]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/nvme/host/core.c
nvme: add semicolon in nvme_command setting
[karo-tx-linux.git] / drivers / nvme / host / core.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <scsi/sg.h>
30 #include <asm/unaligned.h>
31
32 #include "nvme.h"
33 #include "fabrics.h"
34
35 #define NVME_MINORS             (1U << MINORBITS)
36
37 unsigned char admin_timeout = 60;
38 module_param(admin_timeout, byte, 0644);
39 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
40 EXPORT_SYMBOL_GPL(admin_timeout);
41
42 unsigned char nvme_io_timeout = 30;
43 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
44 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
45 EXPORT_SYMBOL_GPL(nvme_io_timeout);
46
47 unsigned char shutdown_timeout = 5;
48 module_param(shutdown_timeout, byte, 0644);
49 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
50
51 unsigned int nvme_max_retries = 5;
52 module_param_named(max_retries, nvme_max_retries, uint, 0644);
53 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
54 EXPORT_SYMBOL_GPL(nvme_max_retries);
55
56 static int nvme_char_major;
57 module_param(nvme_char_major, int, 0);
58
59 static LIST_HEAD(nvme_ctrl_list);
60 static DEFINE_SPINLOCK(dev_list_lock);
61
62 static struct class *nvme_class;
63
64 void nvme_cancel_request(struct request *req, void *data, bool reserved)
65 {
66         int status;
67
68         if (!blk_mq_request_started(req))
69                 return;
70
71         dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
72                                 "Cancelling I/O %d", req->tag);
73
74         status = NVME_SC_ABORT_REQ;
75         if (blk_queue_dying(req->q))
76                 status |= NVME_SC_DNR;
77         blk_mq_complete_request(req, status);
78 }
79 EXPORT_SYMBOL_GPL(nvme_cancel_request);
80
81 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
82                 enum nvme_ctrl_state new_state)
83 {
84         enum nvme_ctrl_state old_state;
85         bool changed = false;
86
87         spin_lock_irq(&ctrl->lock);
88
89         old_state = ctrl->state;
90         switch (new_state) {
91         case NVME_CTRL_LIVE:
92                 switch (old_state) {
93                 case NVME_CTRL_NEW:
94                 case NVME_CTRL_RESETTING:
95                 case NVME_CTRL_RECONNECTING:
96                         changed = true;
97                         /* FALLTHRU */
98                 default:
99                         break;
100                 }
101                 break;
102         case NVME_CTRL_RESETTING:
103                 switch (old_state) {
104                 case NVME_CTRL_NEW:
105                 case NVME_CTRL_LIVE:
106                 case NVME_CTRL_RECONNECTING:
107                         changed = true;
108                         /* FALLTHRU */
109                 default:
110                         break;
111                 }
112                 break;
113         case NVME_CTRL_RECONNECTING:
114                 switch (old_state) {
115                 case NVME_CTRL_LIVE:
116                         changed = true;
117                         /* FALLTHRU */
118                 default:
119                         break;
120                 }
121                 break;
122         case NVME_CTRL_DELETING:
123                 switch (old_state) {
124                 case NVME_CTRL_LIVE:
125                 case NVME_CTRL_RESETTING:
126                 case NVME_CTRL_RECONNECTING:
127                         changed = true;
128                         /* FALLTHRU */
129                 default:
130                         break;
131                 }
132                 break;
133         case NVME_CTRL_DEAD:
134                 switch (old_state) {
135                 case NVME_CTRL_DELETING:
136                         changed = true;
137                         /* FALLTHRU */
138                 default:
139                         break;
140                 }
141                 break;
142         default:
143                 break;
144         }
145
146         if (changed)
147                 ctrl->state = new_state;
148
149         spin_unlock_irq(&ctrl->lock);
150
151         return changed;
152 }
153 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
154
155 static void nvme_free_ns(struct kref *kref)
156 {
157         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
158
159         if (ns->ndev)
160                 nvme_nvm_unregister(ns);
161
162         if (ns->disk) {
163                 spin_lock(&dev_list_lock);
164                 ns->disk->private_data = NULL;
165                 spin_unlock(&dev_list_lock);
166         }
167
168         put_disk(ns->disk);
169         ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
170         nvme_put_ctrl(ns->ctrl);
171         kfree(ns);
172 }
173
174 static void nvme_put_ns(struct nvme_ns *ns)
175 {
176         kref_put(&ns->kref, nvme_free_ns);
177 }
178
179 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
180 {
181         struct nvme_ns *ns;
182
183         spin_lock(&dev_list_lock);
184         ns = disk->private_data;
185         if (ns) {
186                 if (!kref_get_unless_zero(&ns->kref))
187                         goto fail;
188                 if (!try_module_get(ns->ctrl->ops->module))
189                         goto fail_put_ns;
190         }
191         spin_unlock(&dev_list_lock);
192
193         return ns;
194
195 fail_put_ns:
196         kref_put(&ns->kref, nvme_free_ns);
197 fail:
198         spin_unlock(&dev_list_lock);
199         return NULL;
200 }
201
202 void nvme_requeue_req(struct request *req)
203 {
204         blk_mq_requeue_request(req, !blk_mq_queue_stopped(req->q));
205 }
206 EXPORT_SYMBOL_GPL(nvme_requeue_req);
207
208 struct request *nvme_alloc_request(struct request_queue *q,
209                 struct nvme_command *cmd, unsigned int flags, int qid)
210 {
211         unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
212         struct request *req;
213
214         if (qid == NVME_QID_ANY) {
215                 req = blk_mq_alloc_request(q, op, flags);
216         } else {
217                 req = blk_mq_alloc_request_hctx(q, op, flags,
218                                 qid ? qid - 1 : 0);
219         }
220         if (IS_ERR(req))
221                 return req;
222
223         req->cmd_flags |= REQ_FAILFAST_DRIVER;
224         nvme_req(req)->cmd = cmd;
225
226         return req;
227 }
228 EXPORT_SYMBOL_GPL(nvme_alloc_request);
229
230 static inline void nvme_setup_flush(struct nvme_ns *ns,
231                 struct nvme_command *cmnd)
232 {
233         memset(cmnd, 0, sizeof(*cmnd));
234         cmnd->common.opcode = nvme_cmd_flush;
235         cmnd->common.nsid = cpu_to_le32(ns->ns_id);
236 }
237
238 static inline int nvme_setup_discard(struct nvme_ns *ns, struct request *req,
239                 struct nvme_command *cmnd)
240 {
241         unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
242         struct nvme_dsm_range *range;
243         struct bio *bio;
244
245         range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC);
246         if (!range)
247                 return BLK_MQ_RQ_QUEUE_BUSY;
248
249         __rq_for_each_bio(bio, req) {
250                 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
251                 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
252
253                 range[n].cattr = cpu_to_le32(0);
254                 range[n].nlb = cpu_to_le32(nlb);
255                 range[n].slba = cpu_to_le64(slba);
256                 n++;
257         }
258
259         if (WARN_ON_ONCE(n != segments)) {
260                 kfree(range);
261                 return BLK_MQ_RQ_QUEUE_ERROR;
262         }
263
264         memset(cmnd, 0, sizeof(*cmnd));
265         cmnd->dsm.opcode = nvme_cmd_dsm;
266         cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
267         cmnd->dsm.nr = segments - 1;
268         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
269
270         req->special_vec.bv_page = virt_to_page(range);
271         req->special_vec.bv_offset = offset_in_page(range);
272         req->special_vec.bv_len = sizeof(*range) * segments;
273         req->rq_flags |= RQF_SPECIAL_PAYLOAD;
274
275         return BLK_MQ_RQ_QUEUE_OK;
276 }
277
278 static inline void nvme_setup_rw(struct nvme_ns *ns, struct request *req,
279                 struct nvme_command *cmnd)
280 {
281         u16 control = 0;
282         u32 dsmgmt = 0;
283
284         if (req->cmd_flags & REQ_FUA)
285                 control |= NVME_RW_FUA;
286         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
287                 control |= NVME_RW_LR;
288
289         if (req->cmd_flags & REQ_RAHEAD)
290                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
291
292         memset(cmnd, 0, sizeof(*cmnd));
293         cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
294         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
295         cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
296         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
297
298         if (ns->ms) {
299                 switch (ns->pi_type) {
300                 case NVME_NS_DPS_PI_TYPE3:
301                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
302                         break;
303                 case NVME_NS_DPS_PI_TYPE1:
304                 case NVME_NS_DPS_PI_TYPE2:
305                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
306                                         NVME_RW_PRINFO_PRCHK_REF;
307                         cmnd->rw.reftag = cpu_to_le32(
308                                         nvme_block_nr(ns, blk_rq_pos(req)));
309                         break;
310                 }
311                 if (!blk_integrity_rq(req))
312                         control |= NVME_RW_PRINFO_PRACT;
313         }
314
315         cmnd->rw.control = cpu_to_le16(control);
316         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
317 }
318
319 int nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
320                 struct nvme_command *cmd)
321 {
322         int ret = BLK_MQ_RQ_QUEUE_OK;
323
324         switch (req_op(req)) {
325         case REQ_OP_DRV_IN:
326         case REQ_OP_DRV_OUT:
327                 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
328                 break;
329         case REQ_OP_FLUSH:
330                 nvme_setup_flush(ns, cmd);
331                 break;
332         case REQ_OP_DISCARD:
333                 ret = nvme_setup_discard(ns, req, cmd);
334                 break;
335         case REQ_OP_READ:
336         case REQ_OP_WRITE:
337                 nvme_setup_rw(ns, req, cmd);
338                 break;
339         default:
340                 WARN_ON_ONCE(1);
341                 return BLK_MQ_RQ_QUEUE_ERROR;
342         }
343
344         cmd->common.command_id = req->tag;
345         return ret;
346 }
347 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
348
349 /*
350  * Returns 0 on success.  If the result is negative, it's a Linux error code;
351  * if the result is positive, it's an NVM Express status code
352  */
353 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
354                 union nvme_result *result, void *buffer, unsigned bufflen,
355                 unsigned timeout, int qid, int at_head, int flags)
356 {
357         struct request *req;
358         int ret;
359
360         req = nvme_alloc_request(q, cmd, flags, qid);
361         if (IS_ERR(req))
362                 return PTR_ERR(req);
363
364         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
365
366         if (buffer && bufflen) {
367                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
368                 if (ret)
369                         goto out;
370         }
371
372         blk_execute_rq(req->q, NULL, req, at_head);
373         if (result)
374                 *result = nvme_req(req)->result;
375         ret = req->errors;
376  out:
377         blk_mq_free_request(req);
378         return ret;
379 }
380 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
381
382 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
383                 void *buffer, unsigned bufflen)
384 {
385         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
386                         NVME_QID_ANY, 0, 0);
387 }
388 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
389
390 int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
391                 void __user *ubuffer, unsigned bufflen,
392                 void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
393                 u32 *result, unsigned timeout)
394 {
395         bool write = nvme_is_write(cmd);
396         struct nvme_ns *ns = q->queuedata;
397         struct gendisk *disk = ns ? ns->disk : NULL;
398         struct request *req;
399         struct bio *bio = NULL;
400         void *meta = NULL;
401         int ret;
402
403         req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
404         if (IS_ERR(req))
405                 return PTR_ERR(req);
406
407         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
408
409         if (ubuffer && bufflen) {
410                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
411                                 GFP_KERNEL);
412                 if (ret)
413                         goto out;
414                 bio = req->bio;
415
416                 if (!disk)
417                         goto submit;
418                 bio->bi_bdev = bdget_disk(disk, 0);
419                 if (!bio->bi_bdev) {
420                         ret = -ENODEV;
421                         goto out_unmap;
422                 }
423
424                 if (meta_buffer && meta_len) {
425                         struct bio_integrity_payload *bip;
426
427                         meta = kmalloc(meta_len, GFP_KERNEL);
428                         if (!meta) {
429                                 ret = -ENOMEM;
430                                 goto out_unmap;
431                         }
432
433                         if (write) {
434                                 if (copy_from_user(meta, meta_buffer,
435                                                 meta_len)) {
436                                         ret = -EFAULT;
437                                         goto out_free_meta;
438                                 }
439                         }
440
441                         bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
442                         if (IS_ERR(bip)) {
443                                 ret = PTR_ERR(bip);
444                                 goto out_free_meta;
445                         }
446
447                         bip->bip_iter.bi_size = meta_len;
448                         bip->bip_iter.bi_sector = meta_seed;
449
450                         ret = bio_integrity_add_page(bio, virt_to_page(meta),
451                                         meta_len, offset_in_page(meta));
452                         if (ret != meta_len) {
453                                 ret = -ENOMEM;
454                                 goto out_free_meta;
455                         }
456                 }
457         }
458  submit:
459         blk_execute_rq(req->q, disk, req, 0);
460         ret = req->errors;
461         if (result)
462                 *result = le32_to_cpu(nvme_req(req)->result.u32);
463         if (meta && !ret && !write) {
464                 if (copy_to_user(meta_buffer, meta, meta_len))
465                         ret = -EFAULT;
466         }
467  out_free_meta:
468         kfree(meta);
469  out_unmap:
470         if (bio) {
471                 if (disk && bio->bi_bdev)
472                         bdput(bio->bi_bdev);
473                 blk_rq_unmap_user(bio);
474         }
475  out:
476         blk_mq_free_request(req);
477         return ret;
478 }
479
480 int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
481                 void __user *ubuffer, unsigned bufflen, u32 *result,
482                 unsigned timeout)
483 {
484         return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
485                         result, timeout);
486 }
487
488 static void nvme_keep_alive_end_io(struct request *rq, int error)
489 {
490         struct nvme_ctrl *ctrl = rq->end_io_data;
491
492         blk_mq_free_request(rq);
493
494         if (error) {
495                 dev_err(ctrl->device,
496                         "failed nvme_keep_alive_end_io error=%d\n", error);
497                 return;
498         }
499
500         schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
501 }
502
503 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
504 {
505         struct nvme_command c;
506         struct request *rq;
507
508         memset(&c, 0, sizeof(c));
509         c.common.opcode = nvme_admin_keep_alive;
510
511         rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED,
512                         NVME_QID_ANY);
513         if (IS_ERR(rq))
514                 return PTR_ERR(rq);
515
516         rq->timeout = ctrl->kato * HZ;
517         rq->end_io_data = ctrl;
518
519         blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
520
521         return 0;
522 }
523
524 static void nvme_keep_alive_work(struct work_struct *work)
525 {
526         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
527                         struct nvme_ctrl, ka_work);
528
529         if (nvme_keep_alive(ctrl)) {
530                 /* allocation failure, reset the controller */
531                 dev_err(ctrl->device, "keep-alive failed\n");
532                 ctrl->ops->reset_ctrl(ctrl);
533                 return;
534         }
535 }
536
537 void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
538 {
539         if (unlikely(ctrl->kato == 0))
540                 return;
541
542         INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
543         schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
544 }
545 EXPORT_SYMBOL_GPL(nvme_start_keep_alive);
546
547 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
548 {
549         if (unlikely(ctrl->kato == 0))
550                 return;
551
552         cancel_delayed_work_sync(&ctrl->ka_work);
553 }
554 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
555
556 int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
557 {
558         struct nvme_command c = { };
559         int error;
560
561         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
562         c.identify.opcode = nvme_admin_identify;
563         c.identify.cns = cpu_to_le32(NVME_ID_CNS_CTRL);
564
565         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
566         if (!*id)
567                 return -ENOMEM;
568
569         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
570                         sizeof(struct nvme_id_ctrl));
571         if (error)
572                 kfree(*id);
573         return error;
574 }
575
576 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
577 {
578         struct nvme_command c = { };
579
580         c.identify.opcode = nvme_admin_identify;
581         c.identify.cns = cpu_to_le32(NVME_ID_CNS_NS_ACTIVE_LIST);
582         c.identify.nsid = cpu_to_le32(nsid);
583         return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
584 }
585
586 int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
587                 struct nvme_id_ns **id)
588 {
589         struct nvme_command c = { };
590         int error;
591
592         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
593         c.identify.opcode = nvme_admin_identify;
594         c.identify.nsid = cpu_to_le32(nsid);
595
596         *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
597         if (!*id)
598                 return -ENOMEM;
599
600         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
601                         sizeof(struct nvme_id_ns));
602         if (error)
603                 kfree(*id);
604         return error;
605 }
606
607 int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
608                       void *buffer, size_t buflen, u32 *result)
609 {
610         struct nvme_command c;
611         union nvme_result res;
612         int ret;
613
614         memset(&c, 0, sizeof(c));
615         c.features.opcode = nvme_admin_get_features;
616         c.features.nsid = cpu_to_le32(nsid);
617         c.features.fid = cpu_to_le32(fid);
618
619         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, buffer, buflen, 0,
620                         NVME_QID_ANY, 0, 0);
621         if (ret >= 0 && result)
622                 *result = le32_to_cpu(res.u32);
623         return ret;
624 }
625
626 int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
627                       void *buffer, size_t buflen, u32 *result)
628 {
629         struct nvme_command c;
630         union nvme_result res;
631         int ret;
632
633         memset(&c, 0, sizeof(c));
634         c.features.opcode = nvme_admin_set_features;
635         c.features.fid = cpu_to_le32(fid);
636         c.features.dword11 = cpu_to_le32(dword11);
637
638         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
639                         buffer, buflen, 0, NVME_QID_ANY, 0, 0);
640         if (ret >= 0 && result)
641                 *result = le32_to_cpu(res.u32);
642         return ret;
643 }
644
645 int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
646 {
647         struct nvme_command c = { };
648         int error;
649
650         c.common.opcode = nvme_admin_get_log_page,
651         c.common.nsid = cpu_to_le32(0xFFFFFFFF),
652         c.common.cdw10[0] = cpu_to_le32(
653                         (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
654                          NVME_LOG_SMART),
655
656         *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
657         if (!*log)
658                 return -ENOMEM;
659
660         error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
661                         sizeof(struct nvme_smart_log));
662         if (error)
663                 kfree(*log);
664         return error;
665 }
666
667 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
668 {
669         u32 q_count = (*count - 1) | ((*count - 1) << 16);
670         u32 result;
671         int status, nr_io_queues;
672
673         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
674                         &result);
675         if (status < 0)
676                 return status;
677
678         /*
679          * Degraded controllers might return an error when setting the queue
680          * count.  We still want to be able to bring them online and offer
681          * access to the admin queue, as that might be only way to fix them up.
682          */
683         if (status > 0) {
684                 dev_err(ctrl->dev, "Could not set queue count (%d)\n", status);
685                 *count = 0;
686         } else {
687                 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
688                 *count = min(*count, nr_io_queues);
689         }
690
691         return 0;
692 }
693 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
694
695 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
696 {
697         struct nvme_user_io io;
698         struct nvme_command c;
699         unsigned length, meta_len;
700         void __user *metadata;
701
702         if (copy_from_user(&io, uio, sizeof(io)))
703                 return -EFAULT;
704         if (io.flags)
705                 return -EINVAL;
706
707         switch (io.opcode) {
708         case nvme_cmd_write:
709         case nvme_cmd_read:
710         case nvme_cmd_compare:
711                 break;
712         default:
713                 return -EINVAL;
714         }
715
716         length = (io.nblocks + 1) << ns->lba_shift;
717         meta_len = (io.nblocks + 1) * ns->ms;
718         metadata = (void __user *)(uintptr_t)io.metadata;
719
720         if (ns->ext) {
721                 length += meta_len;
722                 meta_len = 0;
723         } else if (meta_len) {
724                 if ((io.metadata & 3) || !io.metadata)
725                         return -EINVAL;
726         }
727
728         memset(&c, 0, sizeof(c));
729         c.rw.opcode = io.opcode;
730         c.rw.flags = io.flags;
731         c.rw.nsid = cpu_to_le32(ns->ns_id);
732         c.rw.slba = cpu_to_le64(io.slba);
733         c.rw.length = cpu_to_le16(io.nblocks);
734         c.rw.control = cpu_to_le16(io.control);
735         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
736         c.rw.reftag = cpu_to_le32(io.reftag);
737         c.rw.apptag = cpu_to_le16(io.apptag);
738         c.rw.appmask = cpu_to_le16(io.appmask);
739
740         return __nvme_submit_user_cmd(ns->queue, &c,
741                         (void __user *)(uintptr_t)io.addr, length,
742                         metadata, meta_len, io.slba, NULL, 0);
743 }
744
745 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
746                         struct nvme_passthru_cmd __user *ucmd)
747 {
748         struct nvme_passthru_cmd cmd;
749         struct nvme_command c;
750         unsigned timeout = 0;
751         int status;
752
753         if (!capable(CAP_SYS_ADMIN))
754                 return -EACCES;
755         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
756                 return -EFAULT;
757         if (cmd.flags)
758                 return -EINVAL;
759
760         memset(&c, 0, sizeof(c));
761         c.common.opcode = cmd.opcode;
762         c.common.flags = cmd.flags;
763         c.common.nsid = cpu_to_le32(cmd.nsid);
764         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
765         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
766         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
767         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
768         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
769         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
770         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
771         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
772
773         if (cmd.timeout_ms)
774                 timeout = msecs_to_jiffies(cmd.timeout_ms);
775
776         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
777                         (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
778                         &cmd.result, timeout);
779         if (status >= 0) {
780                 if (put_user(cmd.result, &ucmd->result))
781                         return -EFAULT;
782         }
783
784         return status;
785 }
786
787 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
788                 unsigned int cmd, unsigned long arg)
789 {
790         struct nvme_ns *ns = bdev->bd_disk->private_data;
791
792         switch (cmd) {
793         case NVME_IOCTL_ID:
794                 force_successful_syscall_return();
795                 return ns->ns_id;
796         case NVME_IOCTL_ADMIN_CMD:
797                 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
798         case NVME_IOCTL_IO_CMD:
799                 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
800         case NVME_IOCTL_SUBMIT_IO:
801                 return nvme_submit_io(ns, (void __user *)arg);
802 #ifdef CONFIG_BLK_DEV_NVME_SCSI
803         case SG_GET_VERSION_NUM:
804                 return nvme_sg_get_version_num((void __user *)arg);
805         case SG_IO:
806                 return nvme_sg_io(ns, (void __user *)arg);
807 #endif
808         default:
809 #ifdef CONFIG_NVM
810                 if (ns->ndev)
811                         return nvme_nvm_ioctl(ns, cmd, arg);
812 #endif
813                 if (is_sed_ioctl(cmd))
814                         return sed_ioctl(ns->ctrl->opal_dev, cmd,
815                                          (void __user *) arg);
816                 return -ENOTTY;
817         }
818 }
819
820 #ifdef CONFIG_COMPAT
821 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
822                         unsigned int cmd, unsigned long arg)
823 {
824         switch (cmd) {
825         case SG_IO:
826                 return -ENOIOCTLCMD;
827         }
828         return nvme_ioctl(bdev, mode, cmd, arg);
829 }
830 #else
831 #define nvme_compat_ioctl       NULL
832 #endif
833
834 static int nvme_open(struct block_device *bdev, fmode_t mode)
835 {
836         return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
837 }
838
839 static void nvme_release(struct gendisk *disk, fmode_t mode)
840 {
841         struct nvme_ns *ns = disk->private_data;
842
843         module_put(ns->ctrl->ops->module);
844         nvme_put_ns(ns);
845 }
846
847 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
848 {
849         /* some standard values */
850         geo->heads = 1 << 6;
851         geo->sectors = 1 << 5;
852         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
853         return 0;
854 }
855
856 #ifdef CONFIG_BLK_DEV_INTEGRITY
857 static void nvme_init_integrity(struct nvme_ns *ns)
858 {
859         struct blk_integrity integrity;
860
861         memset(&integrity, 0, sizeof(integrity));
862         switch (ns->pi_type) {
863         case NVME_NS_DPS_PI_TYPE3:
864                 integrity.profile = &t10_pi_type3_crc;
865                 integrity.tag_size = sizeof(u16) + sizeof(u32);
866                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
867                 break;
868         case NVME_NS_DPS_PI_TYPE1:
869         case NVME_NS_DPS_PI_TYPE2:
870                 integrity.profile = &t10_pi_type1_crc;
871                 integrity.tag_size = sizeof(u16);
872                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
873                 break;
874         default:
875                 integrity.profile = NULL;
876                 break;
877         }
878         integrity.tuple_size = ns->ms;
879         blk_integrity_register(ns->disk, &integrity);
880         blk_queue_max_integrity_segments(ns->queue, 1);
881 }
882 #else
883 static void nvme_init_integrity(struct nvme_ns *ns)
884 {
885 }
886 #endif /* CONFIG_BLK_DEV_INTEGRITY */
887
888 static void nvme_config_discard(struct nvme_ns *ns)
889 {
890         struct nvme_ctrl *ctrl = ns->ctrl;
891         u32 logical_block_size = queue_logical_block_size(ns->queue);
892
893         BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
894                         NVME_DSM_MAX_RANGES);
895
896         if (ctrl->quirks & NVME_QUIRK_DISCARD_ZEROES)
897                 ns->queue->limits.discard_zeroes_data = 1;
898         else
899                 ns->queue->limits.discard_zeroes_data = 0;
900
901         ns->queue->limits.discard_alignment = logical_block_size;
902         ns->queue->limits.discard_granularity = logical_block_size;
903         blk_queue_max_discard_sectors(ns->queue, UINT_MAX);
904         blk_queue_max_discard_segments(ns->queue, NVME_DSM_MAX_RANGES);
905         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
906 }
907
908 static int nvme_revalidate_ns(struct nvme_ns *ns, struct nvme_id_ns **id)
909 {
910         if (nvme_identify_ns(ns->ctrl, ns->ns_id, id)) {
911                 dev_warn(ns->ctrl->dev, "%s: Identify failure\n", __func__);
912                 return -ENODEV;
913         }
914
915         if ((*id)->ncap == 0) {
916                 kfree(*id);
917                 return -ENODEV;
918         }
919
920         if (ns->ctrl->vs >= NVME_VS(1, 1, 0))
921                 memcpy(ns->eui, (*id)->eui64, sizeof(ns->eui));
922         if (ns->ctrl->vs >= NVME_VS(1, 2, 0))
923                 memcpy(ns->uuid, (*id)->nguid, sizeof(ns->uuid));
924
925         return 0;
926 }
927
928 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
929 {
930         struct nvme_ns *ns = disk->private_data;
931         u8 lbaf, pi_type;
932         u16 old_ms;
933         unsigned short bs;
934
935         old_ms = ns->ms;
936         lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
937         ns->lba_shift = id->lbaf[lbaf].ds;
938         ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
939         ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
940
941         /*
942          * If identify namespace failed, use default 512 byte block size so
943          * block layer can use before failing read/write for 0 capacity.
944          */
945         if (ns->lba_shift == 0)
946                 ns->lba_shift = 9;
947         bs = 1 << ns->lba_shift;
948         /* XXX: PI implementation requires metadata equal t10 pi tuple size */
949         pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
950                                         id->dps & NVME_NS_DPS_PI_MASK : 0;
951
952         blk_mq_freeze_queue(disk->queue);
953         if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
954                                 ns->ms != old_ms ||
955                                 bs != queue_logical_block_size(disk->queue) ||
956                                 (ns->ms && ns->ext)))
957                 blk_integrity_unregister(disk);
958
959         ns->pi_type = pi_type;
960         blk_queue_logical_block_size(ns->queue, bs);
961
962         if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
963                 nvme_init_integrity(ns);
964         if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
965                 set_capacity(disk, 0);
966         else
967                 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
968
969         if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
970                 nvme_config_discard(ns);
971         blk_mq_unfreeze_queue(disk->queue);
972 }
973
974 static int nvme_revalidate_disk(struct gendisk *disk)
975 {
976         struct nvme_ns *ns = disk->private_data;
977         struct nvme_id_ns *id = NULL;
978         int ret;
979
980         if (test_bit(NVME_NS_DEAD, &ns->flags)) {
981                 set_capacity(disk, 0);
982                 return -ENODEV;
983         }
984
985         ret = nvme_revalidate_ns(ns, &id);
986         if (ret)
987                 return ret;
988
989         __nvme_revalidate_disk(disk, id);
990         kfree(id);
991
992         return 0;
993 }
994
995 static char nvme_pr_type(enum pr_type type)
996 {
997         switch (type) {
998         case PR_WRITE_EXCLUSIVE:
999                 return 1;
1000         case PR_EXCLUSIVE_ACCESS:
1001                 return 2;
1002         case PR_WRITE_EXCLUSIVE_REG_ONLY:
1003                 return 3;
1004         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1005                 return 4;
1006         case PR_WRITE_EXCLUSIVE_ALL_REGS:
1007                 return 5;
1008         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1009                 return 6;
1010         default:
1011                 return 0;
1012         }
1013 };
1014
1015 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1016                                 u64 key, u64 sa_key, u8 op)
1017 {
1018         struct nvme_ns *ns = bdev->bd_disk->private_data;
1019         struct nvme_command c;
1020         u8 data[16] = { 0, };
1021
1022         put_unaligned_le64(key, &data[0]);
1023         put_unaligned_le64(sa_key, &data[8]);
1024
1025         memset(&c, 0, sizeof(c));
1026         c.common.opcode = op;
1027         c.common.nsid = cpu_to_le32(ns->ns_id);
1028         c.common.cdw10[0] = cpu_to_le32(cdw10);
1029
1030         return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1031 }
1032
1033 static int nvme_pr_register(struct block_device *bdev, u64 old,
1034                 u64 new, unsigned flags)
1035 {
1036         u32 cdw10;
1037
1038         if (flags & ~PR_FL_IGNORE_KEY)
1039                 return -EOPNOTSUPP;
1040
1041         cdw10 = old ? 2 : 0;
1042         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1043         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1044         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1045 }
1046
1047 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1048                 enum pr_type type, unsigned flags)
1049 {
1050         u32 cdw10;
1051
1052         if (flags & ~PR_FL_IGNORE_KEY)
1053                 return -EOPNOTSUPP;
1054
1055         cdw10 = nvme_pr_type(type) << 8;
1056         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1057         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1058 }
1059
1060 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1061                 enum pr_type type, bool abort)
1062 {
1063         u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
1064         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1065 }
1066
1067 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1068 {
1069         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1070         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1071 }
1072
1073 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1074 {
1075         u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
1076         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1077 }
1078
1079 static const struct pr_ops nvme_pr_ops = {
1080         .pr_register    = nvme_pr_register,
1081         .pr_reserve     = nvme_pr_reserve,
1082         .pr_release     = nvme_pr_release,
1083         .pr_preempt     = nvme_pr_preempt,
1084         .pr_clear       = nvme_pr_clear,
1085 };
1086
1087 #ifdef CONFIG_BLK_SED_OPAL
1088 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1089                 bool send)
1090 {
1091         struct nvme_ctrl *ctrl = data;
1092         struct nvme_command cmd;
1093
1094         memset(&cmd, 0, sizeof(cmd));
1095         if (send)
1096                 cmd.common.opcode = nvme_admin_security_send;
1097         else
1098                 cmd.common.opcode = nvme_admin_security_recv;
1099         cmd.common.nsid = 0;
1100         cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1101         cmd.common.cdw10[1] = cpu_to_le32(len);
1102
1103         return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
1104                                       ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0);
1105 }
1106 EXPORT_SYMBOL_GPL(nvme_sec_submit);
1107 #endif /* CONFIG_BLK_SED_OPAL */
1108
1109 static const struct block_device_operations nvme_fops = {
1110         .owner          = THIS_MODULE,
1111         .ioctl          = nvme_ioctl,
1112         .compat_ioctl   = nvme_compat_ioctl,
1113         .open           = nvme_open,
1114         .release        = nvme_release,
1115         .getgeo         = nvme_getgeo,
1116         .revalidate_disk= nvme_revalidate_disk,
1117         .pr_ops         = &nvme_pr_ops,
1118 };
1119
1120 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1121 {
1122         unsigned long timeout =
1123                 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1124         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1125         int ret;
1126
1127         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1128                 if (csts == ~0)
1129                         return -ENODEV;
1130                 if ((csts & NVME_CSTS_RDY) == bit)
1131                         break;
1132
1133                 msleep(100);
1134                 if (fatal_signal_pending(current))
1135                         return -EINTR;
1136                 if (time_after(jiffies, timeout)) {
1137                         dev_err(ctrl->device,
1138                                 "Device not ready; aborting %s\n", enabled ?
1139                                                 "initialisation" : "reset");
1140                         return -ENODEV;
1141                 }
1142         }
1143
1144         return ret;
1145 }
1146
1147 /*
1148  * If the device has been passed off to us in an enabled state, just clear
1149  * the enabled bit.  The spec says we should set the 'shutdown notification
1150  * bits', but doing so may cause the device to complete commands to the
1151  * admin queue ... and we don't know what memory that might be pointing at!
1152  */
1153 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1154 {
1155         int ret;
1156
1157         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1158         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1159
1160         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1161         if (ret)
1162                 return ret;
1163
1164         if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1165                 msleep(NVME_QUIRK_DELAY_AMOUNT);
1166
1167         return nvme_wait_ready(ctrl, cap, false);
1168 }
1169 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1170
1171 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1172 {
1173         /*
1174          * Default to a 4K page size, with the intention to update this
1175          * path in the future to accomodate architectures with differing
1176          * kernel and IO page sizes.
1177          */
1178         unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1179         int ret;
1180
1181         if (page_shift < dev_page_min) {
1182                 dev_err(ctrl->device,
1183                         "Minimum device page size %u too large for host (%u)\n",
1184                         1 << dev_page_min, 1 << page_shift);
1185                 return -ENODEV;
1186         }
1187
1188         ctrl->page_size = 1 << page_shift;
1189
1190         ctrl->ctrl_config = NVME_CC_CSS_NVM;
1191         ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1192         ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1193         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1194         ctrl->ctrl_config |= NVME_CC_ENABLE;
1195
1196         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1197         if (ret)
1198                 return ret;
1199         return nvme_wait_ready(ctrl, cap, true);
1200 }
1201 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1202
1203 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1204 {
1205         unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
1206         u32 csts;
1207         int ret;
1208
1209         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1210         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1211
1212         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1213         if (ret)
1214                 return ret;
1215
1216         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1217                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1218                         break;
1219
1220                 msleep(100);
1221                 if (fatal_signal_pending(current))
1222                         return -EINTR;
1223                 if (time_after(jiffies, timeout)) {
1224                         dev_err(ctrl->device,
1225                                 "Device shutdown incomplete; abort shutdown\n");
1226                         return -ENODEV;
1227                 }
1228         }
1229
1230         return ret;
1231 }
1232 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1233
1234 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1235                 struct request_queue *q)
1236 {
1237         bool vwc = false;
1238
1239         if (ctrl->max_hw_sectors) {
1240                 u32 max_segments =
1241                         (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1242
1243                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1244                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1245         }
1246         if (ctrl->quirks & NVME_QUIRK_STRIPE_SIZE)
1247                 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1248         blk_queue_virt_boundary(q, ctrl->page_size - 1);
1249         if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1250                 vwc = true;
1251         blk_queue_write_cache(q, vwc, vwc);
1252 }
1253
1254 /*
1255  * Initialize the cached copies of the Identify data and various controller
1256  * register in our nvme_ctrl structure.  This should be called as soon as
1257  * the admin queue is fully up and running.
1258  */
1259 int nvme_init_identify(struct nvme_ctrl *ctrl)
1260 {
1261         struct nvme_id_ctrl *id;
1262         u64 cap;
1263         int ret, page_shift;
1264         u32 max_hw_sectors;
1265
1266         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
1267         if (ret) {
1268                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
1269                 return ret;
1270         }
1271
1272         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
1273         if (ret) {
1274                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
1275                 return ret;
1276         }
1277         page_shift = NVME_CAP_MPSMIN(cap) + 12;
1278
1279         if (ctrl->vs >= NVME_VS(1, 1, 0))
1280                 ctrl->subsystem = NVME_CAP_NSSRC(cap);
1281
1282         ret = nvme_identify_ctrl(ctrl, &id);
1283         if (ret) {
1284                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
1285                 return -EIO;
1286         }
1287
1288         ctrl->oacs = le16_to_cpu(id->oacs);
1289         ctrl->vid = le16_to_cpu(id->vid);
1290         ctrl->oncs = le16_to_cpup(&id->oncs);
1291         atomic_set(&ctrl->abort_limit, id->acl + 1);
1292         ctrl->vwc = id->vwc;
1293         ctrl->cntlid = le16_to_cpup(&id->cntlid);
1294         memcpy(ctrl->serial, id->sn, sizeof(id->sn));
1295         memcpy(ctrl->model, id->mn, sizeof(id->mn));
1296         memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
1297         if (id->mdts)
1298                 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
1299         else
1300                 max_hw_sectors = UINT_MAX;
1301         ctrl->max_hw_sectors =
1302                 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
1303
1304         nvme_set_queue_limits(ctrl, ctrl->admin_q);
1305         ctrl->sgls = le32_to_cpu(id->sgls);
1306         ctrl->kas = le16_to_cpu(id->kas);
1307
1308         if (ctrl->ops->is_fabrics) {
1309                 ctrl->icdoff = le16_to_cpu(id->icdoff);
1310                 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
1311                 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
1312                 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
1313
1314                 /*
1315                  * In fabrics we need to verify the cntlid matches the
1316                  * admin connect
1317                  */
1318                 if (ctrl->cntlid != le16_to_cpu(id->cntlid))
1319                         ret = -EINVAL;
1320
1321                 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
1322                         dev_err(ctrl->dev,
1323                                 "keep-alive support is mandatory for fabrics\n");
1324                         ret = -EINVAL;
1325                 }
1326         } else {
1327                 ctrl->cntlid = le16_to_cpu(id->cntlid);
1328         }
1329
1330         kfree(id);
1331         return ret;
1332 }
1333 EXPORT_SYMBOL_GPL(nvme_init_identify);
1334
1335 static int nvme_dev_open(struct inode *inode, struct file *file)
1336 {
1337         struct nvme_ctrl *ctrl;
1338         int instance = iminor(inode);
1339         int ret = -ENODEV;
1340
1341         spin_lock(&dev_list_lock);
1342         list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
1343                 if (ctrl->instance != instance)
1344                         continue;
1345
1346                 if (!ctrl->admin_q) {
1347                         ret = -EWOULDBLOCK;
1348                         break;
1349                 }
1350                 if (!kref_get_unless_zero(&ctrl->kref))
1351                         break;
1352                 file->private_data = ctrl;
1353                 ret = 0;
1354                 break;
1355         }
1356         spin_unlock(&dev_list_lock);
1357
1358         return ret;
1359 }
1360
1361 static int nvme_dev_release(struct inode *inode, struct file *file)
1362 {
1363         nvme_put_ctrl(file->private_data);
1364         return 0;
1365 }
1366
1367 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
1368 {
1369         struct nvme_ns *ns;
1370         int ret;
1371
1372         mutex_lock(&ctrl->namespaces_mutex);
1373         if (list_empty(&ctrl->namespaces)) {
1374                 ret = -ENOTTY;
1375                 goto out_unlock;
1376         }
1377
1378         ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
1379         if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1380                 dev_warn(ctrl->device,
1381                         "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
1382                 ret = -EINVAL;
1383                 goto out_unlock;
1384         }
1385
1386         dev_warn(ctrl->device,
1387                 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
1388         kref_get(&ns->kref);
1389         mutex_unlock(&ctrl->namespaces_mutex);
1390
1391         ret = nvme_user_cmd(ctrl, ns, argp);
1392         nvme_put_ns(ns);
1393         return ret;
1394
1395 out_unlock:
1396         mutex_unlock(&ctrl->namespaces_mutex);
1397         return ret;
1398 }
1399
1400 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
1401                 unsigned long arg)
1402 {
1403         struct nvme_ctrl *ctrl = file->private_data;
1404         void __user *argp = (void __user *)arg;
1405
1406         switch (cmd) {
1407         case NVME_IOCTL_ADMIN_CMD:
1408                 return nvme_user_cmd(ctrl, NULL, argp);
1409         case NVME_IOCTL_IO_CMD:
1410                 return nvme_dev_user_cmd(ctrl, argp);
1411         case NVME_IOCTL_RESET:
1412                 dev_warn(ctrl->device, "resetting controller\n");
1413                 return ctrl->ops->reset_ctrl(ctrl);
1414         case NVME_IOCTL_SUBSYS_RESET:
1415                 return nvme_reset_subsystem(ctrl);
1416         case NVME_IOCTL_RESCAN:
1417                 nvme_queue_scan(ctrl);
1418                 return 0;
1419         default:
1420                 return -ENOTTY;
1421         }
1422 }
1423
1424 static const struct file_operations nvme_dev_fops = {
1425         .owner          = THIS_MODULE,
1426         .open           = nvme_dev_open,
1427         .release        = nvme_dev_release,
1428         .unlocked_ioctl = nvme_dev_ioctl,
1429         .compat_ioctl   = nvme_dev_ioctl,
1430 };
1431
1432 static ssize_t nvme_sysfs_reset(struct device *dev,
1433                                 struct device_attribute *attr, const char *buf,
1434                                 size_t count)
1435 {
1436         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1437         int ret;
1438
1439         ret = ctrl->ops->reset_ctrl(ctrl);
1440         if (ret < 0)
1441                 return ret;
1442         return count;
1443 }
1444 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1445
1446 static ssize_t nvme_sysfs_rescan(struct device *dev,
1447                                 struct device_attribute *attr, const char *buf,
1448                                 size_t count)
1449 {
1450         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1451
1452         nvme_queue_scan(ctrl);
1453         return count;
1454 }
1455 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
1456
1457 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
1458                                                                 char *buf)
1459 {
1460         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1461         struct nvme_ctrl *ctrl = ns->ctrl;
1462         int serial_len = sizeof(ctrl->serial);
1463         int model_len = sizeof(ctrl->model);
1464
1465         if (memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1466                 return sprintf(buf, "eui.%16phN\n", ns->uuid);
1467
1468         if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1469                 return sprintf(buf, "eui.%8phN\n", ns->eui);
1470
1471         while (ctrl->serial[serial_len - 1] == ' ')
1472                 serial_len--;
1473         while (ctrl->model[model_len - 1] == ' ')
1474                 model_len--;
1475
1476         return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
1477                 serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
1478 }
1479 static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);
1480
1481 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
1482                                                                 char *buf)
1483 {
1484         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1485         return sprintf(buf, "%pU\n", ns->uuid);
1486 }
1487 static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
1488
1489 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
1490                                                                 char *buf)
1491 {
1492         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1493         return sprintf(buf, "%8phd\n", ns->eui);
1494 }
1495 static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
1496
1497 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
1498                                                                 char *buf)
1499 {
1500         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1501         return sprintf(buf, "%d\n", ns->ns_id);
1502 }
1503 static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
1504
1505 static struct attribute *nvme_ns_attrs[] = {
1506         &dev_attr_wwid.attr,
1507         &dev_attr_uuid.attr,
1508         &dev_attr_eui.attr,
1509         &dev_attr_nsid.attr,
1510         NULL,
1511 };
1512
1513 static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj,
1514                 struct attribute *a, int n)
1515 {
1516         struct device *dev = container_of(kobj, struct device, kobj);
1517         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1518
1519         if (a == &dev_attr_uuid.attr) {
1520                 if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1521                         return 0;
1522         }
1523         if (a == &dev_attr_eui.attr) {
1524                 if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1525                         return 0;
1526         }
1527         return a->mode;
1528 }
1529
1530 static const struct attribute_group nvme_ns_attr_group = {
1531         .attrs          = nvme_ns_attrs,
1532         .is_visible     = nvme_ns_attrs_are_visible,
1533 };
1534
1535 #define nvme_show_str_function(field)                                           \
1536 static ssize_t  field##_show(struct device *dev,                                \
1537                             struct device_attribute *attr, char *buf)           \
1538 {                                                                               \
1539         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
1540         return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field);   \
1541 }                                                                               \
1542 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1543
1544 #define nvme_show_int_function(field)                                           \
1545 static ssize_t  field##_show(struct device *dev,                                \
1546                             struct device_attribute *attr, char *buf)           \
1547 {                                                                               \
1548         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
1549         return sprintf(buf, "%d\n", ctrl->field);       \
1550 }                                                                               \
1551 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1552
1553 nvme_show_str_function(model);
1554 nvme_show_str_function(serial);
1555 nvme_show_str_function(firmware_rev);
1556 nvme_show_int_function(cntlid);
1557
1558 static ssize_t nvme_sysfs_delete(struct device *dev,
1559                                 struct device_attribute *attr, const char *buf,
1560                                 size_t count)
1561 {
1562         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1563
1564         if (device_remove_file_self(dev, attr))
1565                 ctrl->ops->delete_ctrl(ctrl);
1566         return count;
1567 }
1568 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
1569
1570 static ssize_t nvme_sysfs_show_transport(struct device *dev,
1571                                          struct device_attribute *attr,
1572                                          char *buf)
1573 {
1574         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1575
1576         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
1577 }
1578 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
1579
1580 static ssize_t nvme_sysfs_show_state(struct device *dev,
1581                                      struct device_attribute *attr,
1582                                      char *buf)
1583 {
1584         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1585         static const char *const state_name[] = {
1586                 [NVME_CTRL_NEW]         = "new",
1587                 [NVME_CTRL_LIVE]        = "live",
1588                 [NVME_CTRL_RESETTING]   = "resetting",
1589                 [NVME_CTRL_RECONNECTING]= "reconnecting",
1590                 [NVME_CTRL_DELETING]    = "deleting",
1591                 [NVME_CTRL_DEAD]        = "dead",
1592         };
1593
1594         if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
1595             state_name[ctrl->state])
1596                 return sprintf(buf, "%s\n", state_name[ctrl->state]);
1597
1598         return sprintf(buf, "unknown state\n");
1599 }
1600
1601 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
1602
1603 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
1604                                          struct device_attribute *attr,
1605                                          char *buf)
1606 {
1607         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1608
1609         return snprintf(buf, PAGE_SIZE, "%s\n",
1610                         ctrl->ops->get_subsysnqn(ctrl));
1611 }
1612 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
1613
1614 static ssize_t nvme_sysfs_show_address(struct device *dev,
1615                                          struct device_attribute *attr,
1616                                          char *buf)
1617 {
1618         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1619
1620         return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
1621 }
1622 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
1623
1624 static struct attribute *nvme_dev_attrs[] = {
1625         &dev_attr_reset_controller.attr,
1626         &dev_attr_rescan_controller.attr,
1627         &dev_attr_model.attr,
1628         &dev_attr_serial.attr,
1629         &dev_attr_firmware_rev.attr,
1630         &dev_attr_cntlid.attr,
1631         &dev_attr_delete_controller.attr,
1632         &dev_attr_transport.attr,
1633         &dev_attr_subsysnqn.attr,
1634         &dev_attr_address.attr,
1635         &dev_attr_state.attr,
1636         NULL
1637 };
1638
1639 #define CHECK_ATTR(ctrl, a, name)               \
1640         if ((a) == &dev_attr_##name.attr &&     \
1641             !(ctrl)->ops->get_##name)           \
1642                 return 0
1643
1644 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
1645                 struct attribute *a, int n)
1646 {
1647         struct device *dev = container_of(kobj, struct device, kobj);
1648         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1649
1650         if (a == &dev_attr_delete_controller.attr) {
1651                 if (!ctrl->ops->delete_ctrl)
1652                         return 0;
1653         }
1654
1655         CHECK_ATTR(ctrl, a, subsysnqn);
1656         CHECK_ATTR(ctrl, a, address);
1657
1658         return a->mode;
1659 }
1660
1661 static struct attribute_group nvme_dev_attrs_group = {
1662         .attrs          = nvme_dev_attrs,
1663         .is_visible     = nvme_dev_attrs_are_visible,
1664 };
1665
1666 static const struct attribute_group *nvme_dev_attr_groups[] = {
1667         &nvme_dev_attrs_group,
1668         NULL,
1669 };
1670
1671 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
1672 {
1673         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
1674         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
1675
1676         return nsa->ns_id - nsb->ns_id;
1677 }
1678
1679 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1680 {
1681         struct nvme_ns *ns, *ret = NULL;
1682
1683         mutex_lock(&ctrl->namespaces_mutex);
1684         list_for_each_entry(ns, &ctrl->namespaces, list) {
1685                 if (ns->ns_id == nsid) {
1686                         kref_get(&ns->kref);
1687                         ret = ns;
1688                         break;
1689                 }
1690                 if (ns->ns_id > nsid)
1691                         break;
1692         }
1693         mutex_unlock(&ctrl->namespaces_mutex);
1694         return ret;
1695 }
1696
1697 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1698 {
1699         struct nvme_ns *ns;
1700         struct gendisk *disk;
1701         struct nvme_id_ns *id;
1702         char disk_name[DISK_NAME_LEN];
1703         int node = dev_to_node(ctrl->dev);
1704
1705         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
1706         if (!ns)
1707                 return;
1708
1709         ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
1710         if (ns->instance < 0)
1711                 goto out_free_ns;
1712
1713         ns->queue = blk_mq_init_queue(ctrl->tagset);
1714         if (IS_ERR(ns->queue))
1715                 goto out_release_instance;
1716         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1717         ns->queue->queuedata = ns;
1718         ns->ctrl = ctrl;
1719
1720         kref_init(&ns->kref);
1721         ns->ns_id = nsid;
1722         ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
1723
1724         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1725         nvme_set_queue_limits(ctrl, ns->queue);
1726
1727         sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
1728
1729         if (nvme_revalidate_ns(ns, &id))
1730                 goto out_free_queue;
1731
1732         if (nvme_nvm_ns_supported(ns, id) &&
1733                                 nvme_nvm_register(ns, disk_name, node)) {
1734                 dev_warn(ctrl->dev, "%s: LightNVM init failure\n", __func__);
1735                 goto out_free_id;
1736         }
1737
1738         disk = alloc_disk_node(0, node);
1739         if (!disk)
1740                 goto out_free_id;
1741
1742         disk->fops = &nvme_fops;
1743         disk->private_data = ns;
1744         disk->queue = ns->queue;
1745         disk->flags = GENHD_FL_EXT_DEVT;
1746         memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
1747         ns->disk = disk;
1748
1749         __nvme_revalidate_disk(disk, id);
1750
1751         mutex_lock(&ctrl->namespaces_mutex);
1752         list_add_tail(&ns->list, &ctrl->namespaces);
1753         mutex_unlock(&ctrl->namespaces_mutex);
1754
1755         kref_get(&ctrl->kref);
1756
1757         kfree(id);
1758
1759         device_add_disk(ctrl->device, ns->disk);
1760         if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
1761                                         &nvme_ns_attr_group))
1762                 pr_warn("%s: failed to create sysfs group for identification\n",
1763                         ns->disk->disk_name);
1764         if (ns->ndev && nvme_nvm_register_sysfs(ns))
1765                 pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
1766                         ns->disk->disk_name);
1767         return;
1768  out_free_id:
1769         kfree(id);
1770  out_free_queue:
1771         blk_cleanup_queue(ns->queue);
1772  out_release_instance:
1773         ida_simple_remove(&ctrl->ns_ida, ns->instance);
1774  out_free_ns:
1775         kfree(ns);
1776 }
1777
1778 static void nvme_ns_remove(struct nvme_ns *ns)
1779 {
1780         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
1781                 return;
1782
1783         if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
1784                 if (blk_get_integrity(ns->disk))
1785                         blk_integrity_unregister(ns->disk);
1786                 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
1787                                         &nvme_ns_attr_group);
1788                 if (ns->ndev)
1789                         nvme_nvm_unregister_sysfs(ns);
1790                 del_gendisk(ns->disk);
1791                 blk_mq_abort_requeue_list(ns->queue);
1792                 blk_cleanup_queue(ns->queue);
1793         }
1794
1795         mutex_lock(&ns->ctrl->namespaces_mutex);
1796         list_del_init(&ns->list);
1797         mutex_unlock(&ns->ctrl->namespaces_mutex);
1798
1799         nvme_put_ns(ns);
1800 }
1801
1802 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1803 {
1804         struct nvme_ns *ns;
1805
1806         ns = nvme_find_get_ns(ctrl, nsid);
1807         if (ns) {
1808                 if (ns->disk && revalidate_disk(ns->disk))
1809                         nvme_ns_remove(ns);
1810                 nvme_put_ns(ns);
1811         } else
1812                 nvme_alloc_ns(ctrl, nsid);
1813 }
1814
1815 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
1816                                         unsigned nsid)
1817 {
1818         struct nvme_ns *ns, *next;
1819
1820         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
1821                 if (ns->ns_id > nsid)
1822                         nvme_ns_remove(ns);
1823         }
1824 }
1825
1826 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
1827 {
1828         struct nvme_ns *ns;
1829         __le32 *ns_list;
1830         unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
1831         int ret = 0;
1832
1833         ns_list = kzalloc(0x1000, GFP_KERNEL);
1834         if (!ns_list)
1835                 return -ENOMEM;
1836
1837         for (i = 0; i < num_lists; i++) {
1838                 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
1839                 if (ret)
1840                         goto free;
1841
1842                 for (j = 0; j < min(nn, 1024U); j++) {
1843                         nsid = le32_to_cpu(ns_list[j]);
1844                         if (!nsid)
1845                                 goto out;
1846
1847                         nvme_validate_ns(ctrl, nsid);
1848
1849                         while (++prev < nsid) {
1850                                 ns = nvme_find_get_ns(ctrl, prev);
1851                                 if (ns) {
1852                                         nvme_ns_remove(ns);
1853                                         nvme_put_ns(ns);
1854                                 }
1855                         }
1856                 }
1857                 nn -= j;
1858         }
1859  out:
1860         nvme_remove_invalid_namespaces(ctrl, prev);
1861  free:
1862         kfree(ns_list);
1863         return ret;
1864 }
1865
1866 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
1867 {
1868         unsigned i;
1869
1870         for (i = 1; i <= nn; i++)
1871                 nvme_validate_ns(ctrl, i);
1872
1873         nvme_remove_invalid_namespaces(ctrl, nn);
1874 }
1875
1876 static void nvme_scan_work(struct work_struct *work)
1877 {
1878         struct nvme_ctrl *ctrl =
1879                 container_of(work, struct nvme_ctrl, scan_work);
1880         struct nvme_id_ctrl *id;
1881         unsigned nn;
1882
1883         if (ctrl->state != NVME_CTRL_LIVE)
1884                 return;
1885
1886         if (nvme_identify_ctrl(ctrl, &id))
1887                 return;
1888
1889         nn = le32_to_cpu(id->nn);
1890         if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1891             !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
1892                 if (!nvme_scan_ns_list(ctrl, nn))
1893                         goto done;
1894         }
1895         nvme_scan_ns_sequential(ctrl, nn);
1896  done:
1897         mutex_lock(&ctrl->namespaces_mutex);
1898         list_sort(NULL, &ctrl->namespaces, ns_cmp);
1899         mutex_unlock(&ctrl->namespaces_mutex);
1900         kfree(id);
1901 }
1902
1903 void nvme_queue_scan(struct nvme_ctrl *ctrl)
1904 {
1905         /*
1906          * Do not queue new scan work when a controller is reset during
1907          * removal.
1908          */
1909         if (ctrl->state == NVME_CTRL_LIVE)
1910                 schedule_work(&ctrl->scan_work);
1911 }
1912 EXPORT_SYMBOL_GPL(nvme_queue_scan);
1913
1914 /*
1915  * This function iterates the namespace list unlocked to allow recovery from
1916  * controller failure. It is up to the caller to ensure the namespace list is
1917  * not modified by scan work while this function is executing.
1918  */
1919 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
1920 {
1921         struct nvme_ns *ns, *next;
1922
1923         /*
1924          * The dead states indicates the controller was not gracefully
1925          * disconnected. In that case, we won't be able to flush any data while
1926          * removing the namespaces' disks; fail all the queues now to avoid
1927          * potentially having to clean up the failed sync later.
1928          */
1929         if (ctrl->state == NVME_CTRL_DEAD)
1930                 nvme_kill_queues(ctrl);
1931
1932         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
1933                 nvme_ns_remove(ns);
1934 }
1935 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
1936
1937 static void nvme_async_event_work(struct work_struct *work)
1938 {
1939         struct nvme_ctrl *ctrl =
1940                 container_of(work, struct nvme_ctrl, async_event_work);
1941
1942         spin_lock_irq(&ctrl->lock);
1943         while (ctrl->event_limit > 0) {
1944                 int aer_idx = --ctrl->event_limit;
1945
1946                 spin_unlock_irq(&ctrl->lock);
1947                 ctrl->ops->submit_async_event(ctrl, aer_idx);
1948                 spin_lock_irq(&ctrl->lock);
1949         }
1950         spin_unlock_irq(&ctrl->lock);
1951 }
1952
1953 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
1954                 union nvme_result *res)
1955 {
1956         u32 result = le32_to_cpu(res->u32);
1957         bool done = true;
1958
1959         switch (le16_to_cpu(status) >> 1) {
1960         case NVME_SC_SUCCESS:
1961                 done = false;
1962                 /*FALLTHRU*/
1963         case NVME_SC_ABORT_REQ:
1964                 ++ctrl->event_limit;
1965                 schedule_work(&ctrl->async_event_work);
1966                 break;
1967         default:
1968                 break;
1969         }
1970
1971         if (done)
1972                 return;
1973
1974         switch (result & 0xff07) {
1975         case NVME_AER_NOTICE_NS_CHANGED:
1976                 dev_info(ctrl->device, "rescanning\n");
1977                 nvme_queue_scan(ctrl);
1978                 break;
1979         default:
1980                 dev_warn(ctrl->device, "async event result %08x\n", result);
1981         }
1982 }
1983 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
1984
1985 void nvme_queue_async_events(struct nvme_ctrl *ctrl)
1986 {
1987         ctrl->event_limit = NVME_NR_AERS;
1988         schedule_work(&ctrl->async_event_work);
1989 }
1990 EXPORT_SYMBOL_GPL(nvme_queue_async_events);
1991
1992 static DEFINE_IDA(nvme_instance_ida);
1993
1994 static int nvme_set_instance(struct nvme_ctrl *ctrl)
1995 {
1996         int instance, error;
1997
1998         do {
1999                 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2000                         return -ENODEV;
2001
2002                 spin_lock(&dev_list_lock);
2003                 error = ida_get_new(&nvme_instance_ida, &instance);
2004                 spin_unlock(&dev_list_lock);
2005         } while (error == -EAGAIN);
2006
2007         if (error)
2008                 return -ENODEV;
2009
2010         ctrl->instance = instance;
2011         return 0;
2012 }
2013
2014 static void nvme_release_instance(struct nvme_ctrl *ctrl)
2015 {
2016         spin_lock(&dev_list_lock);
2017         ida_remove(&nvme_instance_ida, ctrl->instance);
2018         spin_unlock(&dev_list_lock);
2019 }
2020
2021 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
2022 {
2023         flush_work(&ctrl->async_event_work);
2024         flush_work(&ctrl->scan_work);
2025         nvme_remove_namespaces(ctrl);
2026
2027         device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
2028
2029         spin_lock(&dev_list_lock);
2030         list_del(&ctrl->node);
2031         spin_unlock(&dev_list_lock);
2032 }
2033 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
2034
2035 static void nvme_free_ctrl(struct kref *kref)
2036 {
2037         struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
2038
2039         put_device(ctrl->device);
2040         nvme_release_instance(ctrl);
2041         ida_destroy(&ctrl->ns_ida);
2042
2043         ctrl->ops->free_ctrl(ctrl);
2044 }
2045
2046 void nvme_put_ctrl(struct nvme_ctrl *ctrl)
2047 {
2048         kref_put(&ctrl->kref, nvme_free_ctrl);
2049 }
2050 EXPORT_SYMBOL_GPL(nvme_put_ctrl);
2051
2052 /*
2053  * Initialize a NVMe controller structures.  This needs to be called during
2054  * earliest initialization so that we have the initialized structured around
2055  * during probing.
2056  */
2057 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
2058                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
2059 {
2060         int ret;
2061
2062         ctrl->state = NVME_CTRL_NEW;
2063         spin_lock_init(&ctrl->lock);
2064         INIT_LIST_HEAD(&ctrl->namespaces);
2065         mutex_init(&ctrl->namespaces_mutex);
2066         kref_init(&ctrl->kref);
2067         ctrl->dev = dev;
2068         ctrl->ops = ops;
2069         ctrl->quirks = quirks;
2070         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
2071         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
2072
2073         ret = nvme_set_instance(ctrl);
2074         if (ret)
2075                 goto out;
2076
2077         ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
2078                                 MKDEV(nvme_char_major, ctrl->instance),
2079                                 ctrl, nvme_dev_attr_groups,
2080                                 "nvme%d", ctrl->instance);
2081         if (IS_ERR(ctrl->device)) {
2082                 ret = PTR_ERR(ctrl->device);
2083                 goto out_release_instance;
2084         }
2085         get_device(ctrl->device);
2086         ida_init(&ctrl->ns_ida);
2087
2088         spin_lock(&dev_list_lock);
2089         list_add_tail(&ctrl->node, &nvme_ctrl_list);
2090         spin_unlock(&dev_list_lock);
2091
2092         return 0;
2093 out_release_instance:
2094         nvme_release_instance(ctrl);
2095 out:
2096         return ret;
2097 }
2098 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
2099
2100 /**
2101  * nvme_kill_queues(): Ends all namespace queues
2102  * @ctrl: the dead controller that needs to end
2103  *
2104  * Call this function when the driver determines it is unable to get the
2105  * controller in a state capable of servicing IO.
2106  */
2107 void nvme_kill_queues(struct nvme_ctrl *ctrl)
2108 {
2109         struct nvme_ns *ns;
2110
2111         mutex_lock(&ctrl->namespaces_mutex);
2112         list_for_each_entry(ns, &ctrl->namespaces, list) {
2113                 /*
2114                  * Revalidating a dead namespace sets capacity to 0. This will
2115                  * end buffered writers dirtying pages that can't be synced.
2116                  */
2117                 if (ns->disk && !test_and_set_bit(NVME_NS_DEAD, &ns->flags))
2118                         revalidate_disk(ns->disk);
2119
2120                 blk_set_queue_dying(ns->queue);
2121                 blk_mq_abort_requeue_list(ns->queue);
2122                 blk_mq_start_stopped_hw_queues(ns->queue, true);
2123         }
2124         mutex_unlock(&ctrl->namespaces_mutex);
2125 }
2126 EXPORT_SYMBOL_GPL(nvme_kill_queues);
2127
2128 void nvme_stop_queues(struct nvme_ctrl *ctrl)
2129 {
2130         struct nvme_ns *ns;
2131
2132         mutex_lock(&ctrl->namespaces_mutex);
2133         list_for_each_entry(ns, &ctrl->namespaces, list)
2134                 blk_mq_quiesce_queue(ns->queue);
2135         mutex_unlock(&ctrl->namespaces_mutex);
2136 }
2137 EXPORT_SYMBOL_GPL(nvme_stop_queues);
2138
2139 void nvme_start_queues(struct nvme_ctrl *ctrl)
2140 {
2141         struct nvme_ns *ns;
2142
2143         mutex_lock(&ctrl->namespaces_mutex);
2144         list_for_each_entry(ns, &ctrl->namespaces, list) {
2145                 blk_mq_start_stopped_hw_queues(ns->queue, true);
2146                 blk_mq_kick_requeue_list(ns->queue);
2147         }
2148         mutex_unlock(&ctrl->namespaces_mutex);
2149 }
2150 EXPORT_SYMBOL_GPL(nvme_start_queues);
2151
2152 int __init nvme_core_init(void)
2153 {
2154         int result;
2155
2156         result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
2157                                                         &nvme_dev_fops);
2158         if (result < 0)
2159                 return result;
2160         else if (result > 0)
2161                 nvme_char_major = result;
2162
2163         nvme_class = class_create(THIS_MODULE, "nvme");
2164         if (IS_ERR(nvme_class)) {
2165                 result = PTR_ERR(nvme_class);
2166                 goto unregister_chrdev;
2167         }
2168
2169         return 0;
2170
2171  unregister_chrdev:
2172         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2173         return result;
2174 }
2175
2176 void nvme_core_exit(void)
2177 {
2178         class_destroy(nvme_class);
2179         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2180 }
2181
2182 MODULE_LICENSE("GPL");
2183 MODULE_VERSION("1.0");
2184 module_init(nvme_core_init);
2185 module_exit(nvme_core_exit);