]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/nvme/host/fc.c
596b3a453b545173b27eb4e899556b2e7aaef915
[karo-tx-linux.git] / drivers / nvme / host / fc.c
1 /*
2  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful.
9  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10  * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11  * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12  * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13  * See the GNU General Public License for more details, a copy of which
14  * can be found in the file COPYING included with this package
15  *
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/parser.h>
20 #include <uapi/scsi/fc/fc_fs.h>
21 #include <uapi/scsi/fc/fc_els.h>
22
23 #include "nvme.h"
24 #include "fabrics.h"
25 #include <linux/nvme-fc-driver.h>
26 #include <linux/nvme-fc.h>
27
28
29 /* *************************** Data Structures/Defines ****************** */
30
31
32 /*
33  * We handle AEN commands ourselves and don't even let the
34  * block layer know about them.
35  */
36 #define NVME_FC_NR_AEN_COMMANDS 1
37 #define NVME_FC_AQ_BLKMQ_DEPTH  \
38         (NVMF_AQ_DEPTH - NVME_FC_NR_AEN_COMMANDS)
39 #define AEN_CMDID_BASE          (NVME_FC_AQ_BLKMQ_DEPTH + 1)
40
41 enum nvme_fc_queue_flags {
42         NVME_FC_Q_CONNECTED = (1 << 0),
43 };
44
45 #define NVMEFC_QUEUE_DELAY      3               /* ms units */
46
47 struct nvme_fc_queue {
48         struct nvme_fc_ctrl     *ctrl;
49         struct device           *dev;
50         struct blk_mq_hw_ctx    *hctx;
51         void                    *lldd_handle;
52         int                     queue_size;
53         size_t                  cmnd_capsule_len;
54         u32                     qnum;
55         u32                     rqcnt;
56         u32                     seqno;
57
58         u64                     connection_id;
59         atomic_t                csn;
60
61         unsigned long           flags;
62 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
63
64 enum nvme_fcop_flags {
65         FCOP_FLAGS_TERMIO       = (1 << 0),
66         FCOP_FLAGS_RELEASED     = (1 << 1),
67         FCOP_FLAGS_COMPLETE     = (1 << 2),
68 };
69
70 struct nvmefc_ls_req_op {
71         struct nvmefc_ls_req    ls_req;
72
73         struct nvme_fc_rport    *rport;
74         struct nvme_fc_queue    *queue;
75         struct request          *rq;
76         u32                     flags;
77
78         int                     ls_error;
79         struct completion       ls_done;
80         struct list_head        lsreq_list;     /* rport->ls_req_list */
81         bool                    req_queued;
82 };
83
84 enum nvme_fcpop_state {
85         FCPOP_STATE_UNINIT      = 0,
86         FCPOP_STATE_IDLE        = 1,
87         FCPOP_STATE_ACTIVE      = 2,
88         FCPOP_STATE_ABORTED     = 3,
89 };
90
91 struct nvme_fc_fcp_op {
92         struct nvme_request     nreq;           /*
93                                                  * nvme/host/core.c
94                                                  * requires this to be
95                                                  * the 1st element in the
96                                                  * private structure
97                                                  * associated with the
98                                                  * request.
99                                                  */
100         struct nvmefc_fcp_req   fcp_req;
101
102         struct nvme_fc_ctrl     *ctrl;
103         struct nvme_fc_queue    *queue;
104         struct request          *rq;
105
106         atomic_t                state;
107         u32                     rqno;
108         u32                     nents;
109
110         struct nvme_fc_cmd_iu   cmd_iu;
111         struct nvme_fc_ersp_iu  rsp_iu;
112 };
113
114 struct nvme_fc_lport {
115         struct nvme_fc_local_port       localport;
116
117         struct ida                      endp_cnt;
118         struct list_head                port_list;      /* nvme_fc_port_list */
119         struct list_head                endp_list;
120         struct device                   *dev;   /* physical device for dma */
121         struct nvme_fc_port_template    *ops;
122         struct kref                     ref;
123 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
124
125 struct nvme_fc_rport {
126         struct nvme_fc_remote_port      remoteport;
127
128         struct list_head                endp_list; /* for lport->endp_list */
129         struct list_head                ctrl_list;
130         struct list_head                ls_req_list;
131         struct device                   *dev;   /* physical device for dma */
132         struct nvme_fc_lport            *lport;
133         spinlock_t                      lock;
134         struct kref                     ref;
135 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
136
137 enum nvme_fcctrl_state {
138         FCCTRL_INIT             = 0,
139         FCCTRL_ACTIVE           = 1,
140 };
141
142 struct nvme_fc_ctrl {
143         spinlock_t              lock;
144         struct nvme_fc_queue    *queues;
145         u32                     queue_count;
146
147         struct device           *dev;
148         struct nvme_fc_lport    *lport;
149         struct nvme_fc_rport    *rport;
150         u32                     cnum;
151
152         u64                     association_id;
153
154         u64                     cap;
155
156         struct list_head        ctrl_list;      /* rport->ctrl_list */
157
158         struct blk_mq_tag_set   admin_tag_set;
159         struct blk_mq_tag_set   tag_set;
160
161         struct work_struct      delete_work;
162         struct kref             ref;
163         int                     state;
164
165         struct nvme_fc_fcp_op   aen_ops[NVME_FC_NR_AEN_COMMANDS];
166
167         struct nvme_ctrl        ctrl;
168 };
169
170 static inline struct nvme_fc_ctrl *
171 to_fc_ctrl(struct nvme_ctrl *ctrl)
172 {
173         return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
174 }
175
176 static inline struct nvme_fc_lport *
177 localport_to_lport(struct nvme_fc_local_port *portptr)
178 {
179         return container_of(portptr, struct nvme_fc_lport, localport);
180 }
181
182 static inline struct nvme_fc_rport *
183 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
184 {
185         return container_of(portptr, struct nvme_fc_rport, remoteport);
186 }
187
188 static inline struct nvmefc_ls_req_op *
189 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
190 {
191         return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
192 }
193
194 static inline struct nvme_fc_fcp_op *
195 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
196 {
197         return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
198 }
199
200
201
202 /* *************************** Globals **************************** */
203
204
205 static DEFINE_SPINLOCK(nvme_fc_lock);
206
207 static LIST_HEAD(nvme_fc_lport_list);
208 static DEFINE_IDA(nvme_fc_local_port_cnt);
209 static DEFINE_IDA(nvme_fc_ctrl_cnt);
210
211 static struct workqueue_struct *nvme_fc_wq;
212
213
214
215 /* *********************** FC-NVME Port Management ************************ */
216
217 static int __nvme_fc_del_ctrl(struct nvme_fc_ctrl *);
218 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
219                         struct nvme_fc_queue *, unsigned int);
220
221
222 /**
223  * nvme_fc_register_localport - transport entry point called by an
224  *                              LLDD to register the existence of a NVME
225  *                              host FC port.
226  * @pinfo:     pointer to information about the port to be registered
227  * @template:  LLDD entrypoints and operational parameters for the port
228  * @dev:       physical hardware device node port corresponds to. Will be
229  *             used for DMA mappings
230  * @lport_p:   pointer to a local port pointer. Upon success, the routine
231  *             will allocate a nvme_fc_local_port structure and place its
232  *             address in the local port pointer. Upon failure, local port
233  *             pointer will be set to 0.
234  *
235  * Returns:
236  * a completion status. Must be 0 upon success; a negative errno
237  * (ex: -ENXIO) upon failure.
238  */
239 int
240 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
241                         struct nvme_fc_port_template *template,
242                         struct device *dev,
243                         struct nvme_fc_local_port **portptr)
244 {
245         struct nvme_fc_lport *newrec;
246         unsigned long flags;
247         int ret, idx;
248
249         if (!template->localport_delete || !template->remoteport_delete ||
250             !template->ls_req || !template->fcp_io ||
251             !template->ls_abort || !template->fcp_abort ||
252             !template->max_hw_queues || !template->max_sgl_segments ||
253             !template->max_dif_sgl_segments || !template->dma_boundary) {
254                 ret = -EINVAL;
255                 goto out_reghost_failed;
256         }
257
258         newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
259                          GFP_KERNEL);
260         if (!newrec) {
261                 ret = -ENOMEM;
262                 goto out_reghost_failed;
263         }
264
265         idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
266         if (idx < 0) {
267                 ret = -ENOSPC;
268                 goto out_fail_kfree;
269         }
270
271         if (!get_device(dev) && dev) {
272                 ret = -ENODEV;
273                 goto out_ida_put;
274         }
275
276         INIT_LIST_HEAD(&newrec->port_list);
277         INIT_LIST_HEAD(&newrec->endp_list);
278         kref_init(&newrec->ref);
279         newrec->ops = template;
280         newrec->dev = dev;
281         ida_init(&newrec->endp_cnt);
282         newrec->localport.private = &newrec[1];
283         newrec->localport.node_name = pinfo->node_name;
284         newrec->localport.port_name = pinfo->port_name;
285         newrec->localport.port_role = pinfo->port_role;
286         newrec->localport.port_id = pinfo->port_id;
287         newrec->localport.port_state = FC_OBJSTATE_ONLINE;
288         newrec->localport.port_num = idx;
289
290         spin_lock_irqsave(&nvme_fc_lock, flags);
291         list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
292         spin_unlock_irqrestore(&nvme_fc_lock, flags);
293
294         if (dev)
295                 dma_set_seg_boundary(dev, template->dma_boundary);
296
297         *portptr = &newrec->localport;
298         return 0;
299
300 out_ida_put:
301         ida_simple_remove(&nvme_fc_local_port_cnt, idx);
302 out_fail_kfree:
303         kfree(newrec);
304 out_reghost_failed:
305         *portptr = NULL;
306
307         return ret;
308 }
309 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
310
311 static void
312 nvme_fc_free_lport(struct kref *ref)
313 {
314         struct nvme_fc_lport *lport =
315                 container_of(ref, struct nvme_fc_lport, ref);
316         unsigned long flags;
317
318         WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
319         WARN_ON(!list_empty(&lport->endp_list));
320
321         /* remove from transport list */
322         spin_lock_irqsave(&nvme_fc_lock, flags);
323         list_del(&lport->port_list);
324         spin_unlock_irqrestore(&nvme_fc_lock, flags);
325
326         /* let the LLDD know we've finished tearing it down */
327         lport->ops->localport_delete(&lport->localport);
328
329         ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
330         ida_destroy(&lport->endp_cnt);
331
332         put_device(lport->dev);
333
334         kfree(lport);
335 }
336
337 static void
338 nvme_fc_lport_put(struct nvme_fc_lport *lport)
339 {
340         kref_put(&lport->ref, nvme_fc_free_lport);
341 }
342
343 static int
344 nvme_fc_lport_get(struct nvme_fc_lport *lport)
345 {
346         return kref_get_unless_zero(&lport->ref);
347 }
348
349 /**
350  * nvme_fc_unregister_localport - transport entry point called by an
351  *                              LLDD to deregister/remove a previously
352  *                              registered a NVME host FC port.
353  * @localport: pointer to the (registered) local port that is to be
354  *             deregistered.
355  *
356  * Returns:
357  * a completion status. Must be 0 upon success; a negative errno
358  * (ex: -ENXIO) upon failure.
359  */
360 int
361 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
362 {
363         struct nvme_fc_lport *lport = localport_to_lport(portptr);
364         unsigned long flags;
365
366         if (!portptr)
367                 return -EINVAL;
368
369         spin_lock_irqsave(&nvme_fc_lock, flags);
370
371         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
372                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
373                 return -EINVAL;
374         }
375         portptr->port_state = FC_OBJSTATE_DELETED;
376
377         spin_unlock_irqrestore(&nvme_fc_lock, flags);
378
379         nvme_fc_lport_put(lport);
380
381         return 0;
382 }
383 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
384
385 /**
386  * nvme_fc_register_remoteport - transport entry point called by an
387  *                              LLDD to register the existence of a NVME
388  *                              subsystem FC port on its fabric.
389  * @localport: pointer to the (registered) local port that the remote
390  *             subsystem port is connected to.
391  * @pinfo:     pointer to information about the port to be registered
392  * @rport_p:   pointer to a remote port pointer. Upon success, the routine
393  *             will allocate a nvme_fc_remote_port structure and place its
394  *             address in the remote port pointer. Upon failure, remote port
395  *             pointer will be set to 0.
396  *
397  * Returns:
398  * a completion status. Must be 0 upon success; a negative errno
399  * (ex: -ENXIO) upon failure.
400  */
401 int
402 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
403                                 struct nvme_fc_port_info *pinfo,
404                                 struct nvme_fc_remote_port **portptr)
405 {
406         struct nvme_fc_lport *lport = localport_to_lport(localport);
407         struct nvme_fc_rport *newrec;
408         unsigned long flags;
409         int ret, idx;
410
411         newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
412                          GFP_KERNEL);
413         if (!newrec) {
414                 ret = -ENOMEM;
415                 goto out_reghost_failed;
416         }
417
418         if (!nvme_fc_lport_get(lport)) {
419                 ret = -ESHUTDOWN;
420                 goto out_kfree_rport;
421         }
422
423         idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
424         if (idx < 0) {
425                 ret = -ENOSPC;
426                 goto out_lport_put;
427         }
428
429         INIT_LIST_HEAD(&newrec->endp_list);
430         INIT_LIST_HEAD(&newrec->ctrl_list);
431         INIT_LIST_HEAD(&newrec->ls_req_list);
432         kref_init(&newrec->ref);
433         spin_lock_init(&newrec->lock);
434         newrec->remoteport.localport = &lport->localport;
435         newrec->dev = lport->dev;
436         newrec->lport = lport;
437         newrec->remoteport.private = &newrec[1];
438         newrec->remoteport.port_role = pinfo->port_role;
439         newrec->remoteport.node_name = pinfo->node_name;
440         newrec->remoteport.port_name = pinfo->port_name;
441         newrec->remoteport.port_id = pinfo->port_id;
442         newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
443         newrec->remoteport.port_num = idx;
444
445         spin_lock_irqsave(&nvme_fc_lock, flags);
446         list_add_tail(&newrec->endp_list, &lport->endp_list);
447         spin_unlock_irqrestore(&nvme_fc_lock, flags);
448
449         *portptr = &newrec->remoteport;
450         return 0;
451
452 out_lport_put:
453         nvme_fc_lport_put(lport);
454 out_kfree_rport:
455         kfree(newrec);
456 out_reghost_failed:
457         *portptr = NULL;
458         return ret;
459 }
460 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
461
462 static void
463 nvme_fc_free_rport(struct kref *ref)
464 {
465         struct nvme_fc_rport *rport =
466                 container_of(ref, struct nvme_fc_rport, ref);
467         struct nvme_fc_lport *lport =
468                         localport_to_lport(rport->remoteport.localport);
469         unsigned long flags;
470
471         WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
472         WARN_ON(!list_empty(&rport->ctrl_list));
473
474         /* remove from lport list */
475         spin_lock_irqsave(&nvme_fc_lock, flags);
476         list_del(&rport->endp_list);
477         spin_unlock_irqrestore(&nvme_fc_lock, flags);
478
479         /* let the LLDD know we've finished tearing it down */
480         lport->ops->remoteport_delete(&rport->remoteport);
481
482         ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
483
484         kfree(rport);
485
486         nvme_fc_lport_put(lport);
487 }
488
489 static void
490 nvme_fc_rport_put(struct nvme_fc_rport *rport)
491 {
492         kref_put(&rport->ref, nvme_fc_free_rport);
493 }
494
495 static int
496 nvme_fc_rport_get(struct nvme_fc_rport *rport)
497 {
498         return kref_get_unless_zero(&rport->ref);
499 }
500
501 static int
502 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
503 {
504         struct nvmefc_ls_req_op *lsop;
505         unsigned long flags;
506
507 restart:
508         spin_lock_irqsave(&rport->lock, flags);
509
510         list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
511                 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
512                         lsop->flags |= FCOP_FLAGS_TERMIO;
513                         spin_unlock_irqrestore(&rport->lock, flags);
514                         rport->lport->ops->ls_abort(&rport->lport->localport,
515                                                 &rport->remoteport,
516                                                 &lsop->ls_req);
517                         goto restart;
518                 }
519         }
520         spin_unlock_irqrestore(&rport->lock, flags);
521
522         return 0;
523 }
524
525 /**
526  * nvme_fc_unregister_remoteport - transport entry point called by an
527  *                              LLDD to deregister/remove a previously
528  *                              registered a NVME subsystem FC port.
529  * @remoteport: pointer to the (registered) remote port that is to be
530  *              deregistered.
531  *
532  * Returns:
533  * a completion status. Must be 0 upon success; a negative errno
534  * (ex: -ENXIO) upon failure.
535  */
536 int
537 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
538 {
539         struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
540         struct nvme_fc_ctrl *ctrl;
541         unsigned long flags;
542
543         if (!portptr)
544                 return -EINVAL;
545
546         spin_lock_irqsave(&rport->lock, flags);
547
548         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
549                 spin_unlock_irqrestore(&rport->lock, flags);
550                 return -EINVAL;
551         }
552         portptr->port_state = FC_OBJSTATE_DELETED;
553
554         /* tear down all associations to the remote port */
555         list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
556                 __nvme_fc_del_ctrl(ctrl);
557
558         spin_unlock_irqrestore(&rport->lock, flags);
559
560         nvme_fc_abort_lsops(rport);
561
562         nvme_fc_rport_put(rport);
563         return 0;
564 }
565 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
566
567
568 /* *********************** FC-NVME DMA Handling **************************** */
569
570 /*
571  * The fcloop device passes in a NULL device pointer. Real LLD's will
572  * pass in a valid device pointer. If NULL is passed to the dma mapping
573  * routines, depending on the platform, it may or may not succeed, and
574  * may crash.
575  *
576  * As such:
577  * Wrapper all the dma routines and check the dev pointer.
578  *
579  * If simple mappings (return just a dma address, we'll noop them,
580  * returning a dma address of 0.
581  *
582  * On more complex mappings (dma_map_sg), a pseudo routine fills
583  * in the scatter list, setting all dma addresses to 0.
584  */
585
586 static inline dma_addr_t
587 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
588                 enum dma_data_direction dir)
589 {
590         return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
591 }
592
593 static inline int
594 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
595 {
596         return dev ? dma_mapping_error(dev, dma_addr) : 0;
597 }
598
599 static inline void
600 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
601         enum dma_data_direction dir)
602 {
603         if (dev)
604                 dma_unmap_single(dev, addr, size, dir);
605 }
606
607 static inline void
608 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
609                 enum dma_data_direction dir)
610 {
611         if (dev)
612                 dma_sync_single_for_cpu(dev, addr, size, dir);
613 }
614
615 static inline void
616 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
617                 enum dma_data_direction dir)
618 {
619         if (dev)
620                 dma_sync_single_for_device(dev, addr, size, dir);
621 }
622
623 /* pseudo dma_map_sg call */
624 static int
625 fc_map_sg(struct scatterlist *sg, int nents)
626 {
627         struct scatterlist *s;
628         int i;
629
630         WARN_ON(nents == 0 || sg[0].length == 0);
631
632         for_each_sg(sg, s, nents, i) {
633                 s->dma_address = 0L;
634 #ifdef CONFIG_NEED_SG_DMA_LENGTH
635                 s->dma_length = s->length;
636 #endif
637         }
638         return nents;
639 }
640
641 static inline int
642 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
643                 enum dma_data_direction dir)
644 {
645         return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
646 }
647
648 static inline void
649 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
650                 enum dma_data_direction dir)
651 {
652         if (dev)
653                 dma_unmap_sg(dev, sg, nents, dir);
654 }
655
656
657 /* *********************** FC-NVME LS Handling **************************** */
658
659 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
660 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
661
662
663 static void
664 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
665 {
666         struct nvme_fc_rport *rport = lsop->rport;
667         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
668         unsigned long flags;
669
670         spin_lock_irqsave(&rport->lock, flags);
671
672         if (!lsop->req_queued) {
673                 spin_unlock_irqrestore(&rport->lock, flags);
674                 return;
675         }
676
677         list_del(&lsop->lsreq_list);
678
679         lsop->req_queued = false;
680
681         spin_unlock_irqrestore(&rport->lock, flags);
682
683         fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
684                                   (lsreq->rqstlen + lsreq->rsplen),
685                                   DMA_BIDIRECTIONAL);
686
687         nvme_fc_rport_put(rport);
688 }
689
690 static int
691 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
692                 struct nvmefc_ls_req_op *lsop,
693                 void (*done)(struct nvmefc_ls_req *req, int status))
694 {
695         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
696         unsigned long flags;
697         int ret = 0;
698
699         if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
700                 return -ECONNREFUSED;
701
702         if (!nvme_fc_rport_get(rport))
703                 return -ESHUTDOWN;
704
705         lsreq->done = done;
706         lsop->rport = rport;
707         lsop->req_queued = false;
708         INIT_LIST_HEAD(&lsop->lsreq_list);
709         init_completion(&lsop->ls_done);
710
711         lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
712                                   lsreq->rqstlen + lsreq->rsplen,
713                                   DMA_BIDIRECTIONAL);
714         if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
715                 ret = -EFAULT;
716                 goto out_putrport;
717         }
718         lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
719
720         spin_lock_irqsave(&rport->lock, flags);
721
722         list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
723
724         lsop->req_queued = true;
725
726         spin_unlock_irqrestore(&rport->lock, flags);
727
728         ret = rport->lport->ops->ls_req(&rport->lport->localport,
729                                         &rport->remoteport, lsreq);
730         if (ret)
731                 goto out_unlink;
732
733         return 0;
734
735 out_unlink:
736         lsop->ls_error = ret;
737         spin_lock_irqsave(&rport->lock, flags);
738         lsop->req_queued = false;
739         list_del(&lsop->lsreq_list);
740         spin_unlock_irqrestore(&rport->lock, flags);
741         fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
742                                   (lsreq->rqstlen + lsreq->rsplen),
743                                   DMA_BIDIRECTIONAL);
744 out_putrport:
745         nvme_fc_rport_put(rport);
746
747         return ret;
748 }
749
750 static void
751 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
752 {
753         struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
754
755         lsop->ls_error = status;
756         complete(&lsop->ls_done);
757 }
758
759 static int
760 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
761 {
762         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
763         struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
764         int ret;
765
766         ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
767
768         if (!ret) {
769                 /*
770                  * No timeout/not interruptible as we need the struct
771                  * to exist until the lldd calls us back. Thus mandate
772                  * wait until driver calls back. lldd responsible for
773                  * the timeout action
774                  */
775                 wait_for_completion(&lsop->ls_done);
776
777                 __nvme_fc_finish_ls_req(lsop);
778
779                 ret = lsop->ls_error;
780         }
781
782         if (ret)
783                 return ret;
784
785         /* ACC or RJT payload ? */
786         if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
787                 return -ENXIO;
788
789         return 0;
790 }
791
792 static int
793 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
794                 struct nvmefc_ls_req_op *lsop,
795                 void (*done)(struct nvmefc_ls_req *req, int status))
796 {
797         /* don't wait for completion */
798
799         return __nvme_fc_send_ls_req(rport, lsop, done);
800 }
801
802 /* Validation Error indexes into the string table below */
803 enum {
804         VERR_NO_ERROR           = 0,
805         VERR_LSACC              = 1,
806         VERR_LSDESC_RQST        = 2,
807         VERR_LSDESC_RQST_LEN    = 3,
808         VERR_ASSOC_ID           = 4,
809         VERR_ASSOC_ID_LEN       = 5,
810         VERR_CONN_ID            = 6,
811         VERR_CONN_ID_LEN        = 7,
812         VERR_CR_ASSOC           = 8,
813         VERR_CR_ASSOC_ACC_LEN   = 9,
814         VERR_CR_CONN            = 10,
815         VERR_CR_CONN_ACC_LEN    = 11,
816         VERR_DISCONN            = 12,
817         VERR_DISCONN_ACC_LEN    = 13,
818 };
819
820 static char *validation_errors[] = {
821         "OK",
822         "Not LS_ACC",
823         "Not LSDESC_RQST",
824         "Bad LSDESC_RQST Length",
825         "Not Association ID",
826         "Bad Association ID Length",
827         "Not Connection ID",
828         "Bad Connection ID Length",
829         "Not CR_ASSOC Rqst",
830         "Bad CR_ASSOC ACC Length",
831         "Not CR_CONN Rqst",
832         "Bad CR_CONN ACC Length",
833         "Not Disconnect Rqst",
834         "Bad Disconnect ACC Length",
835 };
836
837 static int
838 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
839         struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
840 {
841         struct nvmefc_ls_req_op *lsop;
842         struct nvmefc_ls_req *lsreq;
843         struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
844         struct fcnvme_ls_cr_assoc_acc *assoc_acc;
845         int ret, fcret = 0;
846
847         lsop = kzalloc((sizeof(*lsop) +
848                          ctrl->lport->ops->lsrqst_priv_sz +
849                          sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
850         if (!lsop) {
851                 ret = -ENOMEM;
852                 goto out_no_memory;
853         }
854         lsreq = &lsop->ls_req;
855
856         lsreq->private = (void *)&lsop[1];
857         assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
858                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
859         assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
860
861         assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
862         assoc_rqst->desc_list_len =
863                         cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
864
865         assoc_rqst->assoc_cmd.desc_tag =
866                         cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
867         assoc_rqst->assoc_cmd.desc_len =
868                         fcnvme_lsdesc_len(
869                                 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
870
871         assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
872         assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize);
873         /* Linux supports only Dynamic controllers */
874         assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
875         memcpy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id,
876                 min_t(size_t, FCNVME_ASSOC_HOSTID_LEN, sizeof(uuid_be)));
877         strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
878                 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
879         strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
880                 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
881
882         lsop->queue = queue;
883         lsreq->rqstaddr = assoc_rqst;
884         lsreq->rqstlen = sizeof(*assoc_rqst);
885         lsreq->rspaddr = assoc_acc;
886         lsreq->rsplen = sizeof(*assoc_acc);
887         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
888
889         ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
890         if (ret)
891                 goto out_free_buffer;
892
893         /* process connect LS completion */
894
895         /* validate the ACC response */
896         if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
897                 fcret = VERR_LSACC;
898         else if (assoc_acc->hdr.desc_list_len !=
899                         fcnvme_lsdesc_len(
900                                 sizeof(struct fcnvme_ls_cr_assoc_acc)))
901                 fcret = VERR_CR_ASSOC_ACC_LEN;
902         else if (assoc_acc->hdr.rqst.desc_tag !=
903                         cpu_to_be32(FCNVME_LSDESC_RQST))
904                 fcret = VERR_LSDESC_RQST;
905         else if (assoc_acc->hdr.rqst.desc_len !=
906                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
907                 fcret = VERR_LSDESC_RQST_LEN;
908         else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
909                 fcret = VERR_CR_ASSOC;
910         else if (assoc_acc->associd.desc_tag !=
911                         cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
912                 fcret = VERR_ASSOC_ID;
913         else if (assoc_acc->associd.desc_len !=
914                         fcnvme_lsdesc_len(
915                                 sizeof(struct fcnvme_lsdesc_assoc_id)))
916                 fcret = VERR_ASSOC_ID_LEN;
917         else if (assoc_acc->connectid.desc_tag !=
918                         cpu_to_be32(FCNVME_LSDESC_CONN_ID))
919                 fcret = VERR_CONN_ID;
920         else if (assoc_acc->connectid.desc_len !=
921                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
922                 fcret = VERR_CONN_ID_LEN;
923
924         if (fcret) {
925                 ret = -EBADF;
926                 dev_err(ctrl->dev,
927                         "q %d connect failed: %s\n",
928                         queue->qnum, validation_errors[fcret]);
929         } else {
930                 ctrl->association_id =
931                         be64_to_cpu(assoc_acc->associd.association_id);
932                 queue->connection_id =
933                         be64_to_cpu(assoc_acc->connectid.connection_id);
934                 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
935         }
936
937 out_free_buffer:
938         kfree(lsop);
939 out_no_memory:
940         if (ret)
941                 dev_err(ctrl->dev,
942                         "queue %d connect admin queue failed (%d).\n",
943                         queue->qnum, ret);
944         return ret;
945 }
946
947 static int
948 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
949                         u16 qsize, u16 ersp_ratio)
950 {
951         struct nvmefc_ls_req_op *lsop;
952         struct nvmefc_ls_req *lsreq;
953         struct fcnvme_ls_cr_conn_rqst *conn_rqst;
954         struct fcnvme_ls_cr_conn_acc *conn_acc;
955         int ret, fcret = 0;
956
957         lsop = kzalloc((sizeof(*lsop) +
958                          ctrl->lport->ops->lsrqst_priv_sz +
959                          sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
960         if (!lsop) {
961                 ret = -ENOMEM;
962                 goto out_no_memory;
963         }
964         lsreq = &lsop->ls_req;
965
966         lsreq->private = (void *)&lsop[1];
967         conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
968                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
969         conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
970
971         conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
972         conn_rqst->desc_list_len = cpu_to_be32(
973                                 sizeof(struct fcnvme_lsdesc_assoc_id) +
974                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
975
976         conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
977         conn_rqst->associd.desc_len =
978                         fcnvme_lsdesc_len(
979                                 sizeof(struct fcnvme_lsdesc_assoc_id));
980         conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
981         conn_rqst->connect_cmd.desc_tag =
982                         cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
983         conn_rqst->connect_cmd.desc_len =
984                         fcnvme_lsdesc_len(
985                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
986         conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
987         conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
988         conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize);
989
990         lsop->queue = queue;
991         lsreq->rqstaddr = conn_rqst;
992         lsreq->rqstlen = sizeof(*conn_rqst);
993         lsreq->rspaddr = conn_acc;
994         lsreq->rsplen = sizeof(*conn_acc);
995         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
996
997         ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
998         if (ret)
999                 goto out_free_buffer;
1000
1001         /* process connect LS completion */
1002
1003         /* validate the ACC response */
1004         if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1005                 fcret = VERR_LSACC;
1006         else if (conn_acc->hdr.desc_list_len !=
1007                         fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1008                 fcret = VERR_CR_CONN_ACC_LEN;
1009         else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1010                 fcret = VERR_LSDESC_RQST;
1011         else if (conn_acc->hdr.rqst.desc_len !=
1012                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1013                 fcret = VERR_LSDESC_RQST_LEN;
1014         else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1015                 fcret = VERR_CR_CONN;
1016         else if (conn_acc->connectid.desc_tag !=
1017                         cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1018                 fcret = VERR_CONN_ID;
1019         else if (conn_acc->connectid.desc_len !=
1020                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1021                 fcret = VERR_CONN_ID_LEN;
1022
1023         if (fcret) {
1024                 ret = -EBADF;
1025                 dev_err(ctrl->dev,
1026                         "q %d connect failed: %s\n",
1027                         queue->qnum, validation_errors[fcret]);
1028         } else {
1029                 queue->connection_id =
1030                         be64_to_cpu(conn_acc->connectid.connection_id);
1031                 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1032         }
1033
1034 out_free_buffer:
1035         kfree(lsop);
1036 out_no_memory:
1037         if (ret)
1038                 dev_err(ctrl->dev,
1039                         "queue %d connect command failed (%d).\n",
1040                         queue->qnum, ret);
1041         return ret;
1042 }
1043
1044 static void
1045 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1046 {
1047         struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1048
1049         __nvme_fc_finish_ls_req(lsop);
1050
1051         /* fc-nvme iniator doesn't care about success or failure of cmd */
1052
1053         kfree(lsop);
1054 }
1055
1056 /*
1057  * This routine sends a FC-NVME LS to disconnect (aka terminate)
1058  * the FC-NVME Association.  Terminating the association also
1059  * terminates the FC-NVME connections (per queue, both admin and io
1060  * queues) that are part of the association. E.g. things are torn
1061  * down, and the related FC-NVME Association ID and Connection IDs
1062  * become invalid.
1063  *
1064  * The behavior of the fc-nvme initiator is such that it's
1065  * understanding of the association and connections will implicitly
1066  * be torn down. The action is implicit as it may be due to a loss of
1067  * connectivity with the fc-nvme target, so you may never get a
1068  * response even if you tried.  As such, the action of this routine
1069  * is to asynchronously send the LS, ignore any results of the LS, and
1070  * continue on with terminating the association. If the fc-nvme target
1071  * is present and receives the LS, it too can tear down.
1072  */
1073 static void
1074 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1075 {
1076         struct fcnvme_ls_disconnect_rqst *discon_rqst;
1077         struct fcnvme_ls_disconnect_acc *discon_acc;
1078         struct nvmefc_ls_req_op *lsop;
1079         struct nvmefc_ls_req *lsreq;
1080         int ret;
1081
1082         lsop = kzalloc((sizeof(*lsop) +
1083                          ctrl->lport->ops->lsrqst_priv_sz +
1084                          sizeof(*discon_rqst) + sizeof(*discon_acc)),
1085                         GFP_KERNEL);
1086         if (!lsop)
1087                 /* couldn't sent it... too bad */
1088                 return;
1089
1090         lsreq = &lsop->ls_req;
1091
1092         lsreq->private = (void *)&lsop[1];
1093         discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
1094                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1095         discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
1096
1097         discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
1098         discon_rqst->desc_list_len = cpu_to_be32(
1099                                 sizeof(struct fcnvme_lsdesc_assoc_id) +
1100                                 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1101
1102         discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1103         discon_rqst->associd.desc_len =
1104                         fcnvme_lsdesc_len(
1105                                 sizeof(struct fcnvme_lsdesc_assoc_id));
1106
1107         discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1108
1109         discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1110                                                 FCNVME_LSDESC_DISCONN_CMD);
1111         discon_rqst->discon_cmd.desc_len =
1112                         fcnvme_lsdesc_len(
1113                                 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1114         discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
1115         discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
1116
1117         lsreq->rqstaddr = discon_rqst;
1118         lsreq->rqstlen = sizeof(*discon_rqst);
1119         lsreq->rspaddr = discon_acc;
1120         lsreq->rsplen = sizeof(*discon_acc);
1121         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1122
1123         ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1124                                 nvme_fc_disconnect_assoc_done);
1125         if (ret)
1126                 kfree(lsop);
1127
1128         /* only meaningful part to terminating the association */
1129         ctrl->association_id = 0;
1130 }
1131
1132
1133 /* *********************** NVME Ctrl Routines **************************** */
1134
1135
1136 static int
1137 nvme_fc_reinit_request(void *data, struct request *rq)
1138 {
1139         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1140         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1141
1142         memset(cmdiu, 0, sizeof(*cmdiu));
1143         cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1144         cmdiu->fc_id = NVME_CMD_FC_ID;
1145         cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1146         memset(&op->rsp_iu, 0, sizeof(op->rsp_iu));
1147
1148         return 0;
1149 }
1150
1151 static void
1152 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1153                 struct nvme_fc_fcp_op *op)
1154 {
1155         fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1156                                 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1157         fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1158                                 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1159
1160         atomic_set(&op->state, FCPOP_STATE_UNINIT);
1161 }
1162
1163 static void
1164 nvme_fc_exit_request(void *data, struct request *rq,
1165                                 unsigned int hctx_idx, unsigned int rq_idx)
1166 {
1167         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1168
1169         return __nvme_fc_exit_request(data, op);
1170 }
1171
1172 static void
1173 nvme_fc_exit_aen_ops(struct nvme_fc_ctrl *ctrl)
1174 {
1175         struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1176         int i;
1177
1178         for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1179                 if (atomic_read(&aen_op->state) == FCPOP_STATE_UNINIT)
1180                         continue;
1181                 __nvme_fc_exit_request(ctrl, aen_op);
1182                 nvme_fc_ctrl_put(ctrl);
1183         }
1184 }
1185
1186 void
1187 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1188 {
1189         struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1190         struct request *rq = op->rq;
1191         struct nvmefc_fcp_req *freq = &op->fcp_req;
1192         struct nvme_fc_ctrl *ctrl = op->ctrl;
1193         struct nvme_fc_queue *queue = op->queue;
1194         struct nvme_completion *cqe = &op->rsp_iu.cqe;
1195         __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1196         union nvme_result result;
1197
1198         /*
1199          * WARNING:
1200          * The current linux implementation of a nvme controller
1201          * allocates a single tag set for all io queues and sizes
1202          * the io queues to fully hold all possible tags. Thus, the
1203          * implementation does not reference or care about the sqhd
1204          * value as it never needs to use the sqhd/sqtail pointers
1205          * for submission pacing.
1206          *
1207          * This affects the FC-NVME implementation in two ways:
1208          * 1) As the value doesn't matter, we don't need to waste
1209          *    cycles extracting it from ERSPs and stamping it in the
1210          *    cases where the transport fabricates CQEs on successful
1211          *    completions.
1212          * 2) The FC-NVME implementation requires that delivery of
1213          *    ERSP completions are to go back to the nvme layer in order
1214          *    relative to the rsn, such that the sqhd value will always
1215          *    be "in order" for the nvme layer. As the nvme layer in
1216          *    linux doesn't care about sqhd, there's no need to return
1217          *    them in order.
1218          *
1219          * Additionally:
1220          * As the core nvme layer in linux currently does not look at
1221          * every field in the cqe - in cases where the FC transport must
1222          * fabricate a CQE, the following fields will not be set as they
1223          * are not referenced:
1224          *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1225          */
1226
1227         fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1228                                 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1229
1230         if (atomic_read(&op->state) == FCPOP_STATE_ABORTED)
1231                 status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1232         else if (freq->status)
1233                 status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1234
1235         /*
1236          * For the linux implementation, if we have an unsuccesful
1237          * status, they blk-mq layer can typically be called with the
1238          * non-zero status and the content of the cqe isn't important.
1239          */
1240         if (status)
1241                 goto done;
1242
1243         /*
1244          * command completed successfully relative to the wire
1245          * protocol. However, validate anything received and
1246          * extract the status and result from the cqe (create it
1247          * where necessary).
1248          */
1249
1250         switch (freq->rcv_rsplen) {
1251
1252         case 0:
1253         case NVME_FC_SIZEOF_ZEROS_RSP:
1254                 /*
1255                  * No response payload or 12 bytes of payload (which
1256                  * should all be zeros) are considered successful and
1257                  * no payload in the CQE by the transport.
1258                  */
1259                 if (freq->transferred_length !=
1260                         be32_to_cpu(op->cmd_iu.data_len)) {
1261                         status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1262                         goto done;
1263                 }
1264                 result.u64 = 0;
1265                 break;
1266
1267         case sizeof(struct nvme_fc_ersp_iu):
1268                 /*
1269                  * The ERSP IU contains a full completion with CQE.
1270                  * Validate ERSP IU and look at cqe.
1271                  */
1272                 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1273                                         (freq->rcv_rsplen / 4) ||
1274                              be32_to_cpu(op->rsp_iu.xfrd_len) !=
1275                                         freq->transferred_length ||
1276                              op->rsp_iu.status_code ||
1277                              op->rqno != le16_to_cpu(cqe->command_id))) {
1278                         status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1279                         goto done;
1280                 }
1281                 result = cqe->result;
1282                 status = cqe->status;
1283                 break;
1284
1285         default:
1286                 status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1287                 goto done;
1288         }
1289
1290 done:
1291         if (!queue->qnum && op->rqno >= AEN_CMDID_BASE) {
1292                 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
1293                 nvme_fc_ctrl_put(ctrl);
1294                 return;
1295         }
1296
1297         nvme_end_request(rq, status, result);
1298 }
1299
1300 static int
1301 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1302                 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1303                 struct request *rq, u32 rqno)
1304 {
1305         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1306         int ret = 0;
1307
1308         memset(op, 0, sizeof(*op));
1309         op->fcp_req.cmdaddr = &op->cmd_iu;
1310         op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1311         op->fcp_req.rspaddr = &op->rsp_iu;
1312         op->fcp_req.rsplen = sizeof(op->rsp_iu);
1313         op->fcp_req.done = nvme_fc_fcpio_done;
1314         op->fcp_req.first_sgl = (struct scatterlist *)&op[1];
1315         op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE];
1316         op->ctrl = ctrl;
1317         op->queue = queue;
1318         op->rq = rq;
1319         op->rqno = rqno;
1320
1321         cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1322         cmdiu->fc_id = NVME_CMD_FC_ID;
1323         cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1324
1325         op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1326                                 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1327         if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1328                 dev_err(ctrl->dev,
1329                         "FCP Op failed - cmdiu dma mapping failed.\n");
1330                 ret = EFAULT;
1331                 goto out_on_error;
1332         }
1333
1334         op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1335                                 &op->rsp_iu, sizeof(op->rsp_iu),
1336                                 DMA_FROM_DEVICE);
1337         if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1338                 dev_err(ctrl->dev,
1339                         "FCP Op failed - rspiu dma mapping failed.\n");
1340                 ret = EFAULT;
1341         }
1342
1343         atomic_set(&op->state, FCPOP_STATE_IDLE);
1344 out_on_error:
1345         return ret;
1346 }
1347
1348 static int
1349 nvme_fc_init_request(void *data, struct request *rq,
1350                                 unsigned int hctx_idx, unsigned int rq_idx,
1351                                 unsigned int numa_node)
1352 {
1353         struct nvme_fc_ctrl *ctrl = data;
1354         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1355         struct nvme_fc_queue *queue = &ctrl->queues[hctx_idx+1];
1356
1357         return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1358 }
1359
1360 static int
1361 nvme_fc_init_admin_request(void *data, struct request *rq,
1362                                 unsigned int hctx_idx, unsigned int rq_idx,
1363                                 unsigned int numa_node)
1364 {
1365         struct nvme_fc_ctrl *ctrl = data;
1366         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1367         struct nvme_fc_queue *queue = &ctrl->queues[0];
1368
1369         return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1370 }
1371
1372 static int
1373 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1374 {
1375         struct nvme_fc_fcp_op *aen_op;
1376         struct nvme_fc_cmd_iu *cmdiu;
1377         struct nvme_command *sqe;
1378         int i, ret;
1379
1380         aen_op = ctrl->aen_ops;
1381         for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1382                 cmdiu = &aen_op->cmd_iu;
1383                 sqe = &cmdiu->sqe;
1384                 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1385                                 aen_op, (struct request *)NULL,
1386                                 (AEN_CMDID_BASE + i));
1387                 if (ret)
1388                         return ret;
1389
1390                 memset(sqe, 0, sizeof(*sqe));
1391                 sqe->common.opcode = nvme_admin_async_event;
1392                 sqe->common.command_id = AEN_CMDID_BASE + i;
1393         }
1394         return 0;
1395 }
1396
1397
1398 static inline void
1399 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1400                 unsigned int qidx)
1401 {
1402         struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1403
1404         hctx->driver_data = queue;
1405         queue->hctx = hctx;
1406 }
1407
1408 static int
1409 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1410                 unsigned int hctx_idx)
1411 {
1412         struct nvme_fc_ctrl *ctrl = data;
1413
1414         __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1415
1416         return 0;
1417 }
1418
1419 static int
1420 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1421                 unsigned int hctx_idx)
1422 {
1423         struct nvme_fc_ctrl *ctrl = data;
1424
1425         __nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1426
1427         return 0;
1428 }
1429
1430 static void
1431 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx, size_t queue_size)
1432 {
1433         struct nvme_fc_queue *queue;
1434
1435         queue = &ctrl->queues[idx];
1436         memset(queue, 0, sizeof(*queue));
1437         queue->ctrl = ctrl;
1438         queue->qnum = idx;
1439         atomic_set(&queue->csn, 1);
1440         queue->dev = ctrl->dev;
1441
1442         if (idx > 0)
1443                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1444         else
1445                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
1446
1447         queue->queue_size = queue_size;
1448
1449         /*
1450          * Considered whether we should allocate buffers for all SQEs
1451          * and CQEs and dma map them - mapping their respective entries
1452          * into the request structures (kernel vm addr and dma address)
1453          * thus the driver could use the buffers/mappings directly.
1454          * It only makes sense if the LLDD would use them for its
1455          * messaging api. It's very unlikely most adapter api's would use
1456          * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1457          * structures were used instead.
1458          */
1459 }
1460
1461 /*
1462  * This routine terminates a queue at the transport level.
1463  * The transport has already ensured that all outstanding ios on
1464  * the queue have been terminated.
1465  * The transport will send a Disconnect LS request to terminate
1466  * the queue's connection. Termination of the admin queue will also
1467  * terminate the association at the target.
1468  */
1469 static void
1470 nvme_fc_free_queue(struct nvme_fc_queue *queue)
1471 {
1472         if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1473                 return;
1474
1475         /*
1476          * Current implementation never disconnects a single queue.
1477          * It always terminates a whole association. So there is never
1478          * a disconnect(queue) LS sent to the target.
1479          */
1480
1481         queue->connection_id = 0;
1482         clear_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1483 }
1484
1485 static void
1486 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1487         struct nvme_fc_queue *queue, unsigned int qidx)
1488 {
1489         if (ctrl->lport->ops->delete_queue)
1490                 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1491                                 queue->lldd_handle);
1492         queue->lldd_handle = NULL;
1493 }
1494
1495 static void
1496 nvme_fc_destroy_admin_queue(struct nvme_fc_ctrl *ctrl)
1497 {
1498         __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
1499         blk_cleanup_queue(ctrl->ctrl.admin_q);
1500         blk_mq_free_tag_set(&ctrl->admin_tag_set);
1501         nvme_fc_free_queue(&ctrl->queues[0]);
1502 }
1503
1504 static void
1505 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1506 {
1507         int i;
1508
1509         for (i = 1; i < ctrl->queue_count; i++)
1510                 nvme_fc_free_queue(&ctrl->queues[i]);
1511 }
1512
1513 static int
1514 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1515         struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1516 {
1517         int ret = 0;
1518
1519         queue->lldd_handle = NULL;
1520         if (ctrl->lport->ops->create_queue)
1521                 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1522                                 qidx, qsize, &queue->lldd_handle);
1523
1524         return ret;
1525 }
1526
1527 static void
1528 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1529 {
1530         struct nvme_fc_queue *queue = &ctrl->queues[ctrl->queue_count - 1];
1531         int i;
1532
1533         for (i = ctrl->queue_count - 1; i >= 1; i--, queue--)
1534                 __nvme_fc_delete_hw_queue(ctrl, queue, i);
1535 }
1536
1537 static int
1538 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1539 {
1540         struct nvme_fc_queue *queue = &ctrl->queues[1];
1541         int i, ret;
1542
1543         for (i = 1; i < ctrl->queue_count; i++, queue++) {
1544                 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1545                 if (ret)
1546                         goto delete_queues;
1547         }
1548
1549         return 0;
1550
1551 delete_queues:
1552         for (; i >= 0; i--)
1553                 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
1554         return ret;
1555 }
1556
1557 static int
1558 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1559 {
1560         int i, ret = 0;
1561
1562         for (i = 1; i < ctrl->queue_count; i++) {
1563                 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
1564                                         (qsize / 5));
1565                 if (ret)
1566                         break;
1567                 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
1568                 if (ret)
1569                         break;
1570         }
1571
1572         return ret;
1573 }
1574
1575 static void
1576 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
1577 {
1578         int i;
1579
1580         for (i = 1; i < ctrl->queue_count; i++)
1581                 nvme_fc_init_queue(ctrl, i, ctrl->ctrl.sqsize);
1582 }
1583
1584 static void
1585 nvme_fc_ctrl_free(struct kref *ref)
1586 {
1587         struct nvme_fc_ctrl *ctrl =
1588                 container_of(ref, struct nvme_fc_ctrl, ref);
1589         unsigned long flags;
1590
1591         if (ctrl->state != FCCTRL_INIT) {
1592                 /* remove from rport list */
1593                 spin_lock_irqsave(&ctrl->rport->lock, flags);
1594                 list_del(&ctrl->ctrl_list);
1595                 spin_unlock_irqrestore(&ctrl->rport->lock, flags);
1596         }
1597
1598         put_device(ctrl->dev);
1599         nvme_fc_rport_put(ctrl->rport);
1600
1601         kfree(ctrl->queues);
1602         ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
1603         nvmf_free_options(ctrl->ctrl.opts);
1604         kfree(ctrl);
1605 }
1606
1607 static void
1608 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
1609 {
1610         kref_put(&ctrl->ref, nvme_fc_ctrl_free);
1611 }
1612
1613 static int
1614 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
1615 {
1616         return kref_get_unless_zero(&ctrl->ref);
1617 }
1618
1619 /*
1620  * All accesses from nvme core layer done - can now free the
1621  * controller. Called after last nvme_put_ctrl() call
1622  */
1623 static void
1624 nvme_fc_free_nvme_ctrl(struct nvme_ctrl *nctrl)
1625 {
1626         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
1627
1628         WARN_ON(nctrl != &ctrl->ctrl);
1629
1630         /*
1631          * Tear down the association, which will generate link
1632          * traffic to terminate connections
1633          */
1634
1635         if (ctrl->state != FCCTRL_INIT) {
1636                 /* send a Disconnect(association) LS to fc-nvme target */
1637                 nvme_fc_xmt_disconnect_assoc(ctrl);
1638
1639                 if (ctrl->ctrl.tagset) {
1640                         blk_cleanup_queue(ctrl->ctrl.connect_q);
1641                         blk_mq_free_tag_set(&ctrl->tag_set);
1642                         nvme_fc_delete_hw_io_queues(ctrl);
1643                         nvme_fc_free_io_queues(ctrl);
1644                 }
1645
1646                 nvme_fc_exit_aen_ops(ctrl);
1647
1648                 nvme_fc_destroy_admin_queue(ctrl);
1649         }
1650
1651         nvme_fc_ctrl_put(ctrl);
1652 }
1653
1654
1655 static int
1656 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1657 {
1658         int state;
1659
1660         state = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1661         if (state != FCPOP_STATE_ACTIVE) {
1662                 atomic_set(&op->state, state);
1663                 return -ECANCELED; /* fail */
1664         }
1665
1666         ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1667                                         &ctrl->rport->remoteport,
1668                                         op->queue->lldd_handle,
1669                                         &op->fcp_req);
1670
1671         return 0;
1672 }
1673
1674 enum blk_eh_timer_return
1675 nvme_fc_timeout(struct request *rq, bool reserved)
1676 {
1677         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1678         struct nvme_fc_ctrl *ctrl = op->ctrl;
1679         int ret;
1680
1681         if (reserved)
1682                 return BLK_EH_RESET_TIMER;
1683
1684         ret = __nvme_fc_abort_op(ctrl, op);
1685         if (ret)
1686                 /* io wasn't active to abort consider it done */
1687                 return BLK_EH_HANDLED;
1688
1689         /*
1690          * TODO: force a controller reset
1691          *   when that happens, queues will be torn down and outstanding
1692          *   ios will be terminated, and the above abort, on a single io
1693          *   will no longer be needed.
1694          */
1695
1696         return BLK_EH_HANDLED;
1697 }
1698
1699 static int
1700 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
1701                 struct nvme_fc_fcp_op *op)
1702 {
1703         struct nvmefc_fcp_req *freq = &op->fcp_req;
1704         enum dma_data_direction dir;
1705         int ret;
1706
1707         freq->sg_cnt = 0;
1708
1709         if (!blk_rq_payload_bytes(rq))
1710                 return 0;
1711
1712         freq->sg_table.sgl = freq->first_sgl;
1713         ret = sg_alloc_table_chained(&freq->sg_table,
1714                         blk_rq_nr_phys_segments(rq), freq->sg_table.sgl);
1715         if (ret)
1716                 return -ENOMEM;
1717
1718         op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
1719         WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
1720         dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
1721         freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
1722                                 op->nents, dir);
1723         if (unlikely(freq->sg_cnt <= 0)) {
1724                 sg_free_table_chained(&freq->sg_table, true);
1725                 freq->sg_cnt = 0;
1726                 return -EFAULT;
1727         }
1728
1729         /*
1730          * TODO: blk_integrity_rq(rq)  for DIF
1731          */
1732         return 0;
1733 }
1734
1735 static void
1736 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
1737                 struct nvme_fc_fcp_op *op)
1738 {
1739         struct nvmefc_fcp_req *freq = &op->fcp_req;
1740
1741         if (!freq->sg_cnt)
1742                 return;
1743
1744         fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
1745                                 ((rq_data_dir(rq) == WRITE) ?
1746                                         DMA_TO_DEVICE : DMA_FROM_DEVICE));
1747
1748         nvme_cleanup_cmd(rq);
1749
1750         sg_free_table_chained(&freq->sg_table, true);
1751
1752         freq->sg_cnt = 0;
1753 }
1754
1755 /*
1756  * In FC, the queue is a logical thing. At transport connect, the target
1757  * creates its "queue" and returns a handle that is to be given to the
1758  * target whenever it posts something to the corresponding SQ.  When an
1759  * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
1760  * command contained within the SQE, an io, and assigns a FC exchange
1761  * to it. The SQE and the associated SQ handle are sent in the initial
1762  * CMD IU sents on the exchange. All transfers relative to the io occur
1763  * as part of the exchange.  The CQE is the last thing for the io,
1764  * which is transferred (explicitly or implicitly) with the RSP IU
1765  * sent on the exchange. After the CQE is received, the FC exchange is
1766  * terminaed and the Exchange may be used on a different io.
1767  *
1768  * The transport to LLDD api has the transport making a request for a
1769  * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
1770  * resource and transfers the command. The LLDD will then process all
1771  * steps to complete the io. Upon completion, the transport done routine
1772  * is called.
1773  *
1774  * So - while the operation is outstanding to the LLDD, there is a link
1775  * level FC exchange resource that is also outstanding. This must be
1776  * considered in all cleanup operations.
1777  */
1778 static int
1779 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1780         struct nvme_fc_fcp_op *op, u32 data_len,
1781         enum nvmefc_fcp_datadir io_dir)
1782 {
1783         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1784         struct nvme_command *sqe = &cmdiu->sqe;
1785         u32 csn;
1786         int ret;
1787
1788         if (!nvme_fc_ctrl_get(ctrl))
1789                 return BLK_MQ_RQ_QUEUE_ERROR;
1790
1791         /* format the FC-NVME CMD IU and fcp_req */
1792         cmdiu->connection_id = cpu_to_be64(queue->connection_id);
1793         csn = atomic_inc_return(&queue->csn);
1794         cmdiu->csn = cpu_to_be32(csn);
1795         cmdiu->data_len = cpu_to_be32(data_len);
1796         switch (io_dir) {
1797         case NVMEFC_FCP_WRITE:
1798                 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
1799                 break;
1800         case NVMEFC_FCP_READ:
1801                 cmdiu->flags = FCNVME_CMD_FLAGS_READ;
1802                 break;
1803         case NVMEFC_FCP_NODATA:
1804                 cmdiu->flags = 0;
1805                 break;
1806         }
1807         op->fcp_req.payload_length = data_len;
1808         op->fcp_req.io_dir = io_dir;
1809         op->fcp_req.transferred_length = 0;
1810         op->fcp_req.rcv_rsplen = 0;
1811         op->fcp_req.status = NVME_SC_SUCCESS;
1812         op->fcp_req.sqid = cpu_to_le16(queue->qnum);
1813
1814         /*
1815          * validate per fabric rules, set fields mandated by fabric spec
1816          * as well as those by FC-NVME spec.
1817          */
1818         WARN_ON_ONCE(sqe->common.metadata);
1819         WARN_ON_ONCE(sqe->common.dptr.prp1);
1820         WARN_ON_ONCE(sqe->common.dptr.prp2);
1821         sqe->common.flags |= NVME_CMD_SGL_METABUF;
1822
1823         /*
1824          * format SQE DPTR field per FC-NVME rules
1825          *    type=data block descr; subtype=offset;
1826          *    offset is currently 0.
1827          */
1828         sqe->rw.dptr.sgl.type = NVME_SGL_FMT_OFFSET;
1829         sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
1830         sqe->rw.dptr.sgl.addr = 0;
1831
1832         /* odd that we set the command_id - should come from nvme-fabrics */
1833         WARN_ON_ONCE(sqe->common.command_id != cpu_to_le16(op->rqno));
1834
1835         if (op->rq) {                           /* skipped on aens */
1836                 ret = nvme_fc_map_data(ctrl, op->rq, op);
1837                 if (ret < 0) {
1838                         dev_err(queue->ctrl->ctrl.device,
1839                              "Failed to map data (%d)\n", ret);
1840                         nvme_cleanup_cmd(op->rq);
1841                         nvme_fc_ctrl_put(ctrl);
1842                         return (ret == -ENOMEM || ret == -EAGAIN) ?
1843                                 BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR;
1844                 }
1845         }
1846
1847         fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
1848                                   sizeof(op->cmd_iu), DMA_TO_DEVICE);
1849
1850         atomic_set(&op->state, FCPOP_STATE_ACTIVE);
1851
1852         if (op->rq)
1853                 blk_mq_start_request(op->rq);
1854
1855         ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
1856                                         &ctrl->rport->remoteport,
1857                                         queue->lldd_handle, &op->fcp_req);
1858
1859         if (ret) {
1860                 dev_err(ctrl->dev,
1861                         "Send nvme command failed - lldd returned %d.\n", ret);
1862
1863                 if (op->rq) {                   /* normal request */
1864                         nvme_fc_unmap_data(ctrl, op->rq, op);
1865                         nvme_cleanup_cmd(op->rq);
1866                 }
1867                 /* else - aen. no cleanup needed */
1868
1869                 nvme_fc_ctrl_put(ctrl);
1870
1871                 if (ret != -EBUSY)
1872                         return BLK_MQ_RQ_QUEUE_ERROR;
1873
1874                 if (op->rq) {
1875                         blk_mq_stop_hw_queues(op->rq->q);
1876                         blk_mq_delay_queue(queue->hctx, NVMEFC_QUEUE_DELAY);
1877                 }
1878                 return BLK_MQ_RQ_QUEUE_BUSY;
1879         }
1880
1881         return BLK_MQ_RQ_QUEUE_OK;
1882 }
1883
1884 static int
1885 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
1886                         const struct blk_mq_queue_data *bd)
1887 {
1888         struct nvme_ns *ns = hctx->queue->queuedata;
1889         struct nvme_fc_queue *queue = hctx->driver_data;
1890         struct nvme_fc_ctrl *ctrl = queue->ctrl;
1891         struct request *rq = bd->rq;
1892         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1893         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1894         struct nvme_command *sqe = &cmdiu->sqe;
1895         enum nvmefc_fcp_datadir io_dir;
1896         u32 data_len;
1897         int ret;
1898
1899         ret = nvme_setup_cmd(ns, rq, sqe);
1900         if (ret)
1901                 return ret;
1902
1903         data_len = blk_rq_payload_bytes(rq);
1904         if (data_len)
1905                 io_dir = ((rq_data_dir(rq) == WRITE) ?
1906                                         NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
1907         else
1908                 io_dir = NVMEFC_FCP_NODATA;
1909
1910         return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
1911 }
1912
1913 static struct blk_mq_tags *
1914 nvme_fc_tagset(struct nvme_fc_queue *queue)
1915 {
1916         if (queue->qnum == 0)
1917                 return queue->ctrl->admin_tag_set.tags[queue->qnum];
1918
1919         return queue->ctrl->tag_set.tags[queue->qnum - 1];
1920 }
1921
1922 static int
1923 nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1924
1925 {
1926         struct nvme_fc_queue *queue = hctx->driver_data;
1927         struct nvme_fc_ctrl *ctrl = queue->ctrl;
1928         struct request *req;
1929         struct nvme_fc_fcp_op *op;
1930
1931         req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag);
1932         if (!req) {
1933                 dev_err(queue->ctrl->ctrl.device,
1934                          "tag 0x%x on QNum %#x not found\n",
1935                         tag, queue->qnum);
1936                 return 0;
1937         }
1938
1939         op = blk_mq_rq_to_pdu(req);
1940
1941         if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) &&
1942                  (ctrl->lport->ops->poll_queue))
1943                 ctrl->lport->ops->poll_queue(&ctrl->lport->localport,
1944                                                  queue->lldd_handle);
1945
1946         return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE));
1947 }
1948
1949 static void
1950 nvme_fc_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
1951 {
1952         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
1953         struct nvme_fc_fcp_op *aen_op;
1954         int ret;
1955
1956         if (aer_idx > NVME_FC_NR_AEN_COMMANDS)
1957                 return;
1958
1959         aen_op = &ctrl->aen_ops[aer_idx];
1960
1961         ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
1962                                         NVMEFC_FCP_NODATA);
1963         if (ret)
1964                 dev_err(ctrl->ctrl.device,
1965                         "failed async event work [%d]\n", aer_idx);
1966 }
1967
1968 static void
1969 nvme_fc_complete_rq(struct request *rq)
1970 {
1971         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1972         struct nvme_fc_ctrl *ctrl = op->ctrl;
1973         int state;
1974
1975         state = atomic_xchg(&op->state, FCPOP_STATE_IDLE);
1976
1977         nvme_cleanup_cmd(rq);
1978         nvme_fc_unmap_data(ctrl, rq, op);
1979         nvme_complete_rq(rq);
1980         nvme_fc_ctrl_put(ctrl);
1981
1982 }
1983
1984 static const struct blk_mq_ops nvme_fc_mq_ops = {
1985         .queue_rq       = nvme_fc_queue_rq,
1986         .complete       = nvme_fc_complete_rq,
1987         .init_request   = nvme_fc_init_request,
1988         .exit_request   = nvme_fc_exit_request,
1989         .reinit_request = nvme_fc_reinit_request,
1990         .init_hctx      = nvme_fc_init_hctx,
1991         .poll           = nvme_fc_poll,
1992         .timeout        = nvme_fc_timeout,
1993 };
1994
1995 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
1996         .queue_rq       = nvme_fc_queue_rq,
1997         .complete       = nvme_fc_complete_rq,
1998         .init_request   = nvme_fc_init_admin_request,
1999         .exit_request   = nvme_fc_exit_request,
2000         .reinit_request = nvme_fc_reinit_request,
2001         .init_hctx      = nvme_fc_init_admin_hctx,
2002         .timeout        = nvme_fc_timeout,
2003 };
2004
2005 static int
2006 nvme_fc_configure_admin_queue(struct nvme_fc_ctrl *ctrl)
2007 {
2008         u32 segs;
2009         int error;
2010
2011         nvme_fc_init_queue(ctrl, 0, NVME_FC_AQ_BLKMQ_DEPTH);
2012
2013         error = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2014                                 NVME_FC_AQ_BLKMQ_DEPTH,
2015                                 (NVME_FC_AQ_BLKMQ_DEPTH / 4));
2016         if (error)
2017                 return error;
2018
2019         memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
2020         ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
2021         ctrl->admin_tag_set.queue_depth = NVME_FC_AQ_BLKMQ_DEPTH;
2022         ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
2023         ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
2024         ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2025                                         (SG_CHUNK_SIZE *
2026                                                 sizeof(struct scatterlist)) +
2027                                         ctrl->lport->ops->fcprqst_priv_sz;
2028         ctrl->admin_tag_set.driver_data = ctrl;
2029         ctrl->admin_tag_set.nr_hw_queues = 1;
2030         ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
2031
2032         error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
2033         if (error)
2034                 goto out_free_queue;
2035
2036         ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
2037         if (IS_ERR(ctrl->ctrl.admin_q)) {
2038                 error = PTR_ERR(ctrl->ctrl.admin_q);
2039                 goto out_free_tagset;
2040         }
2041
2042         error = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2043                                 NVME_FC_AQ_BLKMQ_DEPTH);
2044         if (error)
2045                 goto out_cleanup_queue;
2046
2047         error = nvmf_connect_admin_queue(&ctrl->ctrl);
2048         if (error)
2049                 goto out_delete_hw_queue;
2050
2051         error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap);
2052         if (error) {
2053                 dev_err(ctrl->ctrl.device,
2054                         "prop_get NVME_REG_CAP failed\n");
2055                 goto out_delete_hw_queue;
2056         }
2057
2058         ctrl->ctrl.sqsize =
2059                 min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize);
2060
2061         error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
2062         if (error)
2063                 goto out_delete_hw_queue;
2064
2065         segs = min_t(u32, NVME_FC_MAX_SEGMENTS,
2066                         ctrl->lport->ops->max_sgl_segments);
2067         ctrl->ctrl.max_hw_sectors = (segs - 1) << (PAGE_SHIFT - 9);
2068
2069         error = nvme_init_identify(&ctrl->ctrl);
2070         if (error)
2071                 goto out_delete_hw_queue;
2072
2073         nvme_start_keep_alive(&ctrl->ctrl);
2074
2075         return 0;
2076
2077 out_delete_hw_queue:
2078         __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2079 out_cleanup_queue:
2080         blk_cleanup_queue(ctrl->ctrl.admin_q);
2081 out_free_tagset:
2082         blk_mq_free_tag_set(&ctrl->admin_tag_set);
2083 out_free_queue:
2084         nvme_fc_free_queue(&ctrl->queues[0]);
2085         return error;
2086 }
2087
2088 /*
2089  * This routine is used by the transport when it needs to find active
2090  * io on a queue that is to be terminated. The transport uses
2091  * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2092  * this routine to kill them on a 1 by 1 basis.
2093  *
2094  * As FC allocates FC exchange for each io, the transport must contact
2095  * the LLDD to terminate the exchange, thus releasing the FC exchange.
2096  * After terminating the exchange the LLDD will call the transport's
2097  * normal io done path for the request, but it will have an aborted
2098  * status. The done path will return the io request back to the block
2099  * layer with an error status.
2100  */
2101 static void
2102 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2103 {
2104         struct nvme_ctrl *nctrl = data;
2105         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2106         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2107 int status;
2108
2109         if (!blk_mq_request_started(req))
2110                 return;
2111
2112         /* this performs an ABTS-LS on the FC exchange for the io */
2113         status = __nvme_fc_abort_op(ctrl, op);
2114         /*
2115          * if __nvme_fc_abort_op failed: io wasn't active to abort
2116          * consider it done. Assume completion path already completing
2117          * in parallel
2118          */
2119         if (status)
2120                 /* io wasn't active to abort consider it done */
2121                 /* assume completion path already completing in parallel */
2122                 return;
2123 }
2124
2125
2126 /*
2127  * This routine stops operation of the controller. Admin and IO queues
2128  * are stopped, outstanding ios on them terminated, and the nvme ctrl
2129  * is shutdown.
2130  */
2131 static void
2132 nvme_fc_shutdown_ctrl(struct nvme_fc_ctrl *ctrl)
2133 {
2134         /*
2135          * If io queues are present, stop them and terminate all outstanding
2136          * ios on them. As FC allocates FC exchange for each io, the
2137          * transport must contact the LLDD to terminate the exchange,
2138          * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2139          * to tell us what io's are busy and invoke a transport routine
2140          * to kill them with the LLDD.  After terminating the exchange
2141          * the LLDD will call the transport's normal io done path, but it
2142          * will have an aborted status. The done path will return the
2143          * io requests back to the block layer as part of normal completions
2144          * (but with error status).
2145          */
2146         if (ctrl->queue_count > 1) {
2147                 nvme_stop_queues(&ctrl->ctrl);
2148                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
2149                                 nvme_fc_terminate_exchange, &ctrl->ctrl);
2150         }
2151
2152         if (ctrl->ctrl.state == NVME_CTRL_LIVE)
2153                 nvme_shutdown_ctrl(&ctrl->ctrl);
2154
2155         /*
2156          * now clean up the admin queue. Same thing as above.
2157          * use blk_mq_tagset_busy_itr() and the transport routine to
2158          * terminate the exchanges.
2159          */
2160         blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
2161         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2162                                 nvme_fc_terminate_exchange, &ctrl->ctrl);
2163 }
2164
2165 /*
2166  * Called to teardown an association.
2167  * May be called with association fully in place or partially in place.
2168  */
2169 static void
2170 __nvme_fc_remove_ctrl(struct nvme_fc_ctrl *ctrl)
2171 {
2172         nvme_stop_keep_alive(&ctrl->ctrl);
2173
2174         /* stop and terminate ios on admin and io queues */
2175         nvme_fc_shutdown_ctrl(ctrl);
2176
2177         /*
2178          * tear down the controller
2179          * This will result in the last reference on the nvme ctrl to
2180          * expire, calling the transport nvme_fc_free_nvme_ctrl() callback.
2181          * From there, the transport will tear down it's logical queues and
2182          * association.
2183          */
2184         nvme_uninit_ctrl(&ctrl->ctrl);
2185
2186         nvme_put_ctrl(&ctrl->ctrl);
2187 }
2188
2189 static void
2190 nvme_fc_del_ctrl_work(struct work_struct *work)
2191 {
2192         struct nvme_fc_ctrl *ctrl =
2193                         container_of(work, struct nvme_fc_ctrl, delete_work);
2194
2195         __nvme_fc_remove_ctrl(ctrl);
2196 }
2197
2198 static int
2199 __nvme_fc_del_ctrl(struct nvme_fc_ctrl *ctrl)
2200 {
2201         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
2202                 return -EBUSY;
2203
2204         if (!queue_work(nvme_fc_wq, &ctrl->delete_work))
2205                 return -EBUSY;
2206
2207         return 0;
2208 }
2209
2210 /*
2211  * Request from nvme core layer to delete the controller
2212  */
2213 static int
2214 nvme_fc_del_nvme_ctrl(struct nvme_ctrl *nctrl)
2215 {
2216         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2217         struct nvme_fc_rport *rport = ctrl->rport;
2218         unsigned long flags;
2219         int ret;
2220
2221         spin_lock_irqsave(&rport->lock, flags);
2222         ret = __nvme_fc_del_ctrl(ctrl);
2223         spin_unlock_irqrestore(&rport->lock, flags);
2224         if (ret)
2225                 return ret;
2226
2227         flush_work(&ctrl->delete_work);
2228
2229         return 0;
2230 }
2231
2232 static int
2233 nvme_fc_reset_nvme_ctrl(struct nvme_ctrl *nctrl)
2234 {
2235         return -EIO;
2236 }
2237
2238 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
2239         .name                   = "fc",
2240         .module                 = THIS_MODULE,
2241         .is_fabrics             = true,
2242         .reg_read32             = nvmf_reg_read32,
2243         .reg_read64             = nvmf_reg_read64,
2244         .reg_write32            = nvmf_reg_write32,
2245         .reset_ctrl             = nvme_fc_reset_nvme_ctrl,
2246         .free_ctrl              = nvme_fc_free_nvme_ctrl,
2247         .submit_async_event     = nvme_fc_submit_async_event,
2248         .delete_ctrl            = nvme_fc_del_nvme_ctrl,
2249         .get_subsysnqn          = nvmf_get_subsysnqn,
2250         .get_address            = nvmf_get_address,
2251 };
2252
2253 static int
2254 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2255 {
2256         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2257         int ret;
2258
2259         ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues);
2260         if (ret) {
2261                 dev_info(ctrl->ctrl.device,
2262                         "set_queue_count failed: %d\n", ret);
2263                 return ret;
2264         }
2265
2266         ctrl->queue_count = opts->nr_io_queues + 1;
2267         if (!opts->nr_io_queues)
2268                 return 0;
2269
2270         dev_info(ctrl->ctrl.device, "creating %d I/O queues.\n",
2271                         opts->nr_io_queues);
2272
2273         nvme_fc_init_io_queues(ctrl);
2274
2275         memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2276         ctrl->tag_set.ops = &nvme_fc_mq_ops;
2277         ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2278         ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2279         ctrl->tag_set.numa_node = NUMA_NO_NODE;
2280         ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2281         ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2282                                         (SG_CHUNK_SIZE *
2283                                                 sizeof(struct scatterlist)) +
2284                                         ctrl->lport->ops->fcprqst_priv_sz;
2285         ctrl->tag_set.driver_data = ctrl;
2286         ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1;
2287         ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2288
2289         ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2290         if (ret)
2291                 return ret;
2292
2293         ctrl->ctrl.tagset = &ctrl->tag_set;
2294
2295         ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2296         if (IS_ERR(ctrl->ctrl.connect_q)) {
2297                 ret = PTR_ERR(ctrl->ctrl.connect_q);
2298                 goto out_free_tag_set;
2299         }
2300
2301         ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2302         if (ret)
2303                 goto out_cleanup_blk_queue;
2304
2305         ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2306         if (ret)
2307                 goto out_delete_hw_queues;
2308
2309         return 0;
2310
2311 out_delete_hw_queues:
2312         nvme_fc_delete_hw_io_queues(ctrl);
2313 out_cleanup_blk_queue:
2314         nvme_stop_keep_alive(&ctrl->ctrl);
2315         blk_cleanup_queue(ctrl->ctrl.connect_q);
2316 out_free_tag_set:
2317         blk_mq_free_tag_set(&ctrl->tag_set);
2318         nvme_fc_free_io_queues(ctrl);
2319
2320         /* force put free routine to ignore io queues */
2321         ctrl->ctrl.tagset = NULL;
2322
2323         return ret;
2324 }
2325
2326
2327 static struct nvme_ctrl *
2328 __nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
2329         struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
2330 {
2331         struct nvme_fc_ctrl *ctrl;
2332         unsigned long flags;
2333         int ret, idx;
2334         bool changed;
2335
2336         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2337         if (!ctrl) {
2338                 ret = -ENOMEM;
2339                 goto out_fail;
2340         }
2341
2342         idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
2343         if (idx < 0) {
2344                 ret = -ENOSPC;
2345                 goto out_free_ctrl;
2346         }
2347
2348         ctrl->ctrl.opts = opts;
2349         INIT_LIST_HEAD(&ctrl->ctrl_list);
2350         ctrl->lport = lport;
2351         ctrl->rport = rport;
2352         ctrl->dev = lport->dev;
2353         ctrl->state = FCCTRL_INIT;
2354         ctrl->cnum = idx;
2355
2356         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
2357         if (ret)
2358                 goto out_free_ida;
2359
2360         get_device(ctrl->dev);
2361         kref_init(&ctrl->ref);
2362
2363         INIT_WORK(&ctrl->delete_work, nvme_fc_del_ctrl_work);
2364         spin_lock_init(&ctrl->lock);
2365
2366         /* io queue count */
2367         ctrl->queue_count = min_t(unsigned int,
2368                                 opts->nr_io_queues,
2369                                 lport->ops->max_hw_queues);
2370         opts->nr_io_queues = ctrl->queue_count; /* so opts has valid value */
2371         ctrl->queue_count++;    /* +1 for admin queue */
2372
2373         ctrl->ctrl.sqsize = opts->queue_size - 1;
2374         ctrl->ctrl.kato = opts->kato;
2375
2376         ret = -ENOMEM;
2377         ctrl->queues = kcalloc(ctrl->queue_count, sizeof(struct nvme_fc_queue),
2378                                 GFP_KERNEL);
2379         if (!ctrl->queues)
2380                 goto out_uninit_ctrl;
2381
2382         ret = nvme_fc_configure_admin_queue(ctrl);
2383         if (ret)
2384                 goto out_uninit_ctrl;
2385
2386         /* sanity checks */
2387
2388         /* FC-NVME does not have other data in the capsule */
2389         if (ctrl->ctrl.icdoff) {
2390                 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2391                                 ctrl->ctrl.icdoff);
2392                 goto out_remove_admin_queue;
2393         }
2394
2395         /* FC-NVME supports normal SGL Data Block Descriptors */
2396
2397         if (opts->queue_size > ctrl->ctrl.maxcmd) {
2398                 /* warn if maxcmd is lower than queue_size */
2399                 dev_warn(ctrl->ctrl.device,
2400                         "queue_size %zu > ctrl maxcmd %u, reducing "
2401                         "to queue_size\n",
2402                         opts->queue_size, ctrl->ctrl.maxcmd);
2403                 opts->queue_size = ctrl->ctrl.maxcmd;
2404         }
2405
2406         ret = nvme_fc_init_aen_ops(ctrl);
2407         if (ret)
2408                 goto out_exit_aen_ops;
2409
2410         if (ctrl->queue_count > 1) {
2411                 ret = nvme_fc_create_io_queues(ctrl);
2412                 if (ret)
2413                         goto out_exit_aen_ops;
2414         }
2415
2416         spin_lock_irqsave(&ctrl->lock, flags);
2417         ctrl->state = FCCTRL_ACTIVE;
2418         spin_unlock_irqrestore(&ctrl->lock, flags);
2419
2420         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2421         WARN_ON_ONCE(!changed);
2422
2423         dev_info(ctrl->ctrl.device,
2424                 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
2425                 ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
2426
2427         kref_get(&ctrl->ctrl.kref);
2428
2429         spin_lock_irqsave(&rport->lock, flags);
2430         list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
2431         spin_unlock_irqrestore(&rport->lock, flags);
2432
2433         if (opts->nr_io_queues) {
2434                 nvme_queue_scan(&ctrl->ctrl);
2435                 nvme_queue_async_events(&ctrl->ctrl);
2436         }
2437
2438         return &ctrl->ctrl;
2439
2440 out_exit_aen_ops:
2441         nvme_fc_exit_aen_ops(ctrl);
2442 out_remove_admin_queue:
2443         /* send a Disconnect(association) LS to fc-nvme target */
2444         nvme_fc_xmt_disconnect_assoc(ctrl);
2445         nvme_stop_keep_alive(&ctrl->ctrl);
2446         nvme_fc_destroy_admin_queue(ctrl);
2447 out_uninit_ctrl:
2448         nvme_uninit_ctrl(&ctrl->ctrl);
2449         nvme_put_ctrl(&ctrl->ctrl);
2450         if (ret > 0)
2451                 ret = -EIO;
2452         /* exit via here will follow ctlr ref point callbacks to free */
2453         return ERR_PTR(ret);
2454
2455 out_free_ida:
2456         ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2457 out_free_ctrl:
2458         kfree(ctrl);
2459 out_fail:
2460         nvme_fc_rport_put(rport);
2461         /* exit via here doesn't follow ctlr ref points */
2462         return ERR_PTR(ret);
2463 }
2464
2465 enum {
2466         FCT_TRADDR_ERR          = 0,
2467         FCT_TRADDR_WWNN         = 1 << 0,
2468         FCT_TRADDR_WWPN         = 1 << 1,
2469 };
2470
2471 struct nvmet_fc_traddr {
2472         u64     nn;
2473         u64     pn;
2474 };
2475
2476 static const match_table_t traddr_opt_tokens = {
2477         { FCT_TRADDR_WWNN,      "nn-%s"         },
2478         { FCT_TRADDR_WWPN,      "pn-%s"         },
2479         { FCT_TRADDR_ERR,       NULL            }
2480 };
2481
2482 static int
2483 nvme_fc_parse_address(struct nvmet_fc_traddr *traddr, char *buf)
2484 {
2485         substring_t args[MAX_OPT_ARGS];
2486         char *options, *o, *p;
2487         int token, ret = 0;
2488         u64 token64;
2489
2490         options = o = kstrdup(buf, GFP_KERNEL);
2491         if (!options)
2492                 return -ENOMEM;
2493
2494         while ((p = strsep(&o, ":\n")) != NULL) {
2495                 if (!*p)
2496                         continue;
2497
2498                 token = match_token(p, traddr_opt_tokens, args);
2499                 switch (token) {
2500                 case FCT_TRADDR_WWNN:
2501                         if (match_u64(args, &token64)) {
2502                                 ret = -EINVAL;
2503                                 goto out;
2504                         }
2505                         traddr->nn = token64;
2506                         break;
2507                 case FCT_TRADDR_WWPN:
2508                         if (match_u64(args, &token64)) {
2509                                 ret = -EINVAL;
2510                                 goto out;
2511                         }
2512                         traddr->pn = token64;
2513                         break;
2514                 default:
2515                         pr_warn("unknown traddr token or missing value '%s'\n",
2516                                         p);
2517                         ret = -EINVAL;
2518                         goto out;
2519                 }
2520         }
2521
2522 out:
2523         kfree(options);
2524         return ret;
2525 }
2526
2527 static struct nvme_ctrl *
2528 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
2529 {
2530         struct nvme_fc_lport *lport;
2531         struct nvme_fc_rport *rport;
2532         struct nvmet_fc_traddr laddr = { 0L, 0L };
2533         struct nvmet_fc_traddr raddr = { 0L, 0L };
2534         unsigned long flags;
2535         int ret;
2536
2537         ret = nvme_fc_parse_address(&raddr, opts->traddr);
2538         if (ret || !raddr.nn || !raddr.pn)
2539                 return ERR_PTR(-EINVAL);
2540
2541         ret = nvme_fc_parse_address(&laddr, opts->host_traddr);
2542         if (ret || !laddr.nn || !laddr.pn)
2543                 return ERR_PTR(-EINVAL);
2544
2545         /* find the host and remote ports to connect together */
2546         spin_lock_irqsave(&nvme_fc_lock, flags);
2547         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
2548                 if (lport->localport.node_name != laddr.nn ||
2549                     lport->localport.port_name != laddr.pn)
2550                         continue;
2551
2552                 list_for_each_entry(rport, &lport->endp_list, endp_list) {
2553                         if (rport->remoteport.node_name != raddr.nn ||
2554                             rport->remoteport.port_name != raddr.pn)
2555                                 continue;
2556
2557                         /* if fail to get reference fall through. Will error */
2558                         if (!nvme_fc_rport_get(rport))
2559                                 break;
2560
2561                         spin_unlock_irqrestore(&nvme_fc_lock, flags);
2562
2563                         return __nvme_fc_create_ctrl(dev, opts, lport, rport);
2564                 }
2565         }
2566         spin_unlock_irqrestore(&nvme_fc_lock, flags);
2567
2568         return ERR_PTR(-ENOENT);
2569 }
2570
2571
2572 static struct nvmf_transport_ops nvme_fc_transport = {
2573         .name           = "fc",
2574         .required_opts  = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
2575         .allowed_opts   = NVMF_OPT_RECONNECT_DELAY,
2576         .create_ctrl    = nvme_fc_create_ctrl,
2577 };
2578
2579 static int __init nvme_fc_init_module(void)
2580 {
2581         int ret;
2582
2583         nvme_fc_wq = create_workqueue("nvme_fc_wq");
2584         if (!nvme_fc_wq)
2585                 return -ENOMEM;
2586
2587         ret = nvmf_register_transport(&nvme_fc_transport);
2588         if (ret)
2589                 goto err;
2590
2591         return 0;
2592 err:
2593         destroy_workqueue(nvme_fc_wq);
2594         return ret;
2595 }
2596
2597 static void __exit nvme_fc_exit_module(void)
2598 {
2599         /* sanity check - all lports should be removed */
2600         if (!list_empty(&nvme_fc_lport_list))
2601                 pr_warn("%s: localport list not empty\n", __func__);
2602
2603         nvmf_unregister_transport(&nvme_fc_transport);
2604
2605         destroy_workqueue(nvme_fc_wq);
2606
2607         ida_destroy(&nvme_fc_local_port_cnt);
2608         ida_destroy(&nvme_fc_ctrl_cnt);
2609 }
2610
2611 module_init(nvme_fc_init_module);
2612 module_exit(nvme_fc_exit_module);
2613
2614 MODULE_LICENSE("GPL v2");