]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/net/wireless/rtlwifi/efuse.c
a079a31b4ed7b48d85e198cc14afb831060083ba
[mv-sheeva.git] / drivers / net / wireless / rtlwifi / efuse.c
1 /******************************************************************************
2  *
3  * Copyright(c) 2009-2010  Realtek Corporation.
4  *
5  * Tmis program is free software; you can redistribute it and/or modify it
6  * under the terms of version 2 of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * Tmis program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * tmis program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
17  *
18  * Tme full GNU General Public License is included in this distribution in the
19  * file called LICENSE.
20  *
21  * Contact Information:
22  * wlanfae <wlanfae@realtek.com>
23  * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
24  * Hsinchu 300, Taiwan.
25  *
26  * Larry Finger <Larry.Finger@lwfinger.net>
27  *
28  *****************************************************************************/
29
30 #include <linux/export.h>
31 #include "wifi.h"
32 #include "efuse.h"
33
34 static const u8 MAX_PGPKT_SIZE = 9;
35 static const u8 PGPKT_DATA_SIZE = 8;
36 static const int EFUSE_MAX_SIZE = 512;
37
38 static const u8 EFUSE_OOB_PROTECT_BYTES = 15;
39
40 static const struct efuse_map RTL8712_SDIO_EFUSE_TABLE[] = {
41         {0, 0, 0, 2},
42         {0, 1, 0, 2},
43         {0, 2, 0, 2},
44         {1, 0, 0, 1},
45         {1, 0, 1, 1},
46         {1, 1, 0, 1},
47         {1, 1, 1, 3},
48         {1, 3, 0, 17},
49         {3, 3, 1, 48},
50         {10, 0, 0, 6},
51         {10, 3, 0, 1},
52         {10, 3, 1, 1},
53         {11, 0, 0, 28}
54 };
55
56 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw, u16 offset,
57                                     u8 *value);
58 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw, u16 offset,
59                                     u16 *value);
60 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw, u16 offset,
61                                     u32 *value);
62 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw, u16 offset,
63                                      u8 value);
64 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw, u16 offset,
65                                      u16 value);
66 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw, u16 offset,
67                                      u32 value);
68 static int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr,
69                                         u8 *data);
70 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr,
71                                         u8 data);
72 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse);
73 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset,
74                                         u8 *data);
75 static int efuse_pg_packet_write(struct ieee80211_hw *hw, u8 offset,
76                                  u8 word_en, u8 *data);
77 static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
78                                         u8 *targetdata);
79 static u8 efuse_word_enable_data_write(struct ieee80211_hw *hw,
80                                        u16 efuse_addr, u8 word_en, u8 *data);
81 static void efuse_power_switch(struct ieee80211_hw *hw, u8 write,
82                                         u8 pwrstate);
83 static u16 efuse_get_current_size(struct ieee80211_hw *hw);
84 static u8 efuse_calculate_word_cnts(u8 word_en);
85
86 void efuse_initialize(struct ieee80211_hw *hw)
87 {
88         struct rtl_priv *rtlpriv = rtl_priv(hw);
89         u8 bytetemp;
90         u8 temp;
91
92         bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1);
93         temp = bytetemp | 0x20;
94         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1, temp);
95
96         bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1);
97         temp = bytetemp & 0xFE;
98         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1, temp);
99
100         bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3);
101         temp = bytetemp | 0x80;
102         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3, temp);
103
104         rtl_write_byte(rtlpriv, 0x2F8, 0x3);
105
106         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
107
108 }
109
110 u8 efuse_read_1byte(struct ieee80211_hw *hw, u16 address)
111 {
112         struct rtl_priv *rtlpriv = rtl_priv(hw);
113         u8 data;
114         u8 bytetemp;
115         u8 temp;
116         u32 k = 0;
117         const u32 efuse_len =
118                 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
119
120         if (address < efuse_len) {
121                 temp = address & 0xFF;
122                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
123                                temp);
124                 bytetemp = rtl_read_byte(rtlpriv,
125                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
126                 temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
127                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
128                                temp);
129
130                 bytetemp = rtl_read_byte(rtlpriv,
131                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
132                 temp = bytetemp & 0x7F;
133                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
134                                temp);
135
136                 bytetemp = rtl_read_byte(rtlpriv,
137                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
138                 while (!(bytetemp & 0x80)) {
139                         bytetemp = rtl_read_byte(rtlpriv,
140                                                  rtlpriv->cfg->
141                                                  maps[EFUSE_CTRL] + 3);
142                         k++;
143                         if (k == 1000) {
144                                 k = 0;
145                                 break;
146                         }
147                 }
148                 data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
149                 return data;
150         } else
151                 return 0xFF;
152
153 }
154 EXPORT_SYMBOL(efuse_read_1byte);
155
156 void efuse_write_1byte(struct ieee80211_hw *hw, u16 address, u8 value)
157 {
158         struct rtl_priv *rtlpriv = rtl_priv(hw);
159         u8 bytetemp;
160         u8 temp;
161         u32 k = 0;
162         const u32 efuse_len =
163                 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
164
165         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "Addr=%x Data =%x\n",
166                  address, value);
167
168         if (address < efuse_len) {
169                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], value);
170
171                 temp = address & 0xFF;
172                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
173                                temp);
174                 bytetemp = rtl_read_byte(rtlpriv,
175                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
176
177                 temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
178                 rtl_write_byte(rtlpriv,
179                                rtlpriv->cfg->maps[EFUSE_CTRL] + 2, temp);
180
181                 bytetemp = rtl_read_byte(rtlpriv,
182                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
183                 temp = bytetemp | 0x80;
184                 rtl_write_byte(rtlpriv,
185                                rtlpriv->cfg->maps[EFUSE_CTRL] + 3, temp);
186
187                 bytetemp = rtl_read_byte(rtlpriv,
188                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
189
190                 while (bytetemp & 0x80) {
191                         bytetemp = rtl_read_byte(rtlpriv,
192                                                  rtlpriv->cfg->
193                                                  maps[EFUSE_CTRL] + 3);
194                         k++;
195                         if (k == 100) {
196                                 k = 0;
197                                 break;
198                         }
199                 }
200         }
201
202 }
203
204 void read_efuse_byte(struct ieee80211_hw *hw, u16 _offset, u8 *pbuf)
205 {
206         struct rtl_priv *rtlpriv = rtl_priv(hw);
207         u32 value32;
208         u8 readbyte;
209         u16 retry;
210
211         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
212                        (_offset & 0xff));
213         readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
214         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
215                        ((_offset >> 8) & 0x03) | (readbyte & 0xfc));
216
217         readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
218         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
219                        (readbyte & 0x7f));
220
221         retry = 0;
222         value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
223         while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) {
224                 value32 = rtl_read_dword(rtlpriv,
225                                          rtlpriv->cfg->maps[EFUSE_CTRL]);
226                 retry++;
227         }
228
229         udelay(50);
230         value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
231
232         *pbuf = (u8) (value32 & 0xff);
233 }
234
235 void read_efuse(struct ieee80211_hw *hw, u16 _offset, u16 _size_byte, u8 *pbuf)
236 {
237         struct rtl_priv *rtlpriv = rtl_priv(hw);
238         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
239         u8 *efuse_tbl;
240         u8 rtemp8[1];
241         u16 efuse_addr = 0;
242         u8 offset, wren;
243         u16 i;
244         u16 j;
245         const u16 efuse_max_section =
246                 rtlpriv->cfg->maps[EFUSE_MAX_SECTION_MAP];
247         const u32 efuse_len =
248                 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
249         u16 **efuse_word;
250         u16 efuse_utilized = 0;
251         u8 efuse_usage;
252
253         if ((_offset + _size_byte) > rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]) {
254                 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
255                          "read_efuse(): Invalid offset(%#x) with read bytes(%#x)!!\n",
256                          _offset, _size_byte);
257                 return;
258         }
259
260         /* allocate memory for efuse_tbl and efuse_word */
261         efuse_tbl = kmalloc(rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE] *
262                             sizeof(u8), GFP_ATOMIC);
263         if (!efuse_tbl)
264                 return;
265         efuse_word = kmalloc(EFUSE_MAX_WORD_UNIT * sizeof(u16 *), GFP_ATOMIC);
266         if (!efuse_word)
267                 goto done;
268         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
269                 efuse_word[i] = kmalloc(efuse_max_section * sizeof(u16),
270                                         GFP_ATOMIC);
271                 if (!efuse_word[i])
272                         goto done;
273         }
274
275         for (i = 0; i < efuse_max_section; i++)
276                 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
277                         efuse_word[j][i] = 0xFFFF;
278
279         read_efuse_byte(hw, efuse_addr, rtemp8);
280         if (*rtemp8 != 0xFF) {
281                 efuse_utilized++;
282                 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
283                         "Addr=%d\n", efuse_addr);
284                 efuse_addr++;
285         }
286
287         while ((*rtemp8 != 0xFF) && (efuse_addr < efuse_len)) {
288                 offset = ((*rtemp8 >> 4) & 0x0f);
289
290                 if (offset < efuse_max_section) {
291                         wren = (*rtemp8 & 0x0f);
292                         RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
293                                 "offset-%d Worden=%x\n", offset, wren);
294
295                         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
296                                 if (!(wren & 0x01)) {
297                                         RTPRINT(rtlpriv, FEEPROM,
298                                                 EFUSE_READ_ALL,
299                                                 "Addr=%d\n", efuse_addr);
300
301                                         read_efuse_byte(hw, efuse_addr, rtemp8);
302                                         efuse_addr++;
303                                         efuse_utilized++;
304                                         efuse_word[i][offset] =
305                                                          (*rtemp8 & 0xff);
306
307                                         if (efuse_addr >= efuse_len)
308                                                 break;
309
310                                         RTPRINT(rtlpriv, FEEPROM,
311                                                 EFUSE_READ_ALL,
312                                                 "Addr=%d\n", efuse_addr);
313
314                                         read_efuse_byte(hw, efuse_addr, rtemp8);
315                                         efuse_addr++;
316                                         efuse_utilized++;
317                                         efuse_word[i][offset] |=
318                                             (((u16)*rtemp8 << 8) & 0xff00);
319
320                                         if (efuse_addr >= efuse_len)
321                                                 break;
322                                 }
323
324                                 wren >>= 1;
325                         }
326                 }
327
328                 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
329                         "Addr=%d\n", efuse_addr);
330                 read_efuse_byte(hw, efuse_addr, rtemp8);
331                 if (*rtemp8 != 0xFF && (efuse_addr < efuse_len)) {
332                         efuse_utilized++;
333                         efuse_addr++;
334                 }
335         }
336
337         for (i = 0; i < efuse_max_section; i++) {
338                 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
339                         efuse_tbl[(i * 8) + (j * 2)] =
340                             (efuse_word[j][i] & 0xff);
341                         efuse_tbl[(i * 8) + ((j * 2) + 1)] =
342                             ((efuse_word[j][i] >> 8) & 0xff);
343                 }
344         }
345
346         for (i = 0; i < _size_byte; i++)
347                 pbuf[i] = efuse_tbl[_offset + i];
348
349         rtlefuse->efuse_usedbytes = efuse_utilized;
350         efuse_usage = (u8) ((efuse_utilized * 100) / efuse_len);
351         rtlefuse->efuse_usedpercentage = efuse_usage;
352         rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_BYTES,
353                                       (u8 *)&efuse_utilized);
354         rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_USAGE,
355                                       (u8 *)&efuse_usage);
356 done:
357         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++)
358                 kfree(efuse_word[i]);
359         kfree(efuse_word);
360         kfree(efuse_tbl);
361 }
362
363 bool efuse_shadow_update_chk(struct ieee80211_hw *hw)
364 {
365         struct rtl_priv *rtlpriv = rtl_priv(hw);
366         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
367         u8 section_idx, i, Base;
368         u16 words_need = 0, hdr_num = 0, totalbytes, efuse_used;
369         bool wordchanged, result = true;
370
371         for (section_idx = 0; section_idx < 16; section_idx++) {
372                 Base = section_idx * 8;
373                 wordchanged = false;
374
375                 for (i = 0; i < 8; i = i + 2) {
376                         if ((rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i] !=
377                              rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i]) ||
378                             (rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i + 1] !=
379                              rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i +
380                                                                    1])) {
381                                 words_need++;
382                                 wordchanged = true;
383                         }
384                 }
385
386                 if (wordchanged)
387                         hdr_num++;
388         }
389
390         totalbytes = hdr_num + words_need * 2;
391         efuse_used = rtlefuse->efuse_usedbytes;
392
393         if ((totalbytes + efuse_used) >=
394             (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES))
395                 result = false;
396
397         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
398                  "efuse_shadow_update_chk(): totalbytes(%#x), hdr_num(%#x), words_need(%#x), efuse_used(%d)\n",
399                  totalbytes, hdr_num, words_need, efuse_used);
400
401         return result;
402 }
403
404 void efuse_shadow_read(struct ieee80211_hw *hw, u8 type,
405                        u16 offset, u32 *value)
406 {
407         if (type == 1)
408                 efuse_shadow_read_1byte(hw, offset, (u8 *) value);
409         else if (type == 2)
410                 efuse_shadow_read_2byte(hw, offset, (u16 *) value);
411         else if (type == 4)
412                 efuse_shadow_read_4byte(hw, offset, (u32 *) value);
413
414 }
415
416 void efuse_shadow_write(struct ieee80211_hw *hw, u8 type, u16 offset,
417                                 u32 value)
418 {
419         if (type == 1)
420                 efuse_shadow_write_1byte(hw, offset, (u8) value);
421         else if (type == 2)
422                 efuse_shadow_write_2byte(hw, offset, (u16) value);
423         else if (type == 4)
424                 efuse_shadow_write_4byte(hw, offset, value);
425
426 }
427
428 bool efuse_shadow_update(struct ieee80211_hw *hw)
429 {
430         struct rtl_priv *rtlpriv = rtl_priv(hw);
431         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
432         u16 i, offset, base;
433         u8 word_en = 0x0F;
434         u8 first_pg = false;
435
436         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "--->\n");
437
438         if (!efuse_shadow_update_chk(hw)) {
439                 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
440                 memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
441                        &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
442                        rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
443
444                 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
445                          "<---efuse out of capacity!!\n");
446                 return false;
447         }
448         efuse_power_switch(hw, true, true);
449
450         for (offset = 0; offset < 16; offset++) {
451
452                 word_en = 0x0F;
453                 base = offset * 8;
454
455                 for (i = 0; i < 8; i++) {
456                         if (first_pg) {
457
458                                 word_en &= ~(BIT(i / 2));
459
460                                 rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
461                                     rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
462                         } else {
463
464                                 if (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
465                                     rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) {
466                                         word_en &= ~(BIT(i / 2));
467
468                                         rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
469                                             rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
470                                 }
471                         }
472                 }
473
474                 if (word_en != 0x0F) {
475                         u8 tmpdata[8];
476                         memcpy(tmpdata,
477                                &rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base],
478                                8);
479                         RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD,
480                                       "U-efuse", tmpdata, 8);
481
482                         if (!efuse_pg_packet_write(hw, (u8) offset, word_en,
483                                                    tmpdata)) {
484                                 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
485                                          "PG section(%#x) fail!!\n", offset);
486                                 break;
487                         }
488                 }
489
490         }
491
492         efuse_power_switch(hw, true, false);
493         efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
494
495         memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
496                &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
497                rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
498
499         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "<---\n");
500         return true;
501 }
502
503 void rtl_efuse_shadow_map_update(struct ieee80211_hw *hw)
504 {
505         struct rtl_priv *rtlpriv = rtl_priv(hw);
506         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
507
508         if (rtlefuse->autoload_failflag)
509                 memset(&rtlefuse->efuse_map[EFUSE_INIT_MAP][0], 0xFF,
510                         rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
511         else
512                 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
513
514         memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
515                &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
516                rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
517
518 }
519 EXPORT_SYMBOL(rtl_efuse_shadow_map_update);
520
521 void efuse_force_write_vendor_Id(struct ieee80211_hw *hw)
522 {
523         u8 tmpdata[8] = { 0xFF, 0xFF, 0xEC, 0x10, 0xFF, 0xFF, 0xFF, 0xFF };
524
525         efuse_power_switch(hw, true, true);
526
527         efuse_pg_packet_write(hw, 1, 0xD, tmpdata);
528
529         efuse_power_switch(hw, true, false);
530
531 }
532
533 void efuse_re_pg_section(struct ieee80211_hw *hw, u8 section_idx)
534 {
535 }
536
537 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw,
538                                     u16 offset, u8 *value)
539 {
540         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
541         *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
542 }
543
544 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw,
545                                     u16 offset, u16 *value)
546 {
547         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
548
549         *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
550         *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
551
552 }
553
554 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw,
555                                     u16 offset, u32 *value)
556 {
557         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
558
559         *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
560         *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
561         *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] << 16;
562         *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] << 24;
563 }
564
565 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw,
566                                      u16 offset, u8 value)
567 {
568         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
569
570         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value;
571 }
572
573 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw,
574                                      u16 offset, u16 value)
575 {
576         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
577
578         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value & 0x00FF;
579         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] = value >> 8;
580
581 }
582
583 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw,
584                                      u16 offset, u32 value)
585 {
586         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
587
588         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] =
589             (u8) (value & 0x000000FF);
590         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] =
591             (u8) ((value >> 8) & 0x0000FF);
592         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] =
593             (u8) ((value >> 16) & 0x00FF);
594         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] =
595             (u8) ((value >> 24) & 0xFF);
596
597 }
598
599 static int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr, u8 *data)
600 {
601         struct rtl_priv *rtlpriv = rtl_priv(hw);
602         u8 tmpidx = 0;
603         int result;
604
605         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
606                        (u8) (addr & 0xff));
607         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
608                        ((u8) ((addr >> 8) & 0x03)) |
609                        (rtl_read_byte(rtlpriv,
610                                       rtlpriv->cfg->maps[EFUSE_CTRL] + 2) &
611                         0xFC));
612
613         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
614
615         while (!(0x80 & rtl_read_byte(rtlpriv,
616                                       rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
617                && (tmpidx < 100)) {
618                 tmpidx++;
619         }
620
621         if (tmpidx < 100) {
622                 *data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
623                 result = true;
624         } else {
625                 *data = 0xff;
626                 result = false;
627         }
628         return result;
629 }
630
631 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr, u8 data)
632 {
633         struct rtl_priv *rtlpriv = rtl_priv(hw);
634         u8 tmpidx = 0;
635
636         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "Addr = %x Data=%x\n",
637                  addr, data);
638
639         rtl_write_byte(rtlpriv,
640                        rtlpriv->cfg->maps[EFUSE_CTRL] + 1, (u8) (addr & 0xff));
641         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
642                        (rtl_read_byte(rtlpriv,
643                          rtlpriv->cfg->maps[EFUSE_CTRL] +
644                          2) & 0xFC) | (u8) ((addr >> 8) & 0x03));
645
646         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], data);
647         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0xF2);
648
649         while ((0x80 & rtl_read_byte(rtlpriv,
650                                      rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
651                && (tmpidx < 100)) {
652                 tmpidx++;
653         }
654
655         if (tmpidx < 100)
656                 return true;
657
658         return false;
659 }
660
661 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 * efuse)
662 {
663         struct rtl_priv *rtlpriv = rtl_priv(hw);
664         efuse_power_switch(hw, false, true);
665         read_efuse(hw, 0, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE], efuse);
666         efuse_power_switch(hw, false, false);
667 }
668
669 static void efuse_read_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
670                                 u8 efuse_data, u8 offset, u8 *tmpdata,
671                                 u8 *readstate)
672 {
673         bool dataempty = true;
674         u8 hoffset;
675         u8 tmpidx;
676         u8 hworden;
677         u8 word_cnts;
678
679         hoffset = (efuse_data >> 4) & 0x0F;
680         hworden = efuse_data & 0x0F;
681         word_cnts = efuse_calculate_word_cnts(hworden);
682
683         if (hoffset == offset) {
684                 for (tmpidx = 0; tmpidx < word_cnts * 2; tmpidx++) {
685                         if (efuse_one_byte_read(hw, *efuse_addr + 1 + tmpidx,
686                             &efuse_data)) {
687                                 tmpdata[tmpidx] = efuse_data;
688                                 if (efuse_data != 0xff)
689                                         dataempty = true;
690                         }
691                 }
692
693                 if (dataempty) {
694                         *readstate = PG_STATE_DATA;
695                 } else {
696                         *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
697                         *readstate = PG_STATE_HEADER;
698                 }
699
700         } else {
701                 *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
702                 *readstate = PG_STATE_HEADER;
703         }
704 }
705
706 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset, u8 *data)
707 {
708         u8 readstate = PG_STATE_HEADER;
709         bool continual = true;
710         u8 efuse_data, word_cnts = 0;
711         u16 efuse_addr = 0;
712         u8 tmpdata[8];
713
714         if (data == NULL)
715                 return false;
716         if (offset > 15)
717                 return false;
718
719         memset(data, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
720         memset(tmpdata, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
721
722         while (continual && (efuse_addr < EFUSE_MAX_SIZE)) {
723                 if (readstate & PG_STATE_HEADER) {
724                         if (efuse_one_byte_read(hw, efuse_addr, &efuse_data)
725                             && (efuse_data != 0xFF))
726                                 efuse_read_data_case1(hw, &efuse_addr,
727                                                       efuse_data,
728                                                       offset, tmpdata,
729                                                       &readstate);
730                         else
731                                 continual = false;
732                 } else if (readstate & PG_STATE_DATA) {
733                         efuse_word_enable_data_read(0, tmpdata, data);
734                         efuse_addr = efuse_addr + (word_cnts * 2) + 1;
735                         readstate = PG_STATE_HEADER;
736                 }
737
738         }
739
740         if ((data[0] == 0xff) && (data[1] == 0xff) &&
741             (data[2] == 0xff) && (data[3] == 0xff) &&
742             (data[4] == 0xff) && (data[5] == 0xff) &&
743             (data[6] == 0xff) && (data[7] == 0xff))
744                 return false;
745         else
746                 return true;
747
748 }
749
750 static void efuse_write_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
751                         u8 efuse_data, u8 offset, int *continual,
752                         u8 *write_state, struct pgpkt_struct *target_pkt,
753                         int *repeat_times, int *result, u8 word_en)
754 {
755         struct rtl_priv *rtlpriv = rtl_priv(hw);
756         struct pgpkt_struct tmp_pkt;
757         bool dataempty = true;
758         u8 originaldata[8 * sizeof(u8)];
759         u8 badworden = 0x0F;
760         u8 match_word_en, tmp_word_en;
761         u8 tmpindex;
762         u8 tmp_header = efuse_data;
763         u8 tmp_word_cnts;
764
765         tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
766         tmp_pkt.word_en = tmp_header & 0x0F;
767         tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
768
769         if (tmp_pkt.offset != target_pkt->offset) {
770                 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
771                 *write_state = PG_STATE_HEADER;
772         } else {
773                 for (tmpindex = 0; tmpindex < (tmp_word_cnts * 2); tmpindex++) {
774                         u16 address = *efuse_addr + 1 + tmpindex;
775                         if (efuse_one_byte_read(hw, address,
776                              &efuse_data) && (efuse_data != 0xFF))
777                                 dataempty = false;
778                 }
779
780                 if (dataempty == false) {
781                         *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
782                         *write_state = PG_STATE_HEADER;
783                 } else {
784                         match_word_en = 0x0F;
785                         if (!((target_pkt->word_en & BIT(0)) |
786                              (tmp_pkt.word_en & BIT(0))))
787                                 match_word_en &= (~BIT(0));
788
789                         if (!((target_pkt->word_en & BIT(1)) |
790                              (tmp_pkt.word_en & BIT(1))))
791                                 match_word_en &= (~BIT(1));
792
793                         if (!((target_pkt->word_en & BIT(2)) |
794                              (tmp_pkt.word_en & BIT(2))))
795                                 match_word_en &= (~BIT(2));
796
797                         if (!((target_pkt->word_en & BIT(3)) |
798                              (tmp_pkt.word_en & BIT(3))))
799                                 match_word_en &= (~BIT(3));
800
801                         if ((match_word_en & 0x0F) != 0x0F) {
802                                 badworden = efuse_word_enable_data_write(
803                                                             hw, *efuse_addr + 1,
804                                                             tmp_pkt.word_en,
805                                                             target_pkt->data);
806
807                                 if (0x0F != (badworden & 0x0F)) {
808                                         u8 reorg_offset = offset;
809                                         u8 reorg_worden = badworden;
810                                         efuse_pg_packet_write(hw, reorg_offset,
811                                                                reorg_worden,
812                                                                originaldata);
813                                 }
814
815                                 tmp_word_en = 0x0F;
816                                 if ((target_pkt->word_en & BIT(0)) ^
817                                     (match_word_en & BIT(0)))
818                                         tmp_word_en &= (~BIT(0));
819
820                                 if ((target_pkt->word_en & BIT(1)) ^
821                                     (match_word_en & BIT(1)))
822                                         tmp_word_en &= (~BIT(1));
823
824                                 if ((target_pkt->word_en & BIT(2)) ^
825                                      (match_word_en & BIT(2)))
826                                         tmp_word_en &= (~BIT(2));
827
828                                 if ((target_pkt->word_en & BIT(3)) ^
829                                      (match_word_en & BIT(3)))
830                                         tmp_word_en &= (~BIT(3));
831
832                                 if ((tmp_word_en & 0x0F) != 0x0F) {
833                                         *efuse_addr = efuse_get_current_size(hw);
834                                         target_pkt->offset = offset;
835                                         target_pkt->word_en = tmp_word_en;
836                                 } else {
837                                         *continual = false;
838                                 }
839                                 *write_state = PG_STATE_HEADER;
840                                 *repeat_times += 1;
841                                 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
842                                         *continual = false;
843                                         *result = false;
844                                 }
845                         } else {
846                                 *efuse_addr += (2 * tmp_word_cnts) + 1;
847                                 target_pkt->offset = offset;
848                                 target_pkt->word_en = word_en;
849                                 *write_state = PG_STATE_HEADER;
850                         }
851                 }
852         }
853         RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,  "efuse PG_STATE_HEADER-1\n");
854 }
855
856 static void efuse_write_data_case2(struct ieee80211_hw *hw, u16 *efuse_addr,
857                                    int *continual, u8 *write_state,
858                                    struct pgpkt_struct target_pkt,
859                                    int *repeat_times, int *result)
860 {
861         struct rtl_priv *rtlpriv = rtl_priv(hw);
862         struct pgpkt_struct tmp_pkt;
863         u8 pg_header;
864         u8 tmp_header;
865         u8 originaldata[8 * sizeof(u8)];
866         u8 tmp_word_cnts;
867         u8 badworden = 0x0F;
868
869         pg_header = ((target_pkt.offset << 4) & 0xf0) | target_pkt.word_en;
870         efuse_one_byte_write(hw, *efuse_addr, pg_header);
871         efuse_one_byte_read(hw, *efuse_addr, &tmp_header);
872
873         if (tmp_header == pg_header) {
874                 *write_state = PG_STATE_DATA;
875         } else if (tmp_header == 0xFF) {
876                 *write_state = PG_STATE_HEADER;
877                 *repeat_times += 1;
878                 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
879                         *continual = false;
880                         *result = false;
881                 }
882         } else {
883                 tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
884                 tmp_pkt.word_en = tmp_header & 0x0F;
885
886                 tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
887
888                 memset(originaldata, 0xff, 8 * sizeof(u8));
889
890                 if (efuse_pg_packet_read(hw, tmp_pkt.offset, originaldata)) {
891                         badworden = efuse_word_enable_data_write(hw,
892                                     *efuse_addr + 1, tmp_pkt.word_en,
893                                     originaldata);
894
895                         if (0x0F != (badworden & 0x0F)) {
896                                 u8 reorg_offset = tmp_pkt.offset;
897                                 u8 reorg_worden = badworden;
898                                 efuse_pg_packet_write(hw, reorg_offset,
899                                                       reorg_worden,
900                                                       originaldata);
901                                 *efuse_addr = efuse_get_current_size(hw);
902                         } else {
903                                 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2)
904                                               + 1;
905                         }
906                 } else {
907                         *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
908                 }
909
910                 *write_state = PG_STATE_HEADER;
911                 *repeat_times += 1;
912                 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
913                         *continual = false;
914                         *result = false;
915                 }
916
917                 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
918                         "efuse PG_STATE_HEADER-2\n");
919         }
920 }
921
922 static int efuse_pg_packet_write(struct ieee80211_hw *hw,
923                                  u8 offset, u8 word_en, u8 *data)
924 {
925         struct rtl_priv *rtlpriv = rtl_priv(hw);
926         struct pgpkt_struct target_pkt;
927         u8 write_state = PG_STATE_HEADER;
928         int continual = true, result = true;
929         u16 efuse_addr = 0;
930         u8 efuse_data;
931         u8 target_word_cnts = 0;
932         u8 badworden = 0x0F;
933         static int repeat_times;
934
935         if (efuse_get_current_size(hw) >=
936             (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES)) {
937                 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
938                         "efuse_pg_packet_write error\n");
939                 return false;
940         }
941
942         target_pkt.offset = offset;
943         target_pkt.word_en = word_en;
944
945         memset(target_pkt.data, 0xFF, 8 * sizeof(u8));
946
947         efuse_word_enable_data_read(word_en, data, target_pkt.data);
948         target_word_cnts = efuse_calculate_word_cnts(target_pkt.word_en);
949
950         RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,  "efuse Power ON\n");
951
952         while (continual && (efuse_addr <
953                (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES))) {
954
955                 if (write_state == PG_STATE_HEADER) {
956                         badworden = 0x0F;
957                         RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
958                                 "efuse PG_STATE_HEADER\n");
959
960                         if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
961                             (efuse_data != 0xFF))
962                                 efuse_write_data_case1(hw, &efuse_addr,
963                                                        efuse_data, offset,
964                                                        &continual,
965                                                        &write_state, &target_pkt,
966                                                        &repeat_times, &result,
967                                                        word_en);
968                         else
969                                 efuse_write_data_case2(hw, &efuse_addr,
970                                                        &continual,
971                                                        &write_state,
972                                                        target_pkt,
973                                                        &repeat_times,
974                                                        &result);
975
976                 } else if (write_state == PG_STATE_DATA) {
977                         RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
978                                 "efuse PG_STATE_DATA\n");
979                         badworden =
980                             efuse_word_enable_data_write(hw, efuse_addr + 1,
981                                                          target_pkt.word_en,
982                                                          target_pkt.data);
983
984                         if ((badworden & 0x0F) == 0x0F) {
985                                 continual = false;
986                         } else {
987                                 efuse_addr += (2 * target_word_cnts) + 1;
988
989                                 target_pkt.offset = offset;
990                                 target_pkt.word_en = badworden;
991                                 target_word_cnts =
992                                     efuse_calculate_word_cnts(target_pkt.
993                                                               word_en);
994                                 write_state = PG_STATE_HEADER;
995                                 repeat_times++;
996                                 if (repeat_times > EFUSE_REPEAT_THRESHOLD_) {
997                                         continual = false;
998                                         result = false;
999                                 }
1000                                 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
1001                                         "efuse PG_STATE_HEADER-3\n");
1002                         }
1003                 }
1004         }
1005
1006         if (efuse_addr >= (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES)) {
1007                 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
1008                          "efuse_addr(%#x) Out of size!!\n", efuse_addr);
1009         }
1010
1011         return true;
1012 }
1013
1014 static void efuse_word_enable_data_read(u8 word_en,
1015                                         u8 *sourdata, u8 *targetdata)
1016 {
1017         if (!(word_en & BIT(0))) {
1018                 targetdata[0] = sourdata[0];
1019                 targetdata[1] = sourdata[1];
1020         }
1021
1022         if (!(word_en & BIT(1))) {
1023                 targetdata[2] = sourdata[2];
1024                 targetdata[3] = sourdata[3];
1025         }
1026
1027         if (!(word_en & BIT(2))) {
1028                 targetdata[4] = sourdata[4];
1029                 targetdata[5] = sourdata[5];
1030         }
1031
1032         if (!(word_en & BIT(3))) {
1033                 targetdata[6] = sourdata[6];
1034                 targetdata[7] = sourdata[7];
1035         }
1036 }
1037
1038 static u8 efuse_word_enable_data_write(struct ieee80211_hw *hw,
1039                                        u16 efuse_addr, u8 word_en, u8 *data)
1040 {
1041         struct rtl_priv *rtlpriv = rtl_priv(hw);
1042         u16 tmpaddr;
1043         u16 start_addr = efuse_addr;
1044         u8 badworden = 0x0F;
1045         u8 tmpdata[8];
1046
1047         memset(tmpdata, 0xff, PGPKT_DATA_SIZE);
1048         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "word_en = %x efuse_addr=%x\n",
1049                  word_en, efuse_addr);
1050
1051         if (!(word_en & BIT(0))) {
1052                 tmpaddr = start_addr;
1053                 efuse_one_byte_write(hw, start_addr++, data[0]);
1054                 efuse_one_byte_write(hw, start_addr++, data[1]);
1055
1056                 efuse_one_byte_read(hw, tmpaddr, &tmpdata[0]);
1057                 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[1]);
1058                 if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
1059                         badworden &= (~BIT(0));
1060         }
1061
1062         if (!(word_en & BIT(1))) {
1063                 tmpaddr = start_addr;
1064                 efuse_one_byte_write(hw, start_addr++, data[2]);
1065                 efuse_one_byte_write(hw, start_addr++, data[3]);
1066
1067                 efuse_one_byte_read(hw, tmpaddr, &tmpdata[2]);
1068                 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[3]);
1069                 if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
1070                         badworden &= (~BIT(1));
1071         }
1072
1073         if (!(word_en & BIT(2))) {
1074                 tmpaddr = start_addr;
1075                 efuse_one_byte_write(hw, start_addr++, data[4]);
1076                 efuse_one_byte_write(hw, start_addr++, data[5]);
1077
1078                 efuse_one_byte_read(hw, tmpaddr, &tmpdata[4]);
1079                 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[5]);
1080                 if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
1081                         badworden &= (~BIT(2));
1082         }
1083
1084         if (!(word_en & BIT(3))) {
1085                 tmpaddr = start_addr;
1086                 efuse_one_byte_write(hw, start_addr++, data[6]);
1087                 efuse_one_byte_write(hw, start_addr++, data[7]);
1088
1089                 efuse_one_byte_read(hw, tmpaddr, &tmpdata[6]);
1090                 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[7]);
1091                 if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
1092                         badworden &= (~BIT(3));
1093         }
1094
1095         return badworden;
1096 }
1097
1098 static void efuse_power_switch(struct ieee80211_hw *hw, u8 write, u8 pwrstate)
1099 {
1100         struct rtl_priv *rtlpriv = rtl_priv(hw);
1101         struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1102         u8 tempval;
1103         u16 tmpV16;
1104
1105         if (pwrstate && (rtlhal->hw_type !=
1106                 HARDWARE_TYPE_RTL8192SE)) {
1107                 tmpV16 = rtl_read_word(rtlpriv,
1108                                        rtlpriv->cfg->maps[SYS_ISO_CTRL]);
1109                 if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_PWC_EV12V])) {
1110                         tmpV16 |= rtlpriv->cfg->maps[EFUSE_PWC_EV12V];
1111                         rtl_write_word(rtlpriv,
1112                                        rtlpriv->cfg->maps[SYS_ISO_CTRL],
1113                                        tmpV16);
1114                 }
1115
1116                 tmpV16 = rtl_read_word(rtlpriv,
1117                                        rtlpriv->cfg->maps[SYS_FUNC_EN]);
1118                 if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_FEN_ELDR])) {
1119                         tmpV16 |= rtlpriv->cfg->maps[EFUSE_FEN_ELDR];
1120                         rtl_write_word(rtlpriv,
1121                                        rtlpriv->cfg->maps[SYS_FUNC_EN], tmpV16);
1122                 }
1123
1124                 tmpV16 = rtl_read_word(rtlpriv, rtlpriv->cfg->maps[SYS_CLK]);
1125                 if ((!(tmpV16 & rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN])) ||
1126                     (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_ANA8M]))) {
1127                         tmpV16 |= (rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN] |
1128                                    rtlpriv->cfg->maps[EFUSE_ANA8M]);
1129                         rtl_write_word(rtlpriv,
1130                                        rtlpriv->cfg->maps[SYS_CLK], tmpV16);
1131                 }
1132         }
1133
1134         if (pwrstate) {
1135                 if (write) {
1136                         tempval = rtl_read_byte(rtlpriv,
1137                                                 rtlpriv->cfg->maps[EFUSE_TEST] +
1138                                                 3);
1139
1140                         if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE) {
1141                                 tempval &= 0x0F;
1142                                 tempval |= (VOLTAGE_V25 << 4);
1143                         }
1144
1145                         rtl_write_byte(rtlpriv,
1146                                        rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1147                                        (tempval | 0x80));
1148                 }
1149
1150                 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1151                         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1152                                                 0x03);
1153                 }
1154
1155         } else {
1156                 if (write) {
1157                         tempval = rtl_read_byte(rtlpriv,
1158                                                 rtlpriv->cfg->maps[EFUSE_TEST] +
1159                                                 3);
1160                         rtl_write_byte(rtlpriv,
1161                                        rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1162                                        (tempval & 0x7F));
1163                 }
1164
1165                 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1166                         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1167                                                 0x02);
1168                 }
1169
1170         }
1171
1172 }
1173
1174 static u16 efuse_get_current_size(struct ieee80211_hw *hw)
1175 {
1176         int continual = true;
1177         u16 efuse_addr = 0;
1178         u8 hworden;
1179         u8 efuse_data, word_cnts;
1180
1181         while (continual && efuse_one_byte_read(hw, efuse_addr, &efuse_data)
1182                && (efuse_addr < EFUSE_MAX_SIZE)) {
1183                 if (efuse_data != 0xFF) {
1184                         hworden = efuse_data & 0x0F;
1185                         word_cnts = efuse_calculate_word_cnts(hworden);
1186                         efuse_addr = efuse_addr + (word_cnts * 2) + 1;
1187                 } else {
1188                         continual = false;
1189                 }
1190         }
1191
1192         return efuse_addr;
1193 }
1194
1195 static u8 efuse_calculate_word_cnts(u8 word_en)
1196 {
1197         u8 word_cnts = 0;
1198         if (!(word_en & BIT(0)))
1199                 word_cnts++;
1200         if (!(word_en & BIT(1)))
1201                 word_cnts++;
1202         if (!(word_en & BIT(2)))
1203                 word_cnts++;
1204         if (!(word_en & BIT(3)))
1205                 word_cnts++;
1206         return word_cnts;
1207 }
1208