]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/wireless/zd1211rw/zd_usb.c
[PATCH] zd1211rw: Add ID for Siemens Gigaset USB Stick 54
[karo-tx-linux.git] / drivers / net / wireless / zd1211rw / zd_usb.c
1 /* zd_usb.c
2  *
3  * This program is free software; you can redistribute it and/or modify
4  * it under the terms of the GNU General Public License as published by
5  * the Free Software Foundation; either version 2 of the License, or
6  * (at your option) any later version.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16  */
17
18 #include <asm/unaligned.h>
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/firmware.h>
23 #include <linux/device.h>
24 #include <linux/errno.h>
25 #include <linux/skbuff.h>
26 #include <linux/usb.h>
27 #include <net/ieee80211.h>
28
29 #include "zd_def.h"
30 #include "zd_netdev.h"
31 #include "zd_mac.h"
32 #include "zd_usb.h"
33 #include "zd_util.h"
34
35 static struct usb_device_id usb_ids[] = {
36         /* ZD1211 */
37         { USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 },
38         { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211 },
39         { USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 },
40         { USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 },
41         { USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 },
42         { USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },
43         { USB_DEVICE(0x079b, 0x004a), .driver_info = DEVICE_ZD1211 },
44         { USB_DEVICE(0x1740, 0x2000), .driver_info = DEVICE_ZD1211 },
45         { USB_DEVICE(0x157e, 0x3204), .driver_info = DEVICE_ZD1211 },
46         { USB_DEVICE(0x0586, 0x3402), .driver_info = DEVICE_ZD1211 },
47         { USB_DEVICE(0x0b3b, 0x5630), .driver_info = DEVICE_ZD1211 },
48         /* ZD1211B */
49         { USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B },
50         { USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B },
51         { USB_DEVICE(0x079b, 0x0062), .driver_info = DEVICE_ZD1211B },
52         { USB_DEVICE(0x1582, 0x6003), .driver_info = DEVICE_ZD1211B },
53         /* "Driverless" devices that need ejecting */
54         { USB_DEVICE(0x0ace, 0x2011), .driver_info = DEVICE_INSTALLER },
55         {}
56 };
57
58 MODULE_LICENSE("GPL");
59 MODULE_DESCRIPTION("USB driver for devices with the ZD1211 chip.");
60 MODULE_AUTHOR("Ulrich Kunitz");
61 MODULE_AUTHOR("Daniel Drake");
62 MODULE_VERSION("1.0");
63 MODULE_DEVICE_TABLE(usb, usb_ids);
64
65 #define FW_ZD1211_PREFIX        "zd1211/zd1211_"
66 #define FW_ZD1211B_PREFIX       "zd1211/zd1211b_"
67
68 /* register address handling */
69
70 #ifdef DEBUG
71 static int check_addr(struct zd_usb *usb, zd_addr_t addr)
72 {
73         u32 base = ZD_ADDR_BASE(addr);
74         u32 offset = ZD_OFFSET(addr);
75
76         if ((u32)addr & ADDR_ZERO_MASK)
77                 goto invalid_address;
78         switch (base) {
79         case USB_BASE:
80                 break;
81         case CR_BASE:
82                 if (offset > CR_MAX_OFFSET) {
83                         dev_dbg(zd_usb_dev(usb),
84                                 "CR offset %#010x larger than"
85                                 " CR_MAX_OFFSET %#10x\n",
86                                 offset, CR_MAX_OFFSET);
87                         goto invalid_address;
88                 }
89                 if (offset & 1) {
90                         dev_dbg(zd_usb_dev(usb),
91                                 "CR offset %#010x is not a multiple of 2\n",
92                                 offset);
93                         goto invalid_address;
94                 }
95                 break;
96         case E2P_BASE:
97                 if (offset > E2P_MAX_OFFSET) {
98                         dev_dbg(zd_usb_dev(usb),
99                                 "E2P offset %#010x larger than"
100                                 " E2P_MAX_OFFSET %#010x\n",
101                                 offset, E2P_MAX_OFFSET);
102                         goto invalid_address;
103                 }
104                 break;
105         case FW_BASE:
106                 if (!usb->fw_base_offset) {
107                         dev_dbg(zd_usb_dev(usb),
108                                "ERROR: fw base offset has not been set\n");
109                         return -EAGAIN;
110                 }
111                 if (offset > FW_MAX_OFFSET) {
112                         dev_dbg(zd_usb_dev(usb),
113                                 "FW offset %#10x is larger than"
114                                 " FW_MAX_OFFSET %#010x\n",
115                                 offset, FW_MAX_OFFSET);
116                         goto invalid_address;
117                 }
118                 break;
119         default:
120                 dev_dbg(zd_usb_dev(usb),
121                         "address has unsupported base %#010x\n", addr);
122                 goto invalid_address;
123         }
124
125         return 0;
126 invalid_address:
127         dev_dbg(zd_usb_dev(usb),
128                 "ERROR: invalid address: %#010x\n", addr);
129         return -EINVAL;
130 }
131 #endif /* DEBUG */
132
133 static u16 usb_addr(struct zd_usb *usb, zd_addr_t addr)
134 {
135         u32 base;
136         u16 offset;
137
138         base = ZD_ADDR_BASE(addr);
139         offset = ZD_OFFSET(addr);
140
141         ZD_ASSERT(check_addr(usb, addr) == 0);
142
143         switch (base) {
144         case CR_BASE:
145                 offset += CR_BASE_OFFSET;
146                 break;
147         case E2P_BASE:
148                 offset += E2P_BASE_OFFSET;
149                 break;
150         case FW_BASE:
151                 offset += usb->fw_base_offset;
152                 break;
153         }
154
155         return offset;
156 }
157
158 /* USB device initialization */
159
160 static int request_fw_file(
161         const struct firmware **fw, const char *name, struct device *device)
162 {
163         int r;
164
165         dev_dbg_f(device, "fw name %s\n", name);
166
167         r = request_firmware(fw, name, device);
168         if (r)
169                 dev_err(device,
170                        "Could not load firmware file %s. Error number %d\n",
171                        name, r);
172         return r;
173 }
174
175 static inline u16 get_bcdDevice(const struct usb_device *udev)
176 {
177         return le16_to_cpu(udev->descriptor.bcdDevice);
178 }
179
180 enum upload_code_flags {
181         REBOOT = 1,
182 };
183
184 /* Ensures that MAX_TRANSFER_SIZE is even. */
185 #define MAX_TRANSFER_SIZE (USB_MAX_TRANSFER_SIZE & ~1)
186
187 static int upload_code(struct usb_device *udev,
188         const u8 *data, size_t size, u16 code_offset, int flags)
189 {
190         u8 *p;
191         int r;
192
193         /* USB request blocks need "kmalloced" buffers.
194          */
195         p = kmalloc(MAX_TRANSFER_SIZE, GFP_KERNEL);
196         if (!p) {
197                 dev_err(&udev->dev, "out of memory\n");
198                 r = -ENOMEM;
199                 goto error;
200         }
201
202         size &= ~1;
203         while (size > 0) {
204                 size_t transfer_size = size <= MAX_TRANSFER_SIZE ?
205                         size : MAX_TRANSFER_SIZE;
206
207                 dev_dbg_f(&udev->dev, "transfer size %zu\n", transfer_size);
208
209                 memcpy(p, data, transfer_size);
210                 r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
211                         USB_REQ_FIRMWARE_DOWNLOAD,
212                         USB_DIR_OUT | USB_TYPE_VENDOR,
213                         code_offset, 0, p, transfer_size, 1000 /* ms */);
214                 if (r < 0) {
215                         dev_err(&udev->dev,
216                                "USB control request for firmware upload"
217                                " failed. Error number %d\n", r);
218                         goto error;
219                 }
220                 transfer_size = r & ~1;
221
222                 size -= transfer_size;
223                 data += transfer_size;
224                 code_offset += transfer_size/sizeof(u16);
225         }
226
227         if (flags & REBOOT) {
228                 u8 ret;
229
230                 r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
231                         USB_REQ_FIRMWARE_CONFIRM,
232                         USB_DIR_IN | USB_TYPE_VENDOR,
233                         0, 0, &ret, sizeof(ret), 5000 /* ms */);
234                 if (r != sizeof(ret)) {
235                         dev_err(&udev->dev,
236                                 "control request firmeware confirmation failed."
237                                 " Return value %d\n", r);
238                         if (r >= 0)
239                                 r = -ENODEV;
240                         goto error;
241                 }
242                 if (ret & 0x80) {
243                         dev_err(&udev->dev,
244                                 "Internal error while downloading."
245                                 " Firmware confirm return value %#04x\n",
246                                 (unsigned int)ret);
247                         r = -ENODEV;
248                         goto error;
249                 }
250                 dev_dbg_f(&udev->dev, "firmware confirm return value %#04x\n",
251                         (unsigned int)ret);
252         }
253
254         r = 0;
255 error:
256         kfree(p);
257         return r;
258 }
259
260 static u16 get_word(const void *data, u16 offset)
261 {
262         const __le16 *p = data;
263         return le16_to_cpu(p[offset]);
264 }
265
266 static char *get_fw_name(char *buffer, size_t size, u8 device_type,
267                        const char* postfix)
268 {
269         scnprintf(buffer, size, "%s%s",
270                 device_type == DEVICE_ZD1211B ?
271                         FW_ZD1211B_PREFIX : FW_ZD1211_PREFIX,
272                 postfix);
273         return buffer;
274 }
275
276 static int handle_version_mismatch(struct usb_device *udev, u8 device_type,
277         const struct firmware *ub_fw)
278 {
279         const struct firmware *ur_fw = NULL;
280         int offset;
281         int r = 0;
282         char fw_name[128];
283
284         r = request_fw_file(&ur_fw,
285                 get_fw_name(fw_name, sizeof(fw_name), device_type, "ur"),
286                 &udev->dev);
287         if (r)
288                 goto error;
289
290         r = upload_code(udev, ur_fw->data, ur_fw->size, FW_START_OFFSET,
291                 REBOOT);
292         if (r)
293                 goto error;
294
295         offset = ((EEPROM_REGS_OFFSET + EEPROM_REGS_SIZE) * sizeof(u16));
296         r = upload_code(udev, ub_fw->data + offset, ub_fw->size - offset,
297                 E2P_BASE_OFFSET + EEPROM_REGS_SIZE, REBOOT);
298
299         /* At this point, the vendor driver downloads the whole firmware
300          * image, hacks around with version IDs, and uploads it again,
301          * completely overwriting the boot code. We do not do this here as
302          * it is not required on any tested devices, and it is suspected to
303          * cause problems. */
304 error:
305         release_firmware(ur_fw);
306         return r;
307 }
308
309 static int upload_firmware(struct usb_device *udev, u8 device_type)
310 {
311         int r;
312         u16 fw_bcdDevice;
313         u16 bcdDevice;
314         const struct firmware *ub_fw = NULL;
315         const struct firmware *uph_fw = NULL;
316         char fw_name[128];
317
318         bcdDevice = get_bcdDevice(udev);
319
320         r = request_fw_file(&ub_fw,
321                 get_fw_name(fw_name, sizeof(fw_name), device_type,  "ub"),
322                 &udev->dev);
323         if (r)
324                 goto error;
325
326         fw_bcdDevice = get_word(ub_fw->data, EEPROM_REGS_OFFSET);
327
328         if (fw_bcdDevice != bcdDevice) {
329                 dev_info(&udev->dev,
330                         "firmware version %#06x and device bootcode version "
331                         "%#06x differ\n", fw_bcdDevice, bcdDevice);
332                 if (bcdDevice <= 0x4313)
333                         dev_warn(&udev->dev, "device has old bootcode, please "
334                                 "report success or failure\n");
335
336                 r = handle_version_mismatch(udev, device_type, ub_fw);
337                 if (r)
338                         goto error;
339         } else {
340                 dev_dbg_f(&udev->dev,
341                         "firmware device id %#06x is equal to the "
342                         "actual device id\n", fw_bcdDevice);
343         }
344
345
346         r = request_fw_file(&uph_fw,
347                 get_fw_name(fw_name, sizeof(fw_name), device_type, "uphr"),
348                 &udev->dev);
349         if (r)
350                 goto error;
351
352         r = upload_code(udev, uph_fw->data, uph_fw->size, FW_START_OFFSET,
353                         REBOOT);
354         if (r) {
355                 dev_err(&udev->dev,
356                         "Could not upload firmware code uph. Error number %d\n",
357                         r);
358         }
359
360         /* FALL-THROUGH */
361 error:
362         release_firmware(ub_fw);
363         release_firmware(uph_fw);
364         return r;
365 }
366
367 static void disable_read_regs_int(struct zd_usb *usb)
368 {
369         struct zd_usb_interrupt *intr = &usb->intr;
370
371         spin_lock(&intr->lock);
372         intr->read_regs_enabled = 0;
373         spin_unlock(&intr->lock);
374 }
375
376 #define urb_dev(urb) (&(urb)->dev->dev)
377
378 static inline void handle_regs_int(struct urb *urb)
379 {
380         struct zd_usb *usb = urb->context;
381         struct zd_usb_interrupt *intr = &usb->intr;
382         int len;
383
384         ZD_ASSERT(in_interrupt());
385         spin_lock(&intr->lock);
386
387         if (intr->read_regs_enabled) {
388                 intr->read_regs.length = len = urb->actual_length;
389
390                 if (len > sizeof(intr->read_regs.buffer))
391                         len = sizeof(intr->read_regs.buffer);
392                 memcpy(intr->read_regs.buffer, urb->transfer_buffer, len);
393                 intr->read_regs_enabled = 0;
394                 complete(&intr->read_regs.completion);
395                 goto out;
396         }
397
398         dev_dbg_f(urb_dev(urb), "regs interrupt ignored\n");
399 out:
400         spin_unlock(&intr->lock);
401 }
402
403 static inline void handle_retry_failed_int(struct urb *urb)
404 {
405         dev_dbg_f(urb_dev(urb), "retry failed interrupt\n");
406 }
407
408
409 static void int_urb_complete(struct urb *urb, struct pt_regs *pt_regs)
410 {
411         int r;
412         struct usb_int_header *hdr;
413
414         switch (urb->status) {
415         case 0:
416                 break;
417         case -ESHUTDOWN:
418         case -EINVAL:
419         case -ENODEV:
420         case -ENOENT:
421         case -ECONNRESET:
422         case -EPIPE:
423                 goto kfree;
424         default:
425                 goto resubmit;
426         }
427
428         if (urb->actual_length < sizeof(hdr)) {
429                 dev_dbg_f(urb_dev(urb), "error: urb %p to small\n", urb);
430                 goto resubmit;
431         }
432
433         hdr = urb->transfer_buffer;
434         if (hdr->type != USB_INT_TYPE) {
435                 dev_dbg_f(urb_dev(urb), "error: urb %p wrong type\n", urb);
436                 goto resubmit;
437         }
438
439         switch (hdr->id) {
440         case USB_INT_ID_REGS:
441                 handle_regs_int(urb);
442                 break;
443         case USB_INT_ID_RETRY_FAILED:
444                 handle_retry_failed_int(urb);
445                 break;
446         default:
447                 dev_dbg_f(urb_dev(urb), "error: urb %p unknown id %x\n", urb,
448                         (unsigned int)hdr->id);
449                 goto resubmit;
450         }
451
452 resubmit:
453         r = usb_submit_urb(urb, GFP_ATOMIC);
454         if (r) {
455                 dev_dbg_f(urb_dev(urb), "resubmit urb %p\n", urb);
456                 goto kfree;
457         }
458         return;
459 kfree:
460         kfree(urb->transfer_buffer);
461 }
462
463 static inline int int_urb_interval(struct usb_device *udev)
464 {
465         switch (udev->speed) {
466         case USB_SPEED_HIGH:
467                 return 4;
468         case USB_SPEED_LOW:
469                 return 10;
470         case USB_SPEED_FULL:
471         default:
472                 return 1;
473         }
474 }
475
476 static inline int usb_int_enabled(struct zd_usb *usb)
477 {
478         unsigned long flags;
479         struct zd_usb_interrupt *intr = &usb->intr;
480         struct urb *urb;
481
482         spin_lock_irqsave(&intr->lock, flags);
483         urb = intr->urb;
484         spin_unlock_irqrestore(&intr->lock, flags);
485         return urb != NULL;
486 }
487
488 int zd_usb_enable_int(struct zd_usb *usb)
489 {
490         int r;
491         struct usb_device *udev;
492         struct zd_usb_interrupt *intr = &usb->intr;
493         void *transfer_buffer = NULL;
494         struct urb *urb;
495
496         dev_dbg_f(zd_usb_dev(usb), "\n");
497
498         urb = usb_alloc_urb(0, GFP_NOFS);
499         if (!urb) {
500                 r = -ENOMEM;
501                 goto out;
502         }
503
504         ZD_ASSERT(!irqs_disabled());
505         spin_lock_irq(&intr->lock);
506         if (intr->urb) {
507                 spin_unlock_irq(&intr->lock);
508                 r = 0;
509                 goto error_free_urb;
510         }
511         intr->urb = urb;
512         spin_unlock_irq(&intr->lock);
513
514         /* TODO: make it a DMA buffer */
515         r = -ENOMEM;
516         transfer_buffer = kmalloc(USB_MAX_EP_INT_BUFFER, GFP_NOFS);
517         if (!transfer_buffer) {
518                 dev_dbg_f(zd_usb_dev(usb),
519                         "couldn't allocate transfer_buffer\n");
520                 goto error_set_urb_null;
521         }
522
523         udev = zd_usb_to_usbdev(usb);
524         usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, EP_INT_IN),
525                          transfer_buffer, USB_MAX_EP_INT_BUFFER,
526                          int_urb_complete, usb,
527                          intr->interval);
528
529         dev_dbg_f(zd_usb_dev(usb), "submit urb %p\n", intr->urb);
530         r = usb_submit_urb(urb, GFP_NOFS);
531         if (r) {
532                 dev_dbg_f(zd_usb_dev(usb),
533                          "Couldn't submit urb. Error number %d\n", r);
534                 goto error;
535         }
536
537         return 0;
538 error:
539         kfree(transfer_buffer);
540 error_set_urb_null:
541         spin_lock_irq(&intr->lock);
542         intr->urb = NULL;
543         spin_unlock_irq(&intr->lock);
544 error_free_urb:
545         usb_free_urb(urb);
546 out:
547         return r;
548 }
549
550 void zd_usb_disable_int(struct zd_usb *usb)
551 {
552         unsigned long flags;
553         struct zd_usb_interrupt *intr = &usb->intr;
554         struct urb *urb;
555
556         spin_lock_irqsave(&intr->lock, flags);
557         urb = intr->urb;
558         if (!urb) {
559                 spin_unlock_irqrestore(&intr->lock, flags);
560                 return;
561         }
562         intr->urb = NULL;
563         spin_unlock_irqrestore(&intr->lock, flags);
564
565         usb_kill_urb(urb);
566         dev_dbg_f(zd_usb_dev(usb), "urb %p killed\n", urb);
567         usb_free_urb(urb);
568 }
569
570 static void handle_rx_packet(struct zd_usb *usb, const u8 *buffer,
571                              unsigned int length)
572 {
573         int i;
574         struct zd_mac *mac = zd_usb_to_mac(usb);
575         const struct rx_length_info *length_info;
576
577         if (length < sizeof(struct rx_length_info)) {
578                 /* It's not a complete packet anyhow. */
579                 return;
580         }
581         length_info = (struct rx_length_info *)
582                 (buffer + length - sizeof(struct rx_length_info));
583
584         /* It might be that three frames are merged into a single URB
585          * transaction. We have to check for the length info tag.
586          *
587          * While testing we discovered that length_info might be unaligned,
588          * because if USB transactions are merged, the last packet will not
589          * be padded. Unaligned access might also happen if the length_info
590          * structure is not present.
591          */
592         if (get_unaligned(&length_info->tag) == cpu_to_le16(RX_LENGTH_INFO_TAG))
593         {
594                 unsigned int l, k, n;
595                 for (i = 0, l = 0;; i++) {
596                         k = le16_to_cpu(get_unaligned(&length_info->length[i]));
597                         n = l+k;
598                         if (n > length)
599                                 return;
600                         zd_mac_rx(mac, buffer+l, k);
601                         if (i >= 2)
602                                 return;
603                         l = (n+3) & ~3;
604                 }
605         } else {
606                 zd_mac_rx(mac, buffer, length);
607         }
608 }
609
610 static void rx_urb_complete(struct urb *urb, struct pt_regs *pt_regs)
611 {
612         struct zd_usb *usb;
613         struct zd_usb_rx *rx;
614         const u8 *buffer;
615         unsigned int length;
616
617         switch (urb->status) {
618         case 0:
619                 break;
620         case -ESHUTDOWN:
621         case -EINVAL:
622         case -ENODEV:
623         case -ENOENT:
624         case -ECONNRESET:
625         case -EPIPE:
626                 return;
627         default:
628                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
629                 goto resubmit;
630         }
631
632         buffer = urb->transfer_buffer;
633         length = urb->actual_length;
634         usb = urb->context;
635         rx = &usb->rx;
636
637         if (length%rx->usb_packet_size > rx->usb_packet_size-4) {
638                 /* If there is an old first fragment, we don't care. */
639                 dev_dbg_f(urb_dev(urb), "*** first fragment ***\n");
640                 ZD_ASSERT(length <= ARRAY_SIZE(rx->fragment));
641                 spin_lock(&rx->lock);
642                 memcpy(rx->fragment, buffer, length);
643                 rx->fragment_length = length;
644                 spin_unlock(&rx->lock);
645                 goto resubmit;
646         }
647
648         spin_lock(&rx->lock);
649         if (rx->fragment_length > 0) {
650                 /* We are on a second fragment, we believe */
651                 ZD_ASSERT(length + rx->fragment_length <=
652                           ARRAY_SIZE(rx->fragment));
653                 dev_dbg_f(urb_dev(urb), "*** second fragment ***\n");
654                 memcpy(rx->fragment+rx->fragment_length, buffer, length);
655                 handle_rx_packet(usb, rx->fragment,
656                                  rx->fragment_length + length);
657                 rx->fragment_length = 0;
658                 spin_unlock(&rx->lock);
659         } else {
660                 spin_unlock(&rx->lock);
661                 handle_rx_packet(usb, buffer, length);
662         }
663
664 resubmit:
665         usb_submit_urb(urb, GFP_ATOMIC);
666 }
667
668 static struct urb *alloc_urb(struct zd_usb *usb)
669 {
670         struct usb_device *udev = zd_usb_to_usbdev(usb);
671         struct urb *urb;
672         void *buffer;
673
674         urb = usb_alloc_urb(0, GFP_NOFS);
675         if (!urb)
676                 return NULL;
677         buffer = usb_buffer_alloc(udev, USB_MAX_RX_SIZE, GFP_NOFS,
678                                   &urb->transfer_dma);
679         if (!buffer) {
680                 usb_free_urb(urb);
681                 return NULL;
682         }
683
684         usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, EP_DATA_IN),
685                           buffer, USB_MAX_RX_SIZE,
686                           rx_urb_complete, usb);
687         urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
688
689         return urb;
690 }
691
692 static void free_urb(struct urb *urb)
693 {
694         if (!urb)
695                 return;
696         usb_buffer_free(urb->dev, urb->transfer_buffer_length,
697                         urb->transfer_buffer, urb->transfer_dma);
698         usb_free_urb(urb);
699 }
700
701 int zd_usb_enable_rx(struct zd_usb *usb)
702 {
703         int i, r;
704         struct zd_usb_rx *rx = &usb->rx;
705         struct urb **urbs;
706
707         dev_dbg_f(zd_usb_dev(usb), "\n");
708
709         r = -ENOMEM;
710         urbs = kcalloc(URBS_COUNT, sizeof(struct urb *), GFP_NOFS);
711         if (!urbs)
712                 goto error;
713         for (i = 0; i < URBS_COUNT; i++) {
714                 urbs[i] = alloc_urb(usb);
715                 if (!urbs[i])
716                         goto error;
717         }
718
719         ZD_ASSERT(!irqs_disabled());
720         spin_lock_irq(&rx->lock);
721         if (rx->urbs) {
722                 spin_unlock_irq(&rx->lock);
723                 r = 0;
724                 goto error;
725         }
726         rx->urbs = urbs;
727         rx->urbs_count = URBS_COUNT;
728         spin_unlock_irq(&rx->lock);
729
730         for (i = 0; i < URBS_COUNT; i++) {
731                 r = usb_submit_urb(urbs[i], GFP_NOFS);
732                 if (r)
733                         goto error_submit;
734         }
735
736         return 0;
737 error_submit:
738         for (i = 0; i < URBS_COUNT; i++) {
739                 usb_kill_urb(urbs[i]);
740         }
741         spin_lock_irq(&rx->lock);
742         rx->urbs = NULL;
743         rx->urbs_count = 0;
744         spin_unlock_irq(&rx->lock);
745 error:
746         if (urbs) {
747                 for (i = 0; i < URBS_COUNT; i++)
748                         free_urb(urbs[i]);
749         }
750         return r;
751 }
752
753 void zd_usb_disable_rx(struct zd_usb *usb)
754 {
755         int i;
756         unsigned long flags;
757         struct urb **urbs;
758         unsigned int count;
759         struct zd_usb_rx *rx = &usb->rx;
760
761         spin_lock_irqsave(&rx->lock, flags);
762         urbs = rx->urbs;
763         count = rx->urbs_count;
764         spin_unlock_irqrestore(&rx->lock, flags);
765         if (!urbs)
766                 return;
767
768         for (i = 0; i < count; i++) {
769                 usb_kill_urb(urbs[i]);
770                 free_urb(urbs[i]);
771         }
772         kfree(urbs);
773
774         spin_lock_irqsave(&rx->lock, flags);
775         rx->urbs = NULL;
776         rx->urbs_count = 0;
777         spin_unlock_irqrestore(&rx->lock, flags);
778 }
779
780 static void tx_urb_complete(struct urb *urb, struct pt_regs *pt_regs)
781 {
782         int r;
783
784         switch (urb->status) {
785         case 0:
786                 break;
787         case -ESHUTDOWN:
788         case -EINVAL:
789         case -ENODEV:
790         case -ENOENT:
791         case -ECONNRESET:
792         case -EPIPE:
793                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
794                 break;
795         default:
796                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
797                 goto resubmit;
798         }
799 free_urb:
800         usb_buffer_free(urb->dev, urb->transfer_buffer_length,
801                         urb->transfer_buffer, urb->transfer_dma);
802         usb_free_urb(urb);
803         return;
804 resubmit:
805         r = usb_submit_urb(urb, GFP_ATOMIC);
806         if (r) {
807                 dev_dbg_f(urb_dev(urb), "error resubmit urb %p %d\n", urb, r);
808                 goto free_urb;
809         }
810 }
811
812 /* Puts the frame on the USB endpoint. It doesn't wait for
813  * completion. The frame must contain the control set.
814  */
815 int zd_usb_tx(struct zd_usb *usb, const u8 *frame, unsigned int length)
816 {
817         int r;
818         struct usb_device *udev = zd_usb_to_usbdev(usb);
819         struct urb *urb;
820         void *buffer;
821
822         urb = usb_alloc_urb(0, GFP_ATOMIC);
823         if (!urb) {
824                 r = -ENOMEM;
825                 goto out;
826         }
827
828         buffer = usb_buffer_alloc(zd_usb_to_usbdev(usb), length, GFP_ATOMIC,
829                                   &urb->transfer_dma);
830         if (!buffer) {
831                 r = -ENOMEM;
832                 goto error_free_urb;
833         }
834         memcpy(buffer, frame, length);
835
836         usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_DATA_OUT),
837                           buffer, length, tx_urb_complete, NULL);
838         urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
839
840         r = usb_submit_urb(urb, GFP_ATOMIC);
841         if (r)
842                 goto error;
843         return 0;
844 error:
845         usb_buffer_free(zd_usb_to_usbdev(usb), length, buffer,
846                         urb->transfer_dma);
847 error_free_urb:
848         usb_free_urb(urb);
849 out:
850         return r;
851 }
852
853 static inline void init_usb_interrupt(struct zd_usb *usb)
854 {
855         struct zd_usb_interrupt *intr = &usb->intr;
856
857         spin_lock_init(&intr->lock);
858         intr->interval = int_urb_interval(zd_usb_to_usbdev(usb));
859         init_completion(&intr->read_regs.completion);
860         intr->read_regs.cr_int_addr = cpu_to_le16(usb_addr(usb, CR_INTERRUPT));
861 }
862
863 static inline void init_usb_rx(struct zd_usb *usb)
864 {
865         struct zd_usb_rx *rx = &usb->rx;
866         spin_lock_init(&rx->lock);
867         if (interface_to_usbdev(usb->intf)->speed == USB_SPEED_HIGH) {
868                 rx->usb_packet_size = 512;
869         } else {
870                 rx->usb_packet_size = 64;
871         }
872         ZD_ASSERT(rx->fragment_length == 0);
873 }
874
875 static inline void init_usb_tx(struct zd_usb *usb)
876 {
877         /* FIXME: at this point we will allocate a fixed number of urb's for
878          * use in a cyclic scheme */
879 }
880
881 void zd_usb_init(struct zd_usb *usb, struct net_device *netdev,
882                  struct usb_interface *intf)
883 {
884         memset(usb, 0, sizeof(*usb));
885         usb->intf = usb_get_intf(intf);
886         usb_set_intfdata(usb->intf, netdev);
887         init_usb_interrupt(usb);
888         init_usb_tx(usb);
889         init_usb_rx(usb);
890 }
891
892 int zd_usb_init_hw(struct zd_usb *usb)
893 {
894         int r;
895         struct zd_chip *chip = zd_usb_to_chip(usb);
896
897         ZD_ASSERT(mutex_is_locked(&chip->mutex));
898         r = zd_ioread16_locked(chip, &usb->fw_base_offset,
899                         USB_REG((u16)FW_BASE_ADDR_OFFSET));
900         if (r)
901                 return r;
902         dev_dbg_f(zd_usb_dev(usb), "fw_base_offset: %#06hx\n",
903                  usb->fw_base_offset);
904
905         return 0;
906 }
907
908 void zd_usb_clear(struct zd_usb *usb)
909 {
910         usb_set_intfdata(usb->intf, NULL);
911         usb_put_intf(usb->intf);
912         ZD_MEMCLEAR(usb, sizeof(*usb));
913         /* FIXME: usb_interrupt, usb_tx, usb_rx? */
914 }
915
916 static const char *speed(enum usb_device_speed speed)
917 {
918         switch (speed) {
919         case USB_SPEED_LOW:
920                 return "low";
921         case USB_SPEED_FULL:
922                 return "full";
923         case USB_SPEED_HIGH:
924                 return "high";
925         default:
926                 return "unknown speed";
927         }
928 }
929
930 static int scnprint_id(struct usb_device *udev, char *buffer, size_t size)
931 {
932         return scnprintf(buffer, size, "%04hx:%04hx v%04hx %s",
933                 le16_to_cpu(udev->descriptor.idVendor),
934                 le16_to_cpu(udev->descriptor.idProduct),
935                 get_bcdDevice(udev),
936                 speed(udev->speed));
937 }
938
939 int zd_usb_scnprint_id(struct zd_usb *usb, char *buffer, size_t size)
940 {
941         struct usb_device *udev = interface_to_usbdev(usb->intf);
942         return scnprint_id(udev, buffer, size);
943 }
944
945 #ifdef DEBUG
946 static void print_id(struct usb_device *udev)
947 {
948         char buffer[40];
949
950         scnprint_id(udev, buffer, sizeof(buffer));
951         buffer[sizeof(buffer)-1] = 0;
952         dev_dbg_f(&udev->dev, "%s\n", buffer);
953 }
954 #else
955 #define print_id(udev) do { } while (0)
956 #endif
957
958 static int eject_installer(struct usb_interface *intf)
959 {
960         struct usb_device *udev = interface_to_usbdev(intf);
961         struct usb_host_interface *iface_desc = &intf->altsetting[0];
962         struct usb_endpoint_descriptor *endpoint;
963         unsigned char *cmd;
964         u8 bulk_out_ep;
965         int r;
966
967         /* Find bulk out endpoint */
968         endpoint = &iface_desc->endpoint[1].desc;
969         if ((endpoint->bEndpointAddress & USB_TYPE_MASK) == USB_DIR_OUT &&
970             (endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
971             USB_ENDPOINT_XFER_BULK) {
972                 bulk_out_ep = endpoint->bEndpointAddress;
973         } else {
974                 dev_err(&udev->dev,
975                         "zd1211rw: Could not find bulk out endpoint\n");
976                 return -ENODEV;
977         }
978
979         cmd = kzalloc(31, GFP_KERNEL);
980         if (cmd == NULL)
981                 return -ENODEV;
982
983         /* USB bulk command block */
984         cmd[0] = 0x55;  /* bulk command signature */
985         cmd[1] = 0x53;  /* bulk command signature */
986         cmd[2] = 0x42;  /* bulk command signature */
987         cmd[3] = 0x43;  /* bulk command signature */
988         cmd[14] = 6;    /* command length */
989
990         cmd[15] = 0x1b; /* SCSI command: START STOP UNIT */
991         cmd[19] = 0x2;  /* eject disc */
992
993         dev_info(&udev->dev, "Ejecting virtual installer media...\n");
994         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, bulk_out_ep),
995                 cmd, 31, NULL, 2000);
996         kfree(cmd);
997         if (r)
998                 return r;
999
1000         /* At this point, the device disconnects and reconnects with the real
1001          * ID numbers. */
1002
1003         usb_set_intfdata(intf, NULL);
1004         return 0;
1005 }
1006
1007 static int probe(struct usb_interface *intf, const struct usb_device_id *id)
1008 {
1009         int r;
1010         struct usb_device *udev = interface_to_usbdev(intf);
1011         struct net_device *netdev = NULL;
1012
1013         print_id(udev);
1014
1015         if (id->driver_info & DEVICE_INSTALLER)
1016                 return eject_installer(intf);
1017
1018         switch (udev->speed) {
1019         case USB_SPEED_LOW:
1020         case USB_SPEED_FULL:
1021         case USB_SPEED_HIGH:
1022                 break;
1023         default:
1024                 dev_dbg_f(&intf->dev, "Unknown USB speed\n");
1025                 r = -ENODEV;
1026                 goto error;
1027         }
1028
1029         netdev = zd_netdev_alloc(intf);
1030         if (netdev == NULL) {
1031                 r = -ENOMEM;
1032                 goto error;
1033         }
1034
1035         r = upload_firmware(udev, id->driver_info);
1036         if (r) {
1037                 dev_err(&intf->dev,
1038                        "couldn't load firmware. Error number %d\n", r);
1039                 goto error;
1040         }
1041
1042         r = usb_reset_configuration(udev);
1043         if (r) {
1044                 dev_dbg_f(&intf->dev,
1045                         "couldn't reset configuration. Error number %d\n", r);
1046                 goto error;
1047         }
1048
1049         /* At this point the interrupt endpoint is not generally enabled. We
1050          * save the USB bandwidth until the network device is opened. But
1051          * notify that the initialization of the MAC will require the
1052          * interrupts to be temporary enabled.
1053          */
1054         r = zd_mac_init_hw(zd_netdev_mac(netdev), id->driver_info);
1055         if (r) {
1056                 dev_dbg_f(&intf->dev,
1057                          "couldn't initialize mac. Error number %d\n", r);
1058                 goto error;
1059         }
1060
1061         r = register_netdev(netdev);
1062         if (r) {
1063                 dev_dbg_f(&intf->dev,
1064                          "couldn't register netdev. Error number %d\n", r);
1065                 goto error;
1066         }
1067
1068         dev_dbg_f(&intf->dev, "successful\n");
1069         dev_info(&intf->dev,"%s\n", netdev->name);
1070         return 0;
1071 error:
1072         usb_reset_device(interface_to_usbdev(intf));
1073         zd_netdev_free(netdev);
1074         return r;
1075 }
1076
1077 static void disconnect(struct usb_interface *intf)
1078 {
1079         struct net_device *netdev = zd_intf_to_netdev(intf);
1080         struct zd_mac *mac = zd_netdev_mac(netdev);
1081         struct zd_usb *usb = &mac->chip.usb;
1082
1083         /* Either something really bad happened, or we're just dealing with
1084          * a DEVICE_INSTALLER. */
1085         if (netdev == NULL)
1086                 return;
1087
1088         dev_dbg_f(zd_usb_dev(usb), "\n");
1089
1090         zd_netdev_disconnect(netdev);
1091
1092         /* Just in case something has gone wrong! */
1093         zd_usb_disable_rx(usb);
1094         zd_usb_disable_int(usb);
1095
1096         /* If the disconnect has been caused by a removal of the
1097          * driver module, the reset allows reloading of the driver. If the
1098          * reset will not be executed here, the upload of the firmware in the
1099          * probe function caused by the reloading of the driver will fail.
1100          */
1101         usb_reset_device(interface_to_usbdev(intf));
1102
1103         zd_netdev_free(netdev);
1104         dev_dbg(&intf->dev, "disconnected\n");
1105 }
1106
1107 static struct usb_driver driver = {
1108         .name           = "zd1211rw",
1109         .id_table       = usb_ids,
1110         .probe          = probe,
1111         .disconnect     = disconnect,
1112 };
1113
1114 static int __init usb_init(void)
1115 {
1116         int r;
1117
1118         pr_debug("usb_init()\n");
1119
1120         r = usb_register(&driver);
1121         if (r) {
1122                 printk(KERN_ERR "usb_register() failed. Error number %d\n", r);
1123                 return r;
1124         }
1125
1126         pr_debug("zd1211rw initialized\n");
1127         return 0;
1128 }
1129
1130 static void __exit usb_exit(void)
1131 {
1132         pr_debug("usb_exit()\n");
1133         usb_deregister(&driver);
1134 }
1135
1136 module_init(usb_init);
1137 module_exit(usb_exit);
1138
1139 static int usb_int_regs_length(unsigned int count)
1140 {
1141         return sizeof(struct usb_int_regs) + count * sizeof(struct reg_data);
1142 }
1143
1144 static void prepare_read_regs_int(struct zd_usb *usb)
1145 {
1146         struct zd_usb_interrupt *intr = &usb->intr;
1147
1148         spin_lock(&intr->lock);
1149         intr->read_regs_enabled = 1;
1150         INIT_COMPLETION(intr->read_regs.completion);
1151         spin_unlock(&intr->lock);
1152 }
1153
1154 static int get_results(struct zd_usb *usb, u16 *values,
1155                        struct usb_req_read_regs *req, unsigned int count)
1156 {
1157         int r;
1158         int i;
1159         struct zd_usb_interrupt *intr = &usb->intr;
1160         struct read_regs_int *rr = &intr->read_regs;
1161         struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1162
1163         spin_lock(&intr->lock);
1164
1165         r = -EIO;
1166         /* The created block size seems to be larger than expected.
1167          * However results appear to be correct.
1168          */
1169         if (rr->length < usb_int_regs_length(count)) {
1170                 dev_dbg_f(zd_usb_dev(usb),
1171                          "error: actual length %d less than expected %d\n",
1172                          rr->length, usb_int_regs_length(count));
1173                 goto error_unlock;
1174         }
1175         if (rr->length > sizeof(rr->buffer)) {
1176                 dev_dbg_f(zd_usb_dev(usb),
1177                          "error: actual length %d exceeds buffer size %zu\n",
1178                          rr->length, sizeof(rr->buffer));
1179                 goto error_unlock;
1180         }
1181
1182         for (i = 0; i < count; i++) {
1183                 struct reg_data *rd = &regs->regs[i];
1184                 if (rd->addr != req->addr[i]) {
1185                         dev_dbg_f(zd_usb_dev(usb),
1186                                  "rd[%d] addr %#06hx expected %#06hx\n", i,
1187                                  le16_to_cpu(rd->addr),
1188                                  le16_to_cpu(req->addr[i]));
1189                         goto error_unlock;
1190                 }
1191                 values[i] = le16_to_cpu(rd->value);
1192         }
1193
1194         r = 0;
1195 error_unlock:
1196         spin_unlock(&intr->lock);
1197         return r;
1198 }
1199
1200 int zd_usb_ioread16v(struct zd_usb *usb, u16 *values,
1201                      const zd_addr_t *addresses, unsigned int count)
1202 {
1203         int r;
1204         int i, req_len, actual_req_len;
1205         struct usb_device *udev;
1206         struct usb_req_read_regs *req = NULL;
1207         unsigned long timeout;
1208
1209         if (count < 1) {
1210                 dev_dbg_f(zd_usb_dev(usb), "error: count is zero\n");
1211                 return -EINVAL;
1212         }
1213         if (count > USB_MAX_IOREAD16_COUNT) {
1214                 dev_dbg_f(zd_usb_dev(usb),
1215                          "error: count %u exceeds possible max %u\n",
1216                          count, USB_MAX_IOREAD16_COUNT);
1217                 return -EINVAL;
1218         }
1219         if (in_atomic()) {
1220                 dev_dbg_f(zd_usb_dev(usb),
1221                          "error: io in atomic context not supported\n");
1222                 return -EWOULDBLOCK;
1223         }
1224         if (!usb_int_enabled(usb)) {
1225                  dev_dbg_f(zd_usb_dev(usb),
1226                           "error: usb interrupt not enabled\n");
1227                 return -EWOULDBLOCK;
1228         }
1229
1230         req_len = sizeof(struct usb_req_read_regs) + count * sizeof(__le16);
1231         req = kmalloc(req_len, GFP_NOFS);
1232         if (!req)
1233                 return -ENOMEM;
1234         req->id = cpu_to_le16(USB_REQ_READ_REGS);
1235         for (i = 0; i < count; i++)
1236                 req->addr[i] = cpu_to_le16(usb_addr(usb, addresses[i]));
1237
1238         udev = zd_usb_to_usbdev(usb);
1239         prepare_read_regs_int(usb);
1240         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1241                          req, req_len, &actual_req_len, 1000 /* ms */);
1242         if (r) {
1243                 dev_dbg_f(zd_usb_dev(usb),
1244                         "error in usb_bulk_msg(). Error number %d\n", r);
1245                 goto error;
1246         }
1247         if (req_len != actual_req_len) {
1248                 dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()\n"
1249                         " req_len %d != actual_req_len %d\n",
1250                         req_len, actual_req_len);
1251                 r = -EIO;
1252                 goto error;
1253         }
1254
1255         timeout = wait_for_completion_timeout(&usb->intr.read_regs.completion,
1256                                               msecs_to_jiffies(1000));
1257         if (!timeout) {
1258                 disable_read_regs_int(usb);
1259                 dev_dbg_f(zd_usb_dev(usb), "read timed out\n");
1260                 r = -ETIMEDOUT;
1261                 goto error;
1262         }
1263
1264         r = get_results(usb, values, req, count);
1265 error:
1266         kfree(req);
1267         return r;
1268 }
1269
1270 int zd_usb_iowrite16v(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1271                       unsigned int count)
1272 {
1273         int r;
1274         struct usb_device *udev;
1275         struct usb_req_write_regs *req = NULL;
1276         int i, req_len, actual_req_len;
1277
1278         if (count == 0)
1279                 return 0;
1280         if (count > USB_MAX_IOWRITE16_COUNT) {
1281                 dev_dbg_f(zd_usb_dev(usb),
1282                         "error: count %u exceeds possible max %u\n",
1283                         count, USB_MAX_IOWRITE16_COUNT);
1284                 return -EINVAL;
1285         }
1286         if (in_atomic()) {
1287                 dev_dbg_f(zd_usb_dev(usb),
1288                         "error: io in atomic context not supported\n");
1289                 return -EWOULDBLOCK;
1290         }
1291
1292         req_len = sizeof(struct usb_req_write_regs) +
1293                   count * sizeof(struct reg_data);
1294         req = kmalloc(req_len, GFP_NOFS);
1295         if (!req)
1296                 return -ENOMEM;
1297
1298         req->id = cpu_to_le16(USB_REQ_WRITE_REGS);
1299         for (i = 0; i < count; i++) {
1300                 struct reg_data *rw  = &req->reg_writes[i];
1301                 rw->addr = cpu_to_le16(usb_addr(usb, ioreqs[i].addr));
1302                 rw->value = cpu_to_le16(ioreqs[i].value);
1303         }
1304
1305         udev = zd_usb_to_usbdev(usb);
1306         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1307                          req, req_len, &actual_req_len, 1000 /* ms */);
1308         if (r) {
1309                 dev_dbg_f(zd_usb_dev(usb),
1310                         "error in usb_bulk_msg(). Error number %d\n", r);
1311                 goto error;
1312         }
1313         if (req_len != actual_req_len) {
1314                 dev_dbg_f(zd_usb_dev(usb),
1315                         "error in usb_bulk_msg()"
1316                         " req_len %d != actual_req_len %d\n",
1317                         req_len, actual_req_len);
1318                 r = -EIO;
1319                 goto error;
1320         }
1321
1322         /* FALL-THROUGH with r == 0 */
1323 error:
1324         kfree(req);
1325         return r;
1326 }
1327
1328 int zd_usb_rfwrite(struct zd_usb *usb, u32 value, u8 bits)
1329 {
1330         int r;
1331         struct usb_device *udev;
1332         struct usb_req_rfwrite *req = NULL;
1333         int i, req_len, actual_req_len;
1334         u16 bit_value_template;
1335
1336         if (in_atomic()) {
1337                 dev_dbg_f(zd_usb_dev(usb),
1338                         "error: io in atomic context not supported\n");
1339                 return -EWOULDBLOCK;
1340         }
1341         if (bits < USB_MIN_RFWRITE_BIT_COUNT) {
1342                 dev_dbg_f(zd_usb_dev(usb),
1343                         "error: bits %d are smaller than"
1344                         " USB_MIN_RFWRITE_BIT_COUNT %d\n",
1345                         bits, USB_MIN_RFWRITE_BIT_COUNT);
1346                 return -EINVAL;
1347         }
1348         if (bits > USB_MAX_RFWRITE_BIT_COUNT) {
1349                 dev_dbg_f(zd_usb_dev(usb),
1350                         "error: bits %d exceed USB_MAX_RFWRITE_BIT_COUNT %d\n",
1351                         bits, USB_MAX_RFWRITE_BIT_COUNT);
1352                 return -EINVAL;
1353         }
1354 #ifdef DEBUG
1355         if (value & (~0UL << bits)) {
1356                 dev_dbg_f(zd_usb_dev(usb),
1357                         "error: value %#09x has bits >= %d set\n",
1358                         value, bits);
1359                 return -EINVAL;
1360         }
1361 #endif /* DEBUG */
1362
1363         dev_dbg_f(zd_usb_dev(usb), "value %#09x bits %d\n", value, bits);
1364
1365         r = zd_usb_ioread16(usb, &bit_value_template, CR203);
1366         if (r) {
1367                 dev_dbg_f(zd_usb_dev(usb),
1368                         "error %d: Couldn't read CR203\n", r);
1369                 goto out;
1370         }
1371         bit_value_template &= ~(RF_IF_LE|RF_CLK|RF_DATA);
1372
1373         req_len = sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16);
1374         req = kmalloc(req_len, GFP_NOFS);
1375         if (!req)
1376                 return -ENOMEM;
1377
1378         req->id = cpu_to_le16(USB_REQ_WRITE_RF);
1379         /* 1: 3683a, but not used in ZYDAS driver */
1380         req->value = cpu_to_le16(2);
1381         req->bits = cpu_to_le16(bits);
1382
1383         for (i = 0; i < bits; i++) {
1384                 u16 bv = bit_value_template;
1385                 if (value & (1 << (bits-1-i)))
1386                         bv |= RF_DATA;
1387                 req->bit_values[i] = cpu_to_le16(bv);
1388         }
1389
1390         udev = zd_usb_to_usbdev(usb);
1391         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1392                          req, req_len, &actual_req_len, 1000 /* ms */);
1393         if (r) {
1394                 dev_dbg_f(zd_usb_dev(usb),
1395                         "error in usb_bulk_msg(). Error number %d\n", r);
1396                 goto out;
1397         }
1398         if (req_len != actual_req_len) {
1399                 dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()"
1400                         " req_len %d != actual_req_len %d\n",
1401                         req_len, actual_req_len);
1402                 r = -EIO;
1403                 goto out;
1404         }
1405
1406         /* FALL-THROUGH with r == 0 */
1407 out:
1408         kfree(req);
1409         return r;
1410 }