retval;
2661         u32 reg;
2662         u32 offset;
2663
2664         /*
2665          * First pass the configuration through rt2x00lib, that will
2666          * update the queue settings and validate the input. After that
2667          * we are free to update the registers based on the value
2668          * in the queue parameter.
2669          */
2670         retval = rt2x00mac_conf_tx(hw, queue_idx, params);
2671         if (retval)
2672                 return retval;
2673
2674         /*
2675          * We only need to perform additional register initialization
2676          * for WMM queues.
2677          */
2678         if (queue_idx >= 4)
2679                 return 0;
2680
2681         queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
2682
2683         /* Update WMM TXOP register */
2684         offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2685         field.bit_offset = (queue_idx & 1) * 16;
2686         field.bit_mask = 0xffff << field.bit_offset;
2687
2688         rt2x00pci_register_read(rt2x00dev, offset, &reg);
2689         rt2x00_set_field32(&reg, field, queue->txop);
2690         rt2x00pci_register_write(rt2x00dev, offset, reg);
2691
2692         /* Update WMM registers */
2693         field.bit_offset = queue_idx * 4;
2694         field.bit_mask = 0xf << field.bit_offset;
2695
2696         rt2x00pci_register_read(rt2x00dev, AIFSN_CSR, &reg);
2697         rt2x00_set_field32(&reg, field, queue->aifs);
2698         rt2x00pci_register_write(rt2x00dev, AIFSN_CSR, reg);
2699
2700         rt2x00pci_register_read(rt2x00dev, CWMIN_CSR, &reg);
2701         rt2x00_set_field32(&reg, field, queue->cw_min);
2702         rt2x00pci_register_write(rt2x00dev, CWMIN_CSR, reg);
2703
2704         rt2x00pci_register_read(rt2x00dev, CWMAX_CSR, &reg);
2705         rt2x00_set_field32(&reg, field, queue->cw_max);
2706         rt2x00pci_register_write(rt2x00dev, CWMAX_CSR, reg);
2707
2708         return 0;
2709 }
2710
2711 static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
2712 {
2713         struct rt2x00_dev *rt2x00dev = hw->priv;
2714         u64 tsf;
2715         u32 reg;
2716
2717         rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
2718         tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2719         rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
2720         tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2721
2722         return tsf;
2723 }
2724
2725 static const struct ieee80211_ops rt61pci_mac80211_ops = {
2726         .tx                     = rt2x00mac_tx,
2727         .start                  = rt2x00mac_start,
2728         .stop                   = rt2x00mac_stop,
2729         .add_interface          = rt2x00mac_add_interface,
2730         .remove_interface       = rt2x00mac_remove_interface,
2731         .config                 = rt2x00mac_config,
2732         .configure_filter       = rt2x00mac_configure_filter,
2733         .set_tim                = rt2x00mac_set_tim,
2734         .set_key                = rt2x00mac_set_key,
2735         .get_stats              = rt2x00mac_get_stats,
2736         .bss_info_changed       = rt2x00mac_bss_info_changed,
2737         .conf_tx                = rt61pci_conf_tx,
2738         .get_tx_stats           = rt2x00mac_get_tx_stats,
2739         .get_tsf                = rt61pci_get_tsf,
2740         .rfkill_poll            = rt2x00mac_rfkill_poll,
2741 };
2742
2743 static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2744         .irq_handler            = rt61pci_interrupt,
2745         .probe_hw               = rt61pci_probe_hw,
2746         .get_firmware_name      = rt61pci_get_firmware_name,
2747         .check_firmware         = rt61pci_check_firmware,
2748         .load_firmware          = rt61pci_load_firmware,
2749         .initialize             = rt2x00pci_initialize,
2750         .uninitialize           = rt2x00pci_uninitialize,
2751         .get_entry_state        = rt61pci_get_entry_state,
2752         .clear_entry            = rt61pci_clear_entry,
2753         .set_device_state       = rt61pci_set_device_state,
2754         .rfkill_poll            = rt61pci_rfkill_poll,
2755         .link_stats             = rt61pci_link_stats,
2756         .reset_tuner            = rt61pci_reset_tuner,
2757         .link_tuner             = rt61pci_link_tuner,
2758         .write_tx_desc          = rt61pci_write_tx_desc,
2759         .write_tx_data          = rt2x00pci_write_tx_data,
2760         .write_beacon           = rt61pci_write_beacon,
2761         .kick_tx_queue          = rt61pci_kick_tx_queue,
2762         .kill_tx_queue          = rt61pci_kill_tx_queue,
2763         .fill_rxdone            = rt61pci_fill_rxdone,
2764         .config_shared_key      = rt61pci_config_shared_key,
2765         .config_pairwise_key    = rt61pci_config_pairwise_key,
2766         .config_filter          = rt61pci_config_filter,
2767         .config_intf            = rt61pci_config_intf,
2768         .config_erp             = rt61pci_config_erp,
2769         .config_ant             = rt61pci_config_ant,
2770         .config                 = rt61pci_config,
2771 };
2772
2773 static const struct data_queue_desc rt61pci_queue_rx = {
2774         .entry_num              = RX_ENTRIES,
2775         .data_size              = DATA_FRAME_SIZE,
2776         .desc_size              = RXD_DESC_SIZE,
2777         .priv_size              = sizeof(struct queue_entry_priv_pci),
2778 };
2779
2780 static const struct data_queue_desc rt61pci_queue_tx = {
2781         .entry_num              = TX_ENTRIES,
2782         .data_size              = DATA_FRAME_SIZE,
2783         .desc_size              = TXD_DESC_SIZE,
2784         .priv_size              = sizeof(struct queue_entry_priv_pci),
2785 };
2786
2787 static const struct data_queue_desc rt61pci_queue_bcn = {
2788         .entry_num              = 4 * BEACON_ENTRIES,
2789         .data_size              = 0, /* No DMA required for beacons */
2790         .desc_size              = TXINFO_SIZE,
2791         .priv_size              = sizeof(struct queue_entry_priv_pci),
2792 };
2793
2794 static const struct rt2x00_ops rt61pci_ops = {
2795         .name                   = KBUILD_MODNAME,
2796         .max_sta_intf           = 1,
2797         .max_ap_intf            = 4,
2798         .eeprom_size            = EEPROM_SIZE,
2799         .rf_size                = RF_SIZE,
2800         .tx_queues              = NUM_TX_QUEUES,
2801         .extra_tx_headroom      = 0,
2802         .rx                     = &rt61pci_queue_rx,
2803         .tx                     = &rt61pci_queue_tx,
2804         .bcn                    = &rt61pci_queue_bcn,
2805         .lib                    = &rt61pci_rt2x00_ops,
2806         .hw                     = &rt61pci_mac80211_ops,
2807 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2808         .debugfs                = &rt61pci_rt2x00debug,
2809 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2810 };
2811
2812 /*
2813  * RT61pci module information.
2814  */
2815 static struct pci_device_id rt61pci_device_table[] = {
2816         /* RT2561s */
2817         { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
2818         /* RT2561 v2 */
2819         { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
2820         /* RT2661 */
2821         { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
2822         { 0, }
2823 };
2824
2825 MODULE_AUTHOR(DRV_PROJECT);
2826 MODULE_VERSION(DRV_VERSION);
2827 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
2828 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
2829                         "PCI & PCMCIA chipset based cards");
2830 MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
2831 MODULE_FIRMWARE(FIRMWARE_RT2561);
2832 MODULE_FIRMWARE(FIRMWARE_RT2561s);
2833 MODULE_FIRMWARE(FIRMWARE_RT2661);
2834 MODULE_LICENSE("GPL");
2835
2836 static struct pci_driver rt61pci_driver = {
2837         .name           = KBUILD_MODNAME,
2838         .id_table       = rt61pci_device_table,
2839         .probe          = rt2x00pci_probe,
2840         .remove         = __devexit_p(rt2x00pci_remove),
2841         .suspend        = rt2x00pci_suspend,
2842         .resume         = rt2x00pci_resume,
2843 };
2844
2845 static int __init rt61pci_init(void)
2846 {
2847         return pci_register_driver(&rt61pci_driver);
2848 }
2849
2850 static void __exit rt61pci_exit(void)
2851 {
2852         pci_unregister_driver(&rt61pci_driver);
2853 }
2854
2855 module_init(rt61pci_init);
2856 module_exit(rt61pci_exit);