]> git.karo-electronics.de Git - linux-beck.git/blob - drivers/nvdimm/pmem.c
03d86687f97b55b4c0084e2730e43381b17ecde7
[linux-beck.git] / drivers / nvdimm / pmem.c
1 /*
2  * Persistent Memory Driver
3  *
4  * Copyright (c) 2014-2015, Intel Corporation.
5  * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
6  * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  */
17
18 #include <asm/cacheflush.h>
19 #include <linux/blkdev.h>
20 #include <linux/hdreg.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/badblocks.h>
26 #include <linux/memremap.h>
27 #include <linux/vmalloc.h>
28 #include <linux/pfn_t.h>
29 #include <linux/slab.h>
30 #include <linux/pmem.h>
31 #include <linux/nd.h>
32 #include "pfn.h"
33 #include "nd.h"
34
35 struct pmem_device {
36         struct request_queue    *pmem_queue;
37         struct gendisk          *pmem_disk;
38         struct nd_namespace_common *ndns;
39
40         /* One contiguous memory region per device */
41         phys_addr_t             phys_addr;
42         /* when non-zero this device is hosting a 'pfn' instance */
43         phys_addr_t             data_offset;
44         unsigned long           pfn_flags;
45         void __pmem             *virt_addr;
46         size_t                  size;
47         struct badblocks        bb;
48 };
49
50 static int pmem_major;
51
52 static bool is_bad_pmem(struct badblocks *bb, sector_t sector, unsigned int len)
53 {
54         if (bb->count) {
55                 sector_t first_bad;
56                 int num_bad;
57
58                 return !!badblocks_check(bb, sector, len / 512, &first_bad,
59                                 &num_bad);
60         }
61
62         return false;
63 }
64
65 static int pmem_do_bvec(struct pmem_device *pmem, struct page *page,
66                         unsigned int len, unsigned int off, int rw,
67                         sector_t sector)
68 {
69         void *mem = kmap_atomic(page);
70         phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
71         void __pmem *pmem_addr = pmem->virt_addr + pmem_off;
72
73         if (rw == READ) {
74                 if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
75                         return -EIO;
76                 memcpy_from_pmem(mem + off, pmem_addr, len);
77                 flush_dcache_page(page);
78         } else {
79                 flush_dcache_page(page);
80                 memcpy_to_pmem(pmem_addr, mem + off, len);
81         }
82
83         kunmap_atomic(mem);
84         return 0;
85 }
86
87 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
88 {
89         int rc = 0;
90         bool do_acct;
91         unsigned long start;
92         struct bio_vec bvec;
93         struct bvec_iter iter;
94         struct block_device *bdev = bio->bi_bdev;
95         struct pmem_device *pmem = bdev->bd_disk->private_data;
96
97         do_acct = nd_iostat_start(bio, &start);
98         bio_for_each_segment(bvec, bio, iter) {
99                 rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
100                                 bvec.bv_offset, bio_data_dir(bio),
101                                 iter.bi_sector);
102                 if (rc) {
103                         bio->bi_error = rc;
104                         break;
105                 }
106         }
107         if (do_acct)
108                 nd_iostat_end(bio, start);
109
110         if (bio_data_dir(bio))
111                 wmb_pmem();
112
113         bio_endio(bio);
114         return BLK_QC_T_NONE;
115 }
116
117 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
118                        struct page *page, int rw)
119 {
120         struct pmem_device *pmem = bdev->bd_disk->private_data;
121         int rc;
122
123         rc = pmem_do_bvec(pmem, page, PAGE_CACHE_SIZE, 0, rw, sector);
124         if (rw & WRITE)
125                 wmb_pmem();
126
127         /*
128          * The ->rw_page interface is subtle and tricky.  The core
129          * retries on any error, so we can only invoke page_endio() in
130          * the successful completion case.  Otherwise, we'll see crashes
131          * caused by double completion.
132          */
133         if (rc == 0)
134                 page_endio(page, rw & WRITE, 0);
135
136         return rc;
137 }
138
139 static long pmem_direct_access(struct block_device *bdev, sector_t sector,
140                       void __pmem **kaddr, pfn_t *pfn)
141 {
142         struct pmem_device *pmem = bdev->bd_disk->private_data;
143         resource_size_t offset = sector * 512 + pmem->data_offset;
144
145         *kaddr = pmem->virt_addr + offset;
146         *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
147
148         return pmem->size - offset;
149 }
150
151 static const struct block_device_operations pmem_fops = {
152         .owner =                THIS_MODULE,
153         .rw_page =              pmem_rw_page,
154         .direct_access =        pmem_direct_access,
155         .revalidate_disk =      nvdimm_revalidate_disk,
156 };
157
158 static struct pmem_device *pmem_alloc(struct device *dev,
159                 struct resource *res, int id)
160 {
161         struct pmem_device *pmem;
162
163         pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
164         if (!pmem)
165                 return ERR_PTR(-ENOMEM);
166
167         pmem->phys_addr = res->start;
168         pmem->size = resource_size(res);
169         if (!arch_has_wmb_pmem())
170                 dev_warn(dev, "unable to guarantee persistence of writes\n");
171
172         if (!devm_request_mem_region(dev, pmem->phys_addr, pmem->size,
173                         dev_name(dev))) {
174                 dev_warn(dev, "could not reserve region [0x%pa:0x%zx]\n",
175                                 &pmem->phys_addr, pmem->size);
176                 return ERR_PTR(-EBUSY);
177         }
178
179         pmem->pfn_flags = PFN_DEV;
180         if (pmem_should_map_pages(dev)) {
181                 pmem->virt_addr = (void __pmem *) devm_memremap_pages(dev, res,
182                                 NULL);
183                 pmem->pfn_flags |= PFN_MAP;
184         } else
185                 pmem->virt_addr = (void __pmem *) devm_memremap(dev,
186                                 pmem->phys_addr, pmem->size,
187                                 ARCH_MEMREMAP_PMEM);
188
189         if (IS_ERR(pmem->virt_addr))
190                 return (void __force *) pmem->virt_addr;
191
192         return pmem;
193 }
194
195 static void pmem_detach_disk(struct pmem_device *pmem)
196 {
197         if (!pmem->pmem_disk)
198                 return;
199
200         del_gendisk(pmem->pmem_disk);
201         put_disk(pmem->pmem_disk);
202         blk_cleanup_queue(pmem->pmem_queue);
203 }
204
205 static int pmem_attach_disk(struct device *dev,
206                 struct nd_namespace_common *ndns, struct pmem_device *pmem)
207 {
208         int nid = dev_to_node(dev);
209         struct gendisk *disk;
210
211         pmem->pmem_queue = blk_alloc_queue_node(GFP_KERNEL, nid);
212         if (!pmem->pmem_queue)
213                 return -ENOMEM;
214
215         blk_queue_make_request(pmem->pmem_queue, pmem_make_request);
216         blk_queue_physical_block_size(pmem->pmem_queue, PAGE_SIZE);
217         blk_queue_max_hw_sectors(pmem->pmem_queue, UINT_MAX);
218         blk_queue_bounce_limit(pmem->pmem_queue, BLK_BOUNCE_ANY);
219         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, pmem->pmem_queue);
220
221         disk = alloc_disk_node(0, nid);
222         if (!disk) {
223                 blk_cleanup_queue(pmem->pmem_queue);
224                 return -ENOMEM;
225         }
226
227         disk->major             = pmem_major;
228         disk->first_minor       = 0;
229         disk->fops              = &pmem_fops;
230         disk->private_data      = pmem;
231         disk->queue             = pmem->pmem_queue;
232         disk->flags             = GENHD_FL_EXT_DEVT;
233         nvdimm_namespace_disk_name(ndns, disk->disk_name);
234         disk->driverfs_dev = dev;
235         set_capacity(disk, (pmem->size - pmem->data_offset) / 512);
236         pmem->pmem_disk = disk;
237         devm_exit_badblocks(dev, &pmem->bb);
238         if (devm_init_badblocks(dev, &pmem->bb))
239                 return -ENOMEM;
240         nvdimm_namespace_add_poison(ndns, &pmem->bb, pmem->data_offset);
241
242         disk->bb = &pmem->bb;
243         add_disk(disk);
244         revalidate_disk(disk);
245
246         return 0;
247 }
248
249 static int pmem_rw_bytes(struct nd_namespace_common *ndns,
250                 resource_size_t offset, void *buf, size_t size, int rw)
251 {
252         struct pmem_device *pmem = dev_get_drvdata(ndns->claim);
253
254         if (unlikely(offset + size > pmem->size)) {
255                 dev_WARN_ONCE(&ndns->dev, 1, "request out of range\n");
256                 return -EFAULT;
257         }
258
259         if (rw == READ) {
260                 unsigned int sz_align = ALIGN(size + (offset & (512 - 1)), 512);
261
262                 if (unlikely(is_bad_pmem(&pmem->bb, offset / 512, sz_align)))
263                         return -EIO;
264                 memcpy_from_pmem(buf, pmem->virt_addr + offset, size);
265         } else {
266                 memcpy_to_pmem(pmem->virt_addr + offset, buf, size);
267                 wmb_pmem();
268         }
269
270         return 0;
271 }
272
273 static int nd_pfn_init(struct nd_pfn *nd_pfn)
274 {
275         struct nd_pfn_sb *pfn_sb = kzalloc(sizeof(*pfn_sb), GFP_KERNEL);
276         struct pmem_device *pmem = dev_get_drvdata(&nd_pfn->dev);
277         struct nd_namespace_common *ndns = nd_pfn->ndns;
278         struct nd_region *nd_region;
279         unsigned long npfns;
280         phys_addr_t offset;
281         u64 checksum;
282         int rc;
283
284         if (!pfn_sb)
285                 return -ENOMEM;
286
287         nd_pfn->pfn_sb = pfn_sb;
288         rc = nd_pfn_validate(nd_pfn);
289         if (rc == -ENODEV)
290                 /* no info block, do init */;
291         else
292                 return rc;
293
294         nd_region = to_nd_region(nd_pfn->dev.parent);
295         if (nd_region->ro) {
296                 dev_info(&nd_pfn->dev,
297                                 "%s is read-only, unable to init metadata\n",
298                                 dev_name(&nd_region->dev));
299                 goto err;
300         }
301
302         memset(pfn_sb, 0, sizeof(*pfn_sb));
303         npfns = (pmem->size - SZ_8K) / SZ_4K;
304         /*
305          * Note, we use 64 here for the standard size of struct page,
306          * debugging options may cause it to be larger in which case the
307          * implementation will limit the pfns advertised through
308          * ->direct_access() to those that are included in the memmap.
309          */
310         if (nd_pfn->mode == PFN_MODE_PMEM)
311                 offset = ALIGN(SZ_8K + 64 * npfns, nd_pfn->align);
312         else if (nd_pfn->mode == PFN_MODE_RAM)
313                 offset = ALIGN(SZ_8K, nd_pfn->align);
314         else
315                 goto err;
316
317         npfns = (pmem->size - offset) / SZ_4K;
318         pfn_sb->mode = cpu_to_le32(nd_pfn->mode);
319         pfn_sb->dataoff = cpu_to_le64(offset);
320         pfn_sb->npfns = cpu_to_le64(npfns);
321         memcpy(pfn_sb->signature, PFN_SIG, PFN_SIG_LEN);
322         memcpy(pfn_sb->uuid, nd_pfn->uuid, 16);
323         memcpy(pfn_sb->parent_uuid, nd_dev_to_uuid(&ndns->dev), 16);
324         pfn_sb->version_major = cpu_to_le16(1);
325         checksum = nd_sb_checksum((struct nd_gen_sb *) pfn_sb);
326         pfn_sb->checksum = cpu_to_le64(checksum);
327
328         rc = nvdimm_write_bytes(ndns, SZ_4K, pfn_sb, sizeof(*pfn_sb));
329         if (rc)
330                 goto err;
331
332         return 0;
333  err:
334         nd_pfn->pfn_sb = NULL;
335         kfree(pfn_sb);
336         return -ENXIO;
337 }
338
339 static int nvdimm_namespace_detach_pfn(struct nd_namespace_common *ndns)
340 {
341         struct nd_pfn *nd_pfn = to_nd_pfn(ndns->claim);
342         struct pmem_device *pmem;
343
344         /* free pmem disk */
345         pmem = dev_get_drvdata(&nd_pfn->dev);
346         pmem_detach_disk(pmem);
347
348         /* release nd_pfn resources */
349         kfree(nd_pfn->pfn_sb);
350         nd_pfn->pfn_sb = NULL;
351
352         return 0;
353 }
354
355 static int nvdimm_namespace_attach_pfn(struct nd_namespace_common *ndns)
356 {
357         struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
358         struct nd_pfn *nd_pfn = to_nd_pfn(ndns->claim);
359         struct device *dev = &nd_pfn->dev;
360         struct nd_region *nd_region;
361         struct vmem_altmap *altmap;
362         struct nd_pfn_sb *pfn_sb;
363         struct pmem_device *pmem;
364         phys_addr_t offset;
365         int rc;
366         struct vmem_altmap __altmap = {
367                 .base_pfn = __phys_to_pfn(nsio->res.start),
368                 .reserve = __phys_to_pfn(SZ_8K),
369         };
370
371         if (!nd_pfn->uuid || !nd_pfn->ndns)
372                 return -ENODEV;
373
374         nd_region = to_nd_region(dev->parent);
375         rc = nd_pfn_init(nd_pfn);
376         if (rc)
377                 return rc;
378
379         pfn_sb = nd_pfn->pfn_sb;
380         offset = le64_to_cpu(pfn_sb->dataoff);
381         nd_pfn->mode = le32_to_cpu(nd_pfn->pfn_sb->mode);
382         if (nd_pfn->mode == PFN_MODE_RAM) {
383                 if (offset < SZ_8K)
384                         return -EINVAL;
385                 nd_pfn->npfns = le64_to_cpu(pfn_sb->npfns);
386                 altmap = NULL;
387         } else if (nd_pfn->mode == PFN_MODE_PMEM) {
388                 nd_pfn->npfns = (resource_size(&nsio->res) - offset)
389                         / PAGE_SIZE;
390                 if (le64_to_cpu(nd_pfn->pfn_sb->npfns) > nd_pfn->npfns)
391                         dev_info(&nd_pfn->dev,
392                                         "number of pfns truncated from %lld to %ld\n",
393                                         le64_to_cpu(nd_pfn->pfn_sb->npfns),
394                                         nd_pfn->npfns);
395                 altmap = & __altmap;
396                 altmap->free = __phys_to_pfn(offset - SZ_8K);
397                 altmap->alloc = 0;
398         } else {
399                 rc = -ENXIO;
400                 goto err;
401         }
402
403         /* establish pfn range for lookup, and switch to direct map */
404         pmem = dev_get_drvdata(dev);
405         devm_memunmap(dev, (void __force *) pmem->virt_addr);
406         pmem->virt_addr = (void __pmem *) devm_memremap_pages(dev, &nsio->res,
407                         altmap);
408         pmem->pfn_flags |= PFN_MAP;
409         if (IS_ERR(pmem->virt_addr)) {
410                 rc = PTR_ERR(pmem->virt_addr);
411                 goto err;
412         }
413
414         /* attach pmem disk in "pfn-mode" */
415         pmem->data_offset = offset;
416         rc = pmem_attach_disk(dev, ndns, pmem);
417         if (rc)
418                 goto err;
419
420         return rc;
421  err:
422         nvdimm_namespace_detach_pfn(ndns);
423         return rc;
424 }
425
426 static int nd_pmem_probe(struct device *dev)
427 {
428         struct nd_region *nd_region = to_nd_region(dev->parent);
429         struct nd_namespace_common *ndns;
430         struct nd_namespace_io *nsio;
431         struct pmem_device *pmem;
432
433         ndns = nvdimm_namespace_common_probe(dev);
434         if (IS_ERR(ndns))
435                 return PTR_ERR(ndns);
436
437         nsio = to_nd_namespace_io(&ndns->dev);
438         pmem = pmem_alloc(dev, &nsio->res, nd_region->id);
439         if (IS_ERR(pmem))
440                 return PTR_ERR(pmem);
441
442         pmem->ndns = ndns;
443         dev_set_drvdata(dev, pmem);
444         ndns->rw_bytes = pmem_rw_bytes;
445         if (devm_init_badblocks(dev, &pmem->bb))
446                 return -ENOMEM;
447         nvdimm_namespace_add_poison(ndns, &pmem->bb, 0);
448
449         if (is_nd_btt(dev))
450                 return nvdimm_namespace_attach_btt(ndns);
451
452         if (is_nd_pfn(dev))
453                 return nvdimm_namespace_attach_pfn(ndns);
454
455         if (nd_btt_probe(ndns, pmem) == 0) {
456                 /* we'll come back as btt-pmem */
457                 return -ENXIO;
458         }
459
460         if (nd_pfn_probe(ndns, pmem) == 0) {
461                 /* we'll come back as pfn-pmem */
462                 return -ENXIO;
463         }
464
465         return pmem_attach_disk(dev, ndns, pmem);
466 }
467
468 static int nd_pmem_remove(struct device *dev)
469 {
470         struct pmem_device *pmem = dev_get_drvdata(dev);
471
472         if (is_nd_btt(dev))
473                 nvdimm_namespace_detach_btt(pmem->ndns);
474         else if (is_nd_pfn(dev))
475                 nvdimm_namespace_detach_pfn(pmem->ndns);
476         else
477                 pmem_detach_disk(pmem);
478
479         return 0;
480 }
481
482 MODULE_ALIAS("pmem");
483 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
484 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
485 static struct nd_device_driver nd_pmem_driver = {
486         .probe = nd_pmem_probe,
487         .remove = nd_pmem_remove,
488         .drv = {
489                 .name = "nd_pmem",
490         },
491         .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
492 };
493
494 static int __init pmem_init(void)
495 {
496         int error;
497
498         pmem_major = register_blkdev(0, "pmem");
499         if (pmem_major < 0)
500                 return pmem_major;
501
502         error = nd_driver_register(&nd_pmem_driver);
503         if (error) {
504                 unregister_blkdev(pmem_major, "pmem");
505                 return error;
506         }
507
508         return 0;
509 }
510 module_init(pmem_init);
511
512 static void pmem_exit(void)
513 {
514         driver_unregister(&nd_pmem_driver.drv);
515         unregister_blkdev(pmem_major, "pmem");
516 }
517 module_exit(pmem_exit);
518
519 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
520 MODULE_LICENSE("GPL v2");