]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/nvme/host/fc.c
Merge tag 'for-4.12/dm-fixes-3' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / drivers / nvme / host / fc.c
1 /*
2  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful.
9  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10  * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11  * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12  * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13  * See the GNU General Public License for more details, a copy of which
14  * can be found in the file COPYING included with this package
15  *
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/parser.h>
20 #include <uapi/scsi/fc/fc_fs.h>
21 #include <uapi/scsi/fc/fc_els.h>
22 #include <linux/delay.h>
23
24 #include "nvme.h"
25 #include "fabrics.h"
26 #include <linux/nvme-fc-driver.h>
27 #include <linux/nvme-fc.h>
28
29
30 /* *************************** Data Structures/Defines ****************** */
31
32
33 /*
34  * We handle AEN commands ourselves and don't even let the
35  * block layer know about them.
36  */
37 #define NVME_FC_NR_AEN_COMMANDS 1
38 #define NVME_FC_AQ_BLKMQ_DEPTH  \
39         (NVMF_AQ_DEPTH - NVME_FC_NR_AEN_COMMANDS)
40 #define AEN_CMDID_BASE          (NVME_FC_AQ_BLKMQ_DEPTH + 1)
41
42 enum nvme_fc_queue_flags {
43         NVME_FC_Q_CONNECTED = (1 << 0),
44 };
45
46 #define NVMEFC_QUEUE_DELAY      3               /* ms units */
47
48 struct nvme_fc_queue {
49         struct nvme_fc_ctrl     *ctrl;
50         struct device           *dev;
51         struct blk_mq_hw_ctx    *hctx;
52         void                    *lldd_handle;
53         int                     queue_size;
54         size_t                  cmnd_capsule_len;
55         u32                     qnum;
56         u32                     rqcnt;
57         u32                     seqno;
58
59         u64                     connection_id;
60         atomic_t                csn;
61
62         unsigned long           flags;
63 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
64
65 enum nvme_fcop_flags {
66         FCOP_FLAGS_TERMIO       = (1 << 0),
67         FCOP_FLAGS_RELEASED     = (1 << 1),
68         FCOP_FLAGS_COMPLETE     = (1 << 2),
69         FCOP_FLAGS_AEN          = (1 << 3),
70 };
71
72 struct nvmefc_ls_req_op {
73         struct nvmefc_ls_req    ls_req;
74
75         struct nvme_fc_rport    *rport;
76         struct nvme_fc_queue    *queue;
77         struct request          *rq;
78         u32                     flags;
79
80         int                     ls_error;
81         struct completion       ls_done;
82         struct list_head        lsreq_list;     /* rport->ls_req_list */
83         bool                    req_queued;
84 };
85
86 enum nvme_fcpop_state {
87         FCPOP_STATE_UNINIT      = 0,
88         FCPOP_STATE_IDLE        = 1,
89         FCPOP_STATE_ACTIVE      = 2,
90         FCPOP_STATE_ABORTED     = 3,
91         FCPOP_STATE_COMPLETE    = 4,
92 };
93
94 struct nvme_fc_fcp_op {
95         struct nvme_request     nreq;           /*
96                                                  * nvme/host/core.c
97                                                  * requires this to be
98                                                  * the 1st element in the
99                                                  * private structure
100                                                  * associated with the
101                                                  * request.
102                                                  */
103         struct nvmefc_fcp_req   fcp_req;
104
105         struct nvme_fc_ctrl     *ctrl;
106         struct nvme_fc_queue    *queue;
107         struct request          *rq;
108
109         atomic_t                state;
110         u32                     flags;
111         u32                     rqno;
112         u32                     nents;
113
114         struct nvme_fc_cmd_iu   cmd_iu;
115         struct nvme_fc_ersp_iu  rsp_iu;
116 };
117
118 struct nvme_fc_lport {
119         struct nvme_fc_local_port       localport;
120
121         struct ida                      endp_cnt;
122         struct list_head                port_list;      /* nvme_fc_port_list */
123         struct list_head                endp_list;
124         struct device                   *dev;   /* physical device for dma */
125         struct nvme_fc_port_template    *ops;
126         struct kref                     ref;
127 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
128
129 struct nvme_fc_rport {
130         struct nvme_fc_remote_port      remoteport;
131
132         struct list_head                endp_list; /* for lport->endp_list */
133         struct list_head                ctrl_list;
134         struct list_head                ls_req_list;
135         struct device                   *dev;   /* physical device for dma */
136         struct nvme_fc_lport            *lport;
137         spinlock_t                      lock;
138         struct kref                     ref;
139 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
140
141 enum nvme_fcctrl_flags {
142         FCCTRL_TERMIO           = (1 << 0),
143 };
144
145 struct nvme_fc_ctrl {
146         spinlock_t              lock;
147         struct nvme_fc_queue    *queues;
148         struct device           *dev;
149         struct nvme_fc_lport    *lport;
150         struct nvme_fc_rport    *rport;
151         u32                     queue_count;
152         u32                     cnum;
153
154         u64                     association_id;
155
156         u64                     cap;
157
158         struct list_head        ctrl_list;      /* rport->ctrl_list */
159
160         struct blk_mq_tag_set   admin_tag_set;
161         struct blk_mq_tag_set   tag_set;
162
163         struct work_struct      delete_work;
164         struct work_struct      reset_work;
165         struct delayed_work     connect_work;
166
167         struct kref             ref;
168         u32                     flags;
169         u32                     iocnt;
170
171         struct nvme_fc_fcp_op   aen_ops[NVME_FC_NR_AEN_COMMANDS];
172
173         struct nvme_ctrl        ctrl;
174 };
175
176 static inline struct nvme_fc_ctrl *
177 to_fc_ctrl(struct nvme_ctrl *ctrl)
178 {
179         return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
180 }
181
182 static inline struct nvme_fc_lport *
183 localport_to_lport(struct nvme_fc_local_port *portptr)
184 {
185         return container_of(portptr, struct nvme_fc_lport, localport);
186 }
187
188 static inline struct nvme_fc_rport *
189 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
190 {
191         return container_of(portptr, struct nvme_fc_rport, remoteport);
192 }
193
194 static inline struct nvmefc_ls_req_op *
195 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
196 {
197         return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
198 }
199
200 static inline struct nvme_fc_fcp_op *
201 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
202 {
203         return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
204 }
205
206
207
208 /* *************************** Globals **************************** */
209
210
211 static DEFINE_SPINLOCK(nvme_fc_lock);
212
213 static LIST_HEAD(nvme_fc_lport_list);
214 static DEFINE_IDA(nvme_fc_local_port_cnt);
215 static DEFINE_IDA(nvme_fc_ctrl_cnt);
216
217 static struct workqueue_struct *nvme_fc_wq;
218
219
220
221 /* *********************** FC-NVME Port Management ************************ */
222
223 static int __nvme_fc_del_ctrl(struct nvme_fc_ctrl *);
224 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
225                         struct nvme_fc_queue *, unsigned int);
226
227
228 /**
229  * nvme_fc_register_localport - transport entry point called by an
230  *                              LLDD to register the existence of a NVME
231  *                              host FC port.
232  * @pinfo:     pointer to information about the port to be registered
233  * @template:  LLDD entrypoints and operational parameters for the port
234  * @dev:       physical hardware device node port corresponds to. Will be
235  *             used for DMA mappings
236  * @lport_p:   pointer to a local port pointer. Upon success, the routine
237  *             will allocate a nvme_fc_local_port structure and place its
238  *             address in the local port pointer. Upon failure, local port
239  *             pointer will be set to 0.
240  *
241  * Returns:
242  * a completion status. Must be 0 upon success; a negative errno
243  * (ex: -ENXIO) upon failure.
244  */
245 int
246 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
247                         struct nvme_fc_port_template *template,
248                         struct device *dev,
249                         struct nvme_fc_local_port **portptr)
250 {
251         struct nvme_fc_lport *newrec;
252         unsigned long flags;
253         int ret, idx;
254
255         if (!template->localport_delete || !template->remoteport_delete ||
256             !template->ls_req || !template->fcp_io ||
257             !template->ls_abort || !template->fcp_abort ||
258             !template->max_hw_queues || !template->max_sgl_segments ||
259             !template->max_dif_sgl_segments || !template->dma_boundary) {
260                 ret = -EINVAL;
261                 goto out_reghost_failed;
262         }
263
264         newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
265                          GFP_KERNEL);
266         if (!newrec) {
267                 ret = -ENOMEM;
268                 goto out_reghost_failed;
269         }
270
271         idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
272         if (idx < 0) {
273                 ret = -ENOSPC;
274                 goto out_fail_kfree;
275         }
276
277         if (!get_device(dev) && dev) {
278                 ret = -ENODEV;
279                 goto out_ida_put;
280         }
281
282         INIT_LIST_HEAD(&newrec->port_list);
283         INIT_LIST_HEAD(&newrec->endp_list);
284         kref_init(&newrec->ref);
285         newrec->ops = template;
286         newrec->dev = dev;
287         ida_init(&newrec->endp_cnt);
288         newrec->localport.private = &newrec[1];
289         newrec->localport.node_name = pinfo->node_name;
290         newrec->localport.port_name = pinfo->port_name;
291         newrec->localport.port_role = pinfo->port_role;
292         newrec->localport.port_id = pinfo->port_id;
293         newrec->localport.port_state = FC_OBJSTATE_ONLINE;
294         newrec->localport.port_num = idx;
295
296         spin_lock_irqsave(&nvme_fc_lock, flags);
297         list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
298         spin_unlock_irqrestore(&nvme_fc_lock, flags);
299
300         if (dev)
301                 dma_set_seg_boundary(dev, template->dma_boundary);
302
303         *portptr = &newrec->localport;
304         return 0;
305
306 out_ida_put:
307         ida_simple_remove(&nvme_fc_local_port_cnt, idx);
308 out_fail_kfree:
309         kfree(newrec);
310 out_reghost_failed:
311         *portptr = NULL;
312
313         return ret;
314 }
315 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
316
317 static void
318 nvme_fc_free_lport(struct kref *ref)
319 {
320         struct nvme_fc_lport *lport =
321                 container_of(ref, struct nvme_fc_lport, ref);
322         unsigned long flags;
323
324         WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
325         WARN_ON(!list_empty(&lport->endp_list));
326
327         /* remove from transport list */
328         spin_lock_irqsave(&nvme_fc_lock, flags);
329         list_del(&lport->port_list);
330         spin_unlock_irqrestore(&nvme_fc_lock, flags);
331
332         /* let the LLDD know we've finished tearing it down */
333         lport->ops->localport_delete(&lport->localport);
334
335         ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
336         ida_destroy(&lport->endp_cnt);
337
338         put_device(lport->dev);
339
340         kfree(lport);
341 }
342
343 static void
344 nvme_fc_lport_put(struct nvme_fc_lport *lport)
345 {
346         kref_put(&lport->ref, nvme_fc_free_lport);
347 }
348
349 static int
350 nvme_fc_lport_get(struct nvme_fc_lport *lport)
351 {
352         return kref_get_unless_zero(&lport->ref);
353 }
354
355 /**
356  * nvme_fc_unregister_localport - transport entry point called by an
357  *                              LLDD to deregister/remove a previously
358  *                              registered a NVME host FC port.
359  * @localport: pointer to the (registered) local port that is to be
360  *             deregistered.
361  *
362  * Returns:
363  * a completion status. Must be 0 upon success; a negative errno
364  * (ex: -ENXIO) upon failure.
365  */
366 int
367 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
368 {
369         struct nvme_fc_lport *lport = localport_to_lport(portptr);
370         unsigned long flags;
371
372         if (!portptr)
373                 return -EINVAL;
374
375         spin_lock_irqsave(&nvme_fc_lock, flags);
376
377         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
378                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
379                 return -EINVAL;
380         }
381         portptr->port_state = FC_OBJSTATE_DELETED;
382
383         spin_unlock_irqrestore(&nvme_fc_lock, flags);
384
385         nvme_fc_lport_put(lport);
386
387         return 0;
388 }
389 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
390
391 /**
392  * nvme_fc_register_remoteport - transport entry point called by an
393  *                              LLDD to register the existence of a NVME
394  *                              subsystem FC port on its fabric.
395  * @localport: pointer to the (registered) local port that the remote
396  *             subsystem port is connected to.
397  * @pinfo:     pointer to information about the port to be registered
398  * @rport_p:   pointer to a remote port pointer. Upon success, the routine
399  *             will allocate a nvme_fc_remote_port structure and place its
400  *             address in the remote port pointer. Upon failure, remote port
401  *             pointer will be set to 0.
402  *
403  * Returns:
404  * a completion status. Must be 0 upon success; a negative errno
405  * (ex: -ENXIO) upon failure.
406  */
407 int
408 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
409                                 struct nvme_fc_port_info *pinfo,
410                                 struct nvme_fc_remote_port **portptr)
411 {
412         struct nvme_fc_lport *lport = localport_to_lport(localport);
413         struct nvme_fc_rport *newrec;
414         unsigned long flags;
415         int ret, idx;
416
417         newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
418                          GFP_KERNEL);
419         if (!newrec) {
420                 ret = -ENOMEM;
421                 goto out_reghost_failed;
422         }
423
424         if (!nvme_fc_lport_get(lport)) {
425                 ret = -ESHUTDOWN;
426                 goto out_kfree_rport;
427         }
428
429         idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
430         if (idx < 0) {
431                 ret = -ENOSPC;
432                 goto out_lport_put;
433         }
434
435         INIT_LIST_HEAD(&newrec->endp_list);
436         INIT_LIST_HEAD(&newrec->ctrl_list);
437         INIT_LIST_HEAD(&newrec->ls_req_list);
438         kref_init(&newrec->ref);
439         spin_lock_init(&newrec->lock);
440         newrec->remoteport.localport = &lport->localport;
441         newrec->dev = lport->dev;
442         newrec->lport = lport;
443         newrec->remoteport.private = &newrec[1];
444         newrec->remoteport.port_role = pinfo->port_role;
445         newrec->remoteport.node_name = pinfo->node_name;
446         newrec->remoteport.port_name = pinfo->port_name;
447         newrec->remoteport.port_id = pinfo->port_id;
448         newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
449         newrec->remoteport.port_num = idx;
450
451         spin_lock_irqsave(&nvme_fc_lock, flags);
452         list_add_tail(&newrec->endp_list, &lport->endp_list);
453         spin_unlock_irqrestore(&nvme_fc_lock, flags);
454
455         *portptr = &newrec->remoteport;
456         return 0;
457
458 out_lport_put:
459         nvme_fc_lport_put(lport);
460 out_kfree_rport:
461         kfree(newrec);
462 out_reghost_failed:
463         *portptr = NULL;
464         return ret;
465 }
466 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
467
468 static void
469 nvme_fc_free_rport(struct kref *ref)
470 {
471         struct nvme_fc_rport *rport =
472                 container_of(ref, struct nvme_fc_rport, ref);
473         struct nvme_fc_lport *lport =
474                         localport_to_lport(rport->remoteport.localport);
475         unsigned long flags;
476
477         WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
478         WARN_ON(!list_empty(&rport->ctrl_list));
479
480         /* remove from lport list */
481         spin_lock_irqsave(&nvme_fc_lock, flags);
482         list_del(&rport->endp_list);
483         spin_unlock_irqrestore(&nvme_fc_lock, flags);
484
485         /* let the LLDD know we've finished tearing it down */
486         lport->ops->remoteport_delete(&rport->remoteport);
487
488         ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
489
490         kfree(rport);
491
492         nvme_fc_lport_put(lport);
493 }
494
495 static void
496 nvme_fc_rport_put(struct nvme_fc_rport *rport)
497 {
498         kref_put(&rport->ref, nvme_fc_free_rport);
499 }
500
501 static int
502 nvme_fc_rport_get(struct nvme_fc_rport *rport)
503 {
504         return kref_get_unless_zero(&rport->ref);
505 }
506
507 static int
508 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
509 {
510         struct nvmefc_ls_req_op *lsop;
511         unsigned long flags;
512
513 restart:
514         spin_lock_irqsave(&rport->lock, flags);
515
516         list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
517                 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
518                         lsop->flags |= FCOP_FLAGS_TERMIO;
519                         spin_unlock_irqrestore(&rport->lock, flags);
520                         rport->lport->ops->ls_abort(&rport->lport->localport,
521                                                 &rport->remoteport,
522                                                 &lsop->ls_req);
523                         goto restart;
524                 }
525         }
526         spin_unlock_irqrestore(&rport->lock, flags);
527
528         return 0;
529 }
530
531 /**
532  * nvme_fc_unregister_remoteport - transport entry point called by an
533  *                              LLDD to deregister/remove a previously
534  *                              registered a NVME subsystem FC port.
535  * @remoteport: pointer to the (registered) remote port that is to be
536  *              deregistered.
537  *
538  * Returns:
539  * a completion status. Must be 0 upon success; a negative errno
540  * (ex: -ENXIO) upon failure.
541  */
542 int
543 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
544 {
545         struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
546         struct nvme_fc_ctrl *ctrl;
547         unsigned long flags;
548
549         if (!portptr)
550                 return -EINVAL;
551
552         spin_lock_irqsave(&rport->lock, flags);
553
554         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
555                 spin_unlock_irqrestore(&rport->lock, flags);
556                 return -EINVAL;
557         }
558         portptr->port_state = FC_OBJSTATE_DELETED;
559
560         /* tear down all associations to the remote port */
561         list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
562                 __nvme_fc_del_ctrl(ctrl);
563
564         spin_unlock_irqrestore(&rport->lock, flags);
565
566         nvme_fc_abort_lsops(rport);
567
568         nvme_fc_rport_put(rport);
569         return 0;
570 }
571 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
572
573
574 /* *********************** FC-NVME DMA Handling **************************** */
575
576 /*
577  * The fcloop device passes in a NULL device pointer. Real LLD's will
578  * pass in a valid device pointer. If NULL is passed to the dma mapping
579  * routines, depending on the platform, it may or may not succeed, and
580  * may crash.
581  *
582  * As such:
583  * Wrapper all the dma routines and check the dev pointer.
584  *
585  * If simple mappings (return just a dma address, we'll noop them,
586  * returning a dma address of 0.
587  *
588  * On more complex mappings (dma_map_sg), a pseudo routine fills
589  * in the scatter list, setting all dma addresses to 0.
590  */
591
592 static inline dma_addr_t
593 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
594                 enum dma_data_direction dir)
595 {
596         return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
597 }
598
599 static inline int
600 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
601 {
602         return dev ? dma_mapping_error(dev, dma_addr) : 0;
603 }
604
605 static inline void
606 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
607         enum dma_data_direction dir)
608 {
609         if (dev)
610                 dma_unmap_single(dev, addr, size, dir);
611 }
612
613 static inline void
614 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
615                 enum dma_data_direction dir)
616 {
617         if (dev)
618                 dma_sync_single_for_cpu(dev, addr, size, dir);
619 }
620
621 static inline void
622 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
623                 enum dma_data_direction dir)
624 {
625         if (dev)
626                 dma_sync_single_for_device(dev, addr, size, dir);
627 }
628
629 /* pseudo dma_map_sg call */
630 static int
631 fc_map_sg(struct scatterlist *sg, int nents)
632 {
633         struct scatterlist *s;
634         int i;
635
636         WARN_ON(nents == 0 || sg[0].length == 0);
637
638         for_each_sg(sg, s, nents, i) {
639                 s->dma_address = 0L;
640 #ifdef CONFIG_NEED_SG_DMA_LENGTH
641                 s->dma_length = s->length;
642 #endif
643         }
644         return nents;
645 }
646
647 static inline int
648 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
649                 enum dma_data_direction dir)
650 {
651         return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
652 }
653
654 static inline void
655 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
656                 enum dma_data_direction dir)
657 {
658         if (dev)
659                 dma_unmap_sg(dev, sg, nents, dir);
660 }
661
662
663 /* *********************** FC-NVME LS Handling **************************** */
664
665 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
666 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
667
668
669 static void
670 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
671 {
672         struct nvme_fc_rport *rport = lsop->rport;
673         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
674         unsigned long flags;
675
676         spin_lock_irqsave(&rport->lock, flags);
677
678         if (!lsop->req_queued) {
679                 spin_unlock_irqrestore(&rport->lock, flags);
680                 return;
681         }
682
683         list_del(&lsop->lsreq_list);
684
685         lsop->req_queued = false;
686
687         spin_unlock_irqrestore(&rport->lock, flags);
688
689         fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
690                                   (lsreq->rqstlen + lsreq->rsplen),
691                                   DMA_BIDIRECTIONAL);
692
693         nvme_fc_rport_put(rport);
694 }
695
696 static int
697 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
698                 struct nvmefc_ls_req_op *lsop,
699                 void (*done)(struct nvmefc_ls_req *req, int status))
700 {
701         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
702         unsigned long flags;
703         int ret = 0;
704
705         if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
706                 return -ECONNREFUSED;
707
708         if (!nvme_fc_rport_get(rport))
709                 return -ESHUTDOWN;
710
711         lsreq->done = done;
712         lsop->rport = rport;
713         lsop->req_queued = false;
714         INIT_LIST_HEAD(&lsop->lsreq_list);
715         init_completion(&lsop->ls_done);
716
717         lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
718                                   lsreq->rqstlen + lsreq->rsplen,
719                                   DMA_BIDIRECTIONAL);
720         if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
721                 ret = -EFAULT;
722                 goto out_putrport;
723         }
724         lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
725
726         spin_lock_irqsave(&rport->lock, flags);
727
728         list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
729
730         lsop->req_queued = true;
731
732         spin_unlock_irqrestore(&rport->lock, flags);
733
734         ret = rport->lport->ops->ls_req(&rport->lport->localport,
735                                         &rport->remoteport, lsreq);
736         if (ret)
737                 goto out_unlink;
738
739         return 0;
740
741 out_unlink:
742         lsop->ls_error = ret;
743         spin_lock_irqsave(&rport->lock, flags);
744         lsop->req_queued = false;
745         list_del(&lsop->lsreq_list);
746         spin_unlock_irqrestore(&rport->lock, flags);
747         fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
748                                   (lsreq->rqstlen + lsreq->rsplen),
749                                   DMA_BIDIRECTIONAL);
750 out_putrport:
751         nvme_fc_rport_put(rport);
752
753         return ret;
754 }
755
756 static void
757 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
758 {
759         struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
760
761         lsop->ls_error = status;
762         complete(&lsop->ls_done);
763 }
764
765 static int
766 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
767 {
768         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
769         struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
770         int ret;
771
772         ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
773
774         if (!ret) {
775                 /*
776                  * No timeout/not interruptible as we need the struct
777                  * to exist until the lldd calls us back. Thus mandate
778                  * wait until driver calls back. lldd responsible for
779                  * the timeout action
780                  */
781                 wait_for_completion(&lsop->ls_done);
782
783                 __nvme_fc_finish_ls_req(lsop);
784
785                 ret = lsop->ls_error;
786         }
787
788         if (ret)
789                 return ret;
790
791         /* ACC or RJT payload ? */
792         if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
793                 return -ENXIO;
794
795         return 0;
796 }
797
798 static int
799 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
800                 struct nvmefc_ls_req_op *lsop,
801                 void (*done)(struct nvmefc_ls_req *req, int status))
802 {
803         /* don't wait for completion */
804
805         return __nvme_fc_send_ls_req(rport, lsop, done);
806 }
807
808 /* Validation Error indexes into the string table below */
809 enum {
810         VERR_NO_ERROR           = 0,
811         VERR_LSACC              = 1,
812         VERR_LSDESC_RQST        = 2,
813         VERR_LSDESC_RQST_LEN    = 3,
814         VERR_ASSOC_ID           = 4,
815         VERR_ASSOC_ID_LEN       = 5,
816         VERR_CONN_ID            = 6,
817         VERR_CONN_ID_LEN        = 7,
818         VERR_CR_ASSOC           = 8,
819         VERR_CR_ASSOC_ACC_LEN   = 9,
820         VERR_CR_CONN            = 10,
821         VERR_CR_CONN_ACC_LEN    = 11,
822         VERR_DISCONN            = 12,
823         VERR_DISCONN_ACC_LEN    = 13,
824 };
825
826 static char *validation_errors[] = {
827         "OK",
828         "Not LS_ACC",
829         "Not LSDESC_RQST",
830         "Bad LSDESC_RQST Length",
831         "Not Association ID",
832         "Bad Association ID Length",
833         "Not Connection ID",
834         "Bad Connection ID Length",
835         "Not CR_ASSOC Rqst",
836         "Bad CR_ASSOC ACC Length",
837         "Not CR_CONN Rqst",
838         "Bad CR_CONN ACC Length",
839         "Not Disconnect Rqst",
840         "Bad Disconnect ACC Length",
841 };
842
843 static int
844 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
845         struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
846 {
847         struct nvmefc_ls_req_op *lsop;
848         struct nvmefc_ls_req *lsreq;
849         struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
850         struct fcnvme_ls_cr_assoc_acc *assoc_acc;
851         int ret, fcret = 0;
852
853         lsop = kzalloc((sizeof(*lsop) +
854                          ctrl->lport->ops->lsrqst_priv_sz +
855                          sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
856         if (!lsop) {
857                 ret = -ENOMEM;
858                 goto out_no_memory;
859         }
860         lsreq = &lsop->ls_req;
861
862         lsreq->private = (void *)&lsop[1];
863         assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
864                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
865         assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
866
867         assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
868         assoc_rqst->desc_list_len =
869                         cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
870
871         assoc_rqst->assoc_cmd.desc_tag =
872                         cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
873         assoc_rqst->assoc_cmd.desc_len =
874                         fcnvme_lsdesc_len(
875                                 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
876
877         assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
878         assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize);
879         /* Linux supports only Dynamic controllers */
880         assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
881         memcpy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id,
882                 min_t(size_t, FCNVME_ASSOC_HOSTID_LEN, sizeof(uuid_be)));
883         strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
884                 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
885         strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
886                 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
887
888         lsop->queue = queue;
889         lsreq->rqstaddr = assoc_rqst;
890         lsreq->rqstlen = sizeof(*assoc_rqst);
891         lsreq->rspaddr = assoc_acc;
892         lsreq->rsplen = sizeof(*assoc_acc);
893         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
894
895         ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
896         if (ret)
897                 goto out_free_buffer;
898
899         /* process connect LS completion */
900
901         /* validate the ACC response */
902         if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
903                 fcret = VERR_LSACC;
904         else if (assoc_acc->hdr.desc_list_len !=
905                         fcnvme_lsdesc_len(
906                                 sizeof(struct fcnvme_ls_cr_assoc_acc)))
907                 fcret = VERR_CR_ASSOC_ACC_LEN;
908         else if (assoc_acc->hdr.rqst.desc_tag !=
909                         cpu_to_be32(FCNVME_LSDESC_RQST))
910                 fcret = VERR_LSDESC_RQST;
911         else if (assoc_acc->hdr.rqst.desc_len !=
912                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
913                 fcret = VERR_LSDESC_RQST_LEN;
914         else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
915                 fcret = VERR_CR_ASSOC;
916         else if (assoc_acc->associd.desc_tag !=
917                         cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
918                 fcret = VERR_ASSOC_ID;
919         else if (assoc_acc->associd.desc_len !=
920                         fcnvme_lsdesc_len(
921                                 sizeof(struct fcnvme_lsdesc_assoc_id)))
922                 fcret = VERR_ASSOC_ID_LEN;
923         else if (assoc_acc->connectid.desc_tag !=
924                         cpu_to_be32(FCNVME_LSDESC_CONN_ID))
925                 fcret = VERR_CONN_ID;
926         else if (assoc_acc->connectid.desc_len !=
927                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
928                 fcret = VERR_CONN_ID_LEN;
929
930         if (fcret) {
931                 ret = -EBADF;
932                 dev_err(ctrl->dev,
933                         "q %d connect failed: %s\n",
934                         queue->qnum, validation_errors[fcret]);
935         } else {
936                 ctrl->association_id =
937                         be64_to_cpu(assoc_acc->associd.association_id);
938                 queue->connection_id =
939                         be64_to_cpu(assoc_acc->connectid.connection_id);
940                 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
941         }
942
943 out_free_buffer:
944         kfree(lsop);
945 out_no_memory:
946         if (ret)
947                 dev_err(ctrl->dev,
948                         "queue %d connect admin queue failed (%d).\n",
949                         queue->qnum, ret);
950         return ret;
951 }
952
953 static int
954 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
955                         u16 qsize, u16 ersp_ratio)
956 {
957         struct nvmefc_ls_req_op *lsop;
958         struct nvmefc_ls_req *lsreq;
959         struct fcnvme_ls_cr_conn_rqst *conn_rqst;
960         struct fcnvme_ls_cr_conn_acc *conn_acc;
961         int ret, fcret = 0;
962
963         lsop = kzalloc((sizeof(*lsop) +
964                          ctrl->lport->ops->lsrqst_priv_sz +
965                          sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
966         if (!lsop) {
967                 ret = -ENOMEM;
968                 goto out_no_memory;
969         }
970         lsreq = &lsop->ls_req;
971
972         lsreq->private = (void *)&lsop[1];
973         conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
974                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
975         conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
976
977         conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
978         conn_rqst->desc_list_len = cpu_to_be32(
979                                 sizeof(struct fcnvme_lsdesc_assoc_id) +
980                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
981
982         conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
983         conn_rqst->associd.desc_len =
984                         fcnvme_lsdesc_len(
985                                 sizeof(struct fcnvme_lsdesc_assoc_id));
986         conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
987         conn_rqst->connect_cmd.desc_tag =
988                         cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
989         conn_rqst->connect_cmd.desc_len =
990                         fcnvme_lsdesc_len(
991                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
992         conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
993         conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
994         conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize);
995
996         lsop->queue = queue;
997         lsreq->rqstaddr = conn_rqst;
998         lsreq->rqstlen = sizeof(*conn_rqst);
999         lsreq->rspaddr = conn_acc;
1000         lsreq->rsplen = sizeof(*conn_acc);
1001         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1002
1003         ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1004         if (ret)
1005                 goto out_free_buffer;
1006
1007         /* process connect LS completion */
1008
1009         /* validate the ACC response */
1010         if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1011                 fcret = VERR_LSACC;
1012         else if (conn_acc->hdr.desc_list_len !=
1013                         fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1014                 fcret = VERR_CR_CONN_ACC_LEN;
1015         else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1016                 fcret = VERR_LSDESC_RQST;
1017         else if (conn_acc->hdr.rqst.desc_len !=
1018                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1019                 fcret = VERR_LSDESC_RQST_LEN;
1020         else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1021                 fcret = VERR_CR_CONN;
1022         else if (conn_acc->connectid.desc_tag !=
1023                         cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1024                 fcret = VERR_CONN_ID;
1025         else if (conn_acc->connectid.desc_len !=
1026                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1027                 fcret = VERR_CONN_ID_LEN;
1028
1029         if (fcret) {
1030                 ret = -EBADF;
1031                 dev_err(ctrl->dev,
1032                         "q %d connect failed: %s\n",
1033                         queue->qnum, validation_errors[fcret]);
1034         } else {
1035                 queue->connection_id =
1036                         be64_to_cpu(conn_acc->connectid.connection_id);
1037                 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1038         }
1039
1040 out_free_buffer:
1041         kfree(lsop);
1042 out_no_memory:
1043         if (ret)
1044                 dev_err(ctrl->dev,
1045                         "queue %d connect command failed (%d).\n",
1046                         queue->qnum, ret);
1047         return ret;
1048 }
1049
1050 static void
1051 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1052 {
1053         struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1054
1055         __nvme_fc_finish_ls_req(lsop);
1056
1057         /* fc-nvme iniator doesn't care about success or failure of cmd */
1058
1059         kfree(lsop);
1060 }
1061
1062 /*
1063  * This routine sends a FC-NVME LS to disconnect (aka terminate)
1064  * the FC-NVME Association.  Terminating the association also
1065  * terminates the FC-NVME connections (per queue, both admin and io
1066  * queues) that are part of the association. E.g. things are torn
1067  * down, and the related FC-NVME Association ID and Connection IDs
1068  * become invalid.
1069  *
1070  * The behavior of the fc-nvme initiator is such that it's
1071  * understanding of the association and connections will implicitly
1072  * be torn down. The action is implicit as it may be due to a loss of
1073  * connectivity with the fc-nvme target, so you may never get a
1074  * response even if you tried.  As such, the action of this routine
1075  * is to asynchronously send the LS, ignore any results of the LS, and
1076  * continue on with terminating the association. If the fc-nvme target
1077  * is present and receives the LS, it too can tear down.
1078  */
1079 static void
1080 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1081 {
1082         struct fcnvme_ls_disconnect_rqst *discon_rqst;
1083         struct fcnvme_ls_disconnect_acc *discon_acc;
1084         struct nvmefc_ls_req_op *lsop;
1085         struct nvmefc_ls_req *lsreq;
1086         int ret;
1087
1088         lsop = kzalloc((sizeof(*lsop) +
1089                          ctrl->lport->ops->lsrqst_priv_sz +
1090                          sizeof(*discon_rqst) + sizeof(*discon_acc)),
1091                         GFP_KERNEL);
1092         if (!lsop)
1093                 /* couldn't sent it... too bad */
1094                 return;
1095
1096         lsreq = &lsop->ls_req;
1097
1098         lsreq->private = (void *)&lsop[1];
1099         discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
1100                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1101         discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
1102
1103         discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
1104         discon_rqst->desc_list_len = cpu_to_be32(
1105                                 sizeof(struct fcnvme_lsdesc_assoc_id) +
1106                                 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1107
1108         discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1109         discon_rqst->associd.desc_len =
1110                         fcnvme_lsdesc_len(
1111                                 sizeof(struct fcnvme_lsdesc_assoc_id));
1112
1113         discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1114
1115         discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1116                                                 FCNVME_LSDESC_DISCONN_CMD);
1117         discon_rqst->discon_cmd.desc_len =
1118                         fcnvme_lsdesc_len(
1119                                 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1120         discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
1121         discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
1122
1123         lsreq->rqstaddr = discon_rqst;
1124         lsreq->rqstlen = sizeof(*discon_rqst);
1125         lsreq->rspaddr = discon_acc;
1126         lsreq->rsplen = sizeof(*discon_acc);
1127         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1128
1129         ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1130                                 nvme_fc_disconnect_assoc_done);
1131         if (ret)
1132                 kfree(lsop);
1133
1134         /* only meaningful part to terminating the association */
1135         ctrl->association_id = 0;
1136 }
1137
1138
1139 /* *********************** NVME Ctrl Routines **************************** */
1140
1141 static void __nvme_fc_final_op_cleanup(struct request *rq);
1142
1143 static int
1144 nvme_fc_reinit_request(void *data, struct request *rq)
1145 {
1146         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1147         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1148
1149         memset(cmdiu, 0, sizeof(*cmdiu));
1150         cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1151         cmdiu->fc_id = NVME_CMD_FC_ID;
1152         cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1153         memset(&op->rsp_iu, 0, sizeof(op->rsp_iu));
1154
1155         return 0;
1156 }
1157
1158 static void
1159 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1160                 struct nvme_fc_fcp_op *op)
1161 {
1162         fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1163                                 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1164         fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1165                                 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1166
1167         atomic_set(&op->state, FCPOP_STATE_UNINIT);
1168 }
1169
1170 static void
1171 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1172                 unsigned int hctx_idx)
1173 {
1174         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1175
1176         return __nvme_fc_exit_request(set->driver_data, op);
1177 }
1178
1179 static int
1180 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1181 {
1182         int state;
1183
1184         state = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1185         if (state != FCPOP_STATE_ACTIVE) {
1186                 atomic_set(&op->state, state);
1187                 return -ECANCELED;
1188         }
1189
1190         ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1191                                         &ctrl->rport->remoteport,
1192                                         op->queue->lldd_handle,
1193                                         &op->fcp_req);
1194
1195         return 0;
1196 }
1197
1198 static void
1199 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1200 {
1201         struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1202         unsigned long flags;
1203         int i, ret;
1204
1205         for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1206                 if (atomic_read(&aen_op->state) != FCPOP_STATE_ACTIVE)
1207                         continue;
1208
1209                 spin_lock_irqsave(&ctrl->lock, flags);
1210                 if (ctrl->flags & FCCTRL_TERMIO) {
1211                         ctrl->iocnt++;
1212                         aen_op->flags |= FCOP_FLAGS_TERMIO;
1213                 }
1214                 spin_unlock_irqrestore(&ctrl->lock, flags);
1215
1216                 ret = __nvme_fc_abort_op(ctrl, aen_op);
1217                 if (ret) {
1218                         /*
1219                          * if __nvme_fc_abort_op failed the io wasn't
1220                          * active. Thus this call path is running in
1221                          * parallel to the io complete. Treat as non-error.
1222                          */
1223
1224                         /* back out the flags/counters */
1225                         spin_lock_irqsave(&ctrl->lock, flags);
1226                         if (ctrl->flags & FCCTRL_TERMIO)
1227                                 ctrl->iocnt--;
1228                         aen_op->flags &= ~FCOP_FLAGS_TERMIO;
1229                         spin_unlock_irqrestore(&ctrl->lock, flags);
1230                         return;
1231                 }
1232         }
1233 }
1234
1235 static inline int
1236 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1237                 struct nvme_fc_fcp_op *op)
1238 {
1239         unsigned long flags;
1240         bool complete_rq = false;
1241
1242         spin_lock_irqsave(&ctrl->lock, flags);
1243         if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) {
1244                 if (ctrl->flags & FCCTRL_TERMIO)
1245                         ctrl->iocnt--;
1246         }
1247         if (op->flags & FCOP_FLAGS_RELEASED)
1248                 complete_rq = true;
1249         else
1250                 op->flags |= FCOP_FLAGS_COMPLETE;
1251         spin_unlock_irqrestore(&ctrl->lock, flags);
1252
1253         return complete_rq;
1254 }
1255
1256 static void
1257 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1258 {
1259         struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1260         struct request *rq = op->rq;
1261         struct nvmefc_fcp_req *freq = &op->fcp_req;
1262         struct nvme_fc_ctrl *ctrl = op->ctrl;
1263         struct nvme_fc_queue *queue = op->queue;
1264         struct nvme_completion *cqe = &op->rsp_iu.cqe;
1265         struct nvme_command *sqe = &op->cmd_iu.sqe;
1266         __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1267         union nvme_result result;
1268         bool complete_rq;
1269
1270         /*
1271          * WARNING:
1272          * The current linux implementation of a nvme controller
1273          * allocates a single tag set for all io queues and sizes
1274          * the io queues to fully hold all possible tags. Thus, the
1275          * implementation does not reference or care about the sqhd
1276          * value as it never needs to use the sqhd/sqtail pointers
1277          * for submission pacing.
1278          *
1279          * This affects the FC-NVME implementation in two ways:
1280          * 1) As the value doesn't matter, we don't need to waste
1281          *    cycles extracting it from ERSPs and stamping it in the
1282          *    cases where the transport fabricates CQEs on successful
1283          *    completions.
1284          * 2) The FC-NVME implementation requires that delivery of
1285          *    ERSP completions are to go back to the nvme layer in order
1286          *    relative to the rsn, such that the sqhd value will always
1287          *    be "in order" for the nvme layer. As the nvme layer in
1288          *    linux doesn't care about sqhd, there's no need to return
1289          *    them in order.
1290          *
1291          * Additionally:
1292          * As the core nvme layer in linux currently does not look at
1293          * every field in the cqe - in cases where the FC transport must
1294          * fabricate a CQE, the following fields will not be set as they
1295          * are not referenced:
1296          *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1297          */
1298
1299         fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1300                                 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1301
1302         if (atomic_read(&op->state) == FCPOP_STATE_ABORTED)
1303                 status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1304         else if (freq->status)
1305                 status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1306
1307         /*
1308          * For the linux implementation, if we have an unsuccesful
1309          * status, they blk-mq layer can typically be called with the
1310          * non-zero status and the content of the cqe isn't important.
1311          */
1312         if (status)
1313                 goto done;
1314
1315         /*
1316          * command completed successfully relative to the wire
1317          * protocol. However, validate anything received and
1318          * extract the status and result from the cqe (create it
1319          * where necessary).
1320          */
1321
1322         switch (freq->rcv_rsplen) {
1323
1324         case 0:
1325         case NVME_FC_SIZEOF_ZEROS_RSP:
1326                 /*
1327                  * No response payload or 12 bytes of payload (which
1328                  * should all be zeros) are considered successful and
1329                  * no payload in the CQE by the transport.
1330                  */
1331                 if (freq->transferred_length !=
1332                         be32_to_cpu(op->cmd_iu.data_len)) {
1333                         status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1334                         goto done;
1335                 }
1336                 result.u64 = 0;
1337                 break;
1338
1339         case sizeof(struct nvme_fc_ersp_iu):
1340                 /*
1341                  * The ERSP IU contains a full completion with CQE.
1342                  * Validate ERSP IU and look at cqe.
1343                  */
1344                 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1345                                         (freq->rcv_rsplen / 4) ||
1346                              be32_to_cpu(op->rsp_iu.xfrd_len) !=
1347                                         freq->transferred_length ||
1348                              op->rsp_iu.status_code ||
1349                              sqe->common.command_id != cqe->command_id)) {
1350                         status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1351                         goto done;
1352                 }
1353                 result = cqe->result;
1354                 status = cqe->status;
1355                 break;
1356
1357         default:
1358                 status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1359                 goto done;
1360         }
1361
1362 done:
1363         if (op->flags & FCOP_FLAGS_AEN) {
1364                 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
1365                 complete_rq = __nvme_fc_fcpop_chk_teardowns(ctrl, op);
1366                 atomic_set(&op->state, FCPOP_STATE_IDLE);
1367                 op->flags = FCOP_FLAGS_AEN;     /* clear other flags */
1368                 nvme_fc_ctrl_put(ctrl);
1369                 return;
1370         }
1371
1372         complete_rq = __nvme_fc_fcpop_chk_teardowns(ctrl, op);
1373         if (!complete_rq) {
1374                 if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) {
1375                         status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1376                         if (blk_queue_dying(rq->q))
1377                                 status |= cpu_to_le16(NVME_SC_DNR << 1);
1378                 }
1379                 nvme_end_request(rq, status, result);
1380         } else
1381                 __nvme_fc_final_op_cleanup(rq);
1382 }
1383
1384 static int
1385 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1386                 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1387                 struct request *rq, u32 rqno)
1388 {
1389         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1390         int ret = 0;
1391
1392         memset(op, 0, sizeof(*op));
1393         op->fcp_req.cmdaddr = &op->cmd_iu;
1394         op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1395         op->fcp_req.rspaddr = &op->rsp_iu;
1396         op->fcp_req.rsplen = sizeof(op->rsp_iu);
1397         op->fcp_req.done = nvme_fc_fcpio_done;
1398         op->fcp_req.first_sgl = (struct scatterlist *)&op[1];
1399         op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE];
1400         op->ctrl = ctrl;
1401         op->queue = queue;
1402         op->rq = rq;
1403         op->rqno = rqno;
1404
1405         cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1406         cmdiu->fc_id = NVME_CMD_FC_ID;
1407         cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1408
1409         op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1410                                 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1411         if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1412                 dev_err(ctrl->dev,
1413                         "FCP Op failed - cmdiu dma mapping failed.\n");
1414                 ret = EFAULT;
1415                 goto out_on_error;
1416         }
1417
1418         op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1419                                 &op->rsp_iu, sizeof(op->rsp_iu),
1420                                 DMA_FROM_DEVICE);
1421         if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1422                 dev_err(ctrl->dev,
1423                         "FCP Op failed - rspiu dma mapping failed.\n");
1424                 ret = EFAULT;
1425         }
1426
1427         atomic_set(&op->state, FCPOP_STATE_IDLE);
1428 out_on_error:
1429         return ret;
1430 }
1431
1432 static int
1433 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
1434                 unsigned int hctx_idx, unsigned int numa_node)
1435 {
1436         struct nvme_fc_ctrl *ctrl = set->driver_data;
1437         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1438         struct nvme_fc_queue *queue = &ctrl->queues[hctx_idx+1];
1439
1440         return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1441 }
1442
1443 static int
1444 nvme_fc_init_admin_request(struct blk_mq_tag_set *set, struct request *rq,
1445                 unsigned int hctx_idx, unsigned int numa_node)
1446 {
1447         struct nvme_fc_ctrl *ctrl = set->driver_data;
1448         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1449         struct nvme_fc_queue *queue = &ctrl->queues[0];
1450
1451         return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1452 }
1453
1454 static int
1455 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1456 {
1457         struct nvme_fc_fcp_op *aen_op;
1458         struct nvme_fc_cmd_iu *cmdiu;
1459         struct nvme_command *sqe;
1460         void *private;
1461         int i, ret;
1462
1463         aen_op = ctrl->aen_ops;
1464         for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1465                 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
1466                                                 GFP_KERNEL);
1467                 if (!private)
1468                         return -ENOMEM;
1469
1470                 cmdiu = &aen_op->cmd_iu;
1471                 sqe = &cmdiu->sqe;
1472                 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1473                                 aen_op, (struct request *)NULL,
1474                                 (AEN_CMDID_BASE + i));
1475                 if (ret) {
1476                         kfree(private);
1477                         return ret;
1478                 }
1479
1480                 aen_op->flags = FCOP_FLAGS_AEN;
1481                 aen_op->fcp_req.first_sgl = NULL; /* no sg list */
1482                 aen_op->fcp_req.private = private;
1483
1484                 memset(sqe, 0, sizeof(*sqe));
1485                 sqe->common.opcode = nvme_admin_async_event;
1486                 /* Note: core layer may overwrite the sqe.command_id value */
1487                 sqe->common.command_id = AEN_CMDID_BASE + i;
1488         }
1489         return 0;
1490 }
1491
1492 static void
1493 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
1494 {
1495         struct nvme_fc_fcp_op *aen_op;
1496         int i;
1497
1498         aen_op = ctrl->aen_ops;
1499         for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1500                 if (!aen_op->fcp_req.private)
1501                         continue;
1502
1503                 __nvme_fc_exit_request(ctrl, aen_op);
1504
1505                 kfree(aen_op->fcp_req.private);
1506                 aen_op->fcp_req.private = NULL;
1507         }
1508 }
1509
1510 static inline void
1511 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1512                 unsigned int qidx)
1513 {
1514         struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1515
1516         hctx->driver_data = queue;
1517         queue->hctx = hctx;
1518 }
1519
1520 static int
1521 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1522                 unsigned int hctx_idx)
1523 {
1524         struct nvme_fc_ctrl *ctrl = data;
1525
1526         __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1527
1528         return 0;
1529 }
1530
1531 static int
1532 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1533                 unsigned int hctx_idx)
1534 {
1535         struct nvme_fc_ctrl *ctrl = data;
1536
1537         __nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1538
1539         return 0;
1540 }
1541
1542 static void
1543 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx, size_t queue_size)
1544 {
1545         struct nvme_fc_queue *queue;
1546
1547         queue = &ctrl->queues[idx];
1548         memset(queue, 0, sizeof(*queue));
1549         queue->ctrl = ctrl;
1550         queue->qnum = idx;
1551         atomic_set(&queue->csn, 1);
1552         queue->dev = ctrl->dev;
1553
1554         if (idx > 0)
1555                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1556         else
1557                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
1558
1559         queue->queue_size = queue_size;
1560
1561         /*
1562          * Considered whether we should allocate buffers for all SQEs
1563          * and CQEs and dma map them - mapping their respective entries
1564          * into the request structures (kernel vm addr and dma address)
1565          * thus the driver could use the buffers/mappings directly.
1566          * It only makes sense if the LLDD would use them for its
1567          * messaging api. It's very unlikely most adapter api's would use
1568          * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1569          * structures were used instead.
1570          */
1571 }
1572
1573 /*
1574  * This routine terminates a queue at the transport level.
1575  * The transport has already ensured that all outstanding ios on
1576  * the queue have been terminated.
1577  * The transport will send a Disconnect LS request to terminate
1578  * the queue's connection. Termination of the admin queue will also
1579  * terminate the association at the target.
1580  */
1581 static void
1582 nvme_fc_free_queue(struct nvme_fc_queue *queue)
1583 {
1584         if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1585                 return;
1586
1587         /*
1588          * Current implementation never disconnects a single queue.
1589          * It always terminates a whole association. So there is never
1590          * a disconnect(queue) LS sent to the target.
1591          */
1592
1593         queue->connection_id = 0;
1594         clear_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1595 }
1596
1597 static void
1598 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1599         struct nvme_fc_queue *queue, unsigned int qidx)
1600 {
1601         if (ctrl->lport->ops->delete_queue)
1602                 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1603                                 queue->lldd_handle);
1604         queue->lldd_handle = NULL;
1605 }
1606
1607 static void
1608 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1609 {
1610         int i;
1611
1612         for (i = 1; i < ctrl->queue_count; i++)
1613                 nvme_fc_free_queue(&ctrl->queues[i]);
1614 }
1615
1616 static int
1617 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1618         struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1619 {
1620         int ret = 0;
1621
1622         queue->lldd_handle = NULL;
1623         if (ctrl->lport->ops->create_queue)
1624                 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1625                                 qidx, qsize, &queue->lldd_handle);
1626
1627         return ret;
1628 }
1629
1630 static void
1631 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1632 {
1633         struct nvme_fc_queue *queue = &ctrl->queues[ctrl->queue_count - 1];
1634         int i;
1635
1636         for (i = ctrl->queue_count - 1; i >= 1; i--, queue--)
1637                 __nvme_fc_delete_hw_queue(ctrl, queue, i);
1638 }
1639
1640 static int
1641 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1642 {
1643         struct nvme_fc_queue *queue = &ctrl->queues[1];
1644         int i, ret;
1645
1646         for (i = 1; i < ctrl->queue_count; i++, queue++) {
1647                 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1648                 if (ret)
1649                         goto delete_queues;
1650         }
1651
1652         return 0;
1653
1654 delete_queues:
1655         for (; i >= 0; i--)
1656                 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
1657         return ret;
1658 }
1659
1660 static int
1661 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1662 {
1663         int i, ret = 0;
1664
1665         for (i = 1; i < ctrl->queue_count; i++) {
1666                 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
1667                                         (qsize / 5));
1668                 if (ret)
1669                         break;
1670                 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
1671                 if (ret)
1672                         break;
1673         }
1674
1675         return ret;
1676 }
1677
1678 static void
1679 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
1680 {
1681         int i;
1682
1683         for (i = 1; i < ctrl->queue_count; i++)
1684                 nvme_fc_init_queue(ctrl, i, ctrl->ctrl.sqsize);
1685 }
1686
1687 static void
1688 nvme_fc_ctrl_free(struct kref *ref)
1689 {
1690         struct nvme_fc_ctrl *ctrl =
1691                 container_of(ref, struct nvme_fc_ctrl, ref);
1692         unsigned long flags;
1693
1694         if (ctrl->ctrl.tagset) {
1695                 blk_cleanup_queue(ctrl->ctrl.connect_q);
1696                 blk_mq_free_tag_set(&ctrl->tag_set);
1697         }
1698
1699         /* remove from rport list */
1700         spin_lock_irqsave(&ctrl->rport->lock, flags);
1701         list_del(&ctrl->ctrl_list);
1702         spin_unlock_irqrestore(&ctrl->rport->lock, flags);
1703
1704         blk_cleanup_queue(ctrl->ctrl.admin_q);
1705         blk_mq_free_tag_set(&ctrl->admin_tag_set);
1706
1707         kfree(ctrl->queues);
1708
1709         put_device(ctrl->dev);
1710         nvme_fc_rport_put(ctrl->rport);
1711
1712         ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
1713         if (ctrl->ctrl.opts)
1714                 nvmf_free_options(ctrl->ctrl.opts);
1715         kfree(ctrl);
1716 }
1717
1718 static void
1719 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
1720 {
1721         kref_put(&ctrl->ref, nvme_fc_ctrl_free);
1722 }
1723
1724 static int
1725 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
1726 {
1727         return kref_get_unless_zero(&ctrl->ref);
1728 }
1729
1730 /*
1731  * All accesses from nvme core layer done - can now free the
1732  * controller. Called after last nvme_put_ctrl() call
1733  */
1734 static void
1735 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
1736 {
1737         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
1738
1739         WARN_ON(nctrl != &ctrl->ctrl);
1740
1741         nvme_fc_ctrl_put(ctrl);
1742 }
1743
1744 static void
1745 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
1746 {
1747         dev_warn(ctrl->ctrl.device,
1748                 "NVME-FC{%d}: transport association error detected: %s\n",
1749                 ctrl->cnum, errmsg);
1750         dev_warn(ctrl->ctrl.device,
1751                 "NVME-FC{%d}: resetting controller\n", ctrl->cnum);
1752
1753         /* stop the queues on error, cleanup is in reset thread */
1754         if (ctrl->queue_count > 1)
1755                 nvme_stop_queues(&ctrl->ctrl);
1756
1757         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) {
1758                 dev_err(ctrl->ctrl.device,
1759                         "NVME-FC{%d}: error_recovery: Couldn't change state "
1760                         "to RECONNECTING\n", ctrl->cnum);
1761                 return;
1762         }
1763
1764         if (!queue_work(nvme_fc_wq, &ctrl->reset_work))
1765                 dev_err(ctrl->ctrl.device,
1766                         "NVME-FC{%d}: error_recovery: Failed to schedule "
1767                         "reset work\n", ctrl->cnum);
1768 }
1769
1770 static enum blk_eh_timer_return
1771 nvme_fc_timeout(struct request *rq, bool reserved)
1772 {
1773         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1774         struct nvme_fc_ctrl *ctrl = op->ctrl;
1775         int ret;
1776
1777         if (reserved)
1778                 return BLK_EH_RESET_TIMER;
1779
1780         ret = __nvme_fc_abort_op(ctrl, op);
1781         if (ret)
1782                 /* io wasn't active to abort consider it done */
1783                 return BLK_EH_HANDLED;
1784
1785         /*
1786          * we can't individually ABTS an io without affecting the queue,
1787          * thus killing the queue, adn thus the association.
1788          * So resolve by performing a controller reset, which will stop
1789          * the host/io stack, terminate the association on the link,
1790          * and recreate an association on the link.
1791          */
1792         nvme_fc_error_recovery(ctrl, "io timeout error");
1793
1794         return BLK_EH_HANDLED;
1795 }
1796
1797 static int
1798 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
1799                 struct nvme_fc_fcp_op *op)
1800 {
1801         struct nvmefc_fcp_req *freq = &op->fcp_req;
1802         enum dma_data_direction dir;
1803         int ret;
1804
1805         freq->sg_cnt = 0;
1806
1807         if (!blk_rq_payload_bytes(rq))
1808                 return 0;
1809
1810         freq->sg_table.sgl = freq->first_sgl;
1811         ret = sg_alloc_table_chained(&freq->sg_table,
1812                         blk_rq_nr_phys_segments(rq), freq->sg_table.sgl);
1813         if (ret)
1814                 return -ENOMEM;
1815
1816         op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
1817         WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
1818         dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
1819         freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
1820                                 op->nents, dir);
1821         if (unlikely(freq->sg_cnt <= 0)) {
1822                 sg_free_table_chained(&freq->sg_table, true);
1823                 freq->sg_cnt = 0;
1824                 return -EFAULT;
1825         }
1826
1827         /*
1828          * TODO: blk_integrity_rq(rq)  for DIF
1829          */
1830         return 0;
1831 }
1832
1833 static void
1834 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
1835                 struct nvme_fc_fcp_op *op)
1836 {
1837         struct nvmefc_fcp_req *freq = &op->fcp_req;
1838
1839         if (!freq->sg_cnt)
1840                 return;
1841
1842         fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
1843                                 ((rq_data_dir(rq) == WRITE) ?
1844                                         DMA_TO_DEVICE : DMA_FROM_DEVICE));
1845
1846         nvme_cleanup_cmd(rq);
1847
1848         sg_free_table_chained(&freq->sg_table, true);
1849
1850         freq->sg_cnt = 0;
1851 }
1852
1853 /*
1854  * In FC, the queue is a logical thing. At transport connect, the target
1855  * creates its "queue" and returns a handle that is to be given to the
1856  * target whenever it posts something to the corresponding SQ.  When an
1857  * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
1858  * command contained within the SQE, an io, and assigns a FC exchange
1859  * to it. The SQE and the associated SQ handle are sent in the initial
1860  * CMD IU sents on the exchange. All transfers relative to the io occur
1861  * as part of the exchange.  The CQE is the last thing for the io,
1862  * which is transferred (explicitly or implicitly) with the RSP IU
1863  * sent on the exchange. After the CQE is received, the FC exchange is
1864  * terminaed and the Exchange may be used on a different io.
1865  *
1866  * The transport to LLDD api has the transport making a request for a
1867  * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
1868  * resource and transfers the command. The LLDD will then process all
1869  * steps to complete the io. Upon completion, the transport done routine
1870  * is called.
1871  *
1872  * So - while the operation is outstanding to the LLDD, there is a link
1873  * level FC exchange resource that is also outstanding. This must be
1874  * considered in all cleanup operations.
1875  */
1876 static int
1877 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1878         struct nvme_fc_fcp_op *op, u32 data_len,
1879         enum nvmefc_fcp_datadir io_dir)
1880 {
1881         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1882         struct nvme_command *sqe = &cmdiu->sqe;
1883         u32 csn;
1884         int ret;
1885
1886         /*
1887          * before attempting to send the io, check to see if we believe
1888          * the target device is present
1889          */
1890         if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1891                 return BLK_MQ_RQ_QUEUE_ERROR;
1892
1893         if (!nvme_fc_ctrl_get(ctrl))
1894                 return BLK_MQ_RQ_QUEUE_ERROR;
1895
1896         /* format the FC-NVME CMD IU and fcp_req */
1897         cmdiu->connection_id = cpu_to_be64(queue->connection_id);
1898         csn = atomic_inc_return(&queue->csn);
1899         cmdiu->csn = cpu_to_be32(csn);
1900         cmdiu->data_len = cpu_to_be32(data_len);
1901         switch (io_dir) {
1902         case NVMEFC_FCP_WRITE:
1903                 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
1904                 break;
1905         case NVMEFC_FCP_READ:
1906                 cmdiu->flags = FCNVME_CMD_FLAGS_READ;
1907                 break;
1908         case NVMEFC_FCP_NODATA:
1909                 cmdiu->flags = 0;
1910                 break;
1911         }
1912         op->fcp_req.payload_length = data_len;
1913         op->fcp_req.io_dir = io_dir;
1914         op->fcp_req.transferred_length = 0;
1915         op->fcp_req.rcv_rsplen = 0;
1916         op->fcp_req.status = NVME_SC_SUCCESS;
1917         op->fcp_req.sqid = cpu_to_le16(queue->qnum);
1918
1919         /*
1920          * validate per fabric rules, set fields mandated by fabric spec
1921          * as well as those by FC-NVME spec.
1922          */
1923         WARN_ON_ONCE(sqe->common.metadata);
1924         WARN_ON_ONCE(sqe->common.dptr.prp1);
1925         WARN_ON_ONCE(sqe->common.dptr.prp2);
1926         sqe->common.flags |= NVME_CMD_SGL_METABUF;
1927
1928         /*
1929          * format SQE DPTR field per FC-NVME rules
1930          *    type=data block descr; subtype=offset;
1931          *    offset is currently 0.
1932          */
1933         sqe->rw.dptr.sgl.type = NVME_SGL_FMT_OFFSET;
1934         sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
1935         sqe->rw.dptr.sgl.addr = 0;
1936
1937         if (!(op->flags & FCOP_FLAGS_AEN)) {
1938                 ret = nvme_fc_map_data(ctrl, op->rq, op);
1939                 if (ret < 0) {
1940                         nvme_cleanup_cmd(op->rq);
1941                         nvme_fc_ctrl_put(ctrl);
1942                         return (ret == -ENOMEM || ret == -EAGAIN) ?
1943                                 BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR;
1944                 }
1945         }
1946
1947         fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
1948                                   sizeof(op->cmd_iu), DMA_TO_DEVICE);
1949
1950         atomic_set(&op->state, FCPOP_STATE_ACTIVE);
1951
1952         if (!(op->flags & FCOP_FLAGS_AEN))
1953                 blk_mq_start_request(op->rq);
1954
1955         ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
1956                                         &ctrl->rport->remoteport,
1957                                         queue->lldd_handle, &op->fcp_req);
1958
1959         if (ret) {
1960                 if (op->rq) {                   /* normal request */
1961                         nvme_fc_unmap_data(ctrl, op->rq, op);
1962                         nvme_cleanup_cmd(op->rq);
1963                 }
1964                 /* else - aen. no cleanup needed */
1965
1966                 nvme_fc_ctrl_put(ctrl);
1967
1968                 if (ret != -EBUSY)
1969                         return BLK_MQ_RQ_QUEUE_ERROR;
1970
1971                 if (op->rq) {
1972                         blk_mq_stop_hw_queues(op->rq->q);
1973                         blk_mq_delay_queue(queue->hctx, NVMEFC_QUEUE_DELAY);
1974                 }
1975                 return BLK_MQ_RQ_QUEUE_BUSY;
1976         }
1977
1978         return BLK_MQ_RQ_QUEUE_OK;
1979 }
1980
1981 static int
1982 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
1983                         const struct blk_mq_queue_data *bd)
1984 {
1985         struct nvme_ns *ns = hctx->queue->queuedata;
1986         struct nvme_fc_queue *queue = hctx->driver_data;
1987         struct nvme_fc_ctrl *ctrl = queue->ctrl;
1988         struct request *rq = bd->rq;
1989         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1990         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1991         struct nvme_command *sqe = &cmdiu->sqe;
1992         enum nvmefc_fcp_datadir io_dir;
1993         u32 data_len;
1994         int ret;
1995
1996         ret = nvme_setup_cmd(ns, rq, sqe);
1997         if (ret)
1998                 return ret;
1999
2000         data_len = blk_rq_payload_bytes(rq);
2001         if (data_len)
2002                 io_dir = ((rq_data_dir(rq) == WRITE) ?
2003                                         NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2004         else
2005                 io_dir = NVMEFC_FCP_NODATA;
2006
2007         return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2008 }
2009
2010 static struct blk_mq_tags *
2011 nvme_fc_tagset(struct nvme_fc_queue *queue)
2012 {
2013         if (queue->qnum == 0)
2014                 return queue->ctrl->admin_tag_set.tags[queue->qnum];
2015
2016         return queue->ctrl->tag_set.tags[queue->qnum - 1];
2017 }
2018
2019 static int
2020 nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
2021
2022 {
2023         struct nvme_fc_queue *queue = hctx->driver_data;
2024         struct nvme_fc_ctrl *ctrl = queue->ctrl;
2025         struct request *req;
2026         struct nvme_fc_fcp_op *op;
2027
2028         req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag);
2029         if (!req)
2030                 return 0;
2031
2032         op = blk_mq_rq_to_pdu(req);
2033
2034         if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) &&
2035                  (ctrl->lport->ops->poll_queue))
2036                 ctrl->lport->ops->poll_queue(&ctrl->lport->localport,
2037                                                  queue->lldd_handle);
2038
2039         return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE));
2040 }
2041
2042 static void
2043 nvme_fc_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
2044 {
2045         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2046         struct nvme_fc_fcp_op *aen_op;
2047         unsigned long flags;
2048         bool terminating = false;
2049         int ret;
2050
2051         if (aer_idx > NVME_FC_NR_AEN_COMMANDS)
2052                 return;
2053
2054         spin_lock_irqsave(&ctrl->lock, flags);
2055         if (ctrl->flags & FCCTRL_TERMIO)
2056                 terminating = true;
2057         spin_unlock_irqrestore(&ctrl->lock, flags);
2058
2059         if (terminating)
2060                 return;
2061
2062         aen_op = &ctrl->aen_ops[aer_idx];
2063
2064         ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2065                                         NVMEFC_FCP_NODATA);
2066         if (ret)
2067                 dev_err(ctrl->ctrl.device,
2068                         "failed async event work [%d]\n", aer_idx);
2069 }
2070
2071 static void
2072 __nvme_fc_final_op_cleanup(struct request *rq)
2073 {
2074         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2075         struct nvme_fc_ctrl *ctrl = op->ctrl;
2076
2077         atomic_set(&op->state, FCPOP_STATE_IDLE);
2078         op->flags &= ~(FCOP_FLAGS_TERMIO | FCOP_FLAGS_RELEASED |
2079                         FCOP_FLAGS_COMPLETE);
2080
2081         nvme_cleanup_cmd(rq);
2082         nvme_fc_unmap_data(ctrl, rq, op);
2083         nvme_complete_rq(rq);
2084         nvme_fc_ctrl_put(ctrl);
2085
2086 }
2087
2088 static void
2089 nvme_fc_complete_rq(struct request *rq)
2090 {
2091         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2092         struct nvme_fc_ctrl *ctrl = op->ctrl;
2093         unsigned long flags;
2094         bool completed = false;
2095
2096         /*
2097          * the core layer, on controller resets after calling
2098          * nvme_shutdown_ctrl(), calls complete_rq without our
2099          * calling blk_mq_complete_request(), thus there may still
2100          * be live i/o outstanding with the LLDD. Means transport has
2101          * to track complete calls vs fcpio_done calls to know what
2102          * path to take on completes and dones.
2103          */
2104         spin_lock_irqsave(&ctrl->lock, flags);
2105         if (op->flags & FCOP_FLAGS_COMPLETE)
2106                 completed = true;
2107         else
2108                 op->flags |= FCOP_FLAGS_RELEASED;
2109         spin_unlock_irqrestore(&ctrl->lock, flags);
2110
2111         if (completed)
2112                 __nvme_fc_final_op_cleanup(rq);
2113 }
2114
2115 /*
2116  * This routine is used by the transport when it needs to find active
2117  * io on a queue that is to be terminated. The transport uses
2118  * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2119  * this routine to kill them on a 1 by 1 basis.
2120  *
2121  * As FC allocates FC exchange for each io, the transport must contact
2122  * the LLDD to terminate the exchange, thus releasing the FC exchange.
2123  * After terminating the exchange the LLDD will call the transport's
2124  * normal io done path for the request, but it will have an aborted
2125  * status. The done path will return the io request back to the block
2126  * layer with an error status.
2127  */
2128 static void
2129 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2130 {
2131         struct nvme_ctrl *nctrl = data;
2132         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2133         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2134         unsigned long flags;
2135         int status;
2136
2137         if (!blk_mq_request_started(req))
2138                 return;
2139
2140         spin_lock_irqsave(&ctrl->lock, flags);
2141         if (ctrl->flags & FCCTRL_TERMIO) {
2142                 ctrl->iocnt++;
2143                 op->flags |= FCOP_FLAGS_TERMIO;
2144         }
2145         spin_unlock_irqrestore(&ctrl->lock, flags);
2146
2147         status = __nvme_fc_abort_op(ctrl, op);
2148         if (status) {
2149                 /*
2150                  * if __nvme_fc_abort_op failed the io wasn't
2151                  * active. Thus this call path is running in
2152                  * parallel to the io complete. Treat as non-error.
2153                  */
2154
2155                 /* back out the flags/counters */
2156                 spin_lock_irqsave(&ctrl->lock, flags);
2157                 if (ctrl->flags & FCCTRL_TERMIO)
2158                         ctrl->iocnt--;
2159                 op->flags &= ~FCOP_FLAGS_TERMIO;
2160                 spin_unlock_irqrestore(&ctrl->lock, flags);
2161                 return;
2162         }
2163 }
2164
2165
2166 static const struct blk_mq_ops nvme_fc_mq_ops = {
2167         .queue_rq       = nvme_fc_queue_rq,
2168         .complete       = nvme_fc_complete_rq,
2169         .init_request   = nvme_fc_init_request,
2170         .exit_request   = nvme_fc_exit_request,
2171         .reinit_request = nvme_fc_reinit_request,
2172         .init_hctx      = nvme_fc_init_hctx,
2173         .poll           = nvme_fc_poll,
2174         .timeout        = nvme_fc_timeout,
2175 };
2176
2177 static int
2178 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2179 {
2180         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2181         int ret;
2182
2183         ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues);
2184         if (ret) {
2185                 dev_info(ctrl->ctrl.device,
2186                         "set_queue_count failed: %d\n", ret);
2187                 return ret;
2188         }
2189
2190         ctrl->queue_count = opts->nr_io_queues + 1;
2191         if (!opts->nr_io_queues)
2192                 return 0;
2193
2194         nvme_fc_init_io_queues(ctrl);
2195
2196         memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2197         ctrl->tag_set.ops = &nvme_fc_mq_ops;
2198         ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2199         ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2200         ctrl->tag_set.numa_node = NUMA_NO_NODE;
2201         ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2202         ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2203                                         (SG_CHUNK_SIZE *
2204                                                 sizeof(struct scatterlist)) +
2205                                         ctrl->lport->ops->fcprqst_priv_sz;
2206         ctrl->tag_set.driver_data = ctrl;
2207         ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1;
2208         ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2209
2210         ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2211         if (ret)
2212                 return ret;
2213
2214         ctrl->ctrl.tagset = &ctrl->tag_set;
2215
2216         ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2217         if (IS_ERR(ctrl->ctrl.connect_q)) {
2218                 ret = PTR_ERR(ctrl->ctrl.connect_q);
2219                 goto out_free_tag_set;
2220         }
2221
2222         ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2223         if (ret)
2224                 goto out_cleanup_blk_queue;
2225
2226         ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2227         if (ret)
2228                 goto out_delete_hw_queues;
2229
2230         return 0;
2231
2232 out_delete_hw_queues:
2233         nvme_fc_delete_hw_io_queues(ctrl);
2234 out_cleanup_blk_queue:
2235         nvme_stop_keep_alive(&ctrl->ctrl);
2236         blk_cleanup_queue(ctrl->ctrl.connect_q);
2237 out_free_tag_set:
2238         blk_mq_free_tag_set(&ctrl->tag_set);
2239         nvme_fc_free_io_queues(ctrl);
2240
2241         /* force put free routine to ignore io queues */
2242         ctrl->ctrl.tagset = NULL;
2243
2244         return ret;
2245 }
2246
2247 static int
2248 nvme_fc_reinit_io_queues(struct nvme_fc_ctrl *ctrl)
2249 {
2250         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2251         int ret;
2252
2253         ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues);
2254         if (ret) {
2255                 dev_info(ctrl->ctrl.device,
2256                         "set_queue_count failed: %d\n", ret);
2257                 return ret;
2258         }
2259
2260         /* check for io queues existing */
2261         if (ctrl->queue_count == 1)
2262                 return 0;
2263
2264         nvme_fc_init_io_queues(ctrl);
2265
2266         ret = blk_mq_reinit_tagset(&ctrl->tag_set);
2267         if (ret)
2268                 goto out_free_io_queues;
2269
2270         ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2271         if (ret)
2272                 goto out_free_io_queues;
2273
2274         ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2275         if (ret)
2276                 goto out_delete_hw_queues;
2277
2278         return 0;
2279
2280 out_delete_hw_queues:
2281         nvme_fc_delete_hw_io_queues(ctrl);
2282 out_free_io_queues:
2283         nvme_fc_free_io_queues(ctrl);
2284         return ret;
2285 }
2286
2287 /*
2288  * This routine restarts the controller on the host side, and
2289  * on the link side, recreates the controller association.
2290  */
2291 static int
2292 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
2293 {
2294         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2295         u32 segs;
2296         int ret;
2297         bool changed;
2298
2299         ++ctrl->ctrl.opts->nr_reconnects;
2300
2301         /*
2302          * Create the admin queue
2303          */
2304
2305         nvme_fc_init_queue(ctrl, 0, NVME_FC_AQ_BLKMQ_DEPTH);
2306
2307         ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2308                                 NVME_FC_AQ_BLKMQ_DEPTH);
2309         if (ret)
2310                 goto out_free_queue;
2311
2312         ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2313                                 NVME_FC_AQ_BLKMQ_DEPTH,
2314                                 (NVME_FC_AQ_BLKMQ_DEPTH / 4));
2315         if (ret)
2316                 goto out_delete_hw_queue;
2317
2318         if (ctrl->ctrl.state != NVME_CTRL_NEW)
2319                 blk_mq_start_stopped_hw_queues(ctrl->ctrl.admin_q, true);
2320
2321         ret = nvmf_connect_admin_queue(&ctrl->ctrl);
2322         if (ret)
2323                 goto out_disconnect_admin_queue;
2324
2325         /*
2326          * Check controller capabilities
2327          *
2328          * todo:- add code to check if ctrl attributes changed from
2329          * prior connection values
2330          */
2331
2332         ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap);
2333         if (ret) {
2334                 dev_err(ctrl->ctrl.device,
2335                         "prop_get NVME_REG_CAP failed\n");
2336                 goto out_disconnect_admin_queue;
2337         }
2338
2339         ctrl->ctrl.sqsize =
2340                 min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize);
2341
2342         ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
2343         if (ret)
2344                 goto out_disconnect_admin_queue;
2345
2346         segs = min_t(u32, NVME_FC_MAX_SEGMENTS,
2347                         ctrl->lport->ops->max_sgl_segments);
2348         ctrl->ctrl.max_hw_sectors = (segs - 1) << (PAGE_SHIFT - 9);
2349
2350         ret = nvme_init_identify(&ctrl->ctrl);
2351         if (ret)
2352                 goto out_disconnect_admin_queue;
2353
2354         /* sanity checks */
2355
2356         /* FC-NVME does not have other data in the capsule */
2357         if (ctrl->ctrl.icdoff) {
2358                 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2359                                 ctrl->ctrl.icdoff);
2360                 goto out_disconnect_admin_queue;
2361         }
2362
2363         nvme_start_keep_alive(&ctrl->ctrl);
2364
2365         /* FC-NVME supports normal SGL Data Block Descriptors */
2366
2367         if (opts->queue_size > ctrl->ctrl.maxcmd) {
2368                 /* warn if maxcmd is lower than queue_size */
2369                 dev_warn(ctrl->ctrl.device,
2370                         "queue_size %zu > ctrl maxcmd %u, reducing "
2371                         "to queue_size\n",
2372                         opts->queue_size, ctrl->ctrl.maxcmd);
2373                 opts->queue_size = ctrl->ctrl.maxcmd;
2374         }
2375
2376         ret = nvme_fc_init_aen_ops(ctrl);
2377         if (ret)
2378                 goto out_term_aen_ops;
2379
2380         /*
2381          * Create the io queues
2382          */
2383
2384         if (ctrl->queue_count > 1) {
2385                 if (ctrl->ctrl.state == NVME_CTRL_NEW)
2386                         ret = nvme_fc_create_io_queues(ctrl);
2387                 else
2388                         ret = nvme_fc_reinit_io_queues(ctrl);
2389                 if (ret)
2390                         goto out_term_aen_ops;
2391         }
2392
2393         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2394         WARN_ON_ONCE(!changed);
2395
2396         ctrl->ctrl.opts->nr_reconnects = 0;
2397
2398         if (ctrl->queue_count > 1) {
2399                 nvme_start_queues(&ctrl->ctrl);
2400                 nvme_queue_scan(&ctrl->ctrl);
2401                 nvme_queue_async_events(&ctrl->ctrl);
2402         }
2403
2404         return 0;       /* Success */
2405
2406 out_term_aen_ops:
2407         nvme_fc_term_aen_ops(ctrl);
2408         nvme_stop_keep_alive(&ctrl->ctrl);
2409 out_disconnect_admin_queue:
2410         /* send a Disconnect(association) LS to fc-nvme target */
2411         nvme_fc_xmt_disconnect_assoc(ctrl);
2412 out_delete_hw_queue:
2413         __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2414 out_free_queue:
2415         nvme_fc_free_queue(&ctrl->queues[0]);
2416
2417         return ret;
2418 }
2419
2420 /*
2421  * This routine stops operation of the controller on the host side.
2422  * On the host os stack side: Admin and IO queues are stopped,
2423  *   outstanding ios on them terminated via FC ABTS.
2424  * On the link side: the association is terminated.
2425  */
2426 static void
2427 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
2428 {
2429         unsigned long flags;
2430
2431         nvme_stop_keep_alive(&ctrl->ctrl);
2432
2433         spin_lock_irqsave(&ctrl->lock, flags);
2434         ctrl->flags |= FCCTRL_TERMIO;
2435         ctrl->iocnt = 0;
2436         spin_unlock_irqrestore(&ctrl->lock, flags);
2437
2438         /*
2439          * If io queues are present, stop them and terminate all outstanding
2440          * ios on them. As FC allocates FC exchange for each io, the
2441          * transport must contact the LLDD to terminate the exchange,
2442          * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2443          * to tell us what io's are busy and invoke a transport routine
2444          * to kill them with the LLDD.  After terminating the exchange
2445          * the LLDD will call the transport's normal io done path, but it
2446          * will have an aborted status. The done path will return the
2447          * io requests back to the block layer as part of normal completions
2448          * (but with error status).
2449          */
2450         if (ctrl->queue_count > 1) {
2451                 nvme_stop_queues(&ctrl->ctrl);
2452                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
2453                                 nvme_fc_terminate_exchange, &ctrl->ctrl);
2454         }
2455
2456         /*
2457          * Other transports, which don't have link-level contexts bound
2458          * to sqe's, would try to gracefully shutdown the controller by
2459          * writing the registers for shutdown and polling (call
2460          * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2461          * just aborted and we will wait on those contexts, and given
2462          * there was no indication of how live the controlelr is on the
2463          * link, don't send more io to create more contexts for the
2464          * shutdown. Let the controller fail via keepalive failure if
2465          * its still present.
2466          */
2467
2468         /*
2469          * clean up the admin queue. Same thing as above.
2470          * use blk_mq_tagset_busy_itr() and the transport routine to
2471          * terminate the exchanges.
2472          */
2473         blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
2474         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2475                                 nvme_fc_terminate_exchange, &ctrl->ctrl);
2476
2477         /* kill the aens as they are a separate path */
2478         nvme_fc_abort_aen_ops(ctrl);
2479
2480         /* wait for all io that had to be aborted */
2481         spin_lock_irqsave(&ctrl->lock, flags);
2482         while (ctrl->iocnt) {
2483                 spin_unlock_irqrestore(&ctrl->lock, flags);
2484                 msleep(1000);
2485                 spin_lock_irqsave(&ctrl->lock, flags);
2486         }
2487         ctrl->flags &= ~FCCTRL_TERMIO;
2488         spin_unlock_irqrestore(&ctrl->lock, flags);
2489
2490         nvme_fc_term_aen_ops(ctrl);
2491
2492         /*
2493          * send a Disconnect(association) LS to fc-nvme target
2494          * Note: could have been sent at top of process, but
2495          * cleaner on link traffic if after the aborts complete.
2496          * Note: if association doesn't exist, association_id will be 0
2497          */
2498         if (ctrl->association_id)
2499                 nvme_fc_xmt_disconnect_assoc(ctrl);
2500
2501         if (ctrl->ctrl.tagset) {
2502                 nvme_fc_delete_hw_io_queues(ctrl);
2503                 nvme_fc_free_io_queues(ctrl);
2504         }
2505
2506         __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2507         nvme_fc_free_queue(&ctrl->queues[0]);
2508 }
2509
2510 static void
2511 nvme_fc_delete_ctrl_work(struct work_struct *work)
2512 {
2513         struct nvme_fc_ctrl *ctrl =
2514                 container_of(work, struct nvme_fc_ctrl, delete_work);
2515
2516         cancel_work_sync(&ctrl->reset_work);
2517         cancel_delayed_work_sync(&ctrl->connect_work);
2518
2519         /*
2520          * kill the association on the link side.  this will block
2521          * waiting for io to terminate
2522          */
2523         nvme_fc_delete_association(ctrl);
2524
2525         /*
2526          * tear down the controller
2527          * After the last reference on the nvme ctrl is removed,
2528          * the transport nvme_fc_nvme_ctrl_freed() callback will be
2529          * invoked. From there, the transport will tear down it's
2530          * logical queues and association.
2531          */
2532         nvme_uninit_ctrl(&ctrl->ctrl);
2533
2534         nvme_put_ctrl(&ctrl->ctrl);
2535 }
2536
2537 static bool
2538 __nvme_fc_schedule_delete_work(struct nvme_fc_ctrl *ctrl)
2539 {
2540         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
2541                 return true;
2542
2543         if (!queue_work(nvme_fc_wq, &ctrl->delete_work))
2544                 return true;
2545
2546         return false;
2547 }
2548
2549 static int
2550 __nvme_fc_del_ctrl(struct nvme_fc_ctrl *ctrl)
2551 {
2552         return __nvme_fc_schedule_delete_work(ctrl) ? -EBUSY : 0;
2553 }
2554
2555 /*
2556  * Request from nvme core layer to delete the controller
2557  */
2558 static int
2559 nvme_fc_del_nvme_ctrl(struct nvme_ctrl *nctrl)
2560 {
2561         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2562         int ret;
2563
2564         if (!kref_get_unless_zero(&ctrl->ctrl.kref))
2565                 return -EBUSY;
2566
2567         ret = __nvme_fc_del_ctrl(ctrl);
2568
2569         if (!ret)
2570                 flush_workqueue(nvme_fc_wq);
2571
2572         nvme_put_ctrl(&ctrl->ctrl);
2573
2574         return ret;
2575 }
2576
2577 static void
2578 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
2579 {
2580         /* If we are resetting/deleting then do nothing */
2581         if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) {
2582                 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
2583                         ctrl->ctrl.state == NVME_CTRL_LIVE);
2584                 return;
2585         }
2586
2587         dev_info(ctrl->ctrl.device,
2588                 "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2589                 ctrl->cnum, status);
2590
2591         if (nvmf_should_reconnect(&ctrl->ctrl)) {
2592                 dev_info(ctrl->ctrl.device,
2593                         "NVME-FC{%d}: Reconnect attempt in %d seconds.\n",
2594                         ctrl->cnum, ctrl->ctrl.opts->reconnect_delay);
2595                 queue_delayed_work(nvme_fc_wq, &ctrl->connect_work,
2596                                 ctrl->ctrl.opts->reconnect_delay * HZ);
2597         } else {
2598                 dev_warn(ctrl->ctrl.device,
2599                                 "NVME-FC{%d}: Max reconnect attempts (%d) "
2600                                 "reached. Removing controller\n",
2601                                 ctrl->cnum, ctrl->ctrl.opts->nr_reconnects);
2602                 WARN_ON(__nvme_fc_schedule_delete_work(ctrl));
2603         }
2604 }
2605
2606 static void
2607 nvme_fc_reset_ctrl_work(struct work_struct *work)
2608 {
2609         struct nvme_fc_ctrl *ctrl =
2610                         container_of(work, struct nvme_fc_ctrl, reset_work);
2611         int ret;
2612
2613         /* will block will waiting for io to terminate */
2614         nvme_fc_delete_association(ctrl);
2615
2616         ret = nvme_fc_create_association(ctrl);
2617         if (ret)
2618                 nvme_fc_reconnect_or_delete(ctrl, ret);
2619         else
2620                 dev_info(ctrl->ctrl.device,
2621                         "NVME-FC{%d}: controller reset complete\n", ctrl->cnum);
2622 }
2623
2624 /*
2625  * called by the nvme core layer, for sysfs interface that requests
2626  * a reset of the nvme controller
2627  */
2628 static int
2629 nvme_fc_reset_nvme_ctrl(struct nvme_ctrl *nctrl)
2630 {
2631         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2632
2633         dev_info(ctrl->ctrl.device,
2634                 "NVME-FC{%d}: admin requested controller reset\n", ctrl->cnum);
2635
2636         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
2637                 return -EBUSY;
2638
2639         if (!queue_work(nvme_fc_wq, &ctrl->reset_work))
2640                 return -EBUSY;
2641
2642         flush_work(&ctrl->reset_work);
2643
2644         return 0;
2645 }
2646
2647 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
2648         .name                   = "fc",
2649         .module                 = THIS_MODULE,
2650         .flags                  = NVME_F_FABRICS,
2651         .reg_read32             = nvmf_reg_read32,
2652         .reg_read64             = nvmf_reg_read64,
2653         .reg_write32            = nvmf_reg_write32,
2654         .reset_ctrl             = nvme_fc_reset_nvme_ctrl,
2655         .free_ctrl              = nvme_fc_nvme_ctrl_freed,
2656         .submit_async_event     = nvme_fc_submit_async_event,
2657         .delete_ctrl            = nvme_fc_del_nvme_ctrl,
2658         .get_subsysnqn          = nvmf_get_subsysnqn,
2659         .get_address            = nvmf_get_address,
2660 };
2661
2662 static void
2663 nvme_fc_connect_ctrl_work(struct work_struct *work)
2664 {
2665         int ret;
2666
2667         struct nvme_fc_ctrl *ctrl =
2668                         container_of(to_delayed_work(work),
2669                                 struct nvme_fc_ctrl, connect_work);
2670
2671         ret = nvme_fc_create_association(ctrl);
2672         if (ret)
2673                 nvme_fc_reconnect_or_delete(ctrl, ret);
2674         else
2675                 dev_info(ctrl->ctrl.device,
2676                         "NVME-FC{%d}: controller reconnect complete\n",
2677                         ctrl->cnum);
2678 }
2679
2680
2681 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
2682         .queue_rq       = nvme_fc_queue_rq,
2683         .complete       = nvme_fc_complete_rq,
2684         .init_request   = nvme_fc_init_admin_request,
2685         .exit_request   = nvme_fc_exit_request,
2686         .reinit_request = nvme_fc_reinit_request,
2687         .init_hctx      = nvme_fc_init_admin_hctx,
2688         .timeout        = nvme_fc_timeout,
2689 };
2690
2691
2692 static struct nvme_ctrl *
2693 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
2694         struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
2695 {
2696         struct nvme_fc_ctrl *ctrl;
2697         unsigned long flags;
2698         int ret, idx;
2699
2700         if (!(rport->remoteport.port_role &
2701             (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
2702                 ret = -EBADR;
2703                 goto out_fail;
2704         }
2705
2706         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2707         if (!ctrl) {
2708                 ret = -ENOMEM;
2709                 goto out_fail;
2710         }
2711
2712         idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
2713         if (idx < 0) {
2714                 ret = -ENOSPC;
2715                 goto out_free_ctrl;
2716         }
2717
2718         ctrl->ctrl.opts = opts;
2719         INIT_LIST_HEAD(&ctrl->ctrl_list);
2720         ctrl->lport = lport;
2721         ctrl->rport = rport;
2722         ctrl->dev = lport->dev;
2723         ctrl->cnum = idx;
2724
2725         get_device(ctrl->dev);
2726         kref_init(&ctrl->ref);
2727
2728         INIT_WORK(&ctrl->delete_work, nvme_fc_delete_ctrl_work);
2729         INIT_WORK(&ctrl->reset_work, nvme_fc_reset_ctrl_work);
2730         INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
2731         spin_lock_init(&ctrl->lock);
2732
2733         /* io queue count */
2734         ctrl->queue_count = min_t(unsigned int,
2735                                 opts->nr_io_queues,
2736                                 lport->ops->max_hw_queues);
2737         opts->nr_io_queues = ctrl->queue_count; /* so opts has valid value */
2738         ctrl->queue_count++;    /* +1 for admin queue */
2739
2740         ctrl->ctrl.sqsize = opts->queue_size - 1;
2741         ctrl->ctrl.kato = opts->kato;
2742
2743         ret = -ENOMEM;
2744         ctrl->queues = kcalloc(ctrl->queue_count, sizeof(struct nvme_fc_queue),
2745                                 GFP_KERNEL);
2746         if (!ctrl->queues)
2747                 goto out_free_ida;
2748
2749         memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
2750         ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
2751         ctrl->admin_tag_set.queue_depth = NVME_FC_AQ_BLKMQ_DEPTH;
2752         ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
2753         ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
2754         ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2755                                         (SG_CHUNK_SIZE *
2756                                                 sizeof(struct scatterlist)) +
2757                                         ctrl->lport->ops->fcprqst_priv_sz;
2758         ctrl->admin_tag_set.driver_data = ctrl;
2759         ctrl->admin_tag_set.nr_hw_queues = 1;
2760         ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
2761
2762         ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
2763         if (ret)
2764                 goto out_free_queues;
2765
2766         ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
2767         if (IS_ERR(ctrl->ctrl.admin_q)) {
2768                 ret = PTR_ERR(ctrl->ctrl.admin_q);
2769                 goto out_free_admin_tag_set;
2770         }
2771
2772         /*
2773          * Would have been nice to init io queues tag set as well.
2774          * However, we require interaction from the controller
2775          * for max io queue count before we can do so.
2776          * Defer this to the connect path.
2777          */
2778
2779         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
2780         if (ret)
2781                 goto out_cleanup_admin_q;
2782
2783         /* at this point, teardown path changes to ref counting on nvme ctrl */
2784
2785         spin_lock_irqsave(&rport->lock, flags);
2786         list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
2787         spin_unlock_irqrestore(&rport->lock, flags);
2788
2789         ret = nvme_fc_create_association(ctrl);
2790         if (ret) {
2791                 ctrl->ctrl.opts = NULL;
2792                 /* initiate nvme ctrl ref counting teardown */
2793                 nvme_uninit_ctrl(&ctrl->ctrl);
2794
2795                 /* as we're past the point where we transition to the ref
2796                  * counting teardown path, if we return a bad pointer here,
2797                  * the calling routine, thinking it's prior to the
2798                  * transition, will do an rport put. Since the teardown
2799                  * path also does a rport put, we do an extra get here to
2800                  * so proper order/teardown happens.
2801                  */
2802                 nvme_fc_rport_get(rport);
2803
2804                 if (ret > 0)
2805                         ret = -EIO;
2806                 return ERR_PTR(ret);
2807         }
2808
2809         kref_get(&ctrl->ctrl.kref);
2810
2811         dev_info(ctrl->ctrl.device,
2812                 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
2813                 ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
2814
2815         return &ctrl->ctrl;
2816
2817 out_cleanup_admin_q:
2818         blk_cleanup_queue(ctrl->ctrl.admin_q);
2819 out_free_admin_tag_set:
2820         blk_mq_free_tag_set(&ctrl->admin_tag_set);
2821 out_free_queues:
2822         kfree(ctrl->queues);
2823 out_free_ida:
2824         put_device(ctrl->dev);
2825         ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2826 out_free_ctrl:
2827         kfree(ctrl);
2828 out_fail:
2829         /* exit via here doesn't follow ctlr ref points */
2830         return ERR_PTR(ret);
2831 }
2832
2833 enum {
2834         FCT_TRADDR_ERR          = 0,
2835         FCT_TRADDR_WWNN         = 1 << 0,
2836         FCT_TRADDR_WWPN         = 1 << 1,
2837 };
2838
2839 struct nvmet_fc_traddr {
2840         u64     nn;
2841         u64     pn;
2842 };
2843
2844 static const match_table_t traddr_opt_tokens = {
2845         { FCT_TRADDR_WWNN,      "nn-%s"         },
2846         { FCT_TRADDR_WWPN,      "pn-%s"         },
2847         { FCT_TRADDR_ERR,       NULL            }
2848 };
2849
2850 static int
2851 nvme_fc_parse_address(struct nvmet_fc_traddr *traddr, char *buf)
2852 {
2853         substring_t args[MAX_OPT_ARGS];
2854         char *options, *o, *p;
2855         int token, ret = 0;
2856         u64 token64;
2857
2858         options = o = kstrdup(buf, GFP_KERNEL);
2859         if (!options)
2860                 return -ENOMEM;
2861
2862         while ((p = strsep(&o, ":\n")) != NULL) {
2863                 if (!*p)
2864                         continue;
2865
2866                 token = match_token(p, traddr_opt_tokens, args);
2867                 switch (token) {
2868                 case FCT_TRADDR_WWNN:
2869                         if (match_u64(args, &token64)) {
2870                                 ret = -EINVAL;
2871                                 goto out;
2872                         }
2873                         traddr->nn = token64;
2874                         break;
2875                 case FCT_TRADDR_WWPN:
2876                         if (match_u64(args, &token64)) {
2877                                 ret = -EINVAL;
2878                                 goto out;
2879                         }
2880                         traddr->pn = token64;
2881                         break;
2882                 default:
2883                         pr_warn("unknown traddr token or missing value '%s'\n",
2884                                         p);
2885                         ret = -EINVAL;
2886                         goto out;
2887                 }
2888         }
2889
2890 out:
2891         kfree(options);
2892         return ret;
2893 }
2894
2895 static struct nvme_ctrl *
2896 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
2897 {
2898         struct nvme_fc_lport *lport;
2899         struct nvme_fc_rport *rport;
2900         struct nvme_ctrl *ctrl;
2901         struct nvmet_fc_traddr laddr = { 0L, 0L };
2902         struct nvmet_fc_traddr raddr = { 0L, 0L };
2903         unsigned long flags;
2904         int ret;
2905
2906         ret = nvme_fc_parse_address(&raddr, opts->traddr);
2907         if (ret || !raddr.nn || !raddr.pn)
2908                 return ERR_PTR(-EINVAL);
2909
2910         ret = nvme_fc_parse_address(&laddr, opts->host_traddr);
2911         if (ret || !laddr.nn || !laddr.pn)
2912                 return ERR_PTR(-EINVAL);
2913
2914         /* find the host and remote ports to connect together */
2915         spin_lock_irqsave(&nvme_fc_lock, flags);
2916         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
2917                 if (lport->localport.node_name != laddr.nn ||
2918                     lport->localport.port_name != laddr.pn)
2919                         continue;
2920
2921                 list_for_each_entry(rport, &lport->endp_list, endp_list) {
2922                         if (rport->remoteport.node_name != raddr.nn ||
2923                             rport->remoteport.port_name != raddr.pn)
2924                                 continue;
2925
2926                         /* if fail to get reference fall through. Will error */
2927                         if (!nvme_fc_rport_get(rport))
2928                                 break;
2929
2930                         spin_unlock_irqrestore(&nvme_fc_lock, flags);
2931
2932                         ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
2933                         if (IS_ERR(ctrl))
2934                                 nvme_fc_rport_put(rport);
2935                         return ctrl;
2936                 }
2937         }
2938         spin_unlock_irqrestore(&nvme_fc_lock, flags);
2939
2940         return ERR_PTR(-ENOENT);
2941 }
2942
2943
2944 static struct nvmf_transport_ops nvme_fc_transport = {
2945         .name           = "fc",
2946         .required_opts  = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
2947         .allowed_opts   = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
2948         .create_ctrl    = nvme_fc_create_ctrl,
2949 };
2950
2951 static int __init nvme_fc_init_module(void)
2952 {
2953         int ret;
2954
2955         nvme_fc_wq = create_workqueue("nvme_fc_wq");
2956         if (!nvme_fc_wq)
2957                 return -ENOMEM;
2958
2959         ret = nvmf_register_transport(&nvme_fc_transport);
2960         if (ret)
2961                 goto err;
2962
2963         return 0;
2964 err:
2965         destroy_workqueue(nvme_fc_wq);
2966         return ret;
2967 }
2968
2969 static void __exit nvme_fc_exit_module(void)
2970 {
2971         /* sanity check - all lports should be removed */
2972         if (!list_empty(&nvme_fc_lport_list))
2973                 pr_warn("%s: localport list not empty\n", __func__);
2974
2975         nvmf_unregister_transport(&nvme_fc_transport);
2976
2977         destroy_workqueue(nvme_fc_wq);
2978
2979         ida_destroy(&nvme_fc_local_port_cnt);
2980         ida_destroy(&nvme_fc_ctrl_cnt);
2981 }
2982
2983 module_init(nvme_fc_init_module);
2984 module_exit(nvme_fc_exit_module);
2985
2986 MODULE_LICENSE("GPL v2");