]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/nvdimm/pmem.c
Merge tag 'phy-for-4.6-rc' of git://git.kernel.org/pub/scm/linux/kernel/git/kishon...
[karo-tx-linux.git] / drivers / nvdimm / pmem.c
1 /*
2  * Persistent Memory Driver
3  *
4  * Copyright (c) 2014-2015, Intel Corporation.
5  * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
6  * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  */
17
18 #include <asm/cacheflush.h>
19 #include <linux/blkdev.h>
20 #include <linux/hdreg.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/badblocks.h>
26 #include <linux/memremap.h>
27 #include <linux/vmalloc.h>
28 #include <linux/pfn_t.h>
29 #include <linux/slab.h>
30 #include <linux/pmem.h>
31 #include <linux/nd.h>
32 #include "pfn.h"
33 #include "nd.h"
34
35 struct pmem_device {
36         struct request_queue    *pmem_queue;
37         struct gendisk          *pmem_disk;
38         struct nd_namespace_common *ndns;
39
40         /* One contiguous memory region per device */
41         phys_addr_t             phys_addr;
42         /* when non-zero this device is hosting a 'pfn' instance */
43         phys_addr_t             data_offset;
44         u64                     pfn_flags;
45         void __pmem             *virt_addr;
46         /* immutable base size of the namespace */
47         size_t                  size;
48         /* trim size when namespace capacity has been section aligned */
49         u32                     pfn_pad;
50         struct badblocks        bb;
51 };
52
53 static bool is_bad_pmem(struct badblocks *bb, sector_t sector, unsigned int len)
54 {
55         if (bb->count) {
56                 sector_t first_bad;
57                 int num_bad;
58
59                 return !!badblocks_check(bb, sector, len / 512, &first_bad,
60                                 &num_bad);
61         }
62
63         return false;
64 }
65
66 static void pmem_clear_poison(struct pmem_device *pmem, phys_addr_t offset,
67                 unsigned int len)
68 {
69         struct device *dev = disk_to_dev(pmem->pmem_disk);
70         sector_t sector;
71         long cleared;
72
73         sector = (offset - pmem->data_offset) / 512;
74         cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
75
76         if (cleared > 0 && cleared / 512) {
77                 dev_dbg(dev, "%s: %llx clear %ld sector%s\n",
78                                 __func__, (unsigned long long) sector,
79                                 cleared / 512, cleared / 512 > 1 ? "s" : "");
80                 badblocks_clear(&pmem->bb, sector, cleared / 512);
81         }
82         invalidate_pmem(pmem->virt_addr + offset, len);
83 }
84
85 static int pmem_do_bvec(struct pmem_device *pmem, struct page *page,
86                         unsigned int len, unsigned int off, int rw,
87                         sector_t sector)
88 {
89         int rc = 0;
90         bool bad_pmem = false;
91         void *mem = kmap_atomic(page);
92         phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
93         void __pmem *pmem_addr = pmem->virt_addr + pmem_off;
94
95         if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
96                 bad_pmem = true;
97
98         if (rw == READ) {
99                 if (unlikely(bad_pmem))
100                         rc = -EIO;
101                 else {
102                         rc = memcpy_from_pmem(mem + off, pmem_addr, len);
103                         flush_dcache_page(page);
104                 }
105         } else {
106                 /*
107                  * Note that we write the data both before and after
108                  * clearing poison.  The write before clear poison
109                  * handles situations where the latest written data is
110                  * preserved and the clear poison operation simply marks
111                  * the address range as valid without changing the data.
112                  * In this case application software can assume that an
113                  * interrupted write will either return the new good
114                  * data or an error.
115                  *
116                  * However, if pmem_clear_poison() leaves the data in an
117                  * indeterminate state we need to perform the write
118                  * after clear poison.
119                  */
120                 flush_dcache_page(page);
121                 memcpy_to_pmem(pmem_addr, mem + off, len);
122                 if (unlikely(bad_pmem)) {
123                         pmem_clear_poison(pmem, pmem_off, len);
124                         memcpy_to_pmem(pmem_addr, mem + off, len);
125                 }
126         }
127
128         kunmap_atomic(mem);
129         return rc;
130 }
131
132 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
133 {
134         int rc = 0;
135         bool do_acct;
136         unsigned long start;
137         struct bio_vec bvec;
138         struct bvec_iter iter;
139         struct block_device *bdev = bio->bi_bdev;
140         struct pmem_device *pmem = bdev->bd_disk->private_data;
141
142         do_acct = nd_iostat_start(bio, &start);
143         bio_for_each_segment(bvec, bio, iter) {
144                 rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
145                                 bvec.bv_offset, bio_data_dir(bio),
146                                 iter.bi_sector);
147                 if (rc) {
148                         bio->bi_error = rc;
149                         break;
150                 }
151         }
152         if (do_acct)
153                 nd_iostat_end(bio, start);
154
155         if (bio_data_dir(bio))
156                 wmb_pmem();
157
158         bio_endio(bio);
159         return BLK_QC_T_NONE;
160 }
161
162 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
163                        struct page *page, int rw)
164 {
165         struct pmem_device *pmem = bdev->bd_disk->private_data;
166         int rc;
167
168         rc = pmem_do_bvec(pmem, page, PAGE_SIZE, 0, rw, sector);
169         if (rw & WRITE)
170                 wmb_pmem();
171
172         /*
173          * The ->rw_page interface is subtle and tricky.  The core
174          * retries on any error, so we can only invoke page_endio() in
175          * the successful completion case.  Otherwise, we'll see crashes
176          * caused by double completion.
177          */
178         if (rc == 0)
179                 page_endio(page, rw & WRITE, 0);
180
181         return rc;
182 }
183
184 static long pmem_direct_access(struct block_device *bdev, sector_t sector,
185                       void __pmem **kaddr, pfn_t *pfn)
186 {
187         struct pmem_device *pmem = bdev->bd_disk->private_data;
188         resource_size_t offset = sector * 512 + pmem->data_offset;
189
190         *kaddr = pmem->virt_addr + offset;
191         *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
192
193         return pmem->size - pmem->pfn_pad - offset;
194 }
195
196 static const struct block_device_operations pmem_fops = {
197         .owner =                THIS_MODULE,
198         .rw_page =              pmem_rw_page,
199         .direct_access =        pmem_direct_access,
200         .revalidate_disk =      nvdimm_revalidate_disk,
201 };
202
203 static struct pmem_device *pmem_alloc(struct device *dev,
204                 struct resource *res, int id)
205 {
206         struct pmem_device *pmem;
207         struct request_queue *q;
208
209         pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
210         if (!pmem)
211                 return ERR_PTR(-ENOMEM);
212
213         pmem->phys_addr = res->start;
214         pmem->size = resource_size(res);
215         if (!arch_has_wmb_pmem())
216                 dev_warn(dev, "unable to guarantee persistence of writes\n");
217
218         if (!devm_request_mem_region(dev, pmem->phys_addr, pmem->size,
219                         dev_name(dev))) {
220                 dev_warn(dev, "could not reserve region [0x%pa:0x%zx]\n",
221                                 &pmem->phys_addr, pmem->size);
222                 return ERR_PTR(-EBUSY);
223         }
224
225         q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
226         if (!q)
227                 return ERR_PTR(-ENOMEM);
228
229         pmem->pfn_flags = PFN_DEV;
230         if (pmem_should_map_pages(dev)) {
231                 pmem->virt_addr = (void __pmem *) devm_memremap_pages(dev, res,
232                                 &q->q_usage_counter, NULL);
233                 pmem->pfn_flags |= PFN_MAP;
234         } else
235                 pmem->virt_addr = (void __pmem *) devm_memremap(dev,
236                                 pmem->phys_addr, pmem->size,
237                                 ARCH_MEMREMAP_PMEM);
238
239         if (IS_ERR(pmem->virt_addr)) {
240                 blk_cleanup_queue(q);
241                 return (void __force *) pmem->virt_addr;
242         }
243
244         pmem->pmem_queue = q;
245         return pmem;
246 }
247
248 static void pmem_detach_disk(struct pmem_device *pmem)
249 {
250         if (!pmem->pmem_disk)
251                 return;
252
253         del_gendisk(pmem->pmem_disk);
254         put_disk(pmem->pmem_disk);
255         blk_cleanup_queue(pmem->pmem_queue);
256 }
257
258 static int pmem_attach_disk(struct device *dev,
259                 struct nd_namespace_common *ndns, struct pmem_device *pmem)
260 {
261         struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
262         int nid = dev_to_node(dev);
263         struct resource bb_res;
264         struct gendisk *disk;
265
266         blk_queue_make_request(pmem->pmem_queue, pmem_make_request);
267         blk_queue_physical_block_size(pmem->pmem_queue, PAGE_SIZE);
268         blk_queue_max_hw_sectors(pmem->pmem_queue, UINT_MAX);
269         blk_queue_bounce_limit(pmem->pmem_queue, BLK_BOUNCE_ANY);
270         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, pmem->pmem_queue);
271
272         disk = alloc_disk_node(0, nid);
273         if (!disk) {
274                 blk_cleanup_queue(pmem->pmem_queue);
275                 return -ENOMEM;
276         }
277
278         disk->fops              = &pmem_fops;
279         disk->private_data      = pmem;
280         disk->queue             = pmem->pmem_queue;
281         disk->flags             = GENHD_FL_EXT_DEVT;
282         nvdimm_namespace_disk_name(ndns, disk->disk_name);
283         disk->driverfs_dev = dev;
284         set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
285                         / 512);
286         pmem->pmem_disk = disk;
287         devm_exit_badblocks(dev, &pmem->bb);
288         if (devm_init_badblocks(dev, &pmem->bb))
289                 return -ENOMEM;
290         bb_res.start = nsio->res.start + pmem->data_offset;
291         bb_res.end = nsio->res.end;
292         if (is_nd_pfn(dev)) {
293                 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
294                 struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
295
296                 bb_res.start += __le32_to_cpu(pfn_sb->start_pad);
297                 bb_res.end -= __le32_to_cpu(pfn_sb->end_trunc);
298         }
299         nvdimm_badblocks_populate(to_nd_region(dev->parent), &pmem->bb,
300                         &bb_res);
301         disk->bb = &pmem->bb;
302         add_disk(disk);
303         revalidate_disk(disk);
304
305         return 0;
306 }
307
308 static int pmem_rw_bytes(struct nd_namespace_common *ndns,
309                 resource_size_t offset, void *buf, size_t size, int rw)
310 {
311         struct pmem_device *pmem = dev_get_drvdata(ndns->claim);
312
313         if (unlikely(offset + size > pmem->size)) {
314                 dev_WARN_ONCE(&ndns->dev, 1, "request out of range\n");
315                 return -EFAULT;
316         }
317
318         if (rw == READ) {
319                 unsigned int sz_align = ALIGN(size + (offset & (512 - 1)), 512);
320
321                 if (unlikely(is_bad_pmem(&pmem->bb, offset / 512, sz_align)))
322                         return -EIO;
323                 return memcpy_from_pmem(buf, pmem->virt_addr + offset, size);
324         } else {
325                 memcpy_to_pmem(pmem->virt_addr + offset, buf, size);
326                 wmb_pmem();
327         }
328
329         return 0;
330 }
331
332 static int nd_pfn_init(struct nd_pfn *nd_pfn)
333 {
334         struct nd_pfn_sb *pfn_sb = kzalloc(sizeof(*pfn_sb), GFP_KERNEL);
335         struct pmem_device *pmem = dev_get_drvdata(&nd_pfn->dev);
336         struct nd_namespace_common *ndns = nd_pfn->ndns;
337         u32 start_pad = 0, end_trunc = 0;
338         resource_size_t start, size;
339         struct nd_namespace_io *nsio;
340         struct nd_region *nd_region;
341         unsigned long npfns;
342         phys_addr_t offset;
343         u64 checksum;
344         int rc;
345
346         if (!pfn_sb)
347                 return -ENOMEM;
348
349         nd_pfn->pfn_sb = pfn_sb;
350         rc = nd_pfn_validate(nd_pfn);
351         if (rc == -ENODEV)
352                 /* no info block, do init */;
353         else
354                 return rc;
355
356         nd_region = to_nd_region(nd_pfn->dev.parent);
357         if (nd_region->ro) {
358                 dev_info(&nd_pfn->dev,
359                                 "%s is read-only, unable to init metadata\n",
360                                 dev_name(&nd_region->dev));
361                 goto err;
362         }
363
364         memset(pfn_sb, 0, sizeof(*pfn_sb));
365
366         /*
367          * Check if pmem collides with 'System RAM' when section aligned and
368          * trim it accordingly
369          */
370         nsio = to_nd_namespace_io(&ndns->dev);
371         start = PHYS_SECTION_ALIGN_DOWN(nsio->res.start);
372         size = resource_size(&nsio->res);
373         if (region_intersects(start, size, IORESOURCE_SYSTEM_RAM,
374                                 IORES_DESC_NONE) == REGION_MIXED) {
375
376                 start = nsio->res.start;
377                 start_pad = PHYS_SECTION_ALIGN_UP(start) - start;
378         }
379
380         start = nsio->res.start;
381         size = PHYS_SECTION_ALIGN_UP(start + size) - start;
382         if (region_intersects(start, size, IORESOURCE_SYSTEM_RAM,
383                                 IORES_DESC_NONE) == REGION_MIXED) {
384                 size = resource_size(&nsio->res);
385                 end_trunc = start + size - PHYS_SECTION_ALIGN_DOWN(start + size);
386         }
387
388         if (start_pad + end_trunc)
389                 dev_info(&nd_pfn->dev, "%s section collision, truncate %d bytes\n",
390                                 dev_name(&ndns->dev), start_pad + end_trunc);
391
392         /*
393          * Note, we use 64 here for the standard size of struct page,
394          * debugging options may cause it to be larger in which case the
395          * implementation will limit the pfns advertised through
396          * ->direct_access() to those that are included in the memmap.
397          */
398         start += start_pad;
399         npfns = (pmem->size - start_pad - end_trunc - SZ_8K) / SZ_4K;
400         if (nd_pfn->mode == PFN_MODE_PMEM)
401                 offset = ALIGN(start + SZ_8K + 64 * npfns, nd_pfn->align)
402                         - start;
403         else if (nd_pfn->mode == PFN_MODE_RAM)
404                 offset = ALIGN(start + SZ_8K, nd_pfn->align) - start;
405         else
406                 goto err;
407
408         if (offset + start_pad + end_trunc >= pmem->size) {
409                 dev_err(&nd_pfn->dev, "%s unable to satisfy requested alignment\n",
410                                 dev_name(&ndns->dev));
411                 goto err;
412         }
413
414         npfns = (pmem->size - offset - start_pad - end_trunc) / SZ_4K;
415         pfn_sb->mode = cpu_to_le32(nd_pfn->mode);
416         pfn_sb->dataoff = cpu_to_le64(offset);
417         pfn_sb->npfns = cpu_to_le64(npfns);
418         memcpy(pfn_sb->signature, PFN_SIG, PFN_SIG_LEN);
419         memcpy(pfn_sb->uuid, nd_pfn->uuid, 16);
420         memcpy(pfn_sb->parent_uuid, nd_dev_to_uuid(&ndns->dev), 16);
421         pfn_sb->version_major = cpu_to_le16(1);
422         pfn_sb->version_minor = cpu_to_le16(1);
423         pfn_sb->start_pad = cpu_to_le32(start_pad);
424         pfn_sb->end_trunc = cpu_to_le32(end_trunc);
425         checksum = nd_sb_checksum((struct nd_gen_sb *) pfn_sb);
426         pfn_sb->checksum = cpu_to_le64(checksum);
427
428         rc = nvdimm_write_bytes(ndns, SZ_4K, pfn_sb, sizeof(*pfn_sb));
429         if (rc)
430                 goto err;
431
432         return 0;
433  err:
434         nd_pfn->pfn_sb = NULL;
435         kfree(pfn_sb);
436         return -ENXIO;
437 }
438
439 static int nvdimm_namespace_detach_pfn(struct nd_namespace_common *ndns)
440 {
441         struct nd_pfn *nd_pfn = to_nd_pfn(ndns->claim);
442         struct pmem_device *pmem;
443
444         /* free pmem disk */
445         pmem = dev_get_drvdata(&nd_pfn->dev);
446         pmem_detach_disk(pmem);
447
448         /* release nd_pfn resources */
449         kfree(nd_pfn->pfn_sb);
450         nd_pfn->pfn_sb = NULL;
451
452         return 0;
453 }
454
455 /*
456  * We hotplug memory at section granularity, pad the reserved area from
457  * the previous section base to the namespace base address.
458  */
459 static unsigned long init_altmap_base(resource_size_t base)
460 {
461         unsigned long base_pfn = PHYS_PFN(base);
462
463         return PFN_SECTION_ALIGN_DOWN(base_pfn);
464 }
465
466 static unsigned long init_altmap_reserve(resource_size_t base)
467 {
468         unsigned long reserve = PHYS_PFN(SZ_8K);
469         unsigned long base_pfn = PHYS_PFN(base);
470
471         reserve += base_pfn - PFN_SECTION_ALIGN_DOWN(base_pfn);
472         return reserve;
473 }
474
475 static int __nvdimm_namespace_attach_pfn(struct nd_pfn *nd_pfn)
476 {
477         int rc;
478         struct resource res;
479         struct request_queue *q;
480         struct pmem_device *pmem;
481         struct vmem_altmap *altmap;
482         struct device *dev = &nd_pfn->dev;
483         struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
484         struct nd_namespace_common *ndns = nd_pfn->ndns;
485         u32 start_pad = __le32_to_cpu(pfn_sb->start_pad);
486         u32 end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
487         struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
488         resource_size_t base = nsio->res.start + start_pad;
489         struct vmem_altmap __altmap = {
490                 .base_pfn = init_altmap_base(base),
491                 .reserve = init_altmap_reserve(base),
492         };
493
494         pmem = dev_get_drvdata(dev);
495         pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
496         pmem->pfn_pad = start_pad + end_trunc;
497         nd_pfn->mode = le32_to_cpu(nd_pfn->pfn_sb->mode);
498         if (nd_pfn->mode == PFN_MODE_RAM) {
499                 if (pmem->data_offset < SZ_8K)
500                         return -EINVAL;
501                 nd_pfn->npfns = le64_to_cpu(pfn_sb->npfns);
502                 altmap = NULL;
503         } else if (nd_pfn->mode == PFN_MODE_PMEM) {
504                 nd_pfn->npfns = (pmem->size - pmem->pfn_pad - pmem->data_offset)
505                         / PAGE_SIZE;
506                 if (le64_to_cpu(nd_pfn->pfn_sb->npfns) > nd_pfn->npfns)
507                         dev_info(&nd_pfn->dev,
508                                         "number of pfns truncated from %lld to %ld\n",
509                                         le64_to_cpu(nd_pfn->pfn_sb->npfns),
510                                         nd_pfn->npfns);
511                 altmap = & __altmap;
512                 altmap->free = PHYS_PFN(pmem->data_offset - SZ_8K);
513                 altmap->alloc = 0;
514         } else {
515                 rc = -ENXIO;
516                 goto err;
517         }
518
519         /* establish pfn range for lookup, and switch to direct map */
520         q = pmem->pmem_queue;
521         memcpy(&res, &nsio->res, sizeof(res));
522         res.start += start_pad;
523         res.end -= end_trunc;
524         devm_memunmap(dev, (void __force *) pmem->virt_addr);
525         pmem->virt_addr = (void __pmem *) devm_memremap_pages(dev, &res,
526                         &q->q_usage_counter, altmap);
527         pmem->pfn_flags |= PFN_MAP;
528         if (IS_ERR(pmem->virt_addr)) {
529                 rc = PTR_ERR(pmem->virt_addr);
530                 goto err;
531         }
532
533         /* attach pmem disk in "pfn-mode" */
534         rc = pmem_attach_disk(dev, ndns, pmem);
535         if (rc)
536                 goto err;
537
538         return rc;
539  err:
540         nvdimm_namespace_detach_pfn(ndns);
541         return rc;
542
543 }
544
545 static int nvdimm_namespace_attach_pfn(struct nd_namespace_common *ndns)
546 {
547         struct nd_pfn *nd_pfn = to_nd_pfn(ndns->claim);
548         int rc;
549
550         if (!nd_pfn->uuid || !nd_pfn->ndns)
551                 return -ENODEV;
552
553         rc = nd_pfn_init(nd_pfn);
554         if (rc)
555                 return rc;
556         /* we need a valid pfn_sb before we can init a vmem_altmap */
557         return __nvdimm_namespace_attach_pfn(nd_pfn);
558 }
559
560 static int nd_pmem_probe(struct device *dev)
561 {
562         struct nd_region *nd_region = to_nd_region(dev->parent);
563         struct nd_namespace_common *ndns;
564         struct nd_namespace_io *nsio;
565         struct pmem_device *pmem;
566
567         ndns = nvdimm_namespace_common_probe(dev);
568         if (IS_ERR(ndns))
569                 return PTR_ERR(ndns);
570
571         nsio = to_nd_namespace_io(&ndns->dev);
572         pmem = pmem_alloc(dev, &nsio->res, nd_region->id);
573         if (IS_ERR(pmem))
574                 return PTR_ERR(pmem);
575
576         pmem->ndns = ndns;
577         dev_set_drvdata(dev, pmem);
578         ndns->rw_bytes = pmem_rw_bytes;
579         if (devm_init_badblocks(dev, &pmem->bb))
580                 return -ENOMEM;
581         nvdimm_badblocks_populate(nd_region, &pmem->bb, &nsio->res);
582
583         if (is_nd_btt(dev)) {
584                 /* btt allocates its own request_queue */
585                 blk_cleanup_queue(pmem->pmem_queue);
586                 pmem->pmem_queue = NULL;
587                 return nvdimm_namespace_attach_btt(ndns);
588         }
589
590         if (is_nd_pfn(dev))
591                 return nvdimm_namespace_attach_pfn(ndns);
592
593         if (nd_btt_probe(ndns, pmem) == 0 || nd_pfn_probe(ndns, pmem) == 0) {
594                 /*
595                  * We'll come back as either btt-pmem, or pfn-pmem, so
596                  * drop the queue allocation for now.
597                  */
598                 blk_cleanup_queue(pmem->pmem_queue);
599                 return -ENXIO;
600         }
601
602         return pmem_attach_disk(dev, ndns, pmem);
603 }
604
605 static int nd_pmem_remove(struct device *dev)
606 {
607         struct pmem_device *pmem = dev_get_drvdata(dev);
608
609         if (is_nd_btt(dev))
610                 nvdimm_namespace_detach_btt(pmem->ndns);
611         else if (is_nd_pfn(dev))
612                 nvdimm_namespace_detach_pfn(pmem->ndns);
613         else
614                 pmem_detach_disk(pmem);
615
616         return 0;
617 }
618
619 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
620 {
621         struct pmem_device *pmem = dev_get_drvdata(dev);
622         struct nd_namespace_common *ndns = pmem->ndns;
623         struct nd_region *nd_region = to_nd_region(dev->parent);
624         struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
625         struct resource res = {
626                 .start = nsio->res.start + pmem->data_offset,
627                 .end = nsio->res.end,
628         };
629
630         if (event != NVDIMM_REVALIDATE_POISON)
631                 return;
632
633         if (is_nd_pfn(dev)) {
634                 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
635                 struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
636
637                 res.start += __le32_to_cpu(pfn_sb->start_pad);
638                 res.end -= __le32_to_cpu(pfn_sb->end_trunc);
639         }
640
641         nvdimm_badblocks_populate(nd_region, &pmem->bb, &res);
642 }
643
644 MODULE_ALIAS("pmem");
645 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
646 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
647 static struct nd_device_driver nd_pmem_driver = {
648         .probe = nd_pmem_probe,
649         .remove = nd_pmem_remove,
650         .notify = nd_pmem_notify,
651         .drv = {
652                 .name = "nd_pmem",
653         },
654         .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
655 };
656
657 static int __init pmem_init(void)
658 {
659         return nd_driver_register(&nd_pmem_driver);
660 }
661 module_init(pmem_init);
662
663 static void pmem_exit(void)
664 {
665         driver_unregister(&nd_pmem_driver.drv);
666 }
667 module_exit(pmem_exit);
668
669 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
670 MODULE_LICENSE("GPL v2");