]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/nvdimm/pmem.c
Merge branch 'for-linus-4.12' of git://git.kernel.org/pub/scm/linux/kernel/git/mason...
[karo-tx-linux.git] / drivers / nvdimm / pmem.c
1 /*
2  * Persistent Memory Driver
3  *
4  * Copyright (c) 2014-2015, Intel Corporation.
5  * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
6  * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  */
17
18 #include <asm/cacheflush.h>
19 #include <linux/blkdev.h>
20 #include <linux/hdreg.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/badblocks.h>
26 #include <linux/memremap.h>
27 #include <linux/vmalloc.h>
28 #include <linux/blk-mq.h>
29 #include <linux/pfn_t.h>
30 #include <linux/slab.h>
31 #include <linux/pmem.h>
32 #include <linux/dax.h>
33 #include <linux/nd.h>
34 #include "pmem.h"
35 #include "pfn.h"
36 #include "nd.h"
37
38 static struct device *to_dev(struct pmem_device *pmem)
39 {
40         /*
41          * nvdimm bus services need a 'dev' parameter, and we record the device
42          * at init in bb.dev.
43          */
44         return pmem->bb.dev;
45 }
46
47 static struct nd_region *to_region(struct pmem_device *pmem)
48 {
49         return to_nd_region(to_dev(pmem)->parent);
50 }
51
52 static int pmem_clear_poison(struct pmem_device *pmem, phys_addr_t offset,
53                 unsigned int len)
54 {
55         struct device *dev = to_dev(pmem);
56         sector_t sector;
57         long cleared;
58         int rc = 0;
59
60         sector = (offset - pmem->data_offset) / 512;
61
62         cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
63         if (cleared < len)
64                 rc = -EIO;
65         if (cleared > 0 && cleared / 512) {
66                 cleared /= 512;
67                 dev_dbg(dev, "%s: %#llx clear %ld sector%s\n", __func__,
68                                 (unsigned long long) sector, cleared,
69                                 cleared > 1 ? "s" : "");
70                 badblocks_clear(&pmem->bb, sector, cleared);
71         }
72
73         invalidate_pmem(pmem->virt_addr + offset, len);
74
75         return rc;
76 }
77
78 static void write_pmem(void *pmem_addr, struct page *page,
79                 unsigned int off, unsigned int len)
80 {
81         void *mem = kmap_atomic(page);
82
83         memcpy_to_pmem(pmem_addr, mem + off, len);
84         kunmap_atomic(mem);
85 }
86
87 static int read_pmem(struct page *page, unsigned int off,
88                 void *pmem_addr, unsigned int len)
89 {
90         int rc;
91         void *mem = kmap_atomic(page);
92
93         rc = memcpy_mcsafe(mem + off, pmem_addr, len);
94         kunmap_atomic(mem);
95         if (rc)
96                 return -EIO;
97         return 0;
98 }
99
100 static int pmem_do_bvec(struct pmem_device *pmem, struct page *page,
101                         unsigned int len, unsigned int off, bool is_write,
102                         sector_t sector)
103 {
104         int rc = 0;
105         bool bad_pmem = false;
106         phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
107         void *pmem_addr = pmem->virt_addr + pmem_off;
108
109         if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
110                 bad_pmem = true;
111
112         if (!is_write) {
113                 if (unlikely(bad_pmem))
114                         rc = -EIO;
115                 else {
116                         rc = read_pmem(page, off, pmem_addr, len);
117                         flush_dcache_page(page);
118                 }
119         } else {
120                 /*
121                  * Note that we write the data both before and after
122                  * clearing poison.  The write before clear poison
123                  * handles situations where the latest written data is
124                  * preserved and the clear poison operation simply marks
125                  * the address range as valid without changing the data.
126                  * In this case application software can assume that an
127                  * interrupted write will either return the new good
128                  * data or an error.
129                  *
130                  * However, if pmem_clear_poison() leaves the data in an
131                  * indeterminate state we need to perform the write
132                  * after clear poison.
133                  */
134                 flush_dcache_page(page);
135                 write_pmem(pmem_addr, page, off, len);
136                 if (unlikely(bad_pmem)) {
137                         rc = pmem_clear_poison(pmem, pmem_off, len);
138                         write_pmem(pmem_addr, page, off, len);
139                 }
140         }
141
142         return rc;
143 }
144
145 /* account for REQ_FLUSH rename, replace with REQ_PREFLUSH after v4.8-rc1 */
146 #ifndef REQ_FLUSH
147 #define REQ_FLUSH REQ_PREFLUSH
148 #endif
149
150 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
151 {
152         int rc = 0;
153         bool do_acct;
154         unsigned long start;
155         struct bio_vec bvec;
156         struct bvec_iter iter;
157         struct pmem_device *pmem = q->queuedata;
158         struct nd_region *nd_region = to_region(pmem);
159
160         if (bio->bi_opf & REQ_FLUSH)
161                 nvdimm_flush(nd_region);
162
163         do_acct = nd_iostat_start(bio, &start);
164         bio_for_each_segment(bvec, bio, iter) {
165                 rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
166                                 bvec.bv_offset, op_is_write(bio_op(bio)),
167                                 iter.bi_sector);
168                 if (rc) {
169                         bio->bi_error = rc;
170                         break;
171                 }
172         }
173         if (do_acct)
174                 nd_iostat_end(bio, start);
175
176         if (bio->bi_opf & REQ_FUA)
177                 nvdimm_flush(nd_region);
178
179         bio_endio(bio);
180         return BLK_QC_T_NONE;
181 }
182
183 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
184                        struct page *page, bool is_write)
185 {
186         struct pmem_device *pmem = bdev->bd_queue->queuedata;
187         int rc;
188
189         rc = pmem_do_bvec(pmem, page, PAGE_SIZE, 0, is_write, sector);
190
191         /*
192          * The ->rw_page interface is subtle and tricky.  The core
193          * retries on any error, so we can only invoke page_endio() in
194          * the successful completion case.  Otherwise, we'll see crashes
195          * caused by double completion.
196          */
197         if (rc == 0)
198                 page_endio(page, is_write, 0);
199
200         return rc;
201 }
202
203 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
204 __weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
205                 long nr_pages, void **kaddr, pfn_t *pfn)
206 {
207         resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
208
209         if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512,
210                                         PFN_PHYS(nr_pages))))
211                 return -EIO;
212         *kaddr = pmem->virt_addr + offset;
213         *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
214
215         /*
216          * If badblocks are present, limit known good range to the
217          * requested range.
218          */
219         if (unlikely(pmem->bb.count))
220                 return nr_pages;
221         return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
222 }
223
224 static const struct block_device_operations pmem_fops = {
225         .owner =                THIS_MODULE,
226         .rw_page =              pmem_rw_page,
227         .revalidate_disk =      nvdimm_revalidate_disk,
228 };
229
230 static long pmem_dax_direct_access(struct dax_device *dax_dev,
231                 pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
232 {
233         struct pmem_device *pmem = dax_get_private(dax_dev);
234
235         return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn);
236 }
237
238 static const struct dax_operations pmem_dax_ops = {
239         .direct_access = pmem_dax_direct_access,
240 };
241
242 static void pmem_release_queue(void *q)
243 {
244         blk_cleanup_queue(q);
245 }
246
247 static void pmem_freeze_queue(void *q)
248 {
249         blk_freeze_queue_start(q);
250 }
251
252 static void pmem_release_disk(void *__pmem)
253 {
254         struct pmem_device *pmem = __pmem;
255
256         kill_dax(pmem->dax_dev);
257         put_dax(pmem->dax_dev);
258         del_gendisk(pmem->disk);
259         put_disk(pmem->disk);
260 }
261
262 static int pmem_attach_disk(struct device *dev,
263                 struct nd_namespace_common *ndns)
264 {
265         struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
266         struct nd_region *nd_region = to_nd_region(dev->parent);
267         struct vmem_altmap __altmap, *altmap = NULL;
268         struct resource *res = &nsio->res;
269         struct nd_pfn *nd_pfn = NULL;
270         struct dax_device *dax_dev;
271         int nid = dev_to_node(dev);
272         struct nd_pfn_sb *pfn_sb;
273         struct pmem_device *pmem;
274         struct resource pfn_res;
275         struct request_queue *q;
276         struct gendisk *disk;
277         void *addr;
278
279         /* while nsio_rw_bytes is active, parse a pfn info block if present */
280         if (is_nd_pfn(dev)) {
281                 nd_pfn = to_nd_pfn(dev);
282                 altmap = nvdimm_setup_pfn(nd_pfn, &pfn_res, &__altmap);
283                 if (IS_ERR(altmap))
284                         return PTR_ERR(altmap);
285         }
286
287         /* we're attaching a block device, disable raw namespace access */
288         devm_nsio_disable(dev, nsio);
289
290         pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
291         if (!pmem)
292                 return -ENOMEM;
293
294         dev_set_drvdata(dev, pmem);
295         pmem->phys_addr = res->start;
296         pmem->size = resource_size(res);
297         if (nvdimm_has_flush(nd_region) < 0)
298                 dev_warn(dev, "unable to guarantee persistence of writes\n");
299
300         if (!devm_request_mem_region(dev, res->start, resource_size(res),
301                                 dev_name(&ndns->dev))) {
302                 dev_warn(dev, "could not reserve region %pR\n", res);
303                 return -EBUSY;
304         }
305
306         q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
307         if (!q)
308                 return -ENOMEM;
309
310         if (devm_add_action_or_reset(dev, pmem_release_queue, q))
311                 return -ENOMEM;
312
313         pmem->pfn_flags = PFN_DEV;
314         if (is_nd_pfn(dev)) {
315                 addr = devm_memremap_pages(dev, &pfn_res, &q->q_usage_counter,
316                                 altmap);
317                 pfn_sb = nd_pfn->pfn_sb;
318                 pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
319                 pmem->pfn_pad = resource_size(res) - resource_size(&pfn_res);
320                 pmem->pfn_flags |= PFN_MAP;
321                 res = &pfn_res; /* for badblocks populate */
322                 res->start += pmem->data_offset;
323         } else if (pmem_should_map_pages(dev)) {
324                 addr = devm_memremap_pages(dev, &nsio->res,
325                                 &q->q_usage_counter, NULL);
326                 pmem->pfn_flags |= PFN_MAP;
327         } else
328                 addr = devm_memremap(dev, pmem->phys_addr,
329                                 pmem->size, ARCH_MEMREMAP_PMEM);
330
331         /*
332          * At release time the queue must be frozen before
333          * devm_memremap_pages is unwound
334          */
335         if (devm_add_action_or_reset(dev, pmem_freeze_queue, q))
336                 return -ENOMEM;
337
338         if (IS_ERR(addr))
339                 return PTR_ERR(addr);
340         pmem->virt_addr = addr;
341
342         blk_queue_write_cache(q, true, true);
343         blk_queue_make_request(q, pmem_make_request);
344         blk_queue_physical_block_size(q, PAGE_SIZE);
345         blk_queue_max_hw_sectors(q, UINT_MAX);
346         blk_queue_bounce_limit(q, BLK_BOUNCE_ANY);
347         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
348         queue_flag_set_unlocked(QUEUE_FLAG_DAX, q);
349         q->queuedata = pmem;
350
351         disk = alloc_disk_node(0, nid);
352         if (!disk)
353                 return -ENOMEM;
354         pmem->disk = disk;
355
356         disk->fops              = &pmem_fops;
357         disk->queue             = q;
358         disk->flags             = GENHD_FL_EXT_DEVT;
359         nvdimm_namespace_disk_name(ndns, disk->disk_name);
360         set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
361                         / 512);
362         if (devm_init_badblocks(dev, &pmem->bb))
363                 return -ENOMEM;
364         nvdimm_badblocks_populate(nd_region, &pmem->bb, res);
365         disk->bb = &pmem->bb;
366
367         dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops);
368         if (!dax_dev) {
369                 put_disk(disk);
370                 return -ENOMEM;
371         }
372         pmem->dax_dev = dax_dev;
373
374         device_add_disk(dev, disk);
375         if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
376                 return -ENOMEM;
377
378         revalidate_disk(disk);
379
380         return 0;
381 }
382
383 static int nd_pmem_probe(struct device *dev)
384 {
385         struct nd_namespace_common *ndns;
386
387         ndns = nvdimm_namespace_common_probe(dev);
388         if (IS_ERR(ndns))
389                 return PTR_ERR(ndns);
390
391         if (devm_nsio_enable(dev, to_nd_namespace_io(&ndns->dev)))
392                 return -ENXIO;
393
394         if (is_nd_btt(dev))
395                 return nvdimm_namespace_attach_btt(ndns);
396
397         if (is_nd_pfn(dev))
398                 return pmem_attach_disk(dev, ndns);
399
400         /* if we find a valid info-block we'll come back as that personality */
401         if (nd_btt_probe(dev, ndns) == 0 || nd_pfn_probe(dev, ndns) == 0
402                         || nd_dax_probe(dev, ndns) == 0)
403                 return -ENXIO;
404
405         /* ...otherwise we're just a raw pmem device */
406         return pmem_attach_disk(dev, ndns);
407 }
408
409 static int nd_pmem_remove(struct device *dev)
410 {
411         if (is_nd_btt(dev))
412                 nvdimm_namespace_detach_btt(to_nd_btt(dev));
413         nvdimm_flush(to_nd_region(dev->parent));
414
415         return 0;
416 }
417
418 static void nd_pmem_shutdown(struct device *dev)
419 {
420         nvdimm_flush(to_nd_region(dev->parent));
421 }
422
423 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
424 {
425         struct nd_region *nd_region;
426         resource_size_t offset = 0, end_trunc = 0;
427         struct nd_namespace_common *ndns;
428         struct nd_namespace_io *nsio;
429         struct resource res;
430         struct badblocks *bb;
431
432         if (event != NVDIMM_REVALIDATE_POISON)
433                 return;
434
435         if (is_nd_btt(dev)) {
436                 struct nd_btt *nd_btt = to_nd_btt(dev);
437
438                 ndns = nd_btt->ndns;
439                 nd_region = to_nd_region(ndns->dev.parent);
440                 nsio = to_nd_namespace_io(&ndns->dev);
441                 bb = &nsio->bb;
442         } else {
443                 struct pmem_device *pmem = dev_get_drvdata(dev);
444
445                 nd_region = to_region(pmem);
446                 bb = &pmem->bb;
447
448                 if (is_nd_pfn(dev)) {
449                         struct nd_pfn *nd_pfn = to_nd_pfn(dev);
450                         struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
451
452                         ndns = nd_pfn->ndns;
453                         offset = pmem->data_offset +
454                                         __le32_to_cpu(pfn_sb->start_pad);
455                         end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
456                 } else {
457                         ndns = to_ndns(dev);
458                 }
459
460                 nsio = to_nd_namespace_io(&ndns->dev);
461         }
462
463         res.start = nsio->res.start + offset;
464         res.end = nsio->res.end - end_trunc;
465         nvdimm_badblocks_populate(nd_region, bb, &res);
466 }
467
468 MODULE_ALIAS("pmem");
469 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
470 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
471 static struct nd_device_driver nd_pmem_driver = {
472         .probe = nd_pmem_probe,
473         .remove = nd_pmem_remove,
474         .notify = nd_pmem_notify,
475         .shutdown = nd_pmem_shutdown,
476         .drv = {
477                 .name = "nd_pmem",
478         },
479         .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
480 };
481
482 static int __init pmem_init(void)
483 {
484         return nd_driver_register(&nd_pmem_driver);
485 }
486 module_init(pmem_init);
487
488 static void pmem_exit(void)
489 {
490         driver_unregister(&nd_pmem_driver.drv);
491 }
492 module_exit(pmem_exit);
493
494 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
495 MODULE_LICENSE("GPL v2");