]> git.karo-electronics.de Git - linux-beck.git/blob - drivers/nvdimm/pmem.c
pmem, dax: disable dax in the presence of bad blocks
[linux-beck.git] / drivers / nvdimm / pmem.c
1 /*
2  * Persistent Memory Driver
3  *
4  * Copyright (c) 2014-2015, Intel Corporation.
5  * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
6  * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  */
17
18 #include <asm/cacheflush.h>
19 #include <linux/blkdev.h>
20 #include <linux/hdreg.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/module.h>
24 #include <linux/memory_hotplug.h>
25 #include <linux/moduleparam.h>
26 #include <linux/badblocks.h>
27 #include <linux/vmalloc.h>
28 #include <linux/slab.h>
29 #include <linux/pmem.h>
30 #include <linux/nd.h>
31 #include "pfn.h"
32 #include "nd.h"
33
34 struct pmem_device {
35         struct request_queue    *pmem_queue;
36         struct gendisk          *pmem_disk;
37         struct nd_namespace_common *ndns;
38
39         /* One contiguous memory region per device */
40         phys_addr_t             phys_addr;
41         /* when non-zero this device is hosting a 'pfn' instance */
42         phys_addr_t             data_offset;
43         void __pmem             *virt_addr;
44         size_t                  size;
45         struct badblocks        bb;
46 };
47
48 static int pmem_major;
49
50 static bool is_bad_pmem(struct badblocks *bb, sector_t sector, unsigned int len)
51 {
52         if (bb->count) {
53                 sector_t first_bad;
54                 int num_bad;
55
56                 return !!badblocks_check(bb, sector, len / 512, &first_bad,
57                                 &num_bad);
58         }
59
60         return false;
61 }
62
63 static int pmem_do_bvec(struct pmem_device *pmem, struct page *page,
64                         unsigned int len, unsigned int off, int rw,
65                         sector_t sector)
66 {
67         void *mem = kmap_atomic(page);
68         phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
69         void __pmem *pmem_addr = pmem->virt_addr + pmem_off;
70
71         if (rw == READ) {
72                 if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
73                         return -EIO;
74                 memcpy_from_pmem(mem + off, pmem_addr, len);
75                 flush_dcache_page(page);
76         } else {
77                 flush_dcache_page(page);
78                 memcpy_to_pmem(pmem_addr, mem + off, len);
79         }
80
81         kunmap_atomic(mem);
82         return 0;
83 }
84
85 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
86 {
87         int rc = 0;
88         bool do_acct;
89         unsigned long start;
90         struct bio_vec bvec;
91         struct bvec_iter iter;
92         struct block_device *bdev = bio->bi_bdev;
93         struct pmem_device *pmem = bdev->bd_disk->private_data;
94
95         do_acct = nd_iostat_start(bio, &start);
96         bio_for_each_segment(bvec, bio, iter) {
97                 rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
98                                 bvec.bv_offset, bio_data_dir(bio),
99                                 iter.bi_sector);
100                 if (rc) {
101                         bio->bi_error = rc;
102                         break;
103                 }
104         }
105         if (do_acct)
106                 nd_iostat_end(bio, start);
107
108         if (bio_data_dir(bio))
109                 wmb_pmem();
110
111         bio_endio(bio);
112         return BLK_QC_T_NONE;
113 }
114
115 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
116                        struct page *page, int rw)
117 {
118         struct pmem_device *pmem = bdev->bd_disk->private_data;
119         int rc;
120
121         rc = pmem_do_bvec(pmem, page, PAGE_CACHE_SIZE, 0, rw, sector);
122         if (rw & WRITE)
123                 wmb_pmem();
124
125         /*
126          * The ->rw_page interface is subtle and tricky.  The core
127          * retries on any error, so we can only invoke page_endio() in
128          * the successful completion case.  Otherwise, we'll see crashes
129          * caused by double completion.
130          */
131         if (rc == 0)
132                 page_endio(page, rw & WRITE, 0);
133
134         return rc;
135 }
136
137 static long pmem_direct_access(struct block_device *bdev, sector_t sector,
138                       void __pmem **kaddr, unsigned long *pfn)
139 {
140         struct pmem_device *pmem = bdev->bd_disk->private_data;
141         resource_size_t offset = sector * 512 + pmem->data_offset;
142
143         *kaddr = pmem->virt_addr + offset;
144         *pfn = (pmem->phys_addr + offset) >> PAGE_SHIFT;
145
146         return pmem->size - offset;
147 }
148
149 static const struct block_device_operations pmem_fops = {
150         .owner =                THIS_MODULE,
151         .rw_page =              pmem_rw_page,
152         .direct_access =        pmem_direct_access,
153         .revalidate_disk =      nvdimm_revalidate_disk,
154 };
155
156 static struct pmem_device *pmem_alloc(struct device *dev,
157                 struct resource *res, int id)
158 {
159         struct pmem_device *pmem;
160
161         pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
162         if (!pmem)
163                 return ERR_PTR(-ENOMEM);
164
165         pmem->phys_addr = res->start;
166         pmem->size = resource_size(res);
167         if (!arch_has_wmb_pmem())
168                 dev_warn(dev, "unable to guarantee persistence of writes\n");
169
170         if (!devm_request_mem_region(dev, pmem->phys_addr, pmem->size,
171                         dev_name(dev))) {
172                 dev_warn(dev, "could not reserve region [0x%pa:0x%zx]\n",
173                                 &pmem->phys_addr, pmem->size);
174                 return ERR_PTR(-EBUSY);
175         }
176
177         if (pmem_should_map_pages(dev))
178                 pmem->virt_addr = (void __pmem *) devm_memremap_pages(dev, res);
179         else
180                 pmem->virt_addr = (void __pmem *) devm_memremap(dev,
181                                 pmem->phys_addr, pmem->size,
182                                 ARCH_MEMREMAP_PMEM);
183
184         if (IS_ERR(pmem->virt_addr))
185                 return (void __force *) pmem->virt_addr;
186
187         return pmem;
188 }
189
190 static void pmem_detach_disk(struct pmem_device *pmem)
191 {
192         if (!pmem->pmem_disk)
193                 return;
194
195         del_gendisk(pmem->pmem_disk);
196         put_disk(pmem->pmem_disk);
197         blk_cleanup_queue(pmem->pmem_queue);
198 }
199
200 static int pmem_attach_disk(struct device *dev,
201                 struct nd_namespace_common *ndns, struct pmem_device *pmem)
202 {
203         int nid = dev_to_node(dev);
204         struct gendisk *disk;
205
206         pmem->pmem_queue = blk_alloc_queue_node(GFP_KERNEL, nid);
207         if (!pmem->pmem_queue)
208                 return -ENOMEM;
209
210         blk_queue_make_request(pmem->pmem_queue, pmem_make_request);
211         blk_queue_physical_block_size(pmem->pmem_queue, PAGE_SIZE);
212         blk_queue_max_hw_sectors(pmem->pmem_queue, UINT_MAX);
213         blk_queue_bounce_limit(pmem->pmem_queue, BLK_BOUNCE_ANY);
214         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, pmem->pmem_queue);
215
216         disk = alloc_disk_node(0, nid);
217         if (!disk) {
218                 blk_cleanup_queue(pmem->pmem_queue);
219                 return -ENOMEM;
220         }
221
222         disk->major             = pmem_major;
223         disk->first_minor       = 0;
224         disk->fops              = &pmem_fops;
225         disk->private_data      = pmem;
226         disk->queue             = pmem->pmem_queue;
227         disk->flags             = GENHD_FL_EXT_DEVT;
228         nvdimm_namespace_disk_name(ndns, disk->disk_name);
229         disk->driverfs_dev = dev;
230         set_capacity(disk, (pmem->size - pmem->data_offset) / 512);
231         pmem->pmem_disk = disk;
232         if (devm_init_badblocks(dev, &pmem->bb))
233                 return -ENOMEM;
234         nvdimm_namespace_add_poison(ndns, &pmem->bb, pmem->data_offset);
235
236         disk->bb = &pmem->bb;
237         add_disk(disk);
238         revalidate_disk(disk);
239
240         return 0;
241 }
242
243 static int pmem_rw_bytes(struct nd_namespace_common *ndns,
244                 resource_size_t offset, void *buf, size_t size, int rw)
245 {
246         struct pmem_device *pmem = dev_get_drvdata(ndns->claim);
247
248         if (unlikely(offset + size > pmem->size)) {
249                 dev_WARN_ONCE(&ndns->dev, 1, "request out of range\n");
250                 return -EFAULT;
251         }
252
253         if (rw == READ)
254                 memcpy_from_pmem(buf, pmem->virt_addr + offset, size);
255         else {
256                 memcpy_to_pmem(pmem->virt_addr + offset, buf, size);
257                 wmb_pmem();
258         }
259
260         return 0;
261 }
262
263 static int nd_pfn_init(struct nd_pfn *nd_pfn)
264 {
265         struct nd_pfn_sb *pfn_sb = kzalloc(sizeof(*pfn_sb), GFP_KERNEL);
266         struct pmem_device *pmem = dev_get_drvdata(&nd_pfn->dev);
267         struct nd_namespace_common *ndns = nd_pfn->ndns;
268         struct nd_region *nd_region;
269         unsigned long npfns;
270         phys_addr_t offset;
271         u64 checksum;
272         int rc;
273
274         if (!pfn_sb)
275                 return -ENOMEM;
276
277         nd_pfn->pfn_sb = pfn_sb;
278         rc = nd_pfn_validate(nd_pfn);
279         if (rc == 0 || rc == -EBUSY)
280                 return rc;
281
282         /* section alignment for simple hotplug */
283         if (nvdimm_namespace_capacity(ndns) < ND_PFN_ALIGN
284                         || pmem->phys_addr & ND_PFN_MASK)
285                 return -ENODEV;
286
287         nd_region = to_nd_region(nd_pfn->dev.parent);
288         if (nd_region->ro) {
289                 dev_info(&nd_pfn->dev,
290                                 "%s is read-only, unable to init metadata\n",
291                                 dev_name(&nd_region->dev));
292                 goto err;
293         }
294
295         memset(pfn_sb, 0, sizeof(*pfn_sb));
296         npfns = (pmem->size - SZ_8K) / SZ_4K;
297         /*
298          * Note, we use 64 here for the standard size of struct page,
299          * debugging options may cause it to be larger in which case the
300          * implementation will limit the pfns advertised through
301          * ->direct_access() to those that are included in the memmap.
302          */
303         if (nd_pfn->mode == PFN_MODE_PMEM)
304                 offset = ALIGN(SZ_8K + 64 * npfns, PMD_SIZE);
305         else if (nd_pfn->mode == PFN_MODE_RAM)
306                 offset = SZ_8K;
307         else
308                 goto err;
309
310         npfns = (pmem->size - offset) / SZ_4K;
311         pfn_sb->mode = cpu_to_le32(nd_pfn->mode);
312         pfn_sb->dataoff = cpu_to_le64(offset);
313         pfn_sb->npfns = cpu_to_le64(npfns);
314         memcpy(pfn_sb->signature, PFN_SIG, PFN_SIG_LEN);
315         memcpy(pfn_sb->uuid, nd_pfn->uuid, 16);
316         pfn_sb->version_major = cpu_to_le16(1);
317         checksum = nd_sb_checksum((struct nd_gen_sb *) pfn_sb);
318         pfn_sb->checksum = cpu_to_le64(checksum);
319
320         rc = nvdimm_write_bytes(ndns, SZ_4K, pfn_sb, sizeof(*pfn_sb));
321         if (rc)
322                 goto err;
323
324         return 0;
325  err:
326         nd_pfn->pfn_sb = NULL;
327         kfree(pfn_sb);
328         return -ENXIO;
329 }
330
331 static int nvdimm_namespace_detach_pfn(struct nd_namespace_common *ndns)
332 {
333         struct nd_pfn *nd_pfn = to_nd_pfn(ndns->claim);
334         struct pmem_device *pmem;
335
336         /* free pmem disk */
337         pmem = dev_get_drvdata(&nd_pfn->dev);
338         pmem_detach_disk(pmem);
339
340         /* release nd_pfn resources */
341         kfree(nd_pfn->pfn_sb);
342         nd_pfn->pfn_sb = NULL;
343
344         return 0;
345 }
346
347 static int nvdimm_namespace_attach_pfn(struct nd_namespace_common *ndns)
348 {
349         struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
350         struct nd_pfn *nd_pfn = to_nd_pfn(ndns->claim);
351         struct device *dev = &nd_pfn->dev;
352         struct vmem_altmap *altmap;
353         struct nd_region *nd_region;
354         struct nd_pfn_sb *pfn_sb;
355         struct pmem_device *pmem;
356         phys_addr_t offset;
357         int rc;
358
359         if (!nd_pfn->uuid || !nd_pfn->ndns)
360                 return -ENODEV;
361
362         nd_region = to_nd_region(dev->parent);
363         rc = nd_pfn_init(nd_pfn);
364         if (rc)
365                 return rc;
366
367         if (PAGE_SIZE != SZ_4K) {
368                 dev_err(dev, "only supported on systems with 4K PAGE_SIZE\n");
369                 return -ENXIO;
370         }
371         if (nsio->res.start & ND_PFN_MASK) {
372                 dev_err(dev, "%s not memory hotplug section aligned\n",
373                                 dev_name(&ndns->dev));
374                 return -ENXIO;
375         }
376
377         pfn_sb = nd_pfn->pfn_sb;
378         offset = le64_to_cpu(pfn_sb->dataoff);
379         nd_pfn->mode = le32_to_cpu(nd_pfn->pfn_sb->mode);
380         if (nd_pfn->mode == PFN_MODE_RAM) {
381                 if (offset != SZ_8K)
382                         return -EINVAL;
383                 nd_pfn->npfns = le64_to_cpu(pfn_sb->npfns);
384                 altmap = NULL;
385         } else {
386                 rc = -ENXIO;
387                 goto err;
388         }
389
390         /* establish pfn range for lookup, and switch to direct map */
391         pmem = dev_get_drvdata(dev);
392         devm_memunmap(dev, (void __force *) pmem->virt_addr);
393         pmem->virt_addr = (void __pmem *) devm_memremap_pages(dev, &nsio->res);
394         if (IS_ERR(pmem->virt_addr)) {
395                 rc = PTR_ERR(pmem->virt_addr);
396                 goto err;
397         }
398
399         /* attach pmem disk in "pfn-mode" */
400         pmem->data_offset = offset;
401         rc = pmem_attach_disk(dev, ndns, pmem);
402         if (rc)
403                 goto err;
404
405         return rc;
406  err:
407         nvdimm_namespace_detach_pfn(ndns);
408         return rc;
409 }
410
411 static int nd_pmem_probe(struct device *dev)
412 {
413         struct nd_region *nd_region = to_nd_region(dev->parent);
414         struct nd_namespace_common *ndns;
415         struct nd_namespace_io *nsio;
416         struct pmem_device *pmem;
417
418         ndns = nvdimm_namespace_common_probe(dev);
419         if (IS_ERR(ndns))
420                 return PTR_ERR(ndns);
421
422         nsio = to_nd_namespace_io(&ndns->dev);
423         pmem = pmem_alloc(dev, &nsio->res, nd_region->id);
424         if (IS_ERR(pmem))
425                 return PTR_ERR(pmem);
426
427         pmem->ndns = ndns;
428         dev_set_drvdata(dev, pmem);
429         ndns->rw_bytes = pmem_rw_bytes;
430
431         if (is_nd_btt(dev))
432                 return nvdimm_namespace_attach_btt(ndns);
433
434         if (is_nd_pfn(dev))
435                 return nvdimm_namespace_attach_pfn(ndns);
436
437         if (nd_btt_probe(ndns, pmem) == 0) {
438                 /* we'll come back as btt-pmem */
439                 return -ENXIO;
440         }
441
442         if (nd_pfn_probe(ndns, pmem) == 0) {
443                 /* we'll come back as pfn-pmem */
444                 return -ENXIO;
445         }
446
447         return pmem_attach_disk(dev, ndns, pmem);
448 }
449
450 static int nd_pmem_remove(struct device *dev)
451 {
452         struct pmem_device *pmem = dev_get_drvdata(dev);
453
454         if (is_nd_btt(dev))
455                 nvdimm_namespace_detach_btt(pmem->ndns);
456         else if (is_nd_pfn(dev))
457                 nvdimm_namespace_detach_pfn(pmem->ndns);
458         else
459                 pmem_detach_disk(pmem);
460
461         return 0;
462 }
463
464 MODULE_ALIAS("pmem");
465 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
466 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
467 static struct nd_device_driver nd_pmem_driver = {
468         .probe = nd_pmem_probe,
469         .remove = nd_pmem_remove,
470         .drv = {
471                 .name = "nd_pmem",
472         },
473         .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
474 };
475
476 static int __init pmem_init(void)
477 {
478         int error;
479
480         pmem_major = register_blkdev(0, "pmem");
481         if (pmem_major < 0)
482                 return pmem_major;
483
484         error = nd_driver_register(&nd_pmem_driver);
485         if (error) {
486                 unregister_blkdev(pmem_major, "pmem");
487                 return error;
488         }
489
490         return 0;
491 }
492 module_init(pmem_init);
493
494 static void pmem_exit(void)
495 {
496         driver_unregister(&nd_pmem_driver.drv);
497         unregister_blkdev(pmem_major, "pmem");
498 }
499 module_exit(pmem_exit);
500
501 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
502 MODULE_LICENSE("GPL v2");