]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/wireless/rt2x00/rt73usb.c
rt2x00: Cleanup indirect register access
[karo-tx-linux.git] / drivers / net / wireless / rt2x00 / rt73usb.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt73usb
23         Abstract: rt73usb device specific routines.
24         Supported chipsets: rt2571W & rt2671.
25  */
26
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/usb.h>
34
35 #include "rt2x00.h"
36 #include "rt2x00usb.h"
37 #include "rt73usb.h"
38
39 /*
40  * Allow hardware encryption to be disabled.
41  */
42 static int modparam_nohwcrypt = 0;
43 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
44 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
45
46 /*
47  * Register access.
48  * All access to the CSR registers will go through the methods
49  * rt73usb_register_read and rt73usb_register_write.
50  * BBP and RF register require indirect register access,
51  * and use the CSR registers BBPCSR and RFCSR to achieve this.
52  * These indirect registers work with busy bits,
53  * and we will try maximal REGISTER_BUSY_COUNT times to access
54  * the register while taking a REGISTER_BUSY_DELAY us delay
55  * between each attampt. When the busy bit is still set at that time,
56  * the access attempt is considered to have failed,
57  * and we will print an error.
58  * The _lock versions must be used if you already hold the csr_mutex
59  */
60 static inline void rt73usb_register_read(struct rt2x00_dev *rt2x00dev,
61                                          const unsigned int offset, u32 *value)
62 {
63         __le32 reg;
64         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
65                                       USB_VENDOR_REQUEST_IN, offset,
66                                       &reg, sizeof(reg), REGISTER_TIMEOUT);
67         *value = le32_to_cpu(reg);
68 }
69
70 static inline void rt73usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
71                                               const unsigned int offset, u32 *value)
72 {
73         __le32 reg;
74         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
75                                        USB_VENDOR_REQUEST_IN, offset,
76                                        &reg, sizeof(reg), REGISTER_TIMEOUT);
77         *value = le32_to_cpu(reg);
78 }
79
80 static inline void rt73usb_register_multiread(struct rt2x00_dev *rt2x00dev,
81                                               const unsigned int offset,
82                                               void *value, const u32 length)
83 {
84         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
85                                       USB_VENDOR_REQUEST_IN, offset,
86                                       value, length,
87                                       REGISTER_TIMEOUT32(length));
88 }
89
90 static inline void rt73usb_register_write(struct rt2x00_dev *rt2x00dev,
91                                           const unsigned int offset, u32 value)
92 {
93         __le32 reg = cpu_to_le32(value);
94         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
95                                       USB_VENDOR_REQUEST_OUT, offset,
96                                       &reg, sizeof(reg), REGISTER_TIMEOUT);
97 }
98
99 static inline void rt73usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
100                                                const unsigned int offset, u32 value)
101 {
102         __le32 reg = cpu_to_le32(value);
103         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
104                                        USB_VENDOR_REQUEST_OUT, offset,
105                                        &reg, sizeof(reg), REGISTER_TIMEOUT);
106 }
107
108 static inline void rt73usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
109                                                const unsigned int offset,
110                                                void *value, const u32 length)
111 {
112         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
113                                       USB_VENDOR_REQUEST_OUT, offset,
114                                       value, length,
115                                       REGISTER_TIMEOUT32(length));
116 }
117
118 static int rt73usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
119                                 const unsigned int offset,
120                                 struct rt2x00_field32 field,
121                                 u32 *reg)
122 {
123         unsigned int i;
124
125         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
126                 rt73usb_register_read_lock(rt2x00dev, offset, reg);
127                 if (!rt2x00_get_field32(*reg, field))
128                         return 1;
129                 udelay(REGISTER_BUSY_DELAY);
130         }
131
132         ERROR(rt2x00dev, "Indirect register access failed: "
133               "offset=0x%.08x, value=0x%.08x\n", offset, *reg);
134         *reg = ~0;
135
136         return 0;
137 }
138
139 #define WAIT_FOR_BBP(__dev, __reg) \
140         rt73usb_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
141 #define WAIT_FOR_RF(__dev, __reg) \
142         rt73usb_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
143
144 static void rt73usb_bbp_write(struct rt2x00_dev *rt2x00dev,
145                               const unsigned int word, const u8 value)
146 {
147         u32 reg;
148
149         mutex_lock(&rt2x00dev->csr_mutex);
150
151         /*
152          * Wait until the BBP becomes available, afterwards we
153          * can safely write the new data into the register.
154          */
155         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
156                 reg = 0;
157                 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
158                 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
159                 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
160                 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
161
162                 rt73usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
163         }
164
165         mutex_unlock(&rt2x00dev->csr_mutex);
166 }
167
168 static void rt73usb_bbp_read(struct rt2x00_dev *rt2x00dev,
169                              const unsigned int word, u8 *value)
170 {
171         u32 reg;
172
173         mutex_lock(&rt2x00dev->csr_mutex);
174
175         /*
176          * Wait until the BBP becomes available, afterwards we
177          * can safely write the read request into the register.
178          * After the data has been written, we wait until hardware
179          * returns the correct value, if at any time the register
180          * doesn't become available in time, reg will be 0xffffffff
181          * which means we return 0xff to the caller.
182          */
183         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
184                 reg = 0;
185                 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
186                 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
187                 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
188
189                 rt73usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
190
191                 WAIT_FOR_BBP(rt2x00dev, &reg);
192         }
193
194         *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
195
196         mutex_unlock(&rt2x00dev->csr_mutex);
197 }
198
199 static void rt73usb_rf_write(struct rt2x00_dev *rt2x00dev,
200                              const unsigned int word, const u32 value)
201 {
202         u32 reg;
203
204         if (!word)
205                 return;
206
207         mutex_lock(&rt2x00dev->csr_mutex);
208
209         /*
210          * Wait until the RF becomes available, afterwards we
211          * can safely write the new data into the register.
212          */
213         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
214                 reg = 0;
215                 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
216                 /*
217                  * RF5225 and RF2527 contain 21 bits per RF register value,
218                  * all others contain 20 bits.
219                  */
220                 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS,
221                                    20 + (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
222                                          rt2x00_rf(&rt2x00dev->chip, RF2527)));
223                 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
224                 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
225
226                 rt73usb_register_write_lock(rt2x00dev, PHY_CSR4, reg);
227                 rt2x00_rf_write(rt2x00dev, word, value);
228         }
229
230         mutex_unlock(&rt2x00dev->csr_mutex);
231 }
232
233 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
234 static const struct rt2x00debug rt73usb_rt2x00debug = {
235         .owner  = THIS_MODULE,
236         .csr    = {
237                 .read           = rt73usb_register_read,
238                 .write          = rt73usb_register_write,
239                 .flags          = RT2X00DEBUGFS_OFFSET,
240                 .word_base      = CSR_REG_BASE,
241                 .word_size      = sizeof(u32),
242                 .word_count     = CSR_REG_SIZE / sizeof(u32),
243         },
244         .eeprom = {
245                 .read           = rt2x00_eeprom_read,
246                 .write          = rt2x00_eeprom_write,
247                 .word_base      = EEPROM_BASE,
248                 .word_size      = sizeof(u16),
249                 .word_count     = EEPROM_SIZE / sizeof(u16),
250         },
251         .bbp    = {
252                 .read           = rt73usb_bbp_read,
253                 .write          = rt73usb_bbp_write,
254                 .word_base      = BBP_BASE,
255                 .word_size      = sizeof(u8),
256                 .word_count     = BBP_SIZE / sizeof(u8),
257         },
258         .rf     = {
259                 .read           = rt2x00_rf_read,
260                 .write          = rt73usb_rf_write,
261                 .word_base      = RF_BASE,
262                 .word_size      = sizeof(u32),
263                 .word_count     = RF_SIZE / sizeof(u32),
264         },
265 };
266 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
267
268 #ifdef CONFIG_RT2X00_LIB_LEDS
269 static void rt73usb_brightness_set(struct led_classdev *led_cdev,
270                                    enum led_brightness brightness)
271 {
272         struct rt2x00_led *led =
273            container_of(led_cdev, struct rt2x00_led, led_dev);
274         unsigned int enabled = brightness != LED_OFF;
275         unsigned int a_mode =
276             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
277         unsigned int bg_mode =
278             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
279
280         if (led->type == LED_TYPE_RADIO) {
281                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
282                                    MCU_LEDCS_RADIO_STATUS, enabled);
283
284                 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
285                                             0, led->rt2x00dev->led_mcu_reg,
286                                             REGISTER_TIMEOUT);
287         } else if (led->type == LED_TYPE_ASSOC) {
288                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
289                                    MCU_LEDCS_LINK_BG_STATUS, bg_mode);
290                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
291                                    MCU_LEDCS_LINK_A_STATUS, a_mode);
292
293                 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
294                                             0, led->rt2x00dev->led_mcu_reg,
295                                             REGISTER_TIMEOUT);
296         } else if (led->type == LED_TYPE_QUALITY) {
297                 /*
298                  * The brightness is divided into 6 levels (0 - 5),
299                  * this means we need to convert the brightness
300                  * argument into the matching level within that range.
301                  */
302                 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
303                                             brightness / (LED_FULL / 6),
304                                             led->rt2x00dev->led_mcu_reg,
305                                             REGISTER_TIMEOUT);
306         }
307 }
308
309 static int rt73usb_blink_set(struct led_classdev *led_cdev,
310                              unsigned long *delay_on,
311                              unsigned long *delay_off)
312 {
313         struct rt2x00_led *led =
314             container_of(led_cdev, struct rt2x00_led, led_dev);
315         u32 reg;
316
317         rt73usb_register_read(led->rt2x00dev, MAC_CSR14, &reg);
318         rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
319         rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
320         rt73usb_register_write(led->rt2x00dev, MAC_CSR14, reg);
321
322         return 0;
323 }
324
325 static void rt73usb_init_led(struct rt2x00_dev *rt2x00dev,
326                              struct rt2x00_led *led,
327                              enum led_type type)
328 {
329         led->rt2x00dev = rt2x00dev;
330         led->type = type;
331         led->led_dev.brightness_set = rt73usb_brightness_set;
332         led->led_dev.blink_set = rt73usb_blink_set;
333         led->flags = LED_INITIALIZED;
334 }
335 #endif /* CONFIG_RT2X00_LIB_LEDS */
336
337 /*
338  * Configuration handlers.
339  */
340 static int rt73usb_config_shared_key(struct rt2x00_dev *rt2x00dev,
341                                      struct rt2x00lib_crypto *crypto,
342                                      struct ieee80211_key_conf *key)
343 {
344         struct hw_key_entry key_entry;
345         struct rt2x00_field32 field;
346         int timeout;
347         u32 mask;
348         u32 reg;
349
350         if (crypto->cmd == SET_KEY) {
351                 /*
352                  * rt2x00lib can't determine the correct free
353                  * key_idx for shared keys. We have 1 register
354                  * with key valid bits. The goal is simple, read
355                  * the register, if that is full we have no slots
356                  * left.
357                  * Note that each BSS is allowed to have up to 4
358                  * shared keys, so put a mask over the allowed
359                  * entries.
360                  */
361                 mask = (0xf << crypto->bssidx);
362
363                 rt73usb_register_read(rt2x00dev, SEC_CSR0, &reg);
364                 reg &= mask;
365
366                 if (reg && reg == mask)
367                         return -ENOSPC;
368
369                 key->hw_key_idx += reg ? ffz(reg) : 0;
370
371                 /*
372                  * Upload key to hardware
373                  */
374                 memcpy(key_entry.key, crypto->key,
375                        sizeof(key_entry.key));
376                 memcpy(key_entry.tx_mic, crypto->tx_mic,
377                        sizeof(key_entry.tx_mic));
378                 memcpy(key_entry.rx_mic, crypto->rx_mic,
379                        sizeof(key_entry.rx_mic));
380
381                 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
382                 timeout = REGISTER_TIMEOUT32(sizeof(key_entry));
383                 rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
384                                                     USB_VENDOR_REQUEST_OUT, reg,
385                                                     &key_entry,
386                                                     sizeof(key_entry),
387                                                     timeout);
388
389                 /*
390                  * The cipher types are stored over 2 registers.
391                  * bssidx 0 and 1 keys are stored in SEC_CSR1 and
392                  * bssidx 1 and 2 keys are stored in SEC_CSR5.
393                  * Using the correct defines correctly will cause overhead,
394                  * so just calculate the correct offset.
395                  */
396                 if (key->hw_key_idx < 8) {
397                         field.bit_offset = (3 * key->hw_key_idx);
398                         field.bit_mask = 0x7 << field.bit_offset;
399
400                         rt73usb_register_read(rt2x00dev, SEC_CSR1, &reg);
401                         rt2x00_set_field32(&reg, field, crypto->cipher);
402                         rt73usb_register_write(rt2x00dev, SEC_CSR1, reg);
403                 } else {
404                         field.bit_offset = (3 * (key->hw_key_idx - 8));
405                         field.bit_mask = 0x7 << field.bit_offset;
406
407                         rt73usb_register_read(rt2x00dev, SEC_CSR5, &reg);
408                         rt2x00_set_field32(&reg, field, crypto->cipher);
409                         rt73usb_register_write(rt2x00dev, SEC_CSR5, reg);
410                 }
411
412                 /*
413                  * The driver does not support the IV/EIV generation
414                  * in hardware. However it doesn't support the IV/EIV
415                  * inside the ieee80211 frame either, but requires it
416                  * to be provided seperately for the descriptor.
417                  * rt2x00lib will cut the IV/EIV data out of all frames
418                  * given to us by mac80211, but we must tell mac80211
419                  * to generate the IV/EIV data.
420                  */
421                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
422         }
423
424         /*
425          * SEC_CSR0 contains only single-bit fields to indicate
426          * a particular key is valid. Because using the FIELD32()
427          * defines directly will cause a lot of overhead we use
428          * a calculation to determine the correct bit directly.
429          */
430         mask = 1 << key->hw_key_idx;
431
432         rt73usb_register_read(rt2x00dev, SEC_CSR0, &reg);
433         if (crypto->cmd == SET_KEY)
434                 reg |= mask;
435         else if (crypto->cmd == DISABLE_KEY)
436                 reg &= ~mask;
437         rt73usb_register_write(rt2x00dev, SEC_CSR0, reg);
438
439         return 0;
440 }
441
442 static int rt73usb_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
443                                        struct rt2x00lib_crypto *crypto,
444                                        struct ieee80211_key_conf *key)
445 {
446         struct hw_pairwise_ta_entry addr_entry;
447         struct hw_key_entry key_entry;
448         int timeout;
449         u32 mask;
450         u32 reg;
451
452         if (crypto->cmd == SET_KEY) {
453                 /*
454                  * rt2x00lib can't determine the correct free
455                  * key_idx for pairwise keys. We have 2 registers
456                  * with key valid bits. The goal is simple, read
457                  * the first register, if that is full move to
458                  * the next register.
459                  * When both registers are full, we drop the key,
460                  * otherwise we use the first invalid entry.
461                  */
462                 rt73usb_register_read(rt2x00dev, SEC_CSR2, &reg);
463                 if (reg && reg == ~0) {
464                         key->hw_key_idx = 32;
465                         rt73usb_register_read(rt2x00dev, SEC_CSR3, &reg);
466                         if (reg && reg == ~0)
467                                 return -ENOSPC;
468                 }
469
470                 key->hw_key_idx += reg ? ffz(reg) : 0;
471
472                 /*
473                  * Upload key to hardware
474                  */
475                 memcpy(key_entry.key, crypto->key,
476                        sizeof(key_entry.key));
477                 memcpy(key_entry.tx_mic, crypto->tx_mic,
478                        sizeof(key_entry.tx_mic));
479                 memcpy(key_entry.rx_mic, crypto->rx_mic,
480                        sizeof(key_entry.rx_mic));
481
482                 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
483                 timeout = REGISTER_TIMEOUT32(sizeof(key_entry));
484                 rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
485                                                     USB_VENDOR_REQUEST_OUT, reg,
486                                                     &key_entry,
487                                                     sizeof(key_entry),
488                                                     timeout);
489
490                 /*
491                  * Send the address and cipher type to the hardware register.
492                  * This data fits within the CSR cache size, so we can use
493                  * rt73usb_register_multiwrite() directly.
494                  */
495                 memset(&addr_entry, 0, sizeof(addr_entry));
496                 memcpy(&addr_entry, crypto->address, ETH_ALEN);
497                 addr_entry.cipher = crypto->cipher;
498
499                 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
500                 rt73usb_register_multiwrite(rt2x00dev, reg,
501                                             &addr_entry, sizeof(addr_entry));
502
503                 /*
504                  * Enable pairwise lookup table for given BSS idx,
505                  * without this received frames will not be decrypted
506                  * by the hardware.
507                  */
508                 rt73usb_register_read(rt2x00dev, SEC_CSR4, &reg);
509                 reg |= (1 << crypto->bssidx);
510                 rt73usb_register_write(rt2x00dev, SEC_CSR4, reg);
511
512                 /*
513                  * The driver does not support the IV/EIV generation
514                  * in hardware. However it doesn't support the IV/EIV
515                  * inside the ieee80211 frame either, but requires it
516                  * to be provided seperately for the descriptor.
517                  * rt2x00lib will cut the IV/EIV data out of all frames
518                  * given to us by mac80211, but we must tell mac80211
519                  * to generate the IV/EIV data.
520                  */
521                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
522         }
523
524         /*
525          * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
526          * a particular key is valid. Because using the FIELD32()
527          * defines directly will cause a lot of overhead we use
528          * a calculation to determine the correct bit directly.
529          */
530         if (key->hw_key_idx < 32) {
531                 mask = 1 << key->hw_key_idx;
532
533                 rt73usb_register_read(rt2x00dev, SEC_CSR2, &reg);
534                 if (crypto->cmd == SET_KEY)
535                         reg |= mask;
536                 else if (crypto->cmd == DISABLE_KEY)
537                         reg &= ~mask;
538                 rt73usb_register_write(rt2x00dev, SEC_CSR2, reg);
539         } else {
540                 mask = 1 << (key->hw_key_idx - 32);
541
542                 rt73usb_register_read(rt2x00dev, SEC_CSR3, &reg);
543                 if (crypto->cmd == SET_KEY)
544                         reg |= mask;
545                 else if (crypto->cmd == DISABLE_KEY)
546                         reg &= ~mask;
547                 rt73usb_register_write(rt2x00dev, SEC_CSR3, reg);
548         }
549
550         return 0;
551 }
552
553 static void rt73usb_config_filter(struct rt2x00_dev *rt2x00dev,
554                                   const unsigned int filter_flags)
555 {
556         u32 reg;
557
558         /*
559          * Start configuration steps.
560          * Note that the version error will always be dropped
561          * and broadcast frames will always be accepted since
562          * there is no filter for it at this time.
563          */
564         rt73usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
565         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
566                            !(filter_flags & FIF_FCSFAIL));
567         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
568                            !(filter_flags & FIF_PLCPFAIL));
569         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
570                            !(filter_flags & FIF_CONTROL));
571         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
572                            !(filter_flags & FIF_PROMISC_IN_BSS));
573         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
574                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
575                            !rt2x00dev->intf_ap_count);
576         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
577         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
578                            !(filter_flags & FIF_ALLMULTI));
579         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
580         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
581                            !(filter_flags & FIF_CONTROL));
582         rt73usb_register_write(rt2x00dev, TXRX_CSR0, reg);
583 }
584
585 static void rt73usb_config_intf(struct rt2x00_dev *rt2x00dev,
586                                 struct rt2x00_intf *intf,
587                                 struct rt2x00intf_conf *conf,
588                                 const unsigned int flags)
589 {
590         unsigned int beacon_base;
591         u32 reg;
592
593         if (flags & CONFIG_UPDATE_TYPE) {
594                 /*
595                  * Clear current synchronisation setup.
596                  * For the Beacon base registers we only need to clear
597                  * the first byte since that byte contains the VALID and OWNER
598                  * bits which (when set to 0) will invalidate the entire beacon.
599                  */
600                 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
601                 rt73usb_register_write(rt2x00dev, beacon_base, 0);
602
603                 /*
604                  * Enable synchronisation.
605                  */
606                 rt73usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
607                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
608                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
609                 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
610                 rt73usb_register_write(rt2x00dev, TXRX_CSR9, reg);
611         }
612
613         if (flags & CONFIG_UPDATE_MAC) {
614                 reg = le32_to_cpu(conf->mac[1]);
615                 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
616                 conf->mac[1] = cpu_to_le32(reg);
617
618                 rt73usb_register_multiwrite(rt2x00dev, MAC_CSR2,
619                                             conf->mac, sizeof(conf->mac));
620         }
621
622         if (flags & CONFIG_UPDATE_BSSID) {
623                 reg = le32_to_cpu(conf->bssid[1]);
624                 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
625                 conf->bssid[1] = cpu_to_le32(reg);
626
627                 rt73usb_register_multiwrite(rt2x00dev, MAC_CSR4,
628                                             conf->bssid, sizeof(conf->bssid));
629         }
630 }
631
632 static void rt73usb_config_erp(struct rt2x00_dev *rt2x00dev,
633                                struct rt2x00lib_erp *erp)
634 {
635         u32 reg;
636
637         rt73usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
638         rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, erp->ack_timeout);
639         rt73usb_register_write(rt2x00dev, TXRX_CSR0, reg);
640
641         rt73usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
642         rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
643                            !!erp->short_preamble);
644         rt73usb_register_write(rt2x00dev, TXRX_CSR4, reg);
645
646         rt73usb_register_write(rt2x00dev, TXRX_CSR5, erp->basic_rates);
647
648         rt73usb_register_read(rt2x00dev, MAC_CSR9, &reg);
649         rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
650         rt73usb_register_write(rt2x00dev, MAC_CSR9, reg);
651
652         rt73usb_register_read(rt2x00dev, MAC_CSR8, &reg);
653         rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
654         rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
655         rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
656         rt73usb_register_write(rt2x00dev, MAC_CSR8, reg);
657 }
658
659 static void rt73usb_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
660                                       struct antenna_setup *ant)
661 {
662         u8 r3;
663         u8 r4;
664         u8 r77;
665         u8 temp;
666
667         rt73usb_bbp_read(rt2x00dev, 3, &r3);
668         rt73usb_bbp_read(rt2x00dev, 4, &r4);
669         rt73usb_bbp_read(rt2x00dev, 77, &r77);
670
671         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
672
673         /*
674          * Configure the RX antenna.
675          */
676         switch (ant->rx) {
677         case ANTENNA_HW_DIVERSITY:
678                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
679                 temp = !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags)
680                        && (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ);
681                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, temp);
682                 break;
683         case ANTENNA_A:
684                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
685                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
686                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
687                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
688                 else
689                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
690                 break;
691         case ANTENNA_B:
692         default:
693                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
694                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
695                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
696                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
697                 else
698                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
699                 break;
700         }
701
702         rt73usb_bbp_write(rt2x00dev, 77, r77);
703         rt73usb_bbp_write(rt2x00dev, 3, r3);
704         rt73usb_bbp_write(rt2x00dev, 4, r4);
705 }
706
707 static void rt73usb_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
708                                       struct antenna_setup *ant)
709 {
710         u8 r3;
711         u8 r4;
712         u8 r77;
713
714         rt73usb_bbp_read(rt2x00dev, 3, &r3);
715         rt73usb_bbp_read(rt2x00dev, 4, &r4);
716         rt73usb_bbp_read(rt2x00dev, 77, &r77);
717
718         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
719         rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
720                           !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
721
722         /*
723          * Configure the RX antenna.
724          */
725         switch (ant->rx) {
726         case ANTENNA_HW_DIVERSITY:
727                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
728                 break;
729         case ANTENNA_A:
730                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
731                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
732                 break;
733         case ANTENNA_B:
734         default:
735                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
736                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
737                 break;
738         }
739
740         rt73usb_bbp_write(rt2x00dev, 77, r77);
741         rt73usb_bbp_write(rt2x00dev, 3, r3);
742         rt73usb_bbp_write(rt2x00dev, 4, r4);
743 }
744
745 struct antenna_sel {
746         u8 word;
747         /*
748          * value[0] -> non-LNA
749          * value[1] -> LNA
750          */
751         u8 value[2];
752 };
753
754 static const struct antenna_sel antenna_sel_a[] = {
755         { 96,  { 0x58, 0x78 } },
756         { 104, { 0x38, 0x48 } },
757         { 75,  { 0xfe, 0x80 } },
758         { 86,  { 0xfe, 0x80 } },
759         { 88,  { 0xfe, 0x80 } },
760         { 35,  { 0x60, 0x60 } },
761         { 97,  { 0x58, 0x58 } },
762         { 98,  { 0x58, 0x58 } },
763 };
764
765 static const struct antenna_sel antenna_sel_bg[] = {
766         { 96,  { 0x48, 0x68 } },
767         { 104, { 0x2c, 0x3c } },
768         { 75,  { 0xfe, 0x80 } },
769         { 86,  { 0xfe, 0x80 } },
770         { 88,  { 0xfe, 0x80 } },
771         { 35,  { 0x50, 0x50 } },
772         { 97,  { 0x48, 0x48 } },
773         { 98,  { 0x48, 0x48 } },
774 };
775
776 static void rt73usb_config_ant(struct rt2x00_dev *rt2x00dev,
777                                struct antenna_setup *ant)
778 {
779         const struct antenna_sel *sel;
780         unsigned int lna;
781         unsigned int i;
782         u32 reg;
783
784         /*
785          * We should never come here because rt2x00lib is supposed
786          * to catch this and send us the correct antenna explicitely.
787          */
788         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
789                ant->tx == ANTENNA_SW_DIVERSITY);
790
791         if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
792                 sel = antenna_sel_a;
793                 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
794         } else {
795                 sel = antenna_sel_bg;
796                 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
797         }
798
799         for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
800                 rt73usb_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
801
802         rt73usb_register_read(rt2x00dev, PHY_CSR0, &reg);
803
804         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
805                            (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ));
806         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
807                            (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ));
808
809         rt73usb_register_write(rt2x00dev, PHY_CSR0, reg);
810
811         if (rt2x00_rf(&rt2x00dev->chip, RF5226) ||
812             rt2x00_rf(&rt2x00dev->chip, RF5225))
813                 rt73usb_config_antenna_5x(rt2x00dev, ant);
814         else if (rt2x00_rf(&rt2x00dev->chip, RF2528) ||
815                  rt2x00_rf(&rt2x00dev->chip, RF2527))
816                 rt73usb_config_antenna_2x(rt2x00dev, ant);
817 }
818
819 static void rt73usb_config_lna_gain(struct rt2x00_dev *rt2x00dev,
820                                     struct rt2x00lib_conf *libconf)
821 {
822         u16 eeprom;
823         short lna_gain = 0;
824
825         if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
826                 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
827                         lna_gain += 14;
828
829                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
830                 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
831         } else {
832                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
833                 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
834         }
835
836         rt2x00dev->lna_gain = lna_gain;
837 }
838
839 static void rt73usb_config_channel(struct rt2x00_dev *rt2x00dev,
840                                    struct rf_channel *rf, const int txpower)
841 {
842         u8 r3;
843         u8 r94;
844         u8 smart;
845
846         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
847         rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
848
849         smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
850                   rt2x00_rf(&rt2x00dev->chip, RF2527));
851
852         rt73usb_bbp_read(rt2x00dev, 3, &r3);
853         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
854         rt73usb_bbp_write(rt2x00dev, 3, r3);
855
856         r94 = 6;
857         if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
858                 r94 += txpower - MAX_TXPOWER;
859         else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
860                 r94 += txpower;
861         rt73usb_bbp_write(rt2x00dev, 94, r94);
862
863         rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
864         rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
865         rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
866         rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
867
868         rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
869         rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
870         rt73usb_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
871         rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
872
873         rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
874         rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
875         rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
876         rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
877
878         udelay(10);
879 }
880
881 static void rt73usb_config_txpower(struct rt2x00_dev *rt2x00dev,
882                                    const int txpower)
883 {
884         struct rf_channel rf;
885
886         rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
887         rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
888         rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
889         rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
890
891         rt73usb_config_channel(rt2x00dev, &rf, txpower);
892 }
893
894 static void rt73usb_config_retry_limit(struct rt2x00_dev *rt2x00dev,
895                                        struct rt2x00lib_conf *libconf)
896 {
897         u32 reg;
898
899         rt73usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
900         rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
901                            libconf->conf->long_frame_max_tx_count);
902         rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
903                            libconf->conf->short_frame_max_tx_count);
904         rt73usb_register_write(rt2x00dev, TXRX_CSR4, reg);
905 }
906
907 static void rt73usb_config_duration(struct rt2x00_dev *rt2x00dev,
908                                     struct rt2x00lib_conf *libconf)
909 {
910         u32 reg;
911
912         rt73usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
913         rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
914         rt73usb_register_write(rt2x00dev, TXRX_CSR0, reg);
915
916         rt73usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
917         rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
918         rt73usb_register_write(rt2x00dev, TXRX_CSR4, reg);
919
920         rt73usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
921         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
922                            libconf->conf->beacon_int * 16);
923         rt73usb_register_write(rt2x00dev, TXRX_CSR9, reg);
924 }
925
926 static void rt73usb_config(struct rt2x00_dev *rt2x00dev,
927                            struct rt2x00lib_conf *libconf,
928                            const unsigned int flags)
929 {
930         /* Always recalculate LNA gain before changing configuration */
931         rt73usb_config_lna_gain(rt2x00dev, libconf);
932
933         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
934                 rt73usb_config_channel(rt2x00dev, &libconf->rf,
935                                        libconf->conf->power_level);
936         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
937             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
938                 rt73usb_config_txpower(rt2x00dev, libconf->conf->power_level);
939         if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
940                 rt73usb_config_retry_limit(rt2x00dev, libconf);
941         if (flags & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
942                 rt73usb_config_duration(rt2x00dev, libconf);
943 }
944
945 /*
946  * Link tuning
947  */
948 static void rt73usb_link_stats(struct rt2x00_dev *rt2x00dev,
949                                struct link_qual *qual)
950 {
951         u32 reg;
952
953         /*
954          * Update FCS error count from register.
955          */
956         rt73usb_register_read(rt2x00dev, STA_CSR0, &reg);
957         qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
958
959         /*
960          * Update False CCA count from register.
961          */
962         rt73usb_register_read(rt2x00dev, STA_CSR1, &reg);
963         qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
964 }
965
966 static void rt73usb_reset_tuner(struct rt2x00_dev *rt2x00dev)
967 {
968         rt73usb_bbp_write(rt2x00dev, 17, 0x20);
969         rt2x00dev->link.vgc_level = 0x20;
970 }
971
972 static void rt73usb_link_tuner(struct rt2x00_dev *rt2x00dev)
973 {
974         int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
975         u8 r17;
976         u8 up_bound;
977         u8 low_bound;
978
979         rt73usb_bbp_read(rt2x00dev, 17, &r17);
980
981         /*
982          * Determine r17 bounds.
983          */
984         if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
985                 low_bound = 0x28;
986                 up_bound = 0x48;
987
988                 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
989                         low_bound += 0x10;
990                         up_bound += 0x10;
991                 }
992         } else {
993                 if (rssi > -82) {
994                         low_bound = 0x1c;
995                         up_bound = 0x40;
996                 } else if (rssi > -84) {
997                         low_bound = 0x1c;
998                         up_bound = 0x20;
999                 } else {
1000                         low_bound = 0x1c;
1001                         up_bound = 0x1c;
1002                 }
1003
1004                 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
1005                         low_bound += 0x14;
1006                         up_bound += 0x10;
1007                 }
1008         }
1009
1010         /*
1011          * If we are not associated, we should go straight to the
1012          * dynamic CCA tuning.
1013          */
1014         if (!rt2x00dev->intf_associated)
1015                 goto dynamic_cca_tune;
1016
1017         /*
1018          * Special big-R17 for very short distance
1019          */
1020         if (rssi > -35) {
1021                 if (r17 != 0x60)
1022                         rt73usb_bbp_write(rt2x00dev, 17, 0x60);
1023                 return;
1024         }
1025
1026         /*
1027          * Special big-R17 for short distance
1028          */
1029         if (rssi >= -58) {
1030                 if (r17 != up_bound)
1031                         rt73usb_bbp_write(rt2x00dev, 17, up_bound);
1032                 return;
1033         }
1034
1035         /*
1036          * Special big-R17 for middle-short distance
1037          */
1038         if (rssi >= -66) {
1039                 low_bound += 0x10;
1040                 if (r17 != low_bound)
1041                         rt73usb_bbp_write(rt2x00dev, 17, low_bound);
1042                 return;
1043         }
1044
1045         /*
1046          * Special mid-R17 for middle distance
1047          */
1048         if (rssi >= -74) {
1049                 if (r17 != (low_bound + 0x10))
1050                         rt73usb_bbp_write(rt2x00dev, 17, low_bound + 0x08);
1051                 return;
1052         }
1053
1054         /*
1055          * Special case: Change up_bound based on the rssi.
1056          * Lower up_bound when rssi is weaker then -74 dBm.
1057          */
1058         up_bound -= 2 * (-74 - rssi);
1059         if (low_bound > up_bound)
1060                 up_bound = low_bound;
1061
1062         if (r17 > up_bound) {
1063                 rt73usb_bbp_write(rt2x00dev, 17, up_bound);
1064                 return;
1065         }
1066
1067 dynamic_cca_tune:
1068
1069         /*
1070          * r17 does not yet exceed upper limit, continue and base
1071          * the r17 tuning on the false CCA count.
1072          */
1073         if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
1074                 r17 += 4;
1075                 if (r17 > up_bound)
1076                         r17 = up_bound;
1077                 rt73usb_bbp_write(rt2x00dev, 17, r17);
1078         } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
1079                 r17 -= 4;
1080                 if (r17 < low_bound)
1081                         r17 = low_bound;
1082                 rt73usb_bbp_write(rt2x00dev, 17, r17);
1083         }
1084 }
1085
1086 /*
1087  * Firmware functions
1088  */
1089 static char *rt73usb_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1090 {
1091         return FIRMWARE_RT2571;
1092 }
1093
1094 static u16 rt73usb_get_firmware_crc(const void *data, const size_t len)
1095 {
1096         u16 crc;
1097
1098         /*
1099          * Use the crc itu-t algorithm.
1100          * The last 2 bytes in the firmware array are the crc checksum itself,
1101          * this means that we should never pass those 2 bytes to the crc
1102          * algorithm.
1103          */
1104         crc = crc_itu_t(0, data, len - 2);
1105         crc = crc_itu_t_byte(crc, 0);
1106         crc = crc_itu_t_byte(crc, 0);
1107
1108         return crc;
1109 }
1110
1111 static int rt73usb_load_firmware(struct rt2x00_dev *rt2x00dev, const void *data,
1112                                  const size_t len)
1113 {
1114         unsigned int i;
1115         int status;
1116         u32 reg;
1117
1118         /*
1119          * Wait for stable hardware.
1120          */
1121         for (i = 0; i < 100; i++) {
1122                 rt73usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1123                 if (reg)
1124                         break;
1125                 msleep(1);
1126         }
1127
1128         if (!reg) {
1129                 ERROR(rt2x00dev, "Unstable hardware.\n");
1130                 return -EBUSY;
1131         }
1132
1133         /*
1134          * Write firmware to device.
1135          */
1136         rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
1137                                             USB_VENDOR_REQUEST_OUT,
1138                                             FIRMWARE_IMAGE_BASE,
1139                                             data, len,
1140                                             REGISTER_TIMEOUT32(len));
1141
1142         /*
1143          * Send firmware request to device to load firmware,
1144          * we need to specify a long timeout time.
1145          */
1146         status = rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE,
1147                                              0, USB_MODE_FIRMWARE,
1148                                              REGISTER_TIMEOUT_FIRMWARE);
1149         if (status < 0) {
1150                 ERROR(rt2x00dev, "Failed to write Firmware to device.\n");
1151                 return status;
1152         }
1153
1154         return 0;
1155 }
1156
1157 /*
1158  * Initialization functions.
1159  */
1160 static int rt73usb_init_registers(struct rt2x00_dev *rt2x00dev)
1161 {
1162         u32 reg;
1163
1164         rt73usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1165         rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1166         rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1167         rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1168         rt73usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1169
1170         rt73usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
1171         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1172         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1173         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1174         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1175         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1176         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1177         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1178         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1179         rt73usb_register_write(rt2x00dev, TXRX_CSR1, reg);
1180
1181         /*
1182          * CCK TXD BBP registers
1183          */
1184         rt73usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
1185         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1186         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1187         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1188         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1189         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1190         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1191         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1192         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1193         rt73usb_register_write(rt2x00dev, TXRX_CSR2, reg);
1194
1195         /*
1196          * OFDM TXD BBP registers
1197          */
1198         rt73usb_register_read(rt2x00dev, TXRX_CSR3, &reg);
1199         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1200         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1201         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1202         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1203         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1204         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1205         rt73usb_register_write(rt2x00dev, TXRX_CSR3, reg);
1206
1207         rt73usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
1208         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1209         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1210         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1211         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1212         rt73usb_register_write(rt2x00dev, TXRX_CSR7, reg);
1213
1214         rt73usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
1215         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1216         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1217         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1218         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1219         rt73usb_register_write(rt2x00dev, TXRX_CSR8, reg);
1220
1221         rt73usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1222         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1223         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1224         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1225         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1226         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1227         rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1228         rt73usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1229
1230         rt73usb_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1231
1232         rt73usb_register_read(rt2x00dev, MAC_CSR6, &reg);
1233         rt2x00_set_field32(&reg, MAC_CSR6_MAX_FRAME_UNIT, 0xfff);
1234         rt73usb_register_write(rt2x00dev, MAC_CSR6, reg);
1235
1236         rt73usb_register_write(rt2x00dev, MAC_CSR10, 0x00000718);
1237
1238         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1239                 return -EBUSY;
1240
1241         rt73usb_register_write(rt2x00dev, MAC_CSR13, 0x00007f00);
1242
1243         /*
1244          * Invalidate all Shared Keys (SEC_CSR0),
1245          * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1246          */
1247         rt73usb_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1248         rt73usb_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1249         rt73usb_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1250
1251         reg = 0x000023b0;
1252         if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
1253             rt2x00_rf(&rt2x00dev->chip, RF2527))
1254                 rt2x00_set_field32(&reg, PHY_CSR1_RF_RPI, 1);
1255         rt73usb_register_write(rt2x00dev, PHY_CSR1, reg);
1256
1257         rt73usb_register_write(rt2x00dev, PHY_CSR5, 0x00040a06);
1258         rt73usb_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1259         rt73usb_register_write(rt2x00dev, PHY_CSR7, 0x00000408);
1260
1261         rt73usb_register_read(rt2x00dev, MAC_CSR9, &reg);
1262         rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1263         rt73usb_register_write(rt2x00dev, MAC_CSR9, reg);
1264
1265         /*
1266          * Clear all beacons
1267          * For the Beacon base registers we only need to clear
1268          * the first byte since that byte contains the VALID and OWNER
1269          * bits which (when set to 0) will invalidate the entire beacon.
1270          */
1271         rt73usb_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1272         rt73usb_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1273         rt73usb_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1274         rt73usb_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1275
1276         /*
1277          * We must clear the error counters.
1278          * These registers are cleared on read,
1279          * so we may pass a useless variable to store the value.
1280          */
1281         rt73usb_register_read(rt2x00dev, STA_CSR0, &reg);
1282         rt73usb_register_read(rt2x00dev, STA_CSR1, &reg);
1283         rt73usb_register_read(rt2x00dev, STA_CSR2, &reg);
1284
1285         /*
1286          * Reset MAC and BBP registers.
1287          */
1288         rt73usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1289         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1290         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1291         rt73usb_register_write(rt2x00dev, MAC_CSR1, reg);
1292
1293         rt73usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1294         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1295         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1296         rt73usb_register_write(rt2x00dev, MAC_CSR1, reg);
1297
1298         rt73usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1299         rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1300         rt73usb_register_write(rt2x00dev, MAC_CSR1, reg);
1301
1302         return 0;
1303 }
1304
1305 static int rt73usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1306 {
1307         unsigned int i;
1308         u8 value;
1309
1310         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1311                 rt73usb_bbp_read(rt2x00dev, 0, &value);
1312                 if ((value != 0xff) && (value != 0x00))
1313                         return 0;
1314                 udelay(REGISTER_BUSY_DELAY);
1315         }
1316
1317         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1318         return -EACCES;
1319 }
1320
1321 static int rt73usb_init_bbp(struct rt2x00_dev *rt2x00dev)
1322 {
1323         unsigned int i;
1324         u16 eeprom;
1325         u8 reg_id;
1326         u8 value;
1327
1328         if (unlikely(rt73usb_wait_bbp_ready(rt2x00dev)))
1329                 return -EACCES;
1330
1331         rt73usb_bbp_write(rt2x00dev, 3, 0x80);
1332         rt73usb_bbp_write(rt2x00dev, 15, 0x30);
1333         rt73usb_bbp_write(rt2x00dev, 21, 0xc8);
1334         rt73usb_bbp_write(rt2x00dev, 22, 0x38);
1335         rt73usb_bbp_write(rt2x00dev, 23, 0x06);
1336         rt73usb_bbp_write(rt2x00dev, 24, 0xfe);
1337         rt73usb_bbp_write(rt2x00dev, 25, 0x0a);
1338         rt73usb_bbp_write(rt2x00dev, 26, 0x0d);
1339         rt73usb_bbp_write(rt2x00dev, 32, 0x0b);
1340         rt73usb_bbp_write(rt2x00dev, 34, 0x12);
1341         rt73usb_bbp_write(rt2x00dev, 37, 0x07);
1342         rt73usb_bbp_write(rt2x00dev, 39, 0xf8);
1343         rt73usb_bbp_write(rt2x00dev, 41, 0x60);
1344         rt73usb_bbp_write(rt2x00dev, 53, 0x10);
1345         rt73usb_bbp_write(rt2x00dev, 54, 0x18);
1346         rt73usb_bbp_write(rt2x00dev, 60, 0x10);
1347         rt73usb_bbp_write(rt2x00dev, 61, 0x04);
1348         rt73usb_bbp_write(rt2x00dev, 62, 0x04);
1349         rt73usb_bbp_write(rt2x00dev, 75, 0xfe);
1350         rt73usb_bbp_write(rt2x00dev, 86, 0xfe);
1351         rt73usb_bbp_write(rt2x00dev, 88, 0xfe);
1352         rt73usb_bbp_write(rt2x00dev, 90, 0x0f);
1353         rt73usb_bbp_write(rt2x00dev, 99, 0x00);
1354         rt73usb_bbp_write(rt2x00dev, 102, 0x16);
1355         rt73usb_bbp_write(rt2x00dev, 107, 0x04);
1356
1357         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1358                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1359
1360                 if (eeprom != 0xffff && eeprom != 0x0000) {
1361                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1362                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1363                         rt73usb_bbp_write(rt2x00dev, reg_id, value);
1364                 }
1365         }
1366
1367         return 0;
1368 }
1369
1370 /*
1371  * Device state switch handlers.
1372  */
1373 static void rt73usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
1374                               enum dev_state state)
1375 {
1376         u32 reg;
1377
1378         rt73usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1379         rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
1380                            (state == STATE_RADIO_RX_OFF) ||
1381                            (state == STATE_RADIO_RX_OFF_LINK));
1382         rt73usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1383 }
1384
1385 static int rt73usb_enable_radio(struct rt2x00_dev *rt2x00dev)
1386 {
1387         /*
1388          * Initialize all registers.
1389          */
1390         if (unlikely(rt73usb_init_registers(rt2x00dev) ||
1391                      rt73usb_init_bbp(rt2x00dev)))
1392                 return -EIO;
1393
1394         return 0;
1395 }
1396
1397 static void rt73usb_disable_radio(struct rt2x00_dev *rt2x00dev)
1398 {
1399         rt73usb_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1400
1401         /*
1402          * Disable synchronisation.
1403          */
1404         rt73usb_register_write(rt2x00dev, TXRX_CSR9, 0);
1405
1406         rt2x00usb_disable_radio(rt2x00dev);
1407 }
1408
1409 static int rt73usb_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1410 {
1411         u32 reg;
1412         unsigned int i;
1413         char put_to_sleep;
1414
1415         put_to_sleep = (state != STATE_AWAKE);
1416
1417         rt73usb_register_read(rt2x00dev, MAC_CSR12, &reg);
1418         rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1419         rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1420         rt73usb_register_write(rt2x00dev, MAC_CSR12, reg);
1421
1422         /*
1423          * Device is not guaranteed to be in the requested state yet.
1424          * We must wait until the register indicates that the
1425          * device has entered the correct state.
1426          */
1427         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1428                 rt73usb_register_read(rt2x00dev, MAC_CSR12, &reg);
1429                 state = rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
1430                 if (state == !put_to_sleep)
1431                         return 0;
1432                 msleep(10);
1433         }
1434
1435         return -EBUSY;
1436 }
1437
1438 static int rt73usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1439                                     enum dev_state state)
1440 {
1441         int retval = 0;
1442
1443         switch (state) {
1444         case STATE_RADIO_ON:
1445                 retval = rt73usb_enable_radio(rt2x00dev);
1446                 break;
1447         case STATE_RADIO_OFF:
1448                 rt73usb_disable_radio(rt2x00dev);
1449                 break;
1450         case STATE_RADIO_RX_ON:
1451         case STATE_RADIO_RX_ON_LINK:
1452         case STATE_RADIO_RX_OFF:
1453         case STATE_RADIO_RX_OFF_LINK:
1454                 rt73usb_toggle_rx(rt2x00dev, state);
1455                 break;
1456         case STATE_RADIO_IRQ_ON:
1457         case STATE_RADIO_IRQ_OFF:
1458                 /* No support, but no error either */
1459                 break;
1460         case STATE_DEEP_SLEEP:
1461         case STATE_SLEEP:
1462         case STATE_STANDBY:
1463         case STATE_AWAKE:
1464                 retval = rt73usb_set_state(rt2x00dev, state);
1465                 break;
1466         default:
1467                 retval = -ENOTSUPP;
1468                 break;
1469         }
1470
1471         if (unlikely(retval))
1472                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1473                       state, retval);
1474
1475         return retval;
1476 }
1477
1478 /*
1479  * TX descriptor initialization
1480  */
1481 static void rt73usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1482                                   struct sk_buff *skb,
1483                                   struct txentry_desc *txdesc)
1484 {
1485         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1486         __le32 *txd = skbdesc->desc;
1487         u32 word;
1488
1489         /*
1490          * Start writing the descriptor words.
1491          */
1492         rt2x00_desc_read(txd, 1, &word);
1493         rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
1494         rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
1495         rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1496         rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1497         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1498         rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1499                            test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1500         rt2x00_desc_write(txd, 1, word);
1501
1502         rt2x00_desc_read(txd, 2, &word);
1503         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1504         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1505         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1506         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1507         rt2x00_desc_write(txd, 2, word);
1508
1509         if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1510                 _rt2x00_desc_write(txd, 3, skbdesc->iv);
1511                 _rt2x00_desc_write(txd, 4, skbdesc->eiv);
1512         }
1513
1514         rt2x00_desc_read(txd, 5, &word);
1515         rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1516                            TXPOWER_TO_DEV(rt2x00dev->tx_power));
1517         rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1518         rt2x00_desc_write(txd, 5, word);
1519
1520         rt2x00_desc_read(txd, 0, &word);
1521         rt2x00_set_field32(&word, TXD_W0_BURST,
1522                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1523         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1524         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1525                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1526         rt2x00_set_field32(&word, TXD_W0_ACK,
1527                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1528         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1529                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1530         rt2x00_set_field32(&word, TXD_W0_OFDM,
1531                            test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1532         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1533         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1534                            test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1535         rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1536                            test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1537         rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1538                            test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1539         rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1540         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1541         rt2x00_set_field32(&word, TXD_W0_BURST2,
1542                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1543         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1544         rt2x00_desc_write(txd, 0, word);
1545 }
1546
1547 /*
1548  * TX data initialization
1549  */
1550 static void rt73usb_write_beacon(struct queue_entry *entry)
1551 {
1552         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1553         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1554         unsigned int beacon_base;
1555         u32 reg;
1556
1557         /*
1558          * Add the descriptor in front of the skb.
1559          */
1560         skb_push(entry->skb, entry->queue->desc_size);
1561         memcpy(entry->skb->data, skbdesc->desc, skbdesc->desc_len);
1562         skbdesc->desc = entry->skb->data;
1563
1564         /*
1565          * Disable beaconing while we are reloading the beacon data,
1566          * otherwise we might be sending out invalid data.
1567          */
1568         rt73usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1569         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1570         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1571         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1572         rt73usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1573
1574         /*
1575          * Write entire beacon with descriptor to register.
1576          */
1577         beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1578         rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
1579                                             USB_VENDOR_REQUEST_OUT, beacon_base,
1580                                             entry->skb->data, entry->skb->len,
1581                                             REGISTER_TIMEOUT32(entry->skb->len));
1582
1583         /*
1584          * Clean up the beacon skb.
1585          */
1586         dev_kfree_skb(entry->skb);
1587         entry->skb = NULL;
1588 }
1589
1590 static int rt73usb_get_tx_data_len(struct rt2x00_dev *rt2x00dev,
1591                                    struct sk_buff *skb)
1592 {
1593         int length;
1594
1595         /*
1596          * The length _must_ be a multiple of 4,
1597          * but it must _not_ be a multiple of the USB packet size.
1598          */
1599         length = roundup(skb->len, 4);
1600         length += (4 * !(length % rt2x00dev->usb_maxpacket));
1601
1602         return length;
1603 }
1604
1605 static void rt73usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1606                                   const enum data_queue_qid queue)
1607 {
1608         u32 reg;
1609
1610         if (queue != QID_BEACON) {
1611                 rt2x00usb_kick_tx_queue(rt2x00dev, queue);
1612                 return;
1613         }
1614
1615         /*
1616          * For Wi-Fi faily generated beacons between participating stations.
1617          * Set TBTT phase adaptive adjustment step to 8us (default 16us)
1618          */
1619         rt73usb_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1620
1621         rt73usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1622         if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
1623                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1624                 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1625                 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1626                 rt73usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1627         }
1628 }
1629
1630 /*
1631  * RX control handlers
1632  */
1633 static int rt73usb_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1634 {
1635         u8 offset = rt2x00dev->lna_gain;
1636         u8 lna;
1637
1638         lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1639         switch (lna) {
1640         case 3:
1641                 offset += 90;
1642                 break;
1643         case 2:
1644                 offset += 74;
1645                 break;
1646         case 1:
1647                 offset += 64;
1648                 break;
1649         default:
1650                 return 0;
1651         }
1652
1653         if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1654                 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
1655                         if (lna == 3 || lna == 2)
1656                                 offset += 10;
1657                 } else {
1658                         if (lna == 3)
1659                                 offset += 6;
1660                         else if (lna == 2)
1661                                 offset += 8;
1662                 }
1663         }
1664
1665         return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1666 }
1667
1668 static void rt73usb_fill_rxdone(struct queue_entry *entry,
1669                                 struct rxdone_entry_desc *rxdesc)
1670 {
1671         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1672         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1673         __le32 *rxd = (__le32 *)entry->skb->data;
1674         u32 word0;
1675         u32 word1;
1676
1677         /*
1678          * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1679          * frame data in rt2x00usb.
1680          */
1681         memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1682         rxd = (__le32 *)skbdesc->desc;
1683
1684         /*
1685          * It is now safe to read the descriptor on all architectures.
1686          */
1687         rt2x00_desc_read(rxd, 0, &word0);
1688         rt2x00_desc_read(rxd, 1, &word1);
1689
1690         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1691                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1692
1693         if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
1694                 rxdesc->cipher =
1695                     rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1696                 rxdesc->cipher_status =
1697                     rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1698         }
1699
1700         if (rxdesc->cipher != CIPHER_NONE) {
1701                 _rt2x00_desc_read(rxd, 2, &rxdesc->iv);
1702                 _rt2x00_desc_read(rxd, 3, &rxdesc->eiv);
1703                 _rt2x00_desc_read(rxd, 4, &rxdesc->icv);
1704
1705                 /*
1706                  * Hardware has stripped IV/EIV data from 802.11 frame during
1707                  * decryption. It has provided the data seperately but rt2x00lib
1708                  * should decide if it should be reinserted.
1709                  */
1710                 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
1711
1712                 /*
1713                  * FIXME: Legacy driver indicates that the frame does
1714                  * contain the Michael Mic. Unfortunately, in rt2x00
1715                  * the MIC seems to be missing completely...
1716                  */
1717                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1718
1719                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1720                         rxdesc->flags |= RX_FLAG_DECRYPTED;
1721                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1722                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1723         }
1724
1725         /*
1726          * Obtain the status about this packet.
1727          * When frame was received with an OFDM bitrate,
1728          * the signal is the PLCP value. If it was received with
1729          * a CCK bitrate the signal is the rate in 100kbit/s.
1730          */
1731         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1732         rxdesc->rssi = rt73usb_agc_to_rssi(rt2x00dev, word1);
1733         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1734
1735         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1736                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1737         else
1738                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1739         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1740                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1741
1742         /*
1743          * Set skb pointers, and update frame information.
1744          */
1745         skb_pull(entry->skb, entry->queue->desc_size);
1746         skb_trim(entry->skb, rxdesc->size);
1747 }
1748
1749 /*
1750  * Device probe functions.
1751  */
1752 static int rt73usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1753 {
1754         u16 word;
1755         u8 *mac;
1756         s8 value;
1757
1758         rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1759
1760         /*
1761          * Start validation of the data that has been read.
1762          */
1763         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1764         if (!is_valid_ether_addr(mac)) {
1765                 random_ether_addr(mac);
1766                 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1767         }
1768
1769         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1770         if (word == 0xffff) {
1771                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1772                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1773                                    ANTENNA_B);
1774                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1775                                    ANTENNA_B);
1776                 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
1777                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1778                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1779                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5226);
1780                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1781                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1782         }
1783
1784         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1785         if (word == 0xffff) {
1786                 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA, 0);
1787                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1788                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1789         }
1790
1791         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
1792         if (word == 0xffff) {
1793                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_G, 0);
1794                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_A, 0);
1795                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_ACT, 0);
1796                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_0, 0);
1797                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_1, 0);
1798                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_2, 0);
1799                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_3, 0);
1800                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_4, 0);
1801                 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
1802                                    LED_MODE_DEFAULT);
1803                 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
1804                 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
1805         }
1806
1807         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
1808         if (word == 0xffff) {
1809                 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
1810                 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
1811                 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
1812                 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
1813         }
1814
1815         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
1816         if (word == 0xffff) {
1817                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1818                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1819                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1820                 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
1821         } else {
1822                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
1823                 if (value < -10 || value > 10)
1824                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1825                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
1826                 if (value < -10 || value > 10)
1827                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1828                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1829         }
1830
1831         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
1832         if (word == 0xffff) {
1833                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1834                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1835                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1836                 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
1837         } else {
1838                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
1839                 if (value < -10 || value > 10)
1840                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1841                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
1842                 if (value < -10 || value > 10)
1843                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1844                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1845         }
1846
1847         return 0;
1848 }
1849
1850 static int rt73usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1851 {
1852         u32 reg;
1853         u16 value;
1854         u16 eeprom;
1855
1856         /*
1857          * Read EEPROM word for configuration.
1858          */
1859         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1860
1861         /*
1862          * Identify RF chipset.
1863          */
1864         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1865         rt73usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1866         rt2x00_set_chip(rt2x00dev, RT2571, value, reg);
1867
1868         if (!rt2x00_check_rev(&rt2x00dev->chip, 0x25730)) {
1869                 ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1870                 return -ENODEV;
1871         }
1872
1873         if (!rt2x00_rf(&rt2x00dev->chip, RF5226) &&
1874             !rt2x00_rf(&rt2x00dev->chip, RF2528) &&
1875             !rt2x00_rf(&rt2x00dev->chip, RF5225) &&
1876             !rt2x00_rf(&rt2x00dev->chip, RF2527)) {
1877                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1878                 return -ENODEV;
1879         }
1880
1881         /*
1882          * Identify default antenna configuration.
1883          */
1884         rt2x00dev->default_ant.tx =
1885             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1886         rt2x00dev->default_ant.rx =
1887             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1888
1889         /*
1890          * Read the Frame type.
1891          */
1892         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
1893                 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
1894
1895         /*
1896          * Read frequency offset.
1897          */
1898         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
1899         rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
1900
1901         /*
1902          * Read external LNA informations.
1903          */
1904         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1905
1906         if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA)) {
1907                 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
1908                 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
1909         }
1910
1911         /*
1912          * Store led settings, for correct led behaviour.
1913          */
1914 #ifdef CONFIG_RT2X00_LIB_LEDS
1915         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
1916
1917         rt73usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1918         rt73usb_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
1919         if (value == LED_MODE_SIGNAL_STRENGTH)
1920                 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1921                                  LED_TYPE_QUALITY);
1922
1923         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
1924         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
1925                            rt2x00_get_field16(eeprom,
1926                                               EEPROM_LED_POLARITY_GPIO_0));
1927         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
1928                            rt2x00_get_field16(eeprom,
1929                                               EEPROM_LED_POLARITY_GPIO_1));
1930         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
1931                            rt2x00_get_field16(eeprom,
1932                                               EEPROM_LED_POLARITY_GPIO_2));
1933         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
1934                            rt2x00_get_field16(eeprom,
1935                                               EEPROM_LED_POLARITY_GPIO_3));
1936         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
1937                            rt2x00_get_field16(eeprom,
1938                                               EEPROM_LED_POLARITY_GPIO_4));
1939         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
1940                            rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
1941         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
1942                            rt2x00_get_field16(eeprom,
1943                                               EEPROM_LED_POLARITY_RDY_G));
1944         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
1945                            rt2x00_get_field16(eeprom,
1946                                               EEPROM_LED_POLARITY_RDY_A));
1947 #endif /* CONFIG_RT2X00_LIB_LEDS */
1948
1949         return 0;
1950 }
1951
1952 /*
1953  * RF value list for RF2528
1954  * Supports: 2.4 GHz
1955  */
1956 static const struct rf_channel rf_vals_bg_2528[] = {
1957         { 1,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1958         { 2,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1959         { 3,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1960         { 4,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1961         { 5,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1962         { 6,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1963         { 7,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1964         { 8,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1965         { 9,  0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1966         { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1967         { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1968         { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
1969         { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
1970         { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
1971 };
1972
1973 /*
1974  * RF value list for RF5226
1975  * Supports: 2.4 GHz & 5.2 GHz
1976  */
1977 static const struct rf_channel rf_vals_5226[] = {
1978         { 1,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1979         { 2,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1980         { 3,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1981         { 4,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1982         { 5,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1983         { 6,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1984         { 7,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1985         { 8,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1986         { 9,  0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1987         { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1988         { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1989         { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
1990         { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
1991         { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
1992
1993         /* 802.11 UNI / HyperLan 2 */
1994         { 36, 0x00002c0c, 0x0000099a, 0x00098255, 0x000fea23 },
1995         { 40, 0x00002c0c, 0x000009a2, 0x00098255, 0x000fea03 },
1996         { 44, 0x00002c0c, 0x000009a6, 0x00098255, 0x000fea0b },
1997         { 48, 0x00002c0c, 0x000009aa, 0x00098255, 0x000fea13 },
1998         { 52, 0x00002c0c, 0x000009ae, 0x00098255, 0x000fea1b },
1999         { 56, 0x00002c0c, 0x000009b2, 0x00098255, 0x000fea23 },
2000         { 60, 0x00002c0c, 0x000009ba, 0x00098255, 0x000fea03 },
2001         { 64, 0x00002c0c, 0x000009be, 0x00098255, 0x000fea0b },
2002
2003         /* 802.11 HyperLan 2 */
2004         { 100, 0x00002c0c, 0x00000a2a, 0x000b8255, 0x000fea03 },
2005         { 104, 0x00002c0c, 0x00000a2e, 0x000b8255, 0x000fea0b },
2006         { 108, 0x00002c0c, 0x00000a32, 0x000b8255, 0x000fea13 },
2007         { 112, 0x00002c0c, 0x00000a36, 0x000b8255, 0x000fea1b },
2008         { 116, 0x00002c0c, 0x00000a3a, 0x000b8255, 0x000fea23 },
2009         { 120, 0x00002c0c, 0x00000a82, 0x000b8255, 0x000fea03 },
2010         { 124, 0x00002c0c, 0x00000a86, 0x000b8255, 0x000fea0b },
2011         { 128, 0x00002c0c, 0x00000a8a, 0x000b8255, 0x000fea13 },
2012         { 132, 0x00002c0c, 0x00000a8e, 0x000b8255, 0x000fea1b },
2013         { 136, 0x00002c0c, 0x00000a92, 0x000b8255, 0x000fea23 },
2014
2015         /* 802.11 UNII */
2016         { 140, 0x00002c0c, 0x00000a9a, 0x000b8255, 0x000fea03 },
2017         { 149, 0x00002c0c, 0x00000aa2, 0x000b8255, 0x000fea1f },
2018         { 153, 0x00002c0c, 0x00000aa6, 0x000b8255, 0x000fea27 },
2019         { 157, 0x00002c0c, 0x00000aae, 0x000b8255, 0x000fea07 },
2020         { 161, 0x00002c0c, 0x00000ab2, 0x000b8255, 0x000fea0f },
2021         { 165, 0x00002c0c, 0x00000ab6, 0x000b8255, 0x000fea17 },
2022
2023         /* MMAC(Japan)J52 ch 34,38,42,46 */
2024         { 34, 0x00002c0c, 0x0008099a, 0x000da255, 0x000d3a0b },
2025         { 38, 0x00002c0c, 0x0008099e, 0x000da255, 0x000d3a13 },
2026         { 42, 0x00002c0c, 0x000809a2, 0x000da255, 0x000d3a1b },
2027         { 46, 0x00002c0c, 0x000809a6, 0x000da255, 0x000d3a23 },
2028 };
2029
2030 /*
2031  * RF value list for RF5225 & RF2527
2032  * Supports: 2.4 GHz & 5.2 GHz
2033  */
2034 static const struct rf_channel rf_vals_5225_2527[] = {
2035         { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2036         { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2037         { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2038         { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2039         { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2040         { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2041         { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2042         { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2043         { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2044         { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2045         { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2046         { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2047         { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2048         { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2049
2050         /* 802.11 UNI / HyperLan 2 */
2051         { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2052         { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2053         { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2054         { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2055         { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2056         { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2057         { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2058         { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2059
2060         /* 802.11 HyperLan 2 */
2061         { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2062         { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2063         { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2064         { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2065         { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2066         { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2067         { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2068         { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2069         { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2070         { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2071
2072         /* 802.11 UNII */
2073         { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2074         { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2075         { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2076         { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2077         { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2078         { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2079
2080         /* MMAC(Japan)J52 ch 34,38,42,46 */
2081         { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2082         { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2083         { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2084         { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2085 };
2086
2087
2088 static int rt73usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2089 {
2090         struct hw_mode_spec *spec = &rt2x00dev->spec;
2091         struct channel_info *info;
2092         char *tx_power;
2093         unsigned int i;
2094
2095         /*
2096          * Initialize all hw fields.
2097          */
2098         rt2x00dev->hw->flags =
2099             IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2100             IEEE80211_HW_SIGNAL_DBM;
2101         rt2x00dev->hw->extra_tx_headroom = TXD_DESC_SIZE;
2102
2103         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2104         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2105                                 rt2x00_eeprom_addr(rt2x00dev,
2106                                                    EEPROM_MAC_ADDR_0));
2107
2108         /*
2109          * Initialize hw_mode information.
2110          */
2111         spec->supported_bands = SUPPORT_BAND_2GHZ;
2112         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2113
2114         if (rt2x00_rf(&rt2x00dev->chip, RF2528)) {
2115                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2528);
2116                 spec->channels = rf_vals_bg_2528;
2117         } else if (rt2x00_rf(&rt2x00dev->chip, RF5226)) {
2118                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2119                 spec->num_channels = ARRAY_SIZE(rf_vals_5226);
2120                 spec->channels = rf_vals_5226;
2121         } else if (rt2x00_rf(&rt2x00dev->chip, RF2527)) {
2122                 spec->num_channels = 14;
2123                 spec->channels = rf_vals_5225_2527;
2124         } else if (rt2x00_rf(&rt2x00dev->chip, RF5225)) {
2125                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2126                 spec->num_channels = ARRAY_SIZE(rf_vals_5225_2527);
2127                 spec->channels = rf_vals_5225_2527;
2128         }
2129
2130         /*
2131          * Create channel information array
2132          */
2133         info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
2134         if (!info)
2135                 return -ENOMEM;
2136
2137         spec->channels_info = info;
2138
2139         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2140         for (i = 0; i < 14; i++)
2141                 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2142
2143         if (spec->num_channels > 14) {
2144                 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2145                 for (i = 14; i < spec->num_channels; i++)
2146                         info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2147         }
2148
2149         return 0;
2150 }
2151
2152 static int rt73usb_probe_hw(struct rt2x00_dev *rt2x00dev)
2153 {
2154         int retval;
2155
2156         /*
2157          * Allocate eeprom data.
2158          */
2159         retval = rt73usb_validate_eeprom(rt2x00dev);
2160         if (retval)
2161                 return retval;
2162
2163         retval = rt73usb_init_eeprom(rt2x00dev);
2164         if (retval)
2165                 return retval;
2166
2167         /*
2168          * Initialize hw specifications.
2169          */
2170         retval = rt73usb_probe_hw_mode(rt2x00dev);
2171         if (retval)
2172                 return retval;
2173
2174         /*
2175          * This device requires firmware.
2176          */
2177         __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2178         __set_bit(DRIVER_REQUIRE_SCHEDULED, &rt2x00dev->flags);
2179         if (!modparam_nohwcrypt)
2180                 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
2181
2182         /*
2183          * Set the rssi offset.
2184          */
2185         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2186
2187         return 0;
2188 }
2189
2190 /*
2191  * IEEE80211 stack callback functions.
2192  */
2193 static int rt73usb_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
2194                            const struct ieee80211_tx_queue_params *params)
2195 {
2196         struct rt2x00_dev *rt2x00dev = hw->priv;
2197         struct data_queue *queue;
2198         struct rt2x00_field32 field;
2199         int retval;
2200         u32 reg;
2201
2202         /*
2203          * First pass the configuration through rt2x00lib, that will
2204          * update the queue settings and validate the input. After that
2205          * we are free to update the registers based on the value
2206          * in the queue parameter.
2207          */
2208         retval = rt2x00mac_conf_tx(hw, queue_idx, params);
2209         if (retval)
2210                 return retval;
2211
2212         queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
2213
2214         /* Update WMM TXOP register */
2215         if (queue_idx < 2) {
2216                 field.bit_offset = queue_idx * 16;
2217                 field.bit_mask = 0xffff << field.bit_offset;
2218
2219                 rt73usb_register_read(rt2x00dev, AC_TXOP_CSR0, &reg);
2220                 rt2x00_set_field32(&reg, field, queue->txop);
2221                 rt73usb_register_write(rt2x00dev, AC_TXOP_CSR0, reg);
2222         } else if (queue_idx < 4) {
2223                 field.bit_offset = (queue_idx - 2) * 16;
2224                 field.bit_mask = 0xffff << field.bit_offset;
2225
2226                 rt73usb_register_read(rt2x00dev, AC_TXOP_CSR1, &reg);
2227                 rt2x00_set_field32(&reg, field, queue->txop);
2228                 rt73usb_register_write(rt2x00dev, AC_TXOP_CSR1, reg);
2229         }
2230
2231         /* Update WMM registers */
2232         field.bit_offset = queue_idx * 4;
2233         field.bit_mask = 0xf << field.bit_offset;
2234
2235         rt73usb_register_read(rt2x00dev, AIFSN_CSR, &reg);
2236         rt2x00_set_field32(&reg, field, queue->aifs);
2237         rt73usb_register_write(rt2x00dev, AIFSN_CSR, reg);
2238
2239         rt73usb_register_read(rt2x00dev, CWMIN_CSR, &reg);
2240         rt2x00_set_field32(&reg, field, queue->cw_min);
2241         rt73usb_register_write(rt2x00dev, CWMIN_CSR, reg);
2242
2243         rt73usb_register_read(rt2x00dev, CWMAX_CSR, &reg);
2244         rt2x00_set_field32(&reg, field, queue->cw_max);
2245         rt73usb_register_write(rt2x00dev, CWMAX_CSR, reg);
2246
2247         return 0;
2248 }
2249
2250 #if 0
2251 /*
2252  * Mac80211 demands get_tsf must be atomic.
2253  * This is not possible for rt73usb since all register access
2254  * functions require sleeping. Untill mac80211 no longer needs
2255  * get_tsf to be atomic, this function should be disabled.
2256  */
2257 static u64 rt73usb_get_tsf(struct ieee80211_hw *hw)
2258 {
2259         struct rt2x00_dev *rt2x00dev = hw->priv;
2260         u64 tsf;
2261         u32 reg;
2262
2263         rt73usb_register_read(rt2x00dev, TXRX_CSR13, &reg);
2264         tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2265         rt73usb_register_read(rt2x00dev, TXRX_CSR12, &reg);
2266         tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2267
2268         return tsf;
2269 }
2270 #else
2271 #define rt73usb_get_tsf NULL
2272 #endif
2273
2274 static const struct ieee80211_ops rt73usb_mac80211_ops = {
2275         .tx                     = rt2x00mac_tx,
2276         .start                  = rt2x00mac_start,
2277         .stop                   = rt2x00mac_stop,
2278         .add_interface          = rt2x00mac_add_interface,
2279         .remove_interface       = rt2x00mac_remove_interface,
2280         .config                 = rt2x00mac_config,
2281         .config_interface       = rt2x00mac_config_interface,
2282         .configure_filter       = rt2x00mac_configure_filter,
2283         .set_key                = rt2x00mac_set_key,
2284         .get_stats              = rt2x00mac_get_stats,
2285         .bss_info_changed       = rt2x00mac_bss_info_changed,
2286         .conf_tx                = rt73usb_conf_tx,
2287         .get_tx_stats           = rt2x00mac_get_tx_stats,
2288         .get_tsf                = rt73usb_get_tsf,
2289 };
2290
2291 static const struct rt2x00lib_ops rt73usb_rt2x00_ops = {
2292         .probe_hw               = rt73usb_probe_hw,
2293         .get_firmware_name      = rt73usb_get_firmware_name,
2294         .get_firmware_crc       = rt73usb_get_firmware_crc,
2295         .load_firmware          = rt73usb_load_firmware,
2296         .initialize             = rt2x00usb_initialize,
2297         .uninitialize           = rt2x00usb_uninitialize,
2298         .clear_entry            = rt2x00usb_clear_entry,
2299         .set_device_state       = rt73usb_set_device_state,
2300         .link_stats             = rt73usb_link_stats,
2301         .reset_tuner            = rt73usb_reset_tuner,
2302         .link_tuner             = rt73usb_link_tuner,
2303         .write_tx_desc          = rt73usb_write_tx_desc,
2304         .write_tx_data          = rt2x00usb_write_tx_data,
2305         .write_beacon           = rt73usb_write_beacon,
2306         .get_tx_data_len        = rt73usb_get_tx_data_len,
2307         .kick_tx_queue          = rt73usb_kick_tx_queue,
2308         .fill_rxdone            = rt73usb_fill_rxdone,
2309         .config_shared_key      = rt73usb_config_shared_key,
2310         .config_pairwise_key    = rt73usb_config_pairwise_key,
2311         .config_filter          = rt73usb_config_filter,
2312         .config_intf            = rt73usb_config_intf,
2313         .config_erp             = rt73usb_config_erp,
2314         .config_ant             = rt73usb_config_ant,
2315         .config                 = rt73usb_config,
2316 };
2317
2318 static const struct data_queue_desc rt73usb_queue_rx = {
2319         .entry_num              = RX_ENTRIES,
2320         .data_size              = DATA_FRAME_SIZE,
2321         .desc_size              = RXD_DESC_SIZE,
2322         .priv_size              = sizeof(struct queue_entry_priv_usb),
2323 };
2324
2325 static const struct data_queue_desc rt73usb_queue_tx = {
2326         .entry_num              = TX_ENTRIES,
2327         .data_size              = DATA_FRAME_SIZE,
2328         .desc_size              = TXD_DESC_SIZE,
2329         .priv_size              = sizeof(struct queue_entry_priv_usb),
2330 };
2331
2332 static const struct data_queue_desc rt73usb_queue_bcn = {
2333         .entry_num              = 4 * BEACON_ENTRIES,
2334         .data_size              = MGMT_FRAME_SIZE,
2335         .desc_size              = TXINFO_SIZE,
2336         .priv_size              = sizeof(struct queue_entry_priv_usb),
2337 };
2338
2339 static const struct rt2x00_ops rt73usb_ops = {
2340         .name           = KBUILD_MODNAME,
2341         .max_sta_intf   = 1,
2342         .max_ap_intf    = 4,
2343         .eeprom_size    = EEPROM_SIZE,
2344         .rf_size        = RF_SIZE,
2345         .tx_queues      = NUM_TX_QUEUES,
2346         .rx             = &rt73usb_queue_rx,
2347         .tx             = &rt73usb_queue_tx,
2348         .bcn            = &rt73usb_queue_bcn,
2349         .lib            = &rt73usb_rt2x00_ops,
2350         .hw             = &rt73usb_mac80211_ops,
2351 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2352         .debugfs        = &rt73usb_rt2x00debug,
2353 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2354 };
2355
2356 /*
2357  * rt73usb module information.
2358  */
2359 static struct usb_device_id rt73usb_device_table[] = {
2360         /* AboCom */
2361         { USB_DEVICE(0x07b8, 0xb21d), USB_DEVICE_DATA(&rt73usb_ops) },
2362         /* Askey */
2363         { USB_DEVICE(0x1690, 0x0722), USB_DEVICE_DATA(&rt73usb_ops) },
2364         /* ASUS */
2365         { USB_DEVICE(0x0b05, 0x1723), USB_DEVICE_DATA(&rt73usb_ops) },
2366         { USB_DEVICE(0x0b05, 0x1724), USB_DEVICE_DATA(&rt73usb_ops) },
2367         /* Belkin */
2368         { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt73usb_ops) },
2369         { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt73usb_ops) },
2370         { USB_DEVICE(0x050d, 0x905b), USB_DEVICE_DATA(&rt73usb_ops) },
2371         { USB_DEVICE(0x050d, 0x905c), USB_DEVICE_DATA(&rt73usb_ops) },
2372         /* Billionton */
2373         { USB_DEVICE(0x1631, 0xc019), USB_DEVICE_DATA(&rt73usb_ops) },
2374         /* Buffalo */
2375         { USB_DEVICE(0x0411, 0x00f4), USB_DEVICE_DATA(&rt73usb_ops) },
2376         /* CNet */
2377         { USB_DEVICE(0x1371, 0x9022), USB_DEVICE_DATA(&rt73usb_ops) },
2378         { USB_DEVICE(0x1371, 0x9032), USB_DEVICE_DATA(&rt73usb_ops) },
2379         /* Conceptronic */
2380         { USB_DEVICE(0x14b2, 0x3c22), USB_DEVICE_DATA(&rt73usb_ops) },
2381         /* Corega */
2382         { USB_DEVICE(0x07aa, 0x002e), USB_DEVICE_DATA(&rt73usb_ops) },
2383         /* D-Link */
2384         { USB_DEVICE(0x07d1, 0x3c03), USB_DEVICE_DATA(&rt73usb_ops) },
2385         { USB_DEVICE(0x07d1, 0x3c04), USB_DEVICE_DATA(&rt73usb_ops) },
2386         { USB_DEVICE(0x07d1, 0x3c06), USB_DEVICE_DATA(&rt73usb_ops) },
2387         { USB_DEVICE(0x07d1, 0x3c07), USB_DEVICE_DATA(&rt73usb_ops) },
2388         /* Gemtek */
2389         { USB_DEVICE(0x15a9, 0x0004), USB_DEVICE_DATA(&rt73usb_ops) },
2390         /* Gigabyte */
2391         { USB_DEVICE(0x1044, 0x8008), USB_DEVICE_DATA(&rt73usb_ops) },
2392         { USB_DEVICE(0x1044, 0x800a), USB_DEVICE_DATA(&rt73usb_ops) },
2393         /* Huawei-3Com */
2394         { USB_DEVICE(0x1472, 0x0009), USB_DEVICE_DATA(&rt73usb_ops) },
2395         /* Hercules */
2396         { USB_DEVICE(0x06f8, 0xe010), USB_DEVICE_DATA(&rt73usb_ops) },
2397         { USB_DEVICE(0x06f8, 0xe020), USB_DEVICE_DATA(&rt73usb_ops) },
2398         /* Linksys */
2399         { USB_DEVICE(0x13b1, 0x0020), USB_DEVICE_DATA(&rt73usb_ops) },
2400         { USB_DEVICE(0x13b1, 0x0023), USB_DEVICE_DATA(&rt73usb_ops) },
2401         /* MSI */
2402         { USB_DEVICE(0x0db0, 0x6877), USB_DEVICE_DATA(&rt73usb_ops) },
2403         { USB_DEVICE(0x0db0, 0x6874), USB_DEVICE_DATA(&rt73usb_ops) },
2404         { USB_DEVICE(0x0db0, 0xa861), USB_DEVICE_DATA(&rt73usb_ops) },
2405         { USB_DEVICE(0x0db0, 0xa874), USB_DEVICE_DATA(&rt73usb_ops) },
2406         /* Ralink */
2407         { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt73usb_ops) },
2408         { USB_DEVICE(0x148f, 0x2671), USB_DEVICE_DATA(&rt73usb_ops) },
2409         /* Qcom */
2410         { USB_DEVICE(0x18e8, 0x6196), USB_DEVICE_DATA(&rt73usb_ops) },
2411         { USB_DEVICE(0x18e8, 0x6229), USB_DEVICE_DATA(&rt73usb_ops) },
2412         { USB_DEVICE(0x18e8, 0x6238), USB_DEVICE_DATA(&rt73usb_ops) },
2413         /* Senao */
2414         { USB_DEVICE(0x1740, 0x7100), USB_DEVICE_DATA(&rt73usb_ops) },
2415         /* Sitecom */
2416         { USB_DEVICE(0x0df6, 0x9712), USB_DEVICE_DATA(&rt73usb_ops) },
2417         { USB_DEVICE(0x0df6, 0x90ac), USB_DEVICE_DATA(&rt73usb_ops) },
2418         /* Surecom */
2419         { USB_DEVICE(0x0769, 0x31f3), USB_DEVICE_DATA(&rt73usb_ops) },
2420         /* Planex */
2421         { USB_DEVICE(0x2019, 0xab01), USB_DEVICE_DATA(&rt73usb_ops) },
2422         { USB_DEVICE(0x2019, 0xab50), USB_DEVICE_DATA(&rt73usb_ops) },
2423         { 0, }
2424 };
2425
2426 MODULE_AUTHOR(DRV_PROJECT);
2427 MODULE_VERSION(DRV_VERSION);
2428 MODULE_DESCRIPTION("Ralink RT73 USB Wireless LAN driver.");
2429 MODULE_SUPPORTED_DEVICE("Ralink RT2571W & RT2671 USB chipset based cards");
2430 MODULE_DEVICE_TABLE(usb, rt73usb_device_table);
2431 MODULE_FIRMWARE(FIRMWARE_RT2571);
2432 MODULE_LICENSE("GPL");
2433
2434 static struct usb_driver rt73usb_driver = {
2435         .name           = KBUILD_MODNAME,
2436         .id_table       = rt73usb_device_table,
2437         .probe          = rt2x00usb_probe,
2438         .disconnect     = rt2x00usb_disconnect,
2439         .suspend        = rt2x00usb_suspend,
2440         .resume         = rt2x00usb_resume,
2441 };
2442
2443 static int __init rt73usb_init(void)
2444 {
2445         return usb_register(&rt73usb_driver);
2446 }
2447
2448 static void __exit rt73usb_exit(void)
2449 {
2450         usb_deregister(&rt73usb_driver);
2451 }
2452
2453 module_init(rt73usb_init);
2454 module_exit(rt73usb_exit);