]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/nvme/host/fc.c
Merge tag 'linux-kselftest-4.13-rc6-fixes' of git://git.kernel.org/pub/scm/linux...
[karo-tx-linux.git] / drivers / nvme / host / fc.c
1 /*
2  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful.
9  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10  * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11  * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12  * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13  * See the GNU General Public License for more details, a copy of which
14  * can be found in the file COPYING included with this package
15  *
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/parser.h>
20 #include <uapi/scsi/fc/fc_fs.h>
21 #include <uapi/scsi/fc/fc_els.h>
22 #include <linux/delay.h>
23
24 #include "nvme.h"
25 #include "fabrics.h"
26 #include <linux/nvme-fc-driver.h>
27 #include <linux/nvme-fc.h>
28
29
30 /* *************************** Data Structures/Defines ****************** */
31
32
33 /*
34  * We handle AEN commands ourselves and don't even let the
35  * block layer know about them.
36  */
37 #define NVME_FC_NR_AEN_COMMANDS 1
38 #define NVME_FC_AQ_BLKMQ_DEPTH  \
39         (NVME_AQ_DEPTH - NVME_FC_NR_AEN_COMMANDS)
40 #define AEN_CMDID_BASE          (NVME_FC_AQ_BLKMQ_DEPTH + 1)
41
42 enum nvme_fc_queue_flags {
43         NVME_FC_Q_CONNECTED = (1 << 0),
44 };
45
46 #define NVMEFC_QUEUE_DELAY      3               /* ms units */
47
48 struct nvme_fc_queue {
49         struct nvme_fc_ctrl     *ctrl;
50         struct device           *dev;
51         struct blk_mq_hw_ctx    *hctx;
52         void                    *lldd_handle;
53         int                     queue_size;
54         size_t                  cmnd_capsule_len;
55         u32                     qnum;
56         u32                     rqcnt;
57         u32                     seqno;
58
59         u64                     connection_id;
60         atomic_t                csn;
61
62         unsigned long           flags;
63 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
64
65 enum nvme_fcop_flags {
66         FCOP_FLAGS_TERMIO       = (1 << 0),
67         FCOP_FLAGS_RELEASED     = (1 << 1),
68         FCOP_FLAGS_COMPLETE     = (1 << 2),
69         FCOP_FLAGS_AEN          = (1 << 3),
70 };
71
72 struct nvmefc_ls_req_op {
73         struct nvmefc_ls_req    ls_req;
74
75         struct nvme_fc_rport    *rport;
76         struct nvme_fc_queue    *queue;
77         struct request          *rq;
78         u32                     flags;
79
80         int                     ls_error;
81         struct completion       ls_done;
82         struct list_head        lsreq_list;     /* rport->ls_req_list */
83         bool                    req_queued;
84 };
85
86 enum nvme_fcpop_state {
87         FCPOP_STATE_UNINIT      = 0,
88         FCPOP_STATE_IDLE        = 1,
89         FCPOP_STATE_ACTIVE      = 2,
90         FCPOP_STATE_ABORTED     = 3,
91         FCPOP_STATE_COMPLETE    = 4,
92 };
93
94 struct nvme_fc_fcp_op {
95         struct nvme_request     nreq;           /*
96                                                  * nvme/host/core.c
97                                                  * requires this to be
98                                                  * the 1st element in the
99                                                  * private structure
100                                                  * associated with the
101                                                  * request.
102                                                  */
103         struct nvmefc_fcp_req   fcp_req;
104
105         struct nvme_fc_ctrl     *ctrl;
106         struct nvme_fc_queue    *queue;
107         struct request          *rq;
108
109         atomic_t                state;
110         u32                     flags;
111         u32                     rqno;
112         u32                     nents;
113
114         struct nvme_fc_cmd_iu   cmd_iu;
115         struct nvme_fc_ersp_iu  rsp_iu;
116 };
117
118 struct nvme_fc_lport {
119         struct nvme_fc_local_port       localport;
120
121         struct ida                      endp_cnt;
122         struct list_head                port_list;      /* nvme_fc_port_list */
123         struct list_head                endp_list;
124         struct device                   *dev;   /* physical device for dma */
125         struct nvme_fc_port_template    *ops;
126         struct kref                     ref;
127 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
128
129 struct nvme_fc_rport {
130         struct nvme_fc_remote_port      remoteport;
131
132         struct list_head                endp_list; /* for lport->endp_list */
133         struct list_head                ctrl_list;
134         struct list_head                ls_req_list;
135         struct device                   *dev;   /* physical device for dma */
136         struct nvme_fc_lport            *lport;
137         spinlock_t                      lock;
138         struct kref                     ref;
139 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
140
141 enum nvme_fcctrl_flags {
142         FCCTRL_TERMIO           = (1 << 0),
143 };
144
145 struct nvme_fc_ctrl {
146         spinlock_t              lock;
147         struct nvme_fc_queue    *queues;
148         struct device           *dev;
149         struct nvme_fc_lport    *lport;
150         struct nvme_fc_rport    *rport;
151         u32                     cnum;
152
153         u64                     association_id;
154
155         struct list_head        ctrl_list;      /* rport->ctrl_list */
156
157         struct blk_mq_tag_set   admin_tag_set;
158         struct blk_mq_tag_set   tag_set;
159
160         struct work_struct      delete_work;
161         struct delayed_work     connect_work;
162
163         struct kref             ref;
164         u32                     flags;
165         u32                     iocnt;
166         wait_queue_head_t       ioabort_wait;
167
168         struct nvme_fc_fcp_op   aen_ops[NVME_FC_NR_AEN_COMMANDS];
169
170         struct nvme_ctrl        ctrl;
171 };
172
173 static inline struct nvme_fc_ctrl *
174 to_fc_ctrl(struct nvme_ctrl *ctrl)
175 {
176         return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
177 }
178
179 static inline struct nvme_fc_lport *
180 localport_to_lport(struct nvme_fc_local_port *portptr)
181 {
182         return container_of(portptr, struct nvme_fc_lport, localport);
183 }
184
185 static inline struct nvme_fc_rport *
186 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
187 {
188         return container_of(portptr, struct nvme_fc_rport, remoteport);
189 }
190
191 static inline struct nvmefc_ls_req_op *
192 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
193 {
194         return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
195 }
196
197 static inline struct nvme_fc_fcp_op *
198 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
199 {
200         return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
201 }
202
203
204
205 /* *************************** Globals **************************** */
206
207
208 static DEFINE_SPINLOCK(nvme_fc_lock);
209
210 static LIST_HEAD(nvme_fc_lport_list);
211 static DEFINE_IDA(nvme_fc_local_port_cnt);
212 static DEFINE_IDA(nvme_fc_ctrl_cnt);
213
214
215
216
217 /* *********************** FC-NVME Port Management ************************ */
218
219 static int __nvme_fc_del_ctrl(struct nvme_fc_ctrl *);
220 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
221                         struct nvme_fc_queue *, unsigned int);
222
223
224 /**
225  * nvme_fc_register_localport - transport entry point called by an
226  *                              LLDD to register the existence of a NVME
227  *                              host FC port.
228  * @pinfo:     pointer to information about the port to be registered
229  * @template:  LLDD entrypoints and operational parameters for the port
230  * @dev:       physical hardware device node port corresponds to. Will be
231  *             used for DMA mappings
232  * @lport_p:   pointer to a local port pointer. Upon success, the routine
233  *             will allocate a nvme_fc_local_port structure and place its
234  *             address in the local port pointer. Upon failure, local port
235  *             pointer will be set to 0.
236  *
237  * Returns:
238  * a completion status. Must be 0 upon success; a negative errno
239  * (ex: -ENXIO) upon failure.
240  */
241 int
242 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
243                         struct nvme_fc_port_template *template,
244                         struct device *dev,
245                         struct nvme_fc_local_port **portptr)
246 {
247         struct nvme_fc_lport *newrec;
248         unsigned long flags;
249         int ret, idx;
250
251         if (!template->localport_delete || !template->remoteport_delete ||
252             !template->ls_req || !template->fcp_io ||
253             !template->ls_abort || !template->fcp_abort ||
254             !template->max_hw_queues || !template->max_sgl_segments ||
255             !template->max_dif_sgl_segments || !template->dma_boundary) {
256                 ret = -EINVAL;
257                 goto out_reghost_failed;
258         }
259
260         newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
261                          GFP_KERNEL);
262         if (!newrec) {
263                 ret = -ENOMEM;
264                 goto out_reghost_failed;
265         }
266
267         idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
268         if (idx < 0) {
269                 ret = -ENOSPC;
270                 goto out_fail_kfree;
271         }
272
273         if (!get_device(dev) && dev) {
274                 ret = -ENODEV;
275                 goto out_ida_put;
276         }
277
278         INIT_LIST_HEAD(&newrec->port_list);
279         INIT_LIST_HEAD(&newrec->endp_list);
280         kref_init(&newrec->ref);
281         newrec->ops = template;
282         newrec->dev = dev;
283         ida_init(&newrec->endp_cnt);
284         newrec->localport.private = &newrec[1];
285         newrec->localport.node_name = pinfo->node_name;
286         newrec->localport.port_name = pinfo->port_name;
287         newrec->localport.port_role = pinfo->port_role;
288         newrec->localport.port_id = pinfo->port_id;
289         newrec->localport.port_state = FC_OBJSTATE_ONLINE;
290         newrec->localport.port_num = idx;
291
292         spin_lock_irqsave(&nvme_fc_lock, flags);
293         list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
294         spin_unlock_irqrestore(&nvme_fc_lock, flags);
295
296         if (dev)
297                 dma_set_seg_boundary(dev, template->dma_boundary);
298
299         *portptr = &newrec->localport;
300         return 0;
301
302 out_ida_put:
303         ida_simple_remove(&nvme_fc_local_port_cnt, idx);
304 out_fail_kfree:
305         kfree(newrec);
306 out_reghost_failed:
307         *portptr = NULL;
308
309         return ret;
310 }
311 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
312
313 static void
314 nvme_fc_free_lport(struct kref *ref)
315 {
316         struct nvme_fc_lport *lport =
317                 container_of(ref, struct nvme_fc_lport, ref);
318         unsigned long flags;
319
320         WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
321         WARN_ON(!list_empty(&lport->endp_list));
322
323         /* remove from transport list */
324         spin_lock_irqsave(&nvme_fc_lock, flags);
325         list_del(&lport->port_list);
326         spin_unlock_irqrestore(&nvme_fc_lock, flags);
327
328         /* let the LLDD know we've finished tearing it down */
329         lport->ops->localport_delete(&lport->localport);
330
331         ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
332         ida_destroy(&lport->endp_cnt);
333
334         put_device(lport->dev);
335
336         kfree(lport);
337 }
338
339 static void
340 nvme_fc_lport_put(struct nvme_fc_lport *lport)
341 {
342         kref_put(&lport->ref, nvme_fc_free_lport);
343 }
344
345 static int
346 nvme_fc_lport_get(struct nvme_fc_lport *lport)
347 {
348         return kref_get_unless_zero(&lport->ref);
349 }
350
351 /**
352  * nvme_fc_unregister_localport - transport entry point called by an
353  *                              LLDD to deregister/remove a previously
354  *                              registered a NVME host FC port.
355  * @localport: pointer to the (registered) local port that is to be
356  *             deregistered.
357  *
358  * Returns:
359  * a completion status. Must be 0 upon success; a negative errno
360  * (ex: -ENXIO) upon failure.
361  */
362 int
363 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
364 {
365         struct nvme_fc_lport *lport = localport_to_lport(portptr);
366         unsigned long flags;
367
368         if (!portptr)
369                 return -EINVAL;
370
371         spin_lock_irqsave(&nvme_fc_lock, flags);
372
373         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
374                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
375                 return -EINVAL;
376         }
377         portptr->port_state = FC_OBJSTATE_DELETED;
378
379         spin_unlock_irqrestore(&nvme_fc_lock, flags);
380
381         nvme_fc_lport_put(lport);
382
383         return 0;
384 }
385 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
386
387 /**
388  * nvme_fc_register_remoteport - transport entry point called by an
389  *                              LLDD to register the existence of a NVME
390  *                              subsystem FC port on its fabric.
391  * @localport: pointer to the (registered) local port that the remote
392  *             subsystem port is connected to.
393  * @pinfo:     pointer to information about the port to be registered
394  * @rport_p:   pointer to a remote port pointer. Upon success, the routine
395  *             will allocate a nvme_fc_remote_port structure and place its
396  *             address in the remote port pointer. Upon failure, remote port
397  *             pointer will be set to 0.
398  *
399  * Returns:
400  * a completion status. Must be 0 upon success; a negative errno
401  * (ex: -ENXIO) upon failure.
402  */
403 int
404 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
405                                 struct nvme_fc_port_info *pinfo,
406                                 struct nvme_fc_remote_port **portptr)
407 {
408         struct nvme_fc_lport *lport = localport_to_lport(localport);
409         struct nvme_fc_rport *newrec;
410         unsigned long flags;
411         int ret, idx;
412
413         newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
414                          GFP_KERNEL);
415         if (!newrec) {
416                 ret = -ENOMEM;
417                 goto out_reghost_failed;
418         }
419
420         if (!nvme_fc_lport_get(lport)) {
421                 ret = -ESHUTDOWN;
422                 goto out_kfree_rport;
423         }
424
425         idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
426         if (idx < 0) {
427                 ret = -ENOSPC;
428                 goto out_lport_put;
429         }
430
431         INIT_LIST_HEAD(&newrec->endp_list);
432         INIT_LIST_HEAD(&newrec->ctrl_list);
433         INIT_LIST_HEAD(&newrec->ls_req_list);
434         kref_init(&newrec->ref);
435         spin_lock_init(&newrec->lock);
436         newrec->remoteport.localport = &lport->localport;
437         newrec->dev = lport->dev;
438         newrec->lport = lport;
439         newrec->remoteport.private = &newrec[1];
440         newrec->remoteport.port_role = pinfo->port_role;
441         newrec->remoteport.node_name = pinfo->node_name;
442         newrec->remoteport.port_name = pinfo->port_name;
443         newrec->remoteport.port_id = pinfo->port_id;
444         newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
445         newrec->remoteport.port_num = idx;
446
447         spin_lock_irqsave(&nvme_fc_lock, flags);
448         list_add_tail(&newrec->endp_list, &lport->endp_list);
449         spin_unlock_irqrestore(&nvme_fc_lock, flags);
450
451         *portptr = &newrec->remoteport;
452         return 0;
453
454 out_lport_put:
455         nvme_fc_lport_put(lport);
456 out_kfree_rport:
457         kfree(newrec);
458 out_reghost_failed:
459         *portptr = NULL;
460         return ret;
461 }
462 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
463
464 static void
465 nvme_fc_free_rport(struct kref *ref)
466 {
467         struct nvme_fc_rport *rport =
468                 container_of(ref, struct nvme_fc_rport, ref);
469         struct nvme_fc_lport *lport =
470                         localport_to_lport(rport->remoteport.localport);
471         unsigned long flags;
472
473         WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
474         WARN_ON(!list_empty(&rport->ctrl_list));
475
476         /* remove from lport list */
477         spin_lock_irqsave(&nvme_fc_lock, flags);
478         list_del(&rport->endp_list);
479         spin_unlock_irqrestore(&nvme_fc_lock, flags);
480
481         /* let the LLDD know we've finished tearing it down */
482         lport->ops->remoteport_delete(&rport->remoteport);
483
484         ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
485
486         kfree(rport);
487
488         nvme_fc_lport_put(lport);
489 }
490
491 static void
492 nvme_fc_rport_put(struct nvme_fc_rport *rport)
493 {
494         kref_put(&rport->ref, nvme_fc_free_rport);
495 }
496
497 static int
498 nvme_fc_rport_get(struct nvme_fc_rport *rport)
499 {
500         return kref_get_unless_zero(&rport->ref);
501 }
502
503 static int
504 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
505 {
506         struct nvmefc_ls_req_op *lsop;
507         unsigned long flags;
508
509 restart:
510         spin_lock_irqsave(&rport->lock, flags);
511
512         list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
513                 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
514                         lsop->flags |= FCOP_FLAGS_TERMIO;
515                         spin_unlock_irqrestore(&rport->lock, flags);
516                         rport->lport->ops->ls_abort(&rport->lport->localport,
517                                                 &rport->remoteport,
518                                                 &lsop->ls_req);
519                         goto restart;
520                 }
521         }
522         spin_unlock_irqrestore(&rport->lock, flags);
523
524         return 0;
525 }
526
527 /**
528  * nvme_fc_unregister_remoteport - transport entry point called by an
529  *                              LLDD to deregister/remove a previously
530  *                              registered a NVME subsystem FC port.
531  * @remoteport: pointer to the (registered) remote port that is to be
532  *              deregistered.
533  *
534  * Returns:
535  * a completion status. Must be 0 upon success; a negative errno
536  * (ex: -ENXIO) upon failure.
537  */
538 int
539 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
540 {
541         struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
542         struct nvme_fc_ctrl *ctrl;
543         unsigned long flags;
544
545         if (!portptr)
546                 return -EINVAL;
547
548         spin_lock_irqsave(&rport->lock, flags);
549
550         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
551                 spin_unlock_irqrestore(&rport->lock, flags);
552                 return -EINVAL;
553         }
554         portptr->port_state = FC_OBJSTATE_DELETED;
555
556         /* tear down all associations to the remote port */
557         list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
558                 __nvme_fc_del_ctrl(ctrl);
559
560         spin_unlock_irqrestore(&rport->lock, flags);
561
562         nvme_fc_abort_lsops(rport);
563
564         nvme_fc_rport_put(rport);
565         return 0;
566 }
567 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
568
569
570 /* *********************** FC-NVME DMA Handling **************************** */
571
572 /*
573  * The fcloop device passes in a NULL device pointer. Real LLD's will
574  * pass in a valid device pointer. If NULL is passed to the dma mapping
575  * routines, depending on the platform, it may or may not succeed, and
576  * may crash.
577  *
578  * As such:
579  * Wrapper all the dma routines and check the dev pointer.
580  *
581  * If simple mappings (return just a dma address, we'll noop them,
582  * returning a dma address of 0.
583  *
584  * On more complex mappings (dma_map_sg), a pseudo routine fills
585  * in the scatter list, setting all dma addresses to 0.
586  */
587
588 static inline dma_addr_t
589 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
590                 enum dma_data_direction dir)
591 {
592         return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
593 }
594
595 static inline int
596 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
597 {
598         return dev ? dma_mapping_error(dev, dma_addr) : 0;
599 }
600
601 static inline void
602 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
603         enum dma_data_direction dir)
604 {
605         if (dev)
606                 dma_unmap_single(dev, addr, size, dir);
607 }
608
609 static inline void
610 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
611                 enum dma_data_direction dir)
612 {
613         if (dev)
614                 dma_sync_single_for_cpu(dev, addr, size, dir);
615 }
616
617 static inline void
618 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
619                 enum dma_data_direction dir)
620 {
621         if (dev)
622                 dma_sync_single_for_device(dev, addr, size, dir);
623 }
624
625 /* pseudo dma_map_sg call */
626 static int
627 fc_map_sg(struct scatterlist *sg, int nents)
628 {
629         struct scatterlist *s;
630         int i;
631
632         WARN_ON(nents == 0 || sg[0].length == 0);
633
634         for_each_sg(sg, s, nents, i) {
635                 s->dma_address = 0L;
636 #ifdef CONFIG_NEED_SG_DMA_LENGTH
637                 s->dma_length = s->length;
638 #endif
639         }
640         return nents;
641 }
642
643 static inline int
644 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
645                 enum dma_data_direction dir)
646 {
647         return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
648 }
649
650 static inline void
651 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
652                 enum dma_data_direction dir)
653 {
654         if (dev)
655                 dma_unmap_sg(dev, sg, nents, dir);
656 }
657
658
659 /* *********************** FC-NVME LS Handling **************************** */
660
661 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
662 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
663
664
665 static void
666 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
667 {
668         struct nvme_fc_rport *rport = lsop->rport;
669         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
670         unsigned long flags;
671
672         spin_lock_irqsave(&rport->lock, flags);
673
674         if (!lsop->req_queued) {
675                 spin_unlock_irqrestore(&rport->lock, flags);
676                 return;
677         }
678
679         list_del(&lsop->lsreq_list);
680
681         lsop->req_queued = false;
682
683         spin_unlock_irqrestore(&rport->lock, flags);
684
685         fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
686                                   (lsreq->rqstlen + lsreq->rsplen),
687                                   DMA_BIDIRECTIONAL);
688
689         nvme_fc_rport_put(rport);
690 }
691
692 static int
693 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
694                 struct nvmefc_ls_req_op *lsop,
695                 void (*done)(struct nvmefc_ls_req *req, int status))
696 {
697         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
698         unsigned long flags;
699         int ret = 0;
700
701         if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
702                 return -ECONNREFUSED;
703
704         if (!nvme_fc_rport_get(rport))
705                 return -ESHUTDOWN;
706
707         lsreq->done = done;
708         lsop->rport = rport;
709         lsop->req_queued = false;
710         INIT_LIST_HEAD(&lsop->lsreq_list);
711         init_completion(&lsop->ls_done);
712
713         lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
714                                   lsreq->rqstlen + lsreq->rsplen,
715                                   DMA_BIDIRECTIONAL);
716         if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
717                 ret = -EFAULT;
718                 goto out_putrport;
719         }
720         lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
721
722         spin_lock_irqsave(&rport->lock, flags);
723
724         list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
725
726         lsop->req_queued = true;
727
728         spin_unlock_irqrestore(&rport->lock, flags);
729
730         ret = rport->lport->ops->ls_req(&rport->lport->localport,
731                                         &rport->remoteport, lsreq);
732         if (ret)
733                 goto out_unlink;
734
735         return 0;
736
737 out_unlink:
738         lsop->ls_error = ret;
739         spin_lock_irqsave(&rport->lock, flags);
740         lsop->req_queued = false;
741         list_del(&lsop->lsreq_list);
742         spin_unlock_irqrestore(&rport->lock, flags);
743         fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
744                                   (lsreq->rqstlen + lsreq->rsplen),
745                                   DMA_BIDIRECTIONAL);
746 out_putrport:
747         nvme_fc_rport_put(rport);
748
749         return ret;
750 }
751
752 static void
753 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
754 {
755         struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
756
757         lsop->ls_error = status;
758         complete(&lsop->ls_done);
759 }
760
761 static int
762 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
763 {
764         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
765         struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
766         int ret;
767
768         ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
769
770         if (!ret) {
771                 /*
772                  * No timeout/not interruptible as we need the struct
773                  * to exist until the lldd calls us back. Thus mandate
774                  * wait until driver calls back. lldd responsible for
775                  * the timeout action
776                  */
777                 wait_for_completion(&lsop->ls_done);
778
779                 __nvme_fc_finish_ls_req(lsop);
780
781                 ret = lsop->ls_error;
782         }
783
784         if (ret)
785                 return ret;
786
787         /* ACC or RJT payload ? */
788         if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
789                 return -ENXIO;
790
791         return 0;
792 }
793
794 static int
795 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
796                 struct nvmefc_ls_req_op *lsop,
797                 void (*done)(struct nvmefc_ls_req *req, int status))
798 {
799         /* don't wait for completion */
800
801         return __nvme_fc_send_ls_req(rport, lsop, done);
802 }
803
804 /* Validation Error indexes into the string table below */
805 enum {
806         VERR_NO_ERROR           = 0,
807         VERR_LSACC              = 1,
808         VERR_LSDESC_RQST        = 2,
809         VERR_LSDESC_RQST_LEN    = 3,
810         VERR_ASSOC_ID           = 4,
811         VERR_ASSOC_ID_LEN       = 5,
812         VERR_CONN_ID            = 6,
813         VERR_CONN_ID_LEN        = 7,
814         VERR_CR_ASSOC           = 8,
815         VERR_CR_ASSOC_ACC_LEN   = 9,
816         VERR_CR_CONN            = 10,
817         VERR_CR_CONN_ACC_LEN    = 11,
818         VERR_DISCONN            = 12,
819         VERR_DISCONN_ACC_LEN    = 13,
820 };
821
822 static char *validation_errors[] = {
823         "OK",
824         "Not LS_ACC",
825         "Not LSDESC_RQST",
826         "Bad LSDESC_RQST Length",
827         "Not Association ID",
828         "Bad Association ID Length",
829         "Not Connection ID",
830         "Bad Connection ID Length",
831         "Not CR_ASSOC Rqst",
832         "Bad CR_ASSOC ACC Length",
833         "Not CR_CONN Rqst",
834         "Bad CR_CONN ACC Length",
835         "Not Disconnect Rqst",
836         "Bad Disconnect ACC Length",
837 };
838
839 static int
840 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
841         struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
842 {
843         struct nvmefc_ls_req_op *lsop;
844         struct nvmefc_ls_req *lsreq;
845         struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
846         struct fcnvme_ls_cr_assoc_acc *assoc_acc;
847         int ret, fcret = 0;
848
849         lsop = kzalloc((sizeof(*lsop) +
850                          ctrl->lport->ops->lsrqst_priv_sz +
851                          sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
852         if (!lsop) {
853                 ret = -ENOMEM;
854                 goto out_no_memory;
855         }
856         lsreq = &lsop->ls_req;
857
858         lsreq->private = (void *)&lsop[1];
859         assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
860                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
861         assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
862
863         assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
864         assoc_rqst->desc_list_len =
865                         cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
866
867         assoc_rqst->assoc_cmd.desc_tag =
868                         cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
869         assoc_rqst->assoc_cmd.desc_len =
870                         fcnvme_lsdesc_len(
871                                 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
872
873         assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
874         assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize);
875         /* Linux supports only Dynamic controllers */
876         assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
877         uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
878         strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
879                 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
880         strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
881                 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
882
883         lsop->queue = queue;
884         lsreq->rqstaddr = assoc_rqst;
885         lsreq->rqstlen = sizeof(*assoc_rqst);
886         lsreq->rspaddr = assoc_acc;
887         lsreq->rsplen = sizeof(*assoc_acc);
888         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
889
890         ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
891         if (ret)
892                 goto out_free_buffer;
893
894         /* process connect LS completion */
895
896         /* validate the ACC response */
897         if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
898                 fcret = VERR_LSACC;
899         else if (assoc_acc->hdr.desc_list_len !=
900                         fcnvme_lsdesc_len(
901                                 sizeof(struct fcnvme_ls_cr_assoc_acc)))
902                 fcret = VERR_CR_ASSOC_ACC_LEN;
903         else if (assoc_acc->hdr.rqst.desc_tag !=
904                         cpu_to_be32(FCNVME_LSDESC_RQST))
905                 fcret = VERR_LSDESC_RQST;
906         else if (assoc_acc->hdr.rqst.desc_len !=
907                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
908                 fcret = VERR_LSDESC_RQST_LEN;
909         else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
910                 fcret = VERR_CR_ASSOC;
911         else if (assoc_acc->associd.desc_tag !=
912                         cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
913                 fcret = VERR_ASSOC_ID;
914         else if (assoc_acc->associd.desc_len !=
915                         fcnvme_lsdesc_len(
916                                 sizeof(struct fcnvme_lsdesc_assoc_id)))
917                 fcret = VERR_ASSOC_ID_LEN;
918         else if (assoc_acc->connectid.desc_tag !=
919                         cpu_to_be32(FCNVME_LSDESC_CONN_ID))
920                 fcret = VERR_CONN_ID;
921         else if (assoc_acc->connectid.desc_len !=
922                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
923                 fcret = VERR_CONN_ID_LEN;
924
925         if (fcret) {
926                 ret = -EBADF;
927                 dev_err(ctrl->dev,
928                         "q %d connect failed: %s\n",
929                         queue->qnum, validation_errors[fcret]);
930         } else {
931                 ctrl->association_id =
932                         be64_to_cpu(assoc_acc->associd.association_id);
933                 queue->connection_id =
934                         be64_to_cpu(assoc_acc->connectid.connection_id);
935                 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
936         }
937
938 out_free_buffer:
939         kfree(lsop);
940 out_no_memory:
941         if (ret)
942                 dev_err(ctrl->dev,
943                         "queue %d connect admin queue failed (%d).\n",
944                         queue->qnum, ret);
945         return ret;
946 }
947
948 static int
949 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
950                         u16 qsize, u16 ersp_ratio)
951 {
952         struct nvmefc_ls_req_op *lsop;
953         struct nvmefc_ls_req *lsreq;
954         struct fcnvme_ls_cr_conn_rqst *conn_rqst;
955         struct fcnvme_ls_cr_conn_acc *conn_acc;
956         int ret, fcret = 0;
957
958         lsop = kzalloc((sizeof(*lsop) +
959                          ctrl->lport->ops->lsrqst_priv_sz +
960                          sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
961         if (!lsop) {
962                 ret = -ENOMEM;
963                 goto out_no_memory;
964         }
965         lsreq = &lsop->ls_req;
966
967         lsreq->private = (void *)&lsop[1];
968         conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
969                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
970         conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
971
972         conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
973         conn_rqst->desc_list_len = cpu_to_be32(
974                                 sizeof(struct fcnvme_lsdesc_assoc_id) +
975                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
976
977         conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
978         conn_rqst->associd.desc_len =
979                         fcnvme_lsdesc_len(
980                                 sizeof(struct fcnvme_lsdesc_assoc_id));
981         conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
982         conn_rqst->connect_cmd.desc_tag =
983                         cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
984         conn_rqst->connect_cmd.desc_len =
985                         fcnvme_lsdesc_len(
986                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
987         conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
988         conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
989         conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize);
990
991         lsop->queue = queue;
992         lsreq->rqstaddr = conn_rqst;
993         lsreq->rqstlen = sizeof(*conn_rqst);
994         lsreq->rspaddr = conn_acc;
995         lsreq->rsplen = sizeof(*conn_acc);
996         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
997
998         ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
999         if (ret)
1000                 goto out_free_buffer;
1001
1002         /* process connect LS completion */
1003
1004         /* validate the ACC response */
1005         if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1006                 fcret = VERR_LSACC;
1007         else if (conn_acc->hdr.desc_list_len !=
1008                         fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1009                 fcret = VERR_CR_CONN_ACC_LEN;
1010         else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1011                 fcret = VERR_LSDESC_RQST;
1012         else if (conn_acc->hdr.rqst.desc_len !=
1013                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1014                 fcret = VERR_LSDESC_RQST_LEN;
1015         else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1016                 fcret = VERR_CR_CONN;
1017         else if (conn_acc->connectid.desc_tag !=
1018                         cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1019                 fcret = VERR_CONN_ID;
1020         else if (conn_acc->connectid.desc_len !=
1021                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1022                 fcret = VERR_CONN_ID_LEN;
1023
1024         if (fcret) {
1025                 ret = -EBADF;
1026                 dev_err(ctrl->dev,
1027                         "q %d connect failed: %s\n",
1028                         queue->qnum, validation_errors[fcret]);
1029         } else {
1030                 queue->connection_id =
1031                         be64_to_cpu(conn_acc->connectid.connection_id);
1032                 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1033         }
1034
1035 out_free_buffer:
1036         kfree(lsop);
1037 out_no_memory:
1038         if (ret)
1039                 dev_err(ctrl->dev,
1040                         "queue %d connect command failed (%d).\n",
1041                         queue->qnum, ret);
1042         return ret;
1043 }
1044
1045 static void
1046 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1047 {
1048         struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1049
1050         __nvme_fc_finish_ls_req(lsop);
1051
1052         /* fc-nvme iniator doesn't care about success or failure of cmd */
1053
1054         kfree(lsop);
1055 }
1056
1057 /*
1058  * This routine sends a FC-NVME LS to disconnect (aka terminate)
1059  * the FC-NVME Association.  Terminating the association also
1060  * terminates the FC-NVME connections (per queue, both admin and io
1061  * queues) that are part of the association. E.g. things are torn
1062  * down, and the related FC-NVME Association ID and Connection IDs
1063  * become invalid.
1064  *
1065  * The behavior of the fc-nvme initiator is such that it's
1066  * understanding of the association and connections will implicitly
1067  * be torn down. The action is implicit as it may be due to a loss of
1068  * connectivity with the fc-nvme target, so you may never get a
1069  * response even if you tried.  As such, the action of this routine
1070  * is to asynchronously send the LS, ignore any results of the LS, and
1071  * continue on with terminating the association. If the fc-nvme target
1072  * is present and receives the LS, it too can tear down.
1073  */
1074 static void
1075 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1076 {
1077         struct fcnvme_ls_disconnect_rqst *discon_rqst;
1078         struct fcnvme_ls_disconnect_acc *discon_acc;
1079         struct nvmefc_ls_req_op *lsop;
1080         struct nvmefc_ls_req *lsreq;
1081         int ret;
1082
1083         lsop = kzalloc((sizeof(*lsop) +
1084                          ctrl->lport->ops->lsrqst_priv_sz +
1085                          sizeof(*discon_rqst) + sizeof(*discon_acc)),
1086                         GFP_KERNEL);
1087         if (!lsop)
1088                 /* couldn't sent it... too bad */
1089                 return;
1090
1091         lsreq = &lsop->ls_req;
1092
1093         lsreq->private = (void *)&lsop[1];
1094         discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
1095                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1096         discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
1097
1098         discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
1099         discon_rqst->desc_list_len = cpu_to_be32(
1100                                 sizeof(struct fcnvme_lsdesc_assoc_id) +
1101                                 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1102
1103         discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1104         discon_rqst->associd.desc_len =
1105                         fcnvme_lsdesc_len(
1106                                 sizeof(struct fcnvme_lsdesc_assoc_id));
1107
1108         discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1109
1110         discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1111                                                 FCNVME_LSDESC_DISCONN_CMD);
1112         discon_rqst->discon_cmd.desc_len =
1113                         fcnvme_lsdesc_len(
1114                                 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1115         discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
1116         discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
1117
1118         lsreq->rqstaddr = discon_rqst;
1119         lsreq->rqstlen = sizeof(*discon_rqst);
1120         lsreq->rspaddr = discon_acc;
1121         lsreq->rsplen = sizeof(*discon_acc);
1122         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1123
1124         ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1125                                 nvme_fc_disconnect_assoc_done);
1126         if (ret)
1127                 kfree(lsop);
1128
1129         /* only meaningful part to terminating the association */
1130         ctrl->association_id = 0;
1131 }
1132
1133
1134 /* *********************** NVME Ctrl Routines **************************** */
1135
1136 static void __nvme_fc_final_op_cleanup(struct request *rq);
1137 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1138
1139 static int
1140 nvme_fc_reinit_request(void *data, struct request *rq)
1141 {
1142         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1143         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1144
1145         memset(cmdiu, 0, sizeof(*cmdiu));
1146         cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1147         cmdiu->fc_id = NVME_CMD_FC_ID;
1148         cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1149         memset(&op->rsp_iu, 0, sizeof(op->rsp_iu));
1150
1151         return 0;
1152 }
1153
1154 static void
1155 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1156                 struct nvme_fc_fcp_op *op)
1157 {
1158         fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1159                                 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1160         fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1161                                 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1162
1163         atomic_set(&op->state, FCPOP_STATE_UNINIT);
1164 }
1165
1166 static void
1167 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1168                 unsigned int hctx_idx)
1169 {
1170         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1171
1172         return __nvme_fc_exit_request(set->driver_data, op);
1173 }
1174
1175 static int
1176 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1177 {
1178         int state;
1179
1180         state = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1181         if (state != FCPOP_STATE_ACTIVE) {
1182                 atomic_set(&op->state, state);
1183                 return -ECANCELED;
1184         }
1185
1186         ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1187                                         &ctrl->rport->remoteport,
1188                                         op->queue->lldd_handle,
1189                                         &op->fcp_req);
1190
1191         return 0;
1192 }
1193
1194 static void
1195 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1196 {
1197         struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1198         unsigned long flags;
1199         int i, ret;
1200
1201         for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1202                 if (atomic_read(&aen_op->state) != FCPOP_STATE_ACTIVE)
1203                         continue;
1204
1205                 spin_lock_irqsave(&ctrl->lock, flags);
1206                 if (ctrl->flags & FCCTRL_TERMIO) {
1207                         ctrl->iocnt++;
1208                         aen_op->flags |= FCOP_FLAGS_TERMIO;
1209                 }
1210                 spin_unlock_irqrestore(&ctrl->lock, flags);
1211
1212                 ret = __nvme_fc_abort_op(ctrl, aen_op);
1213                 if (ret) {
1214                         /*
1215                          * if __nvme_fc_abort_op failed the io wasn't
1216                          * active. Thus this call path is running in
1217                          * parallel to the io complete. Treat as non-error.
1218                          */
1219
1220                         /* back out the flags/counters */
1221                         spin_lock_irqsave(&ctrl->lock, flags);
1222                         if (ctrl->flags & FCCTRL_TERMIO)
1223                                 ctrl->iocnt--;
1224                         aen_op->flags &= ~FCOP_FLAGS_TERMIO;
1225                         spin_unlock_irqrestore(&ctrl->lock, flags);
1226                         return;
1227                 }
1228         }
1229 }
1230
1231 static inline int
1232 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1233                 struct nvme_fc_fcp_op *op)
1234 {
1235         unsigned long flags;
1236         bool complete_rq = false;
1237
1238         spin_lock_irqsave(&ctrl->lock, flags);
1239         if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) {
1240                 if (ctrl->flags & FCCTRL_TERMIO) {
1241                         if (!--ctrl->iocnt)
1242                                 wake_up(&ctrl->ioabort_wait);
1243                 }
1244         }
1245         if (op->flags & FCOP_FLAGS_RELEASED)
1246                 complete_rq = true;
1247         else
1248                 op->flags |= FCOP_FLAGS_COMPLETE;
1249         spin_unlock_irqrestore(&ctrl->lock, flags);
1250
1251         return complete_rq;
1252 }
1253
1254 static void
1255 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1256 {
1257         struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1258         struct request *rq = op->rq;
1259         struct nvmefc_fcp_req *freq = &op->fcp_req;
1260         struct nvme_fc_ctrl *ctrl = op->ctrl;
1261         struct nvme_fc_queue *queue = op->queue;
1262         struct nvme_completion *cqe = &op->rsp_iu.cqe;
1263         struct nvme_command *sqe = &op->cmd_iu.sqe;
1264         __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1265         union nvme_result result;
1266         bool complete_rq, terminate_assoc = true;
1267
1268         /*
1269          * WARNING:
1270          * The current linux implementation of a nvme controller
1271          * allocates a single tag set for all io queues and sizes
1272          * the io queues to fully hold all possible tags. Thus, the
1273          * implementation does not reference or care about the sqhd
1274          * value as it never needs to use the sqhd/sqtail pointers
1275          * for submission pacing.
1276          *
1277          * This affects the FC-NVME implementation in two ways:
1278          * 1) As the value doesn't matter, we don't need to waste
1279          *    cycles extracting it from ERSPs and stamping it in the
1280          *    cases where the transport fabricates CQEs on successful
1281          *    completions.
1282          * 2) The FC-NVME implementation requires that delivery of
1283          *    ERSP completions are to go back to the nvme layer in order
1284          *    relative to the rsn, such that the sqhd value will always
1285          *    be "in order" for the nvme layer. As the nvme layer in
1286          *    linux doesn't care about sqhd, there's no need to return
1287          *    them in order.
1288          *
1289          * Additionally:
1290          * As the core nvme layer in linux currently does not look at
1291          * every field in the cqe - in cases where the FC transport must
1292          * fabricate a CQE, the following fields will not be set as they
1293          * are not referenced:
1294          *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1295          *
1296          * Failure or error of an individual i/o, in a transport
1297          * detected fashion unrelated to the nvme completion status,
1298          * potentially cause the initiator and target sides to get out
1299          * of sync on SQ head/tail (aka outstanding io count allowed).
1300          * Per FC-NVME spec, failure of an individual command requires
1301          * the connection to be terminated, which in turn requires the
1302          * association to be terminated.
1303          */
1304
1305         fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1306                                 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1307
1308         if (atomic_read(&op->state) == FCPOP_STATE_ABORTED)
1309                 status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1310         else if (freq->status)
1311                 status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1312
1313         /*
1314          * For the linux implementation, if we have an unsuccesful
1315          * status, they blk-mq layer can typically be called with the
1316          * non-zero status and the content of the cqe isn't important.
1317          */
1318         if (status)
1319                 goto done;
1320
1321         /*
1322          * command completed successfully relative to the wire
1323          * protocol. However, validate anything received and
1324          * extract the status and result from the cqe (create it
1325          * where necessary).
1326          */
1327
1328         switch (freq->rcv_rsplen) {
1329
1330         case 0:
1331         case NVME_FC_SIZEOF_ZEROS_RSP:
1332                 /*
1333                  * No response payload or 12 bytes of payload (which
1334                  * should all be zeros) are considered successful and
1335                  * no payload in the CQE by the transport.
1336                  */
1337                 if (freq->transferred_length !=
1338                         be32_to_cpu(op->cmd_iu.data_len)) {
1339                         status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1340                         goto done;
1341                 }
1342                 result.u64 = 0;
1343                 break;
1344
1345         case sizeof(struct nvme_fc_ersp_iu):
1346                 /*
1347                  * The ERSP IU contains a full completion with CQE.
1348                  * Validate ERSP IU and look at cqe.
1349                  */
1350                 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1351                                         (freq->rcv_rsplen / 4) ||
1352                              be32_to_cpu(op->rsp_iu.xfrd_len) !=
1353                                         freq->transferred_length ||
1354                              op->rsp_iu.status_code ||
1355                              sqe->common.command_id != cqe->command_id)) {
1356                         status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1357                         goto done;
1358                 }
1359                 result = cqe->result;
1360                 status = cqe->status;
1361                 break;
1362
1363         default:
1364                 status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1365                 goto done;
1366         }
1367
1368         terminate_assoc = false;
1369
1370 done:
1371         if (op->flags & FCOP_FLAGS_AEN) {
1372                 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
1373                 complete_rq = __nvme_fc_fcpop_chk_teardowns(ctrl, op);
1374                 atomic_set(&op->state, FCPOP_STATE_IDLE);
1375                 op->flags = FCOP_FLAGS_AEN;     /* clear other flags */
1376                 nvme_fc_ctrl_put(ctrl);
1377                 goto check_error;
1378         }
1379
1380         complete_rq = __nvme_fc_fcpop_chk_teardowns(ctrl, op);
1381         if (!complete_rq) {
1382                 if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) {
1383                         status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1384                         if (blk_queue_dying(rq->q))
1385                                 status |= cpu_to_le16(NVME_SC_DNR << 1);
1386                 }
1387                 nvme_end_request(rq, status, result);
1388         } else
1389                 __nvme_fc_final_op_cleanup(rq);
1390
1391 check_error:
1392         if (terminate_assoc)
1393                 nvme_fc_error_recovery(ctrl, "transport detected io error");
1394 }
1395
1396 static int
1397 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1398                 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1399                 struct request *rq, u32 rqno)
1400 {
1401         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1402         int ret = 0;
1403
1404         memset(op, 0, sizeof(*op));
1405         op->fcp_req.cmdaddr = &op->cmd_iu;
1406         op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1407         op->fcp_req.rspaddr = &op->rsp_iu;
1408         op->fcp_req.rsplen = sizeof(op->rsp_iu);
1409         op->fcp_req.done = nvme_fc_fcpio_done;
1410         op->fcp_req.first_sgl = (struct scatterlist *)&op[1];
1411         op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE];
1412         op->ctrl = ctrl;
1413         op->queue = queue;
1414         op->rq = rq;
1415         op->rqno = rqno;
1416
1417         cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1418         cmdiu->fc_id = NVME_CMD_FC_ID;
1419         cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1420
1421         op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1422                                 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1423         if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1424                 dev_err(ctrl->dev,
1425                         "FCP Op failed - cmdiu dma mapping failed.\n");
1426                 ret = EFAULT;
1427                 goto out_on_error;
1428         }
1429
1430         op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1431                                 &op->rsp_iu, sizeof(op->rsp_iu),
1432                                 DMA_FROM_DEVICE);
1433         if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1434                 dev_err(ctrl->dev,
1435                         "FCP Op failed - rspiu dma mapping failed.\n");
1436                 ret = EFAULT;
1437         }
1438
1439         atomic_set(&op->state, FCPOP_STATE_IDLE);
1440 out_on_error:
1441         return ret;
1442 }
1443
1444 static int
1445 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
1446                 unsigned int hctx_idx, unsigned int numa_node)
1447 {
1448         struct nvme_fc_ctrl *ctrl = set->driver_data;
1449         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1450         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
1451         struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
1452
1453         return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1454 }
1455
1456 static int
1457 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1458 {
1459         struct nvme_fc_fcp_op *aen_op;
1460         struct nvme_fc_cmd_iu *cmdiu;
1461         struct nvme_command *sqe;
1462         void *private;
1463         int i, ret;
1464
1465         aen_op = ctrl->aen_ops;
1466         for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1467                 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
1468                                                 GFP_KERNEL);
1469                 if (!private)
1470                         return -ENOMEM;
1471
1472                 cmdiu = &aen_op->cmd_iu;
1473                 sqe = &cmdiu->sqe;
1474                 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1475                                 aen_op, (struct request *)NULL,
1476                                 (AEN_CMDID_BASE + i));
1477                 if (ret) {
1478                         kfree(private);
1479                         return ret;
1480                 }
1481
1482                 aen_op->flags = FCOP_FLAGS_AEN;
1483                 aen_op->fcp_req.first_sgl = NULL; /* no sg list */
1484                 aen_op->fcp_req.private = private;
1485
1486                 memset(sqe, 0, sizeof(*sqe));
1487                 sqe->common.opcode = nvme_admin_async_event;
1488                 /* Note: core layer may overwrite the sqe.command_id value */
1489                 sqe->common.command_id = AEN_CMDID_BASE + i;
1490         }
1491         return 0;
1492 }
1493
1494 static void
1495 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
1496 {
1497         struct nvme_fc_fcp_op *aen_op;
1498         int i;
1499
1500         aen_op = ctrl->aen_ops;
1501         for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1502                 if (!aen_op->fcp_req.private)
1503                         continue;
1504
1505                 __nvme_fc_exit_request(ctrl, aen_op);
1506
1507                 kfree(aen_op->fcp_req.private);
1508                 aen_op->fcp_req.private = NULL;
1509         }
1510 }
1511
1512 static inline void
1513 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1514                 unsigned int qidx)
1515 {
1516         struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1517
1518         hctx->driver_data = queue;
1519         queue->hctx = hctx;
1520 }
1521
1522 static int
1523 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1524                 unsigned int hctx_idx)
1525 {
1526         struct nvme_fc_ctrl *ctrl = data;
1527
1528         __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1529
1530         return 0;
1531 }
1532
1533 static int
1534 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1535                 unsigned int hctx_idx)
1536 {
1537         struct nvme_fc_ctrl *ctrl = data;
1538
1539         __nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1540
1541         return 0;
1542 }
1543
1544 static void
1545 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx, size_t queue_size)
1546 {
1547         struct nvme_fc_queue *queue;
1548
1549         queue = &ctrl->queues[idx];
1550         memset(queue, 0, sizeof(*queue));
1551         queue->ctrl = ctrl;
1552         queue->qnum = idx;
1553         atomic_set(&queue->csn, 1);
1554         queue->dev = ctrl->dev;
1555
1556         if (idx > 0)
1557                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1558         else
1559                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
1560
1561         queue->queue_size = queue_size;
1562
1563         /*
1564          * Considered whether we should allocate buffers for all SQEs
1565          * and CQEs and dma map them - mapping their respective entries
1566          * into the request structures (kernel vm addr and dma address)
1567          * thus the driver could use the buffers/mappings directly.
1568          * It only makes sense if the LLDD would use them for its
1569          * messaging api. It's very unlikely most adapter api's would use
1570          * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1571          * structures were used instead.
1572          */
1573 }
1574
1575 /*
1576  * This routine terminates a queue at the transport level.
1577  * The transport has already ensured that all outstanding ios on
1578  * the queue have been terminated.
1579  * The transport will send a Disconnect LS request to terminate
1580  * the queue's connection. Termination of the admin queue will also
1581  * terminate the association at the target.
1582  */
1583 static void
1584 nvme_fc_free_queue(struct nvme_fc_queue *queue)
1585 {
1586         if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1587                 return;
1588
1589         /*
1590          * Current implementation never disconnects a single queue.
1591          * It always terminates a whole association. So there is never
1592          * a disconnect(queue) LS sent to the target.
1593          */
1594
1595         queue->connection_id = 0;
1596         clear_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1597 }
1598
1599 static void
1600 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1601         struct nvme_fc_queue *queue, unsigned int qidx)
1602 {
1603         if (ctrl->lport->ops->delete_queue)
1604                 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1605                                 queue->lldd_handle);
1606         queue->lldd_handle = NULL;
1607 }
1608
1609 static void
1610 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1611 {
1612         int i;
1613
1614         for (i = 1; i < ctrl->ctrl.queue_count; i++)
1615                 nvme_fc_free_queue(&ctrl->queues[i]);
1616 }
1617
1618 static int
1619 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1620         struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1621 {
1622         int ret = 0;
1623
1624         queue->lldd_handle = NULL;
1625         if (ctrl->lport->ops->create_queue)
1626                 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1627                                 qidx, qsize, &queue->lldd_handle);
1628
1629         return ret;
1630 }
1631
1632 static void
1633 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1634 {
1635         struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
1636         int i;
1637
1638         for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
1639                 __nvme_fc_delete_hw_queue(ctrl, queue, i);
1640 }
1641
1642 static int
1643 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1644 {
1645         struct nvme_fc_queue *queue = &ctrl->queues[1];
1646         int i, ret;
1647
1648         for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
1649                 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1650                 if (ret)
1651                         goto delete_queues;
1652         }
1653
1654         return 0;
1655
1656 delete_queues:
1657         for (; i >= 0; i--)
1658                 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
1659         return ret;
1660 }
1661
1662 static int
1663 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1664 {
1665         int i, ret = 0;
1666
1667         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
1668                 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
1669                                         (qsize / 5));
1670                 if (ret)
1671                         break;
1672                 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
1673                 if (ret)
1674                         break;
1675         }
1676
1677         return ret;
1678 }
1679
1680 static void
1681 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
1682 {
1683         int i;
1684
1685         for (i = 1; i < ctrl->ctrl.queue_count; i++)
1686                 nvme_fc_init_queue(ctrl, i, ctrl->ctrl.sqsize);
1687 }
1688
1689 static void
1690 nvme_fc_ctrl_free(struct kref *ref)
1691 {
1692         struct nvme_fc_ctrl *ctrl =
1693                 container_of(ref, struct nvme_fc_ctrl, ref);
1694         unsigned long flags;
1695
1696         if (ctrl->ctrl.tagset) {
1697                 blk_cleanup_queue(ctrl->ctrl.connect_q);
1698                 blk_mq_free_tag_set(&ctrl->tag_set);
1699         }
1700
1701         /* remove from rport list */
1702         spin_lock_irqsave(&ctrl->rport->lock, flags);
1703         list_del(&ctrl->ctrl_list);
1704         spin_unlock_irqrestore(&ctrl->rport->lock, flags);
1705
1706         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1707         blk_cleanup_queue(ctrl->ctrl.admin_q);
1708         blk_mq_free_tag_set(&ctrl->admin_tag_set);
1709
1710         kfree(ctrl->queues);
1711
1712         put_device(ctrl->dev);
1713         nvme_fc_rport_put(ctrl->rport);
1714
1715         ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
1716         if (ctrl->ctrl.opts)
1717                 nvmf_free_options(ctrl->ctrl.opts);
1718         kfree(ctrl);
1719 }
1720
1721 static void
1722 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
1723 {
1724         kref_put(&ctrl->ref, nvme_fc_ctrl_free);
1725 }
1726
1727 static int
1728 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
1729 {
1730         return kref_get_unless_zero(&ctrl->ref);
1731 }
1732
1733 /*
1734  * All accesses from nvme core layer done - can now free the
1735  * controller. Called after last nvme_put_ctrl() call
1736  */
1737 static void
1738 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
1739 {
1740         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
1741
1742         WARN_ON(nctrl != &ctrl->ctrl);
1743
1744         nvme_fc_ctrl_put(ctrl);
1745 }
1746
1747 static void
1748 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
1749 {
1750         /* only proceed if in LIVE state - e.g. on first error */
1751         if (ctrl->ctrl.state != NVME_CTRL_LIVE)
1752                 return;
1753
1754         dev_warn(ctrl->ctrl.device,
1755                 "NVME-FC{%d}: transport association error detected: %s\n",
1756                 ctrl->cnum, errmsg);
1757         dev_warn(ctrl->ctrl.device,
1758                 "NVME-FC{%d}: resetting controller\n", ctrl->cnum);
1759
1760         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) {
1761                 dev_err(ctrl->ctrl.device,
1762                         "NVME-FC{%d}: error_recovery: Couldn't change state "
1763                         "to RECONNECTING\n", ctrl->cnum);
1764                 return;
1765         }
1766
1767         nvme_reset_ctrl(&ctrl->ctrl);
1768 }
1769
1770 static enum blk_eh_timer_return
1771 nvme_fc_timeout(struct request *rq, bool reserved)
1772 {
1773         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1774         struct nvme_fc_ctrl *ctrl = op->ctrl;
1775         int ret;
1776
1777         if (reserved)
1778                 return BLK_EH_RESET_TIMER;
1779
1780         ret = __nvme_fc_abort_op(ctrl, op);
1781         if (ret)
1782                 /* io wasn't active to abort consider it done */
1783                 return BLK_EH_HANDLED;
1784
1785         /*
1786          * we can't individually ABTS an io without affecting the queue,
1787          * thus killing the queue, adn thus the association.
1788          * So resolve by performing a controller reset, which will stop
1789          * the host/io stack, terminate the association on the link,
1790          * and recreate an association on the link.
1791          */
1792         nvme_fc_error_recovery(ctrl, "io timeout error");
1793
1794         return BLK_EH_HANDLED;
1795 }
1796
1797 static int
1798 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
1799                 struct nvme_fc_fcp_op *op)
1800 {
1801         struct nvmefc_fcp_req *freq = &op->fcp_req;
1802         enum dma_data_direction dir;
1803         int ret;
1804
1805         freq->sg_cnt = 0;
1806
1807         if (!blk_rq_payload_bytes(rq))
1808                 return 0;
1809
1810         freq->sg_table.sgl = freq->first_sgl;
1811         ret = sg_alloc_table_chained(&freq->sg_table,
1812                         blk_rq_nr_phys_segments(rq), freq->sg_table.sgl);
1813         if (ret)
1814                 return -ENOMEM;
1815
1816         op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
1817         WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
1818         dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
1819         freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
1820                                 op->nents, dir);
1821         if (unlikely(freq->sg_cnt <= 0)) {
1822                 sg_free_table_chained(&freq->sg_table, true);
1823                 freq->sg_cnt = 0;
1824                 return -EFAULT;
1825         }
1826
1827         /*
1828          * TODO: blk_integrity_rq(rq)  for DIF
1829          */
1830         return 0;
1831 }
1832
1833 static void
1834 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
1835                 struct nvme_fc_fcp_op *op)
1836 {
1837         struct nvmefc_fcp_req *freq = &op->fcp_req;
1838
1839         if (!freq->sg_cnt)
1840                 return;
1841
1842         fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
1843                                 ((rq_data_dir(rq) == WRITE) ?
1844                                         DMA_TO_DEVICE : DMA_FROM_DEVICE));
1845
1846         nvme_cleanup_cmd(rq);
1847
1848         sg_free_table_chained(&freq->sg_table, true);
1849
1850         freq->sg_cnt = 0;
1851 }
1852
1853 /*
1854  * In FC, the queue is a logical thing. At transport connect, the target
1855  * creates its "queue" and returns a handle that is to be given to the
1856  * target whenever it posts something to the corresponding SQ.  When an
1857  * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
1858  * command contained within the SQE, an io, and assigns a FC exchange
1859  * to it. The SQE and the associated SQ handle are sent in the initial
1860  * CMD IU sents on the exchange. All transfers relative to the io occur
1861  * as part of the exchange.  The CQE is the last thing for the io,
1862  * which is transferred (explicitly or implicitly) with the RSP IU
1863  * sent on the exchange. After the CQE is received, the FC exchange is
1864  * terminaed and the Exchange may be used on a different io.
1865  *
1866  * The transport to LLDD api has the transport making a request for a
1867  * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
1868  * resource and transfers the command. The LLDD will then process all
1869  * steps to complete the io. Upon completion, the transport done routine
1870  * is called.
1871  *
1872  * So - while the operation is outstanding to the LLDD, there is a link
1873  * level FC exchange resource that is also outstanding. This must be
1874  * considered in all cleanup operations.
1875  */
1876 static blk_status_t
1877 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1878         struct nvme_fc_fcp_op *op, u32 data_len,
1879         enum nvmefc_fcp_datadir io_dir)
1880 {
1881         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1882         struct nvme_command *sqe = &cmdiu->sqe;
1883         u32 csn;
1884         int ret;
1885
1886         /*
1887          * before attempting to send the io, check to see if we believe
1888          * the target device is present
1889          */
1890         if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1891                 goto busy;
1892
1893         if (!nvme_fc_ctrl_get(ctrl))
1894                 return BLK_STS_IOERR;
1895
1896         /* format the FC-NVME CMD IU and fcp_req */
1897         cmdiu->connection_id = cpu_to_be64(queue->connection_id);
1898         csn = atomic_inc_return(&queue->csn);
1899         cmdiu->csn = cpu_to_be32(csn);
1900         cmdiu->data_len = cpu_to_be32(data_len);
1901         switch (io_dir) {
1902         case NVMEFC_FCP_WRITE:
1903                 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
1904                 break;
1905         case NVMEFC_FCP_READ:
1906                 cmdiu->flags = FCNVME_CMD_FLAGS_READ;
1907                 break;
1908         case NVMEFC_FCP_NODATA:
1909                 cmdiu->flags = 0;
1910                 break;
1911         }
1912         op->fcp_req.payload_length = data_len;
1913         op->fcp_req.io_dir = io_dir;
1914         op->fcp_req.transferred_length = 0;
1915         op->fcp_req.rcv_rsplen = 0;
1916         op->fcp_req.status = NVME_SC_SUCCESS;
1917         op->fcp_req.sqid = cpu_to_le16(queue->qnum);
1918
1919         /*
1920          * validate per fabric rules, set fields mandated by fabric spec
1921          * as well as those by FC-NVME spec.
1922          */
1923         WARN_ON_ONCE(sqe->common.metadata);
1924         WARN_ON_ONCE(sqe->common.dptr.prp1);
1925         WARN_ON_ONCE(sqe->common.dptr.prp2);
1926         sqe->common.flags |= NVME_CMD_SGL_METABUF;
1927
1928         /*
1929          * format SQE DPTR field per FC-NVME rules
1930          *    type=data block descr; subtype=offset;
1931          *    offset is currently 0.
1932          */
1933         sqe->rw.dptr.sgl.type = NVME_SGL_FMT_OFFSET;
1934         sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
1935         sqe->rw.dptr.sgl.addr = 0;
1936
1937         if (!(op->flags & FCOP_FLAGS_AEN)) {
1938                 ret = nvme_fc_map_data(ctrl, op->rq, op);
1939                 if (ret < 0) {
1940                         nvme_cleanup_cmd(op->rq);
1941                         nvme_fc_ctrl_put(ctrl);
1942                         if (ret == -ENOMEM || ret == -EAGAIN)
1943                                 return BLK_STS_RESOURCE;
1944                         return BLK_STS_IOERR;
1945                 }
1946         }
1947
1948         fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
1949                                   sizeof(op->cmd_iu), DMA_TO_DEVICE);
1950
1951         atomic_set(&op->state, FCPOP_STATE_ACTIVE);
1952
1953         if (!(op->flags & FCOP_FLAGS_AEN))
1954                 blk_mq_start_request(op->rq);
1955
1956         ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
1957                                         &ctrl->rport->remoteport,
1958                                         queue->lldd_handle, &op->fcp_req);
1959
1960         if (ret) {
1961                 if (!(op->flags & FCOP_FLAGS_AEN))
1962                         nvme_fc_unmap_data(ctrl, op->rq, op);
1963
1964                 nvme_fc_ctrl_put(ctrl);
1965
1966                 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
1967                                 ret != -EBUSY)
1968                         return BLK_STS_IOERR;
1969
1970                 goto busy;
1971         }
1972
1973         return BLK_STS_OK;
1974
1975 busy:
1976         if (!(op->flags & FCOP_FLAGS_AEN) && queue->hctx)
1977                 blk_mq_delay_run_hw_queue(queue->hctx, NVMEFC_QUEUE_DELAY);
1978
1979         return BLK_STS_RESOURCE;
1980 }
1981
1982 static blk_status_t
1983 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
1984                         const struct blk_mq_queue_data *bd)
1985 {
1986         struct nvme_ns *ns = hctx->queue->queuedata;
1987         struct nvme_fc_queue *queue = hctx->driver_data;
1988         struct nvme_fc_ctrl *ctrl = queue->ctrl;
1989         struct request *rq = bd->rq;
1990         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1991         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1992         struct nvme_command *sqe = &cmdiu->sqe;
1993         enum nvmefc_fcp_datadir io_dir;
1994         u32 data_len;
1995         blk_status_t ret;
1996
1997         ret = nvme_setup_cmd(ns, rq, sqe);
1998         if (ret)
1999                 return ret;
2000
2001         data_len = blk_rq_payload_bytes(rq);
2002         if (data_len)
2003                 io_dir = ((rq_data_dir(rq) == WRITE) ?
2004                                         NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2005         else
2006                 io_dir = NVMEFC_FCP_NODATA;
2007
2008         return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2009 }
2010
2011 static struct blk_mq_tags *
2012 nvme_fc_tagset(struct nvme_fc_queue *queue)
2013 {
2014         if (queue->qnum == 0)
2015                 return queue->ctrl->admin_tag_set.tags[queue->qnum];
2016
2017         return queue->ctrl->tag_set.tags[queue->qnum - 1];
2018 }
2019
2020 static int
2021 nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
2022
2023 {
2024         struct nvme_fc_queue *queue = hctx->driver_data;
2025         struct nvme_fc_ctrl *ctrl = queue->ctrl;
2026         struct request *req;
2027         struct nvme_fc_fcp_op *op;
2028
2029         req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag);
2030         if (!req)
2031                 return 0;
2032
2033         op = blk_mq_rq_to_pdu(req);
2034
2035         if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) &&
2036                  (ctrl->lport->ops->poll_queue))
2037                 ctrl->lport->ops->poll_queue(&ctrl->lport->localport,
2038                                                  queue->lldd_handle);
2039
2040         return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE));
2041 }
2042
2043 static void
2044 nvme_fc_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
2045 {
2046         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2047         struct nvme_fc_fcp_op *aen_op;
2048         unsigned long flags;
2049         bool terminating = false;
2050         blk_status_t ret;
2051
2052         if (aer_idx > NVME_FC_NR_AEN_COMMANDS)
2053                 return;
2054
2055         spin_lock_irqsave(&ctrl->lock, flags);
2056         if (ctrl->flags & FCCTRL_TERMIO)
2057                 terminating = true;
2058         spin_unlock_irqrestore(&ctrl->lock, flags);
2059
2060         if (terminating)
2061                 return;
2062
2063         aen_op = &ctrl->aen_ops[aer_idx];
2064
2065         ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2066                                         NVMEFC_FCP_NODATA);
2067         if (ret)
2068                 dev_err(ctrl->ctrl.device,
2069                         "failed async event work [%d]\n", aer_idx);
2070 }
2071
2072 static void
2073 __nvme_fc_final_op_cleanup(struct request *rq)
2074 {
2075         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2076         struct nvme_fc_ctrl *ctrl = op->ctrl;
2077
2078         atomic_set(&op->state, FCPOP_STATE_IDLE);
2079         op->flags &= ~(FCOP_FLAGS_TERMIO | FCOP_FLAGS_RELEASED |
2080                         FCOP_FLAGS_COMPLETE);
2081
2082         nvme_fc_unmap_data(ctrl, rq, op);
2083         nvme_complete_rq(rq);
2084         nvme_fc_ctrl_put(ctrl);
2085
2086 }
2087
2088 static void
2089 nvme_fc_complete_rq(struct request *rq)
2090 {
2091         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2092         struct nvme_fc_ctrl *ctrl = op->ctrl;
2093         unsigned long flags;
2094         bool completed = false;
2095
2096         /*
2097          * the core layer, on controller resets after calling
2098          * nvme_shutdown_ctrl(), calls complete_rq without our
2099          * calling blk_mq_complete_request(), thus there may still
2100          * be live i/o outstanding with the LLDD. Means transport has
2101          * to track complete calls vs fcpio_done calls to know what
2102          * path to take on completes and dones.
2103          */
2104         spin_lock_irqsave(&ctrl->lock, flags);
2105         if (op->flags & FCOP_FLAGS_COMPLETE)
2106                 completed = true;
2107         else
2108                 op->flags |= FCOP_FLAGS_RELEASED;
2109         spin_unlock_irqrestore(&ctrl->lock, flags);
2110
2111         if (completed)
2112                 __nvme_fc_final_op_cleanup(rq);
2113 }
2114
2115 /*
2116  * This routine is used by the transport when it needs to find active
2117  * io on a queue that is to be terminated. The transport uses
2118  * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2119  * this routine to kill them on a 1 by 1 basis.
2120  *
2121  * As FC allocates FC exchange for each io, the transport must contact
2122  * the LLDD to terminate the exchange, thus releasing the FC exchange.
2123  * After terminating the exchange the LLDD will call the transport's
2124  * normal io done path for the request, but it will have an aborted
2125  * status. The done path will return the io request back to the block
2126  * layer with an error status.
2127  */
2128 static void
2129 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2130 {
2131         struct nvme_ctrl *nctrl = data;
2132         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2133         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2134         unsigned long flags;
2135         int status;
2136
2137         if (!blk_mq_request_started(req))
2138                 return;
2139
2140         spin_lock_irqsave(&ctrl->lock, flags);
2141         if (ctrl->flags & FCCTRL_TERMIO) {
2142                 ctrl->iocnt++;
2143                 op->flags |= FCOP_FLAGS_TERMIO;
2144         }
2145         spin_unlock_irqrestore(&ctrl->lock, flags);
2146
2147         status = __nvme_fc_abort_op(ctrl, op);
2148         if (status) {
2149                 /*
2150                  * if __nvme_fc_abort_op failed the io wasn't
2151                  * active. Thus this call path is running in
2152                  * parallel to the io complete. Treat as non-error.
2153                  */
2154
2155                 /* back out the flags/counters */
2156                 spin_lock_irqsave(&ctrl->lock, flags);
2157                 if (ctrl->flags & FCCTRL_TERMIO)
2158                         ctrl->iocnt--;
2159                 op->flags &= ~FCOP_FLAGS_TERMIO;
2160                 spin_unlock_irqrestore(&ctrl->lock, flags);
2161                 return;
2162         }
2163 }
2164
2165
2166 static const struct blk_mq_ops nvme_fc_mq_ops = {
2167         .queue_rq       = nvme_fc_queue_rq,
2168         .complete       = nvme_fc_complete_rq,
2169         .init_request   = nvme_fc_init_request,
2170         .exit_request   = nvme_fc_exit_request,
2171         .reinit_request = nvme_fc_reinit_request,
2172         .init_hctx      = nvme_fc_init_hctx,
2173         .poll           = nvme_fc_poll,
2174         .timeout        = nvme_fc_timeout,
2175 };
2176
2177 static int
2178 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2179 {
2180         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2181         unsigned int nr_io_queues;
2182         int ret;
2183
2184         nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2185                                 ctrl->lport->ops->max_hw_queues);
2186         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2187         if (ret) {
2188                 dev_info(ctrl->ctrl.device,
2189                         "set_queue_count failed: %d\n", ret);
2190                 return ret;
2191         }
2192
2193         ctrl->ctrl.queue_count = nr_io_queues + 1;
2194         if (!nr_io_queues)
2195                 return 0;
2196
2197         nvme_fc_init_io_queues(ctrl);
2198
2199         memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2200         ctrl->tag_set.ops = &nvme_fc_mq_ops;
2201         ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2202         ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2203         ctrl->tag_set.numa_node = NUMA_NO_NODE;
2204         ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2205         ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2206                                         (SG_CHUNK_SIZE *
2207                                                 sizeof(struct scatterlist)) +
2208                                         ctrl->lport->ops->fcprqst_priv_sz;
2209         ctrl->tag_set.driver_data = ctrl;
2210         ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
2211         ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2212
2213         ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2214         if (ret)
2215                 return ret;
2216
2217         ctrl->ctrl.tagset = &ctrl->tag_set;
2218
2219         ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2220         if (IS_ERR(ctrl->ctrl.connect_q)) {
2221                 ret = PTR_ERR(ctrl->ctrl.connect_q);
2222                 goto out_free_tag_set;
2223         }
2224
2225         ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2226         if (ret)
2227                 goto out_cleanup_blk_queue;
2228
2229         ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2230         if (ret)
2231                 goto out_delete_hw_queues;
2232
2233         return 0;
2234
2235 out_delete_hw_queues:
2236         nvme_fc_delete_hw_io_queues(ctrl);
2237 out_cleanup_blk_queue:
2238         blk_cleanup_queue(ctrl->ctrl.connect_q);
2239 out_free_tag_set:
2240         blk_mq_free_tag_set(&ctrl->tag_set);
2241         nvme_fc_free_io_queues(ctrl);
2242
2243         /* force put free routine to ignore io queues */
2244         ctrl->ctrl.tagset = NULL;
2245
2246         return ret;
2247 }
2248
2249 static int
2250 nvme_fc_reinit_io_queues(struct nvme_fc_ctrl *ctrl)
2251 {
2252         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2253         unsigned int nr_io_queues;
2254         int ret;
2255
2256         nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2257                                 ctrl->lport->ops->max_hw_queues);
2258         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2259         if (ret) {
2260                 dev_info(ctrl->ctrl.device,
2261                         "set_queue_count failed: %d\n", ret);
2262                 return ret;
2263         }
2264
2265         ctrl->ctrl.queue_count = nr_io_queues + 1;
2266         /* check for io queues existing */
2267         if (ctrl->ctrl.queue_count == 1)
2268                 return 0;
2269
2270         nvme_fc_init_io_queues(ctrl);
2271
2272         ret = blk_mq_reinit_tagset(&ctrl->tag_set);
2273         if (ret)
2274                 goto out_free_io_queues;
2275
2276         ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2277         if (ret)
2278                 goto out_free_io_queues;
2279
2280         ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2281         if (ret)
2282                 goto out_delete_hw_queues;
2283
2284         blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2285
2286         return 0;
2287
2288 out_delete_hw_queues:
2289         nvme_fc_delete_hw_io_queues(ctrl);
2290 out_free_io_queues:
2291         nvme_fc_free_io_queues(ctrl);
2292         return ret;
2293 }
2294
2295 /*
2296  * This routine restarts the controller on the host side, and
2297  * on the link side, recreates the controller association.
2298  */
2299 static int
2300 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
2301 {
2302         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2303         u32 segs;
2304         int ret;
2305         bool changed;
2306
2307         ++ctrl->ctrl.nr_reconnects;
2308
2309         /*
2310          * Create the admin queue
2311          */
2312
2313         nvme_fc_init_queue(ctrl, 0, NVME_FC_AQ_BLKMQ_DEPTH);
2314
2315         ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2316                                 NVME_FC_AQ_BLKMQ_DEPTH);
2317         if (ret)
2318                 goto out_free_queue;
2319
2320         ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2321                                 NVME_FC_AQ_BLKMQ_DEPTH,
2322                                 (NVME_FC_AQ_BLKMQ_DEPTH / 4));
2323         if (ret)
2324                 goto out_delete_hw_queue;
2325
2326         if (ctrl->ctrl.state != NVME_CTRL_NEW)
2327                 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2328
2329         ret = nvmf_connect_admin_queue(&ctrl->ctrl);
2330         if (ret)
2331                 goto out_disconnect_admin_queue;
2332
2333         /*
2334          * Check controller capabilities
2335          *
2336          * todo:- add code to check if ctrl attributes changed from
2337          * prior connection values
2338          */
2339
2340         ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->ctrl.cap);
2341         if (ret) {
2342                 dev_err(ctrl->ctrl.device,
2343                         "prop_get NVME_REG_CAP failed\n");
2344                 goto out_disconnect_admin_queue;
2345         }
2346
2347         ctrl->ctrl.sqsize =
2348                 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap) + 1, ctrl->ctrl.sqsize);
2349
2350         ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
2351         if (ret)
2352                 goto out_disconnect_admin_queue;
2353
2354         segs = min_t(u32, NVME_FC_MAX_SEGMENTS,
2355                         ctrl->lport->ops->max_sgl_segments);
2356         ctrl->ctrl.max_hw_sectors = (segs - 1) << (PAGE_SHIFT - 9);
2357
2358         ret = nvme_init_identify(&ctrl->ctrl);
2359         if (ret)
2360                 goto out_disconnect_admin_queue;
2361
2362         /* sanity checks */
2363
2364         /* FC-NVME does not have other data in the capsule */
2365         if (ctrl->ctrl.icdoff) {
2366                 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2367                                 ctrl->ctrl.icdoff);
2368                 goto out_disconnect_admin_queue;
2369         }
2370
2371         /* FC-NVME supports normal SGL Data Block Descriptors */
2372
2373         if (opts->queue_size > ctrl->ctrl.maxcmd) {
2374                 /* warn if maxcmd is lower than queue_size */
2375                 dev_warn(ctrl->ctrl.device,
2376                         "queue_size %zu > ctrl maxcmd %u, reducing "
2377                         "to queue_size\n",
2378                         opts->queue_size, ctrl->ctrl.maxcmd);
2379                 opts->queue_size = ctrl->ctrl.maxcmd;
2380         }
2381
2382         ret = nvme_fc_init_aen_ops(ctrl);
2383         if (ret)
2384                 goto out_term_aen_ops;
2385
2386         /*
2387          * Create the io queues
2388          */
2389
2390         if (ctrl->ctrl.queue_count > 1) {
2391                 if (ctrl->ctrl.state == NVME_CTRL_NEW)
2392                         ret = nvme_fc_create_io_queues(ctrl);
2393                 else
2394                         ret = nvme_fc_reinit_io_queues(ctrl);
2395                 if (ret)
2396                         goto out_term_aen_ops;
2397         }
2398
2399         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2400         WARN_ON_ONCE(!changed);
2401
2402         ctrl->ctrl.nr_reconnects = 0;
2403
2404         nvme_start_ctrl(&ctrl->ctrl);
2405
2406         return 0;       /* Success */
2407
2408 out_term_aen_ops:
2409         nvme_fc_term_aen_ops(ctrl);
2410 out_disconnect_admin_queue:
2411         /* send a Disconnect(association) LS to fc-nvme target */
2412         nvme_fc_xmt_disconnect_assoc(ctrl);
2413 out_delete_hw_queue:
2414         __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2415 out_free_queue:
2416         nvme_fc_free_queue(&ctrl->queues[0]);
2417
2418         return ret;
2419 }
2420
2421 /*
2422  * This routine stops operation of the controller on the host side.
2423  * On the host os stack side: Admin and IO queues are stopped,
2424  *   outstanding ios on them terminated via FC ABTS.
2425  * On the link side: the association is terminated.
2426  */
2427 static void
2428 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
2429 {
2430         unsigned long flags;
2431
2432         spin_lock_irqsave(&ctrl->lock, flags);
2433         ctrl->flags |= FCCTRL_TERMIO;
2434         ctrl->iocnt = 0;
2435         spin_unlock_irqrestore(&ctrl->lock, flags);
2436
2437         /*
2438          * If io queues are present, stop them and terminate all outstanding
2439          * ios on them. As FC allocates FC exchange for each io, the
2440          * transport must contact the LLDD to terminate the exchange,
2441          * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2442          * to tell us what io's are busy and invoke a transport routine
2443          * to kill them with the LLDD.  After terminating the exchange
2444          * the LLDD will call the transport's normal io done path, but it
2445          * will have an aborted status. The done path will return the
2446          * io requests back to the block layer as part of normal completions
2447          * (but with error status).
2448          */
2449         if (ctrl->ctrl.queue_count > 1) {
2450                 nvme_stop_queues(&ctrl->ctrl);
2451                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
2452                                 nvme_fc_terminate_exchange, &ctrl->ctrl);
2453         }
2454
2455         /*
2456          * Other transports, which don't have link-level contexts bound
2457          * to sqe's, would try to gracefully shutdown the controller by
2458          * writing the registers for shutdown and polling (call
2459          * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2460          * just aborted and we will wait on those contexts, and given
2461          * there was no indication of how live the controlelr is on the
2462          * link, don't send more io to create more contexts for the
2463          * shutdown. Let the controller fail via keepalive failure if
2464          * its still present.
2465          */
2466
2467         /*
2468          * clean up the admin queue. Same thing as above.
2469          * use blk_mq_tagset_busy_itr() and the transport routine to
2470          * terminate the exchanges.
2471          */
2472         blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2473         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2474                                 nvme_fc_terminate_exchange, &ctrl->ctrl);
2475
2476         /* kill the aens as they are a separate path */
2477         nvme_fc_abort_aen_ops(ctrl);
2478
2479         /* wait for all io that had to be aborted */
2480         spin_lock_irqsave(&ctrl->lock, flags);
2481         wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
2482         ctrl->flags &= ~FCCTRL_TERMIO;
2483         spin_unlock_irqrestore(&ctrl->lock, flags);
2484
2485         nvme_fc_term_aen_ops(ctrl);
2486
2487         /*
2488          * send a Disconnect(association) LS to fc-nvme target
2489          * Note: could have been sent at top of process, but
2490          * cleaner on link traffic if after the aborts complete.
2491          * Note: if association doesn't exist, association_id will be 0
2492          */
2493         if (ctrl->association_id)
2494                 nvme_fc_xmt_disconnect_assoc(ctrl);
2495
2496         if (ctrl->ctrl.tagset) {
2497                 nvme_fc_delete_hw_io_queues(ctrl);
2498                 nvme_fc_free_io_queues(ctrl);
2499         }
2500
2501         __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2502         nvme_fc_free_queue(&ctrl->queues[0]);
2503 }
2504
2505 static void
2506 nvme_fc_delete_ctrl_work(struct work_struct *work)
2507 {
2508         struct nvme_fc_ctrl *ctrl =
2509                 container_of(work, struct nvme_fc_ctrl, delete_work);
2510
2511         cancel_work_sync(&ctrl->ctrl.reset_work);
2512         cancel_delayed_work_sync(&ctrl->connect_work);
2513         nvme_stop_ctrl(&ctrl->ctrl);
2514         nvme_remove_namespaces(&ctrl->ctrl);
2515         /*
2516          * kill the association on the link side.  this will block
2517          * waiting for io to terminate
2518          */
2519         nvme_fc_delete_association(ctrl);
2520
2521         /*
2522          * tear down the controller
2523          * After the last reference on the nvme ctrl is removed,
2524          * the transport nvme_fc_nvme_ctrl_freed() callback will be
2525          * invoked. From there, the transport will tear down it's
2526          * logical queues and association.
2527          */
2528         nvme_uninit_ctrl(&ctrl->ctrl);
2529
2530         nvme_put_ctrl(&ctrl->ctrl);
2531 }
2532
2533 static bool
2534 __nvme_fc_schedule_delete_work(struct nvme_fc_ctrl *ctrl)
2535 {
2536         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
2537                 return true;
2538
2539         if (!queue_work(nvme_wq, &ctrl->delete_work))
2540                 return true;
2541
2542         return false;
2543 }
2544
2545 static int
2546 __nvme_fc_del_ctrl(struct nvme_fc_ctrl *ctrl)
2547 {
2548         return __nvme_fc_schedule_delete_work(ctrl) ? -EBUSY : 0;
2549 }
2550
2551 /*
2552  * Request from nvme core layer to delete the controller
2553  */
2554 static int
2555 nvme_fc_del_nvme_ctrl(struct nvme_ctrl *nctrl)
2556 {
2557         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2558         int ret;
2559
2560         if (!kref_get_unless_zero(&ctrl->ctrl.kref))
2561                 return -EBUSY;
2562
2563         ret = __nvme_fc_del_ctrl(ctrl);
2564
2565         if (!ret)
2566                 flush_workqueue(nvme_wq);
2567
2568         nvme_put_ctrl(&ctrl->ctrl);
2569
2570         return ret;
2571 }
2572
2573 static void
2574 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
2575 {
2576         /* If we are resetting/deleting then do nothing */
2577         if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) {
2578                 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
2579                         ctrl->ctrl.state == NVME_CTRL_LIVE);
2580                 return;
2581         }
2582
2583         dev_info(ctrl->ctrl.device,
2584                 "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2585                 ctrl->cnum, status);
2586
2587         if (nvmf_should_reconnect(&ctrl->ctrl)) {
2588                 dev_info(ctrl->ctrl.device,
2589                         "NVME-FC{%d}: Reconnect attempt in %d seconds.\n",
2590                         ctrl->cnum, ctrl->ctrl.opts->reconnect_delay);
2591                 queue_delayed_work(nvme_wq, &ctrl->connect_work,
2592                                 ctrl->ctrl.opts->reconnect_delay * HZ);
2593         } else {
2594                 dev_warn(ctrl->ctrl.device,
2595                                 "NVME-FC{%d}: Max reconnect attempts (%d) "
2596                                 "reached. Removing controller\n",
2597                                 ctrl->cnum, ctrl->ctrl.nr_reconnects);
2598                 WARN_ON(__nvme_fc_schedule_delete_work(ctrl));
2599         }
2600 }
2601
2602 static void
2603 nvme_fc_reset_ctrl_work(struct work_struct *work)
2604 {
2605         struct nvme_fc_ctrl *ctrl =
2606                 container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
2607         int ret;
2608
2609         nvme_stop_ctrl(&ctrl->ctrl);
2610         /* will block will waiting for io to terminate */
2611         nvme_fc_delete_association(ctrl);
2612
2613         ret = nvme_fc_create_association(ctrl);
2614         if (ret)
2615                 nvme_fc_reconnect_or_delete(ctrl, ret);
2616         else
2617                 dev_info(ctrl->ctrl.device,
2618                         "NVME-FC{%d}: controller reset complete\n", ctrl->cnum);
2619 }
2620
2621 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
2622         .name                   = "fc",
2623         .module                 = THIS_MODULE,
2624         .flags                  = NVME_F_FABRICS,
2625         .reg_read32             = nvmf_reg_read32,
2626         .reg_read64             = nvmf_reg_read64,
2627         .reg_write32            = nvmf_reg_write32,
2628         .free_ctrl              = nvme_fc_nvme_ctrl_freed,
2629         .submit_async_event     = nvme_fc_submit_async_event,
2630         .delete_ctrl            = nvme_fc_del_nvme_ctrl,
2631         .get_address            = nvmf_get_address,
2632 };
2633
2634 static void
2635 nvme_fc_connect_ctrl_work(struct work_struct *work)
2636 {
2637         int ret;
2638
2639         struct nvme_fc_ctrl *ctrl =
2640                         container_of(to_delayed_work(work),
2641                                 struct nvme_fc_ctrl, connect_work);
2642
2643         ret = nvme_fc_create_association(ctrl);
2644         if (ret)
2645                 nvme_fc_reconnect_or_delete(ctrl, ret);
2646         else
2647                 dev_info(ctrl->ctrl.device,
2648                         "NVME-FC{%d}: controller reconnect complete\n",
2649                         ctrl->cnum);
2650 }
2651
2652
2653 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
2654         .queue_rq       = nvme_fc_queue_rq,
2655         .complete       = nvme_fc_complete_rq,
2656         .init_request   = nvme_fc_init_request,
2657         .exit_request   = nvme_fc_exit_request,
2658         .reinit_request = nvme_fc_reinit_request,
2659         .init_hctx      = nvme_fc_init_admin_hctx,
2660         .timeout        = nvme_fc_timeout,
2661 };
2662
2663
2664 static struct nvme_ctrl *
2665 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
2666         struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
2667 {
2668         struct nvme_fc_ctrl *ctrl;
2669         unsigned long flags;
2670         int ret, idx;
2671
2672         if (!(rport->remoteport.port_role &
2673             (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
2674                 ret = -EBADR;
2675                 goto out_fail;
2676         }
2677
2678         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2679         if (!ctrl) {
2680                 ret = -ENOMEM;
2681                 goto out_fail;
2682         }
2683
2684         idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
2685         if (idx < 0) {
2686                 ret = -ENOSPC;
2687                 goto out_free_ctrl;
2688         }
2689
2690         ctrl->ctrl.opts = opts;
2691         INIT_LIST_HEAD(&ctrl->ctrl_list);
2692         ctrl->lport = lport;
2693         ctrl->rport = rport;
2694         ctrl->dev = lport->dev;
2695         ctrl->cnum = idx;
2696
2697         get_device(ctrl->dev);
2698         kref_init(&ctrl->ref);
2699
2700         INIT_WORK(&ctrl->delete_work, nvme_fc_delete_ctrl_work);
2701         INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
2702         INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
2703         spin_lock_init(&ctrl->lock);
2704
2705         /* io queue count */
2706         ctrl->ctrl.queue_count = min_t(unsigned int,
2707                                 opts->nr_io_queues,
2708                                 lport->ops->max_hw_queues);
2709         ctrl->ctrl.queue_count++;       /* +1 for admin queue */
2710
2711         ctrl->ctrl.sqsize = opts->queue_size - 1;
2712         ctrl->ctrl.kato = opts->kato;
2713
2714         ret = -ENOMEM;
2715         ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
2716                                 sizeof(struct nvme_fc_queue), GFP_KERNEL);
2717         if (!ctrl->queues)
2718                 goto out_free_ida;
2719
2720         memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
2721         ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
2722         ctrl->admin_tag_set.queue_depth = NVME_FC_AQ_BLKMQ_DEPTH;
2723         ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
2724         ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
2725         ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2726                                         (SG_CHUNK_SIZE *
2727                                                 sizeof(struct scatterlist)) +
2728                                         ctrl->lport->ops->fcprqst_priv_sz;
2729         ctrl->admin_tag_set.driver_data = ctrl;
2730         ctrl->admin_tag_set.nr_hw_queues = 1;
2731         ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
2732
2733         ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
2734         if (ret)
2735                 goto out_free_queues;
2736
2737         ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
2738         if (IS_ERR(ctrl->ctrl.admin_q)) {
2739                 ret = PTR_ERR(ctrl->ctrl.admin_q);
2740                 goto out_free_admin_tag_set;
2741         }
2742
2743         /*
2744          * Would have been nice to init io queues tag set as well.
2745          * However, we require interaction from the controller
2746          * for max io queue count before we can do so.
2747          * Defer this to the connect path.
2748          */
2749
2750         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
2751         if (ret)
2752                 goto out_cleanup_admin_q;
2753
2754         /* at this point, teardown path changes to ref counting on nvme ctrl */
2755
2756         spin_lock_irqsave(&rport->lock, flags);
2757         list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
2758         spin_unlock_irqrestore(&rport->lock, flags);
2759
2760         ret = nvme_fc_create_association(ctrl);
2761         if (ret) {
2762                 ctrl->ctrl.opts = NULL;
2763                 /* initiate nvme ctrl ref counting teardown */
2764                 nvme_uninit_ctrl(&ctrl->ctrl);
2765                 nvme_put_ctrl(&ctrl->ctrl);
2766
2767                 /* Remove core ctrl ref. */
2768                 nvme_put_ctrl(&ctrl->ctrl);
2769
2770                 /* as we're past the point where we transition to the ref
2771                  * counting teardown path, if we return a bad pointer here,
2772                  * the calling routine, thinking it's prior to the
2773                  * transition, will do an rport put. Since the teardown
2774                  * path also does a rport put, we do an extra get here to
2775                  * so proper order/teardown happens.
2776                  */
2777                 nvme_fc_rport_get(rport);
2778
2779                 if (ret > 0)
2780                         ret = -EIO;
2781                 return ERR_PTR(ret);
2782         }
2783
2784         kref_get(&ctrl->ctrl.kref);
2785
2786         dev_info(ctrl->ctrl.device,
2787                 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
2788                 ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
2789
2790         return &ctrl->ctrl;
2791
2792 out_cleanup_admin_q:
2793         blk_cleanup_queue(ctrl->ctrl.admin_q);
2794 out_free_admin_tag_set:
2795         blk_mq_free_tag_set(&ctrl->admin_tag_set);
2796 out_free_queues:
2797         kfree(ctrl->queues);
2798 out_free_ida:
2799         put_device(ctrl->dev);
2800         ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2801 out_free_ctrl:
2802         kfree(ctrl);
2803 out_fail:
2804         /* exit via here doesn't follow ctlr ref points */
2805         return ERR_PTR(ret);
2806 }
2807
2808
2809 struct nvmet_fc_traddr {
2810         u64     nn;
2811         u64     pn;
2812 };
2813
2814 static int
2815 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
2816 {
2817         u64 token64;
2818
2819         if (match_u64(sstr, &token64))
2820                 return -EINVAL;
2821         *val = token64;
2822
2823         return 0;
2824 }
2825
2826 /*
2827  * This routine validates and extracts the WWN's from the TRADDR string.
2828  * As kernel parsers need the 0x to determine number base, universally
2829  * build string to parse with 0x prefix before parsing name strings.
2830  */
2831 static int
2832 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2833 {
2834         char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2835         substring_t wwn = { name, &name[sizeof(name)-1] };
2836         int nnoffset, pnoffset;
2837
2838         /* validate it string one of the 2 allowed formats */
2839         if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
2840                         !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2841                         !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2842                                 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2843                 nnoffset = NVME_FC_TRADDR_OXNNLEN;
2844                 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2845                                                 NVME_FC_TRADDR_OXNNLEN;
2846         } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
2847                         !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2848                         !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2849                                 "pn-", NVME_FC_TRADDR_NNLEN))) {
2850                 nnoffset = NVME_FC_TRADDR_NNLEN;
2851                 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2852         } else
2853                 goto out_einval;
2854
2855         name[0] = '0';
2856         name[1] = 'x';
2857         name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2858
2859         memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2860         if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
2861                 goto out_einval;
2862
2863         memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2864         if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
2865                 goto out_einval;
2866
2867         return 0;
2868
2869 out_einval:
2870         pr_warn("%s: bad traddr string\n", __func__);
2871         return -EINVAL;
2872 }
2873
2874 static struct nvme_ctrl *
2875 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
2876 {
2877         struct nvme_fc_lport *lport;
2878         struct nvme_fc_rport *rport;
2879         struct nvme_ctrl *ctrl;
2880         struct nvmet_fc_traddr laddr = { 0L, 0L };
2881         struct nvmet_fc_traddr raddr = { 0L, 0L };
2882         unsigned long flags;
2883         int ret;
2884
2885         ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
2886         if (ret || !raddr.nn || !raddr.pn)
2887                 return ERR_PTR(-EINVAL);
2888
2889         ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
2890         if (ret || !laddr.nn || !laddr.pn)
2891                 return ERR_PTR(-EINVAL);
2892
2893         /* find the host and remote ports to connect together */
2894         spin_lock_irqsave(&nvme_fc_lock, flags);
2895         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
2896                 if (lport->localport.node_name != laddr.nn ||
2897                     lport->localport.port_name != laddr.pn)
2898                         continue;
2899
2900                 list_for_each_entry(rport, &lport->endp_list, endp_list) {
2901                         if (rport->remoteport.node_name != raddr.nn ||
2902                             rport->remoteport.port_name != raddr.pn)
2903                                 continue;
2904
2905                         /* if fail to get reference fall through. Will error */
2906                         if (!nvme_fc_rport_get(rport))
2907                                 break;
2908
2909                         spin_unlock_irqrestore(&nvme_fc_lock, flags);
2910
2911                         ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
2912                         if (IS_ERR(ctrl))
2913                                 nvme_fc_rport_put(rport);
2914                         return ctrl;
2915                 }
2916         }
2917         spin_unlock_irqrestore(&nvme_fc_lock, flags);
2918
2919         return ERR_PTR(-ENOENT);
2920 }
2921
2922
2923 static struct nvmf_transport_ops nvme_fc_transport = {
2924         .name           = "fc",
2925         .required_opts  = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
2926         .allowed_opts   = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
2927         .create_ctrl    = nvme_fc_create_ctrl,
2928 };
2929
2930 static int __init nvme_fc_init_module(void)
2931 {
2932         return nvmf_register_transport(&nvme_fc_transport);
2933 }
2934
2935 static void __exit nvme_fc_exit_module(void)
2936 {
2937         /* sanity check - all lports should be removed */
2938         if (!list_empty(&nvme_fc_lport_list))
2939                 pr_warn("%s: localport list not empty\n", __func__);
2940
2941         nvmf_unregister_transport(&nvme_fc_transport);
2942
2943         ida_destroy(&nvme_fc_local_port_cnt);
2944         ida_destroy(&nvme_fc_ctrl_cnt);
2945 }
2946
2947 module_init(nvme_fc_init_module);
2948 module_exit(nvme_fc_exit_module);
2949
2950 MODULE_LICENSE("GPL v2");