]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/nvme/host/fc.c
nvme-fc: fix status code handling in nvme_fc_fcpio_done
[karo-tx-linux.git] / drivers / nvme / host / fc.c
1 /*
2  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful.
9  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10  * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11  * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12  * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13  * See the GNU General Public License for more details, a copy of which
14  * can be found in the file COPYING included with this package
15  *
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/parser.h>
20 #include <uapi/scsi/fc/fc_fs.h>
21 #include <uapi/scsi/fc/fc_els.h>
22
23 #include "nvme.h"
24 #include "fabrics.h"
25 #include <linux/nvme-fc-driver.h>
26 #include <linux/nvme-fc.h>
27
28
29 /* *************************** Data Structures/Defines ****************** */
30
31
32 /*
33  * We handle AEN commands ourselves and don't even let the
34  * block layer know about them.
35  */
36 #define NVME_FC_NR_AEN_COMMANDS 1
37 #define NVME_FC_AQ_BLKMQ_DEPTH  \
38         (NVMF_AQ_DEPTH - NVME_FC_NR_AEN_COMMANDS)
39 #define AEN_CMDID_BASE          (NVME_FC_AQ_BLKMQ_DEPTH + 1)
40
41 enum nvme_fc_queue_flags {
42         NVME_FC_Q_CONNECTED = (1 << 0),
43 };
44
45 #define NVMEFC_QUEUE_DELAY      3               /* ms units */
46
47 struct nvme_fc_queue {
48         struct nvme_fc_ctrl     *ctrl;
49         struct device           *dev;
50         struct blk_mq_hw_ctx    *hctx;
51         void                    *lldd_handle;
52         int                     queue_size;
53         size_t                  cmnd_capsule_len;
54         u32                     qnum;
55         u32                     rqcnt;
56         u32                     seqno;
57
58         u64                     connection_id;
59         atomic_t                csn;
60
61         unsigned long           flags;
62 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
63
64 struct nvmefc_ls_req_op {
65         struct nvmefc_ls_req    ls_req;
66
67         struct nvme_fc_ctrl     *ctrl;
68         struct nvme_fc_queue    *queue;
69         struct request          *rq;
70
71         int                     ls_error;
72         struct completion       ls_done;
73         struct list_head        lsreq_list;     /* ctrl->ls_req_list */
74         bool                    req_queued;
75 };
76
77 enum nvme_fcpop_state {
78         FCPOP_STATE_UNINIT      = 0,
79         FCPOP_STATE_IDLE        = 1,
80         FCPOP_STATE_ACTIVE      = 2,
81         FCPOP_STATE_ABORTED     = 3,
82 };
83
84 struct nvme_fc_fcp_op {
85         struct nvme_request     nreq;           /*
86                                                  * nvme/host/core.c
87                                                  * requires this to be
88                                                  * the 1st element in the
89                                                  * private structure
90                                                  * associated with the
91                                                  * request.
92                                                  */
93         struct nvmefc_fcp_req   fcp_req;
94
95         struct nvme_fc_ctrl     *ctrl;
96         struct nvme_fc_queue    *queue;
97         struct request          *rq;
98
99         atomic_t                state;
100         u32                     rqno;
101         u32                     nents;
102
103         struct nvme_fc_cmd_iu   cmd_iu;
104         struct nvme_fc_ersp_iu  rsp_iu;
105 };
106
107 struct nvme_fc_lport {
108         struct nvme_fc_local_port       localport;
109
110         struct ida                      endp_cnt;
111         struct list_head                port_list;      /* nvme_fc_port_list */
112         struct list_head                endp_list;
113         struct device                   *dev;   /* physical device for dma */
114         struct nvme_fc_port_template    *ops;
115         struct kref                     ref;
116 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
117
118 struct nvme_fc_rport {
119         struct nvme_fc_remote_port      remoteport;
120
121         struct list_head                endp_list; /* for lport->endp_list */
122         struct list_head                ctrl_list;
123         spinlock_t                      lock;
124         struct kref                     ref;
125 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
126
127 enum nvme_fcctrl_state {
128         FCCTRL_INIT             = 0,
129         FCCTRL_ACTIVE           = 1,
130 };
131
132 struct nvme_fc_ctrl {
133         spinlock_t              lock;
134         struct nvme_fc_queue    *queues;
135         u32                     queue_count;
136
137         struct device           *dev;
138         struct nvme_fc_lport    *lport;
139         struct nvme_fc_rport    *rport;
140         u32                     cnum;
141
142         u64                     association_id;
143
144         u64                     cap;
145
146         struct list_head        ctrl_list;      /* rport->ctrl_list */
147         struct list_head        ls_req_list;
148
149         struct blk_mq_tag_set   admin_tag_set;
150         struct blk_mq_tag_set   tag_set;
151
152         struct work_struct      delete_work;
153         struct kref             ref;
154         int                     state;
155
156         struct nvme_fc_fcp_op   aen_ops[NVME_FC_NR_AEN_COMMANDS];
157
158         struct nvme_ctrl        ctrl;
159 };
160
161 static inline struct nvme_fc_ctrl *
162 to_fc_ctrl(struct nvme_ctrl *ctrl)
163 {
164         return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
165 }
166
167 static inline struct nvme_fc_lport *
168 localport_to_lport(struct nvme_fc_local_port *portptr)
169 {
170         return container_of(portptr, struct nvme_fc_lport, localport);
171 }
172
173 static inline struct nvme_fc_rport *
174 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
175 {
176         return container_of(portptr, struct nvme_fc_rport, remoteport);
177 }
178
179 static inline struct nvmefc_ls_req_op *
180 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
181 {
182         return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
183 }
184
185 static inline struct nvme_fc_fcp_op *
186 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
187 {
188         return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
189 }
190
191
192
193 /* *************************** Globals **************************** */
194
195
196 static DEFINE_SPINLOCK(nvme_fc_lock);
197
198 static LIST_HEAD(nvme_fc_lport_list);
199 static DEFINE_IDA(nvme_fc_local_port_cnt);
200 static DEFINE_IDA(nvme_fc_ctrl_cnt);
201
202 static struct workqueue_struct *nvme_fc_wq;
203
204
205
206 /* *********************** FC-NVME Port Management ************************ */
207
208 static int __nvme_fc_del_ctrl(struct nvme_fc_ctrl *);
209 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
210                         struct nvme_fc_queue *, unsigned int);
211
212
213 /**
214  * nvme_fc_register_localport - transport entry point called by an
215  *                              LLDD to register the existence of a NVME
216  *                              host FC port.
217  * @pinfo:     pointer to information about the port to be registered
218  * @template:  LLDD entrypoints and operational parameters for the port
219  * @dev:       physical hardware device node port corresponds to. Will be
220  *             used for DMA mappings
221  * @lport_p:   pointer to a local port pointer. Upon success, the routine
222  *             will allocate a nvme_fc_local_port structure and place its
223  *             address in the local port pointer. Upon failure, local port
224  *             pointer will be set to 0.
225  *
226  * Returns:
227  * a completion status. Must be 0 upon success; a negative errno
228  * (ex: -ENXIO) upon failure.
229  */
230 int
231 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
232                         struct nvme_fc_port_template *template,
233                         struct device *dev,
234                         struct nvme_fc_local_port **portptr)
235 {
236         struct nvme_fc_lport *newrec;
237         unsigned long flags;
238         int ret, idx;
239
240         if (!template->localport_delete || !template->remoteport_delete ||
241             !template->ls_req || !template->fcp_io ||
242             !template->ls_abort || !template->fcp_abort ||
243             !template->max_hw_queues || !template->max_sgl_segments ||
244             !template->max_dif_sgl_segments || !template->dma_boundary) {
245                 ret = -EINVAL;
246                 goto out_reghost_failed;
247         }
248
249         newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
250                          GFP_KERNEL);
251         if (!newrec) {
252                 ret = -ENOMEM;
253                 goto out_reghost_failed;
254         }
255
256         idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
257         if (idx < 0) {
258                 ret = -ENOSPC;
259                 goto out_fail_kfree;
260         }
261
262         if (!get_device(dev) && dev) {
263                 ret = -ENODEV;
264                 goto out_ida_put;
265         }
266
267         INIT_LIST_HEAD(&newrec->port_list);
268         INIT_LIST_HEAD(&newrec->endp_list);
269         kref_init(&newrec->ref);
270         newrec->ops = template;
271         newrec->dev = dev;
272         ida_init(&newrec->endp_cnt);
273         newrec->localport.private = &newrec[1];
274         newrec->localport.node_name = pinfo->node_name;
275         newrec->localport.port_name = pinfo->port_name;
276         newrec->localport.port_role = pinfo->port_role;
277         newrec->localport.port_id = pinfo->port_id;
278         newrec->localport.port_state = FC_OBJSTATE_ONLINE;
279         newrec->localport.port_num = idx;
280
281         spin_lock_irqsave(&nvme_fc_lock, flags);
282         list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
283         spin_unlock_irqrestore(&nvme_fc_lock, flags);
284
285         if (dev)
286                 dma_set_seg_boundary(dev, template->dma_boundary);
287
288         *portptr = &newrec->localport;
289         return 0;
290
291 out_ida_put:
292         ida_simple_remove(&nvme_fc_local_port_cnt, idx);
293 out_fail_kfree:
294         kfree(newrec);
295 out_reghost_failed:
296         *portptr = NULL;
297
298         return ret;
299 }
300 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
301
302 static void
303 nvme_fc_free_lport(struct kref *ref)
304 {
305         struct nvme_fc_lport *lport =
306                 container_of(ref, struct nvme_fc_lport, ref);
307         unsigned long flags;
308
309         WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
310         WARN_ON(!list_empty(&lport->endp_list));
311
312         /* remove from transport list */
313         spin_lock_irqsave(&nvme_fc_lock, flags);
314         list_del(&lport->port_list);
315         spin_unlock_irqrestore(&nvme_fc_lock, flags);
316
317         /* let the LLDD know we've finished tearing it down */
318         lport->ops->localport_delete(&lport->localport);
319
320         ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
321         ida_destroy(&lport->endp_cnt);
322
323         put_device(lport->dev);
324
325         kfree(lport);
326 }
327
328 static void
329 nvme_fc_lport_put(struct nvme_fc_lport *lport)
330 {
331         kref_put(&lport->ref, nvme_fc_free_lport);
332 }
333
334 static int
335 nvme_fc_lport_get(struct nvme_fc_lport *lport)
336 {
337         return kref_get_unless_zero(&lport->ref);
338 }
339
340 /**
341  * nvme_fc_unregister_localport - transport entry point called by an
342  *                              LLDD to deregister/remove a previously
343  *                              registered a NVME host FC port.
344  * @localport: pointer to the (registered) local port that is to be
345  *             deregistered.
346  *
347  * Returns:
348  * a completion status. Must be 0 upon success; a negative errno
349  * (ex: -ENXIO) upon failure.
350  */
351 int
352 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
353 {
354         struct nvme_fc_lport *lport = localport_to_lport(portptr);
355         unsigned long flags;
356
357         if (!portptr)
358                 return -EINVAL;
359
360         spin_lock_irqsave(&nvme_fc_lock, flags);
361
362         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
363                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
364                 return -EINVAL;
365         }
366         portptr->port_state = FC_OBJSTATE_DELETED;
367
368         spin_unlock_irqrestore(&nvme_fc_lock, flags);
369
370         nvme_fc_lport_put(lport);
371
372         return 0;
373 }
374 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
375
376 /**
377  * nvme_fc_register_remoteport - transport entry point called by an
378  *                              LLDD to register the existence of a NVME
379  *                              subsystem FC port on its fabric.
380  * @localport: pointer to the (registered) local port that the remote
381  *             subsystem port is connected to.
382  * @pinfo:     pointer to information about the port to be registered
383  * @rport_p:   pointer to a remote port pointer. Upon success, the routine
384  *             will allocate a nvme_fc_remote_port structure and place its
385  *             address in the remote port pointer. Upon failure, remote port
386  *             pointer will be set to 0.
387  *
388  * Returns:
389  * a completion status. Must be 0 upon success; a negative errno
390  * (ex: -ENXIO) upon failure.
391  */
392 int
393 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
394                                 struct nvme_fc_port_info *pinfo,
395                                 struct nvme_fc_remote_port **portptr)
396 {
397         struct nvme_fc_lport *lport = localport_to_lport(localport);
398         struct nvme_fc_rport *newrec;
399         unsigned long flags;
400         int ret, idx;
401
402         newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
403                          GFP_KERNEL);
404         if (!newrec) {
405                 ret = -ENOMEM;
406                 goto out_reghost_failed;
407         }
408
409         if (!nvme_fc_lport_get(lport)) {
410                 ret = -ESHUTDOWN;
411                 goto out_kfree_rport;
412         }
413
414         idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
415         if (idx < 0) {
416                 ret = -ENOSPC;
417                 goto out_lport_put;
418         }
419
420         INIT_LIST_HEAD(&newrec->endp_list);
421         INIT_LIST_HEAD(&newrec->ctrl_list);
422         kref_init(&newrec->ref);
423         spin_lock_init(&newrec->lock);
424         newrec->remoteport.localport = &lport->localport;
425         newrec->remoteport.private = &newrec[1];
426         newrec->remoteport.port_role = pinfo->port_role;
427         newrec->remoteport.node_name = pinfo->node_name;
428         newrec->remoteport.port_name = pinfo->port_name;
429         newrec->remoteport.port_id = pinfo->port_id;
430         newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
431         newrec->remoteport.port_num = idx;
432
433         spin_lock_irqsave(&nvme_fc_lock, flags);
434         list_add_tail(&newrec->endp_list, &lport->endp_list);
435         spin_unlock_irqrestore(&nvme_fc_lock, flags);
436
437         *portptr = &newrec->remoteport;
438         return 0;
439
440 out_lport_put:
441         nvme_fc_lport_put(lport);
442 out_kfree_rport:
443         kfree(newrec);
444 out_reghost_failed:
445         *portptr = NULL;
446         return ret;
447
448 }
449 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
450
451 static void
452 nvme_fc_free_rport(struct kref *ref)
453 {
454         struct nvme_fc_rport *rport =
455                 container_of(ref, struct nvme_fc_rport, ref);
456         struct nvme_fc_lport *lport =
457                         localport_to_lport(rport->remoteport.localport);
458         unsigned long flags;
459
460         WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
461         WARN_ON(!list_empty(&rport->ctrl_list));
462
463         /* remove from lport list */
464         spin_lock_irqsave(&nvme_fc_lock, flags);
465         list_del(&rport->endp_list);
466         spin_unlock_irqrestore(&nvme_fc_lock, flags);
467
468         /* let the LLDD know we've finished tearing it down */
469         lport->ops->remoteport_delete(&rport->remoteport);
470
471         ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
472
473         kfree(rport);
474
475         nvme_fc_lport_put(lport);
476 }
477
478 static void
479 nvme_fc_rport_put(struct nvme_fc_rport *rport)
480 {
481         kref_put(&rport->ref, nvme_fc_free_rport);
482 }
483
484 static int
485 nvme_fc_rport_get(struct nvme_fc_rport *rport)
486 {
487         return kref_get_unless_zero(&rport->ref);
488 }
489
490 /**
491  * nvme_fc_unregister_remoteport - transport entry point called by an
492  *                              LLDD to deregister/remove a previously
493  *                              registered a NVME subsystem FC port.
494  * @remoteport: pointer to the (registered) remote port that is to be
495  *              deregistered.
496  *
497  * Returns:
498  * a completion status. Must be 0 upon success; a negative errno
499  * (ex: -ENXIO) upon failure.
500  */
501 int
502 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
503 {
504         struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
505         struct nvme_fc_ctrl *ctrl;
506         unsigned long flags;
507
508         if (!portptr)
509                 return -EINVAL;
510
511         spin_lock_irqsave(&rport->lock, flags);
512
513         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
514                 spin_unlock_irqrestore(&rport->lock, flags);
515                 return -EINVAL;
516         }
517         portptr->port_state = FC_OBJSTATE_DELETED;
518
519         /* tear down all associations to the remote port */
520         list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
521                 __nvme_fc_del_ctrl(ctrl);
522
523         spin_unlock_irqrestore(&rport->lock, flags);
524
525         nvme_fc_rport_put(rport);
526         return 0;
527 }
528 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
529
530
531 /* *********************** FC-NVME DMA Handling **************************** */
532
533 /*
534  * The fcloop device passes in a NULL device pointer. Real LLD's will
535  * pass in a valid device pointer. If NULL is passed to the dma mapping
536  * routines, depending on the platform, it may or may not succeed, and
537  * may crash.
538  *
539  * As such:
540  * Wrapper all the dma routines and check the dev pointer.
541  *
542  * If simple mappings (return just a dma address, we'll noop them,
543  * returning a dma address of 0.
544  *
545  * On more complex mappings (dma_map_sg), a pseudo routine fills
546  * in the scatter list, setting all dma addresses to 0.
547  */
548
549 static inline dma_addr_t
550 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
551                 enum dma_data_direction dir)
552 {
553         return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
554 }
555
556 static inline int
557 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
558 {
559         return dev ? dma_mapping_error(dev, dma_addr) : 0;
560 }
561
562 static inline void
563 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
564         enum dma_data_direction dir)
565 {
566         if (dev)
567                 dma_unmap_single(dev, addr, size, dir);
568 }
569
570 static inline void
571 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
572                 enum dma_data_direction dir)
573 {
574         if (dev)
575                 dma_sync_single_for_cpu(dev, addr, size, dir);
576 }
577
578 static inline void
579 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
580                 enum dma_data_direction dir)
581 {
582         if (dev)
583                 dma_sync_single_for_device(dev, addr, size, dir);
584 }
585
586 /* pseudo dma_map_sg call */
587 static int
588 fc_map_sg(struct scatterlist *sg, int nents)
589 {
590         struct scatterlist *s;
591         int i;
592
593         WARN_ON(nents == 0 || sg[0].length == 0);
594
595         for_each_sg(sg, s, nents, i) {
596                 s->dma_address = 0L;
597 #ifdef CONFIG_NEED_SG_DMA_LENGTH
598                 s->dma_length = s->length;
599 #endif
600         }
601         return nents;
602 }
603
604 static inline int
605 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
606                 enum dma_data_direction dir)
607 {
608         return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
609 }
610
611 static inline void
612 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
613                 enum dma_data_direction dir)
614 {
615         if (dev)
616                 dma_unmap_sg(dev, sg, nents, dir);
617 }
618
619
620 /* *********************** FC-NVME LS Handling **************************** */
621
622 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
623 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
624
625
626 static void
627 __nvme_fc_finish_ls_req(struct nvme_fc_ctrl *ctrl,
628                 struct nvmefc_ls_req_op *lsop)
629 {
630         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
631         unsigned long flags;
632
633         spin_lock_irqsave(&ctrl->lock, flags);
634
635         if (!lsop->req_queued) {
636                 spin_unlock_irqrestore(&ctrl->lock, flags);
637                 return;
638         }
639
640         list_del(&lsop->lsreq_list);
641
642         lsop->req_queued = false;
643
644         spin_unlock_irqrestore(&ctrl->lock, flags);
645
646         fc_dma_unmap_single(ctrl->dev, lsreq->rqstdma,
647                                   (lsreq->rqstlen + lsreq->rsplen),
648                                   DMA_BIDIRECTIONAL);
649
650         nvme_fc_ctrl_put(ctrl);
651 }
652
653 static int
654 __nvme_fc_send_ls_req(struct nvme_fc_ctrl *ctrl,
655                 struct nvmefc_ls_req_op *lsop,
656                 void (*done)(struct nvmefc_ls_req *req, int status))
657 {
658         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
659         unsigned long flags;
660         int ret;
661
662         if (!nvme_fc_ctrl_get(ctrl))
663                 return -ESHUTDOWN;
664
665         lsreq->done = done;
666         lsop->ctrl = ctrl;
667         lsop->req_queued = false;
668         INIT_LIST_HEAD(&lsop->lsreq_list);
669         init_completion(&lsop->ls_done);
670
671         lsreq->rqstdma = fc_dma_map_single(ctrl->dev, lsreq->rqstaddr,
672                                   lsreq->rqstlen + lsreq->rsplen,
673                                   DMA_BIDIRECTIONAL);
674         if (fc_dma_mapping_error(ctrl->dev, lsreq->rqstdma)) {
675                 nvme_fc_ctrl_put(ctrl);
676                 dev_err(ctrl->dev,
677                         "els request command failed EFAULT.\n");
678                 return -EFAULT;
679         }
680         lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
681
682         spin_lock_irqsave(&ctrl->lock, flags);
683
684         list_add_tail(&lsop->lsreq_list, &ctrl->ls_req_list);
685
686         lsop->req_queued = true;
687
688         spin_unlock_irqrestore(&ctrl->lock, flags);
689
690         ret = ctrl->lport->ops->ls_req(&ctrl->lport->localport,
691                                         &ctrl->rport->remoteport, lsreq);
692         if (ret)
693                 lsop->ls_error = ret;
694
695         return ret;
696 }
697
698 static void
699 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
700 {
701         struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
702
703         lsop->ls_error = status;
704         complete(&lsop->ls_done);
705 }
706
707 static int
708 nvme_fc_send_ls_req(struct nvme_fc_ctrl *ctrl, struct nvmefc_ls_req_op *lsop)
709 {
710         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
711         struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
712         int ret;
713
714         ret = __nvme_fc_send_ls_req(ctrl, lsop, nvme_fc_send_ls_req_done);
715
716         if (!ret)
717                 /*
718                  * No timeout/not interruptible as we need the struct
719                  * to exist until the lldd calls us back. Thus mandate
720                  * wait until driver calls back. lldd responsible for
721                  * the timeout action
722                  */
723                 wait_for_completion(&lsop->ls_done);
724
725         __nvme_fc_finish_ls_req(ctrl, lsop);
726
727         if (ret) {
728                 dev_err(ctrl->dev,
729                         "ls request command failed (%d).\n", ret);
730                 return ret;
731         }
732
733         /* ACC or RJT payload ? */
734         if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
735                 return -ENXIO;
736
737         return 0;
738 }
739
740 static void
741 nvme_fc_send_ls_req_async(struct nvme_fc_ctrl *ctrl,
742                 struct nvmefc_ls_req_op *lsop,
743                 void (*done)(struct nvmefc_ls_req *req, int status))
744 {
745         int ret;
746
747         ret = __nvme_fc_send_ls_req(ctrl, lsop, done);
748
749         /* don't wait for completion */
750
751         if (ret)
752                 done(&lsop->ls_req, ret);
753 }
754
755 /* Validation Error indexes into the string table below */
756 enum {
757         VERR_NO_ERROR           = 0,
758         VERR_LSACC              = 1,
759         VERR_LSDESC_RQST        = 2,
760         VERR_LSDESC_RQST_LEN    = 3,
761         VERR_ASSOC_ID           = 4,
762         VERR_ASSOC_ID_LEN       = 5,
763         VERR_CONN_ID            = 6,
764         VERR_CONN_ID_LEN        = 7,
765         VERR_CR_ASSOC           = 8,
766         VERR_CR_ASSOC_ACC_LEN   = 9,
767         VERR_CR_CONN            = 10,
768         VERR_CR_CONN_ACC_LEN    = 11,
769         VERR_DISCONN            = 12,
770         VERR_DISCONN_ACC_LEN    = 13,
771 };
772
773 static char *validation_errors[] = {
774         "OK",
775         "Not LS_ACC",
776         "Not LSDESC_RQST",
777         "Bad LSDESC_RQST Length",
778         "Not Association ID",
779         "Bad Association ID Length",
780         "Not Connection ID",
781         "Bad Connection ID Length",
782         "Not CR_ASSOC Rqst",
783         "Bad CR_ASSOC ACC Length",
784         "Not CR_CONN Rqst",
785         "Bad CR_CONN ACC Length",
786         "Not Disconnect Rqst",
787         "Bad Disconnect ACC Length",
788 };
789
790 static int
791 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
792         struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
793 {
794         struct nvmefc_ls_req_op *lsop;
795         struct nvmefc_ls_req *lsreq;
796         struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
797         struct fcnvme_ls_cr_assoc_acc *assoc_acc;
798         int ret, fcret = 0;
799
800         lsop = kzalloc((sizeof(*lsop) +
801                          ctrl->lport->ops->lsrqst_priv_sz +
802                          sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
803         if (!lsop) {
804                 ret = -ENOMEM;
805                 goto out_no_memory;
806         }
807         lsreq = &lsop->ls_req;
808
809         lsreq->private = (void *)&lsop[1];
810         assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
811                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
812         assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
813
814         assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
815         assoc_rqst->desc_list_len =
816                         cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
817
818         assoc_rqst->assoc_cmd.desc_tag =
819                         cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
820         assoc_rqst->assoc_cmd.desc_len =
821                         fcnvme_lsdesc_len(
822                                 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
823
824         assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
825         assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize);
826         /* Linux supports only Dynamic controllers */
827         assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
828         memcpy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id,
829                 min_t(size_t, FCNVME_ASSOC_HOSTID_LEN, sizeof(uuid_be)));
830         strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
831                 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
832         strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
833                 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
834
835         lsop->queue = queue;
836         lsreq->rqstaddr = assoc_rqst;
837         lsreq->rqstlen = sizeof(*assoc_rqst);
838         lsreq->rspaddr = assoc_acc;
839         lsreq->rsplen = sizeof(*assoc_acc);
840         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
841
842         ret = nvme_fc_send_ls_req(ctrl, lsop);
843         if (ret)
844                 goto out_free_buffer;
845
846         /* process connect LS completion */
847
848         /* validate the ACC response */
849         if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
850                 fcret = VERR_LSACC;
851         else if (assoc_acc->hdr.desc_list_len !=
852                         fcnvme_lsdesc_len(
853                                 sizeof(struct fcnvme_ls_cr_assoc_acc)))
854                 fcret = VERR_CR_ASSOC_ACC_LEN;
855         else if (assoc_acc->hdr.rqst.desc_tag !=
856                         cpu_to_be32(FCNVME_LSDESC_RQST))
857                 fcret = VERR_LSDESC_RQST;
858         else if (assoc_acc->hdr.rqst.desc_len !=
859                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
860                 fcret = VERR_LSDESC_RQST_LEN;
861         else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
862                 fcret = VERR_CR_ASSOC;
863         else if (assoc_acc->associd.desc_tag !=
864                         cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
865                 fcret = VERR_ASSOC_ID;
866         else if (assoc_acc->associd.desc_len !=
867                         fcnvme_lsdesc_len(
868                                 sizeof(struct fcnvme_lsdesc_assoc_id)))
869                 fcret = VERR_ASSOC_ID_LEN;
870         else if (assoc_acc->connectid.desc_tag !=
871                         cpu_to_be32(FCNVME_LSDESC_CONN_ID))
872                 fcret = VERR_CONN_ID;
873         else if (assoc_acc->connectid.desc_len !=
874                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
875                 fcret = VERR_CONN_ID_LEN;
876
877         if (fcret) {
878                 ret = -EBADF;
879                 dev_err(ctrl->dev,
880                         "q %d connect failed: %s\n",
881                         queue->qnum, validation_errors[fcret]);
882         } else {
883                 ctrl->association_id =
884                         be64_to_cpu(assoc_acc->associd.association_id);
885                 queue->connection_id =
886                         be64_to_cpu(assoc_acc->connectid.connection_id);
887                 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
888         }
889
890 out_free_buffer:
891         kfree(lsop);
892 out_no_memory:
893         if (ret)
894                 dev_err(ctrl->dev,
895                         "queue %d connect admin queue failed (%d).\n",
896                         queue->qnum, ret);
897         return ret;
898 }
899
900 static int
901 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
902                         u16 qsize, u16 ersp_ratio)
903 {
904         struct nvmefc_ls_req_op *lsop;
905         struct nvmefc_ls_req *lsreq;
906         struct fcnvme_ls_cr_conn_rqst *conn_rqst;
907         struct fcnvme_ls_cr_conn_acc *conn_acc;
908         int ret, fcret = 0;
909
910         lsop = kzalloc((sizeof(*lsop) +
911                          ctrl->lport->ops->lsrqst_priv_sz +
912                          sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
913         if (!lsop) {
914                 ret = -ENOMEM;
915                 goto out_no_memory;
916         }
917         lsreq = &lsop->ls_req;
918
919         lsreq->private = (void *)&lsop[1];
920         conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
921                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
922         conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
923
924         conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
925         conn_rqst->desc_list_len = cpu_to_be32(
926                                 sizeof(struct fcnvme_lsdesc_assoc_id) +
927                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
928
929         conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
930         conn_rqst->associd.desc_len =
931                         fcnvme_lsdesc_len(
932                                 sizeof(struct fcnvme_lsdesc_assoc_id));
933         conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
934         conn_rqst->connect_cmd.desc_tag =
935                         cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
936         conn_rqst->connect_cmd.desc_len =
937                         fcnvme_lsdesc_len(
938                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
939         conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
940         conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
941         conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize);
942
943         lsop->queue = queue;
944         lsreq->rqstaddr = conn_rqst;
945         lsreq->rqstlen = sizeof(*conn_rqst);
946         lsreq->rspaddr = conn_acc;
947         lsreq->rsplen = sizeof(*conn_acc);
948         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
949
950         ret = nvme_fc_send_ls_req(ctrl, lsop);
951         if (ret)
952                 goto out_free_buffer;
953
954         /* process connect LS completion */
955
956         /* validate the ACC response */
957         if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
958                 fcret = VERR_LSACC;
959         else if (conn_acc->hdr.desc_list_len !=
960                         fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
961                 fcret = VERR_CR_CONN_ACC_LEN;
962         else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
963                 fcret = VERR_LSDESC_RQST;
964         else if (conn_acc->hdr.rqst.desc_len !=
965                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
966                 fcret = VERR_LSDESC_RQST_LEN;
967         else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
968                 fcret = VERR_CR_CONN;
969         else if (conn_acc->connectid.desc_tag !=
970                         cpu_to_be32(FCNVME_LSDESC_CONN_ID))
971                 fcret = VERR_CONN_ID;
972         else if (conn_acc->connectid.desc_len !=
973                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
974                 fcret = VERR_CONN_ID_LEN;
975
976         if (fcret) {
977                 ret = -EBADF;
978                 dev_err(ctrl->dev,
979                         "q %d connect failed: %s\n",
980                         queue->qnum, validation_errors[fcret]);
981         } else {
982                 queue->connection_id =
983                         be64_to_cpu(conn_acc->connectid.connection_id);
984                 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
985         }
986
987 out_free_buffer:
988         kfree(lsop);
989 out_no_memory:
990         if (ret)
991                 dev_err(ctrl->dev,
992                         "queue %d connect command failed (%d).\n",
993                         queue->qnum, ret);
994         return ret;
995 }
996
997 static void
998 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
999 {
1000         struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1001         struct nvme_fc_ctrl *ctrl = lsop->ctrl;
1002
1003         __nvme_fc_finish_ls_req(ctrl, lsop);
1004
1005         if (status)
1006                 dev_err(ctrl->dev,
1007                         "disconnect assoc ls request command failed (%d).\n",
1008                         status);
1009
1010         /* fc-nvme iniator doesn't care about success or failure of cmd */
1011
1012         kfree(lsop);
1013 }
1014
1015 /*
1016  * This routine sends a FC-NVME LS to disconnect (aka terminate)
1017  * the FC-NVME Association.  Terminating the association also
1018  * terminates the FC-NVME connections (per queue, both admin and io
1019  * queues) that are part of the association. E.g. things are torn
1020  * down, and the related FC-NVME Association ID and Connection IDs
1021  * become invalid.
1022  *
1023  * The behavior of the fc-nvme initiator is such that it's
1024  * understanding of the association and connections will implicitly
1025  * be torn down. The action is implicit as it may be due to a loss of
1026  * connectivity with the fc-nvme target, so you may never get a
1027  * response even if you tried.  As such, the action of this routine
1028  * is to asynchronously send the LS, ignore any results of the LS, and
1029  * continue on with terminating the association. If the fc-nvme target
1030  * is present and receives the LS, it too can tear down.
1031  */
1032 static void
1033 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1034 {
1035         struct fcnvme_ls_disconnect_rqst *discon_rqst;
1036         struct fcnvme_ls_disconnect_acc *discon_acc;
1037         struct nvmefc_ls_req_op *lsop;
1038         struct nvmefc_ls_req *lsreq;
1039
1040         lsop = kzalloc((sizeof(*lsop) +
1041                          ctrl->lport->ops->lsrqst_priv_sz +
1042                          sizeof(*discon_rqst) + sizeof(*discon_acc)),
1043                         GFP_KERNEL);
1044         if (!lsop)
1045                 /* couldn't sent it... too bad */
1046                 return;
1047
1048         lsreq = &lsop->ls_req;
1049
1050         lsreq->private = (void *)&lsop[1];
1051         discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
1052                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1053         discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
1054
1055         discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
1056         discon_rqst->desc_list_len = cpu_to_be32(
1057                                 sizeof(struct fcnvme_lsdesc_assoc_id) +
1058                                 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1059
1060         discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1061         discon_rqst->associd.desc_len =
1062                         fcnvme_lsdesc_len(
1063                                 sizeof(struct fcnvme_lsdesc_assoc_id));
1064
1065         discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1066
1067         discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1068                                                 FCNVME_LSDESC_DISCONN_CMD);
1069         discon_rqst->discon_cmd.desc_len =
1070                         fcnvme_lsdesc_len(
1071                                 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1072         discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
1073         discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
1074
1075         lsreq->rqstaddr = discon_rqst;
1076         lsreq->rqstlen = sizeof(*discon_rqst);
1077         lsreq->rspaddr = discon_acc;
1078         lsreq->rsplen = sizeof(*discon_acc);
1079         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1080
1081         nvme_fc_send_ls_req_async(ctrl, lsop, nvme_fc_disconnect_assoc_done);
1082
1083         /* only meaningful part to terminating the association */
1084         ctrl->association_id = 0;
1085 }
1086
1087
1088 /* *********************** NVME Ctrl Routines **************************** */
1089
1090
1091 static int
1092 nvme_fc_reinit_request(void *data, struct request *rq)
1093 {
1094         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1095         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1096
1097         memset(cmdiu, 0, sizeof(*cmdiu));
1098         cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1099         cmdiu->fc_id = NVME_CMD_FC_ID;
1100         cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1101         memset(&op->rsp_iu, 0, sizeof(op->rsp_iu));
1102
1103         return 0;
1104 }
1105
1106 static void
1107 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1108                 struct nvme_fc_fcp_op *op)
1109 {
1110         fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1111                                 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1112         fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1113                                 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1114
1115         atomic_set(&op->state, FCPOP_STATE_UNINIT);
1116 }
1117
1118 static void
1119 nvme_fc_exit_request(void *data, struct request *rq,
1120                                 unsigned int hctx_idx, unsigned int rq_idx)
1121 {
1122         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1123
1124         return __nvme_fc_exit_request(data, op);
1125 }
1126
1127 static void
1128 nvme_fc_exit_aen_ops(struct nvme_fc_ctrl *ctrl)
1129 {
1130         struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1131         int i;
1132
1133         for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1134                 if (atomic_read(&aen_op->state) == FCPOP_STATE_UNINIT)
1135                         continue;
1136                 __nvme_fc_exit_request(ctrl, aen_op);
1137                 nvme_fc_ctrl_put(ctrl);
1138         }
1139 }
1140
1141 void
1142 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1143 {
1144         struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1145         struct request *rq = op->rq;
1146         struct nvmefc_fcp_req *freq = &op->fcp_req;
1147         struct nvme_fc_ctrl *ctrl = op->ctrl;
1148         struct nvme_fc_queue *queue = op->queue;
1149         struct nvme_completion *cqe = &op->rsp_iu.cqe;
1150         __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1151
1152         /*
1153          * WARNING:
1154          * The current linux implementation of a nvme controller
1155          * allocates a single tag set for all io queues and sizes
1156          * the io queues to fully hold all possible tags. Thus, the
1157          * implementation does not reference or care about the sqhd
1158          * value as it never needs to use the sqhd/sqtail pointers
1159          * for submission pacing.
1160          *
1161          * This affects the FC-NVME implementation in two ways:
1162          * 1) As the value doesn't matter, we don't need to waste
1163          *    cycles extracting it from ERSPs and stamping it in the
1164          *    cases where the transport fabricates CQEs on successful
1165          *    completions.
1166          * 2) The FC-NVME implementation requires that delivery of
1167          *    ERSP completions are to go back to the nvme layer in order
1168          *    relative to the rsn, such that the sqhd value will always
1169          *    be "in order" for the nvme layer. As the nvme layer in
1170          *    linux doesn't care about sqhd, there's no need to return
1171          *    them in order.
1172          *
1173          * Additionally:
1174          * As the core nvme layer in linux currently does not look at
1175          * every field in the cqe - in cases where the FC transport must
1176          * fabricate a CQE, the following fields will not be set as they
1177          * are not referenced:
1178          *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1179          */
1180
1181         fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1182                                 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1183
1184         if (atomic_read(&op->state) == FCPOP_STATE_ABORTED)
1185                 status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1186         else if (freq->status)
1187                 status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1188
1189         /*
1190          * For the linux implementation, if we have an unsuccesful
1191          * status, they blk-mq layer can typically be called with the
1192          * non-zero status and the content of the cqe isn't important.
1193          */
1194         if (status)
1195                 goto done;
1196
1197         /*
1198          * command completed successfully relative to the wire
1199          * protocol. However, validate anything received and
1200          * extract the status and result from the cqe (create it
1201          * where necessary).
1202          */
1203
1204         switch (freq->rcv_rsplen) {
1205
1206         case 0:
1207         case NVME_FC_SIZEOF_ZEROS_RSP:
1208                 /*
1209                  * No response payload or 12 bytes of payload (which
1210                  * should all be zeros) are considered successful and
1211                  * no payload in the CQE by the transport.
1212                  */
1213                 if (freq->transferred_length !=
1214                         be32_to_cpu(op->cmd_iu.data_len)) {
1215                         status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1216                         goto done;
1217                 }
1218                 op->nreq.result.u64 = 0;
1219                 break;
1220
1221         case sizeof(struct nvme_fc_ersp_iu):
1222                 /*
1223                  * The ERSP IU contains a full completion with CQE.
1224                  * Validate ERSP IU and look at cqe.
1225                  */
1226                 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1227                                         (freq->rcv_rsplen / 4) ||
1228                              be32_to_cpu(op->rsp_iu.xfrd_len) !=
1229                                         freq->transferred_length ||
1230                              op->rsp_iu.status_code ||
1231                              op->rqno != le16_to_cpu(cqe->command_id))) {
1232                         status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1233                         goto done;
1234                 }
1235                 op->nreq.result = cqe->result;
1236                 status = cqe->status;
1237                 break;
1238
1239         default:
1240                 status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1241                 goto done;
1242         }
1243
1244 done:
1245         if (!queue->qnum && op->rqno >= AEN_CMDID_BASE) {
1246                 nvme_complete_async_event(&queue->ctrl->ctrl, status,
1247                                         &op->nreq.result);
1248                 nvme_fc_ctrl_put(ctrl);
1249                 return;
1250         }
1251
1252         blk_mq_complete_request(rq, le16_to_cpu(status) >> 1);
1253 }
1254
1255 static int
1256 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1257                 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1258                 struct request *rq, u32 rqno)
1259 {
1260         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1261         int ret = 0;
1262
1263         memset(op, 0, sizeof(*op));
1264         op->fcp_req.cmdaddr = &op->cmd_iu;
1265         op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1266         op->fcp_req.rspaddr = &op->rsp_iu;
1267         op->fcp_req.rsplen = sizeof(op->rsp_iu);
1268         op->fcp_req.done = nvme_fc_fcpio_done;
1269         op->fcp_req.first_sgl = (struct scatterlist *)&op[1];
1270         op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE];
1271         op->ctrl = ctrl;
1272         op->queue = queue;
1273         op->rq = rq;
1274         op->rqno = rqno;
1275
1276         cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1277         cmdiu->fc_id = NVME_CMD_FC_ID;
1278         cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1279
1280         op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1281                                 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1282         if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1283                 dev_err(ctrl->dev,
1284                         "FCP Op failed - cmdiu dma mapping failed.\n");
1285                 ret = EFAULT;
1286                 goto out_on_error;
1287         }
1288
1289         op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1290                                 &op->rsp_iu, sizeof(op->rsp_iu),
1291                                 DMA_FROM_DEVICE);
1292         if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1293                 dev_err(ctrl->dev,
1294                         "FCP Op failed - rspiu dma mapping failed.\n");
1295                 ret = EFAULT;
1296         }
1297
1298         atomic_set(&op->state, FCPOP_STATE_IDLE);
1299 out_on_error:
1300         return ret;
1301 }
1302
1303 static int
1304 nvme_fc_init_request(void *data, struct request *rq,
1305                                 unsigned int hctx_idx, unsigned int rq_idx,
1306                                 unsigned int numa_node)
1307 {
1308         struct nvme_fc_ctrl *ctrl = data;
1309         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1310         struct nvme_fc_queue *queue = &ctrl->queues[hctx_idx+1];
1311
1312         return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1313 }
1314
1315 static int
1316 nvme_fc_init_admin_request(void *data, struct request *rq,
1317                                 unsigned int hctx_idx, unsigned int rq_idx,
1318                                 unsigned int numa_node)
1319 {
1320         struct nvme_fc_ctrl *ctrl = data;
1321         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1322         struct nvme_fc_queue *queue = &ctrl->queues[0];
1323
1324         return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1325 }
1326
1327 static int
1328 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1329 {
1330         struct nvme_fc_fcp_op *aen_op;
1331         struct nvme_fc_cmd_iu *cmdiu;
1332         struct nvme_command *sqe;
1333         int i, ret;
1334
1335         aen_op = ctrl->aen_ops;
1336         for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1337                 cmdiu = &aen_op->cmd_iu;
1338                 sqe = &cmdiu->sqe;
1339                 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1340                                 aen_op, (struct request *)NULL,
1341                                 (AEN_CMDID_BASE + i));
1342                 if (ret)
1343                         return ret;
1344
1345                 memset(sqe, 0, sizeof(*sqe));
1346                 sqe->common.opcode = nvme_admin_async_event;
1347                 sqe->common.command_id = AEN_CMDID_BASE + i;
1348         }
1349         return 0;
1350 }
1351
1352
1353 static inline void
1354 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1355                 unsigned int qidx)
1356 {
1357         struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1358
1359         hctx->driver_data = queue;
1360         queue->hctx = hctx;
1361 }
1362
1363 static int
1364 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1365                 unsigned int hctx_idx)
1366 {
1367         struct nvme_fc_ctrl *ctrl = data;
1368
1369         __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1370
1371         return 0;
1372 }
1373
1374 static int
1375 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1376                 unsigned int hctx_idx)
1377 {
1378         struct nvme_fc_ctrl *ctrl = data;
1379
1380         __nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1381
1382         return 0;
1383 }
1384
1385 static void
1386 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx, size_t queue_size)
1387 {
1388         struct nvme_fc_queue *queue;
1389
1390         queue = &ctrl->queues[idx];
1391         memset(queue, 0, sizeof(*queue));
1392         queue->ctrl = ctrl;
1393         queue->qnum = idx;
1394         atomic_set(&queue->csn, 1);
1395         queue->dev = ctrl->dev;
1396
1397         if (idx > 0)
1398                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1399         else
1400                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
1401
1402         queue->queue_size = queue_size;
1403
1404         /*
1405          * Considered whether we should allocate buffers for all SQEs
1406          * and CQEs and dma map them - mapping their respective entries
1407          * into the request structures (kernel vm addr and dma address)
1408          * thus the driver could use the buffers/mappings directly.
1409          * It only makes sense if the LLDD would use them for its
1410          * messaging api. It's very unlikely most adapter api's would use
1411          * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1412          * structures were used instead.
1413          */
1414 }
1415
1416 /*
1417  * This routine terminates a queue at the transport level.
1418  * The transport has already ensured that all outstanding ios on
1419  * the queue have been terminated.
1420  * The transport will send a Disconnect LS request to terminate
1421  * the queue's connection. Termination of the admin queue will also
1422  * terminate the association at the target.
1423  */
1424 static void
1425 nvme_fc_free_queue(struct nvme_fc_queue *queue)
1426 {
1427         if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1428                 return;
1429
1430         /*
1431          * Current implementation never disconnects a single queue.
1432          * It always terminates a whole association. So there is never
1433          * a disconnect(queue) LS sent to the target.
1434          */
1435
1436         queue->connection_id = 0;
1437         clear_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1438 }
1439
1440 static void
1441 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1442         struct nvme_fc_queue *queue, unsigned int qidx)
1443 {
1444         if (ctrl->lport->ops->delete_queue)
1445                 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1446                                 queue->lldd_handle);
1447         queue->lldd_handle = NULL;
1448 }
1449
1450 static void
1451 nvme_fc_destroy_admin_queue(struct nvme_fc_ctrl *ctrl)
1452 {
1453         __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
1454         blk_cleanup_queue(ctrl->ctrl.admin_q);
1455         blk_mq_free_tag_set(&ctrl->admin_tag_set);
1456         nvme_fc_free_queue(&ctrl->queues[0]);
1457 }
1458
1459 static void
1460 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1461 {
1462         int i;
1463
1464         for (i = 1; i < ctrl->queue_count; i++)
1465                 nvme_fc_free_queue(&ctrl->queues[i]);
1466 }
1467
1468 static int
1469 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1470         struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1471 {
1472         int ret = 0;
1473
1474         queue->lldd_handle = NULL;
1475         if (ctrl->lport->ops->create_queue)
1476                 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1477                                 qidx, qsize, &queue->lldd_handle);
1478
1479         return ret;
1480 }
1481
1482 static void
1483 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1484 {
1485         struct nvme_fc_queue *queue = &ctrl->queues[ctrl->queue_count - 1];
1486         int i;
1487
1488         for (i = ctrl->queue_count - 1; i >= 1; i--, queue--)
1489                 __nvme_fc_delete_hw_queue(ctrl, queue, i);
1490 }
1491
1492 static int
1493 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1494 {
1495         struct nvme_fc_queue *queue = &ctrl->queues[1];
1496         int i, ret;
1497
1498         for (i = 1; i < ctrl->queue_count; i++, queue++) {
1499                 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1500                 if (ret)
1501                         goto delete_queues;
1502         }
1503
1504         return 0;
1505
1506 delete_queues:
1507         for (; i >= 0; i--)
1508                 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
1509         return ret;
1510 }
1511
1512 static int
1513 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1514 {
1515         int i, ret = 0;
1516
1517         for (i = 1; i < ctrl->queue_count; i++) {
1518                 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
1519                                         (qsize / 5));
1520                 if (ret)
1521                         break;
1522                 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
1523                 if (ret)
1524                         break;
1525         }
1526
1527         return ret;
1528 }
1529
1530 static void
1531 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
1532 {
1533         int i;
1534
1535         for (i = 1; i < ctrl->queue_count; i++)
1536                 nvme_fc_init_queue(ctrl, i, ctrl->ctrl.sqsize);
1537 }
1538
1539 static void
1540 nvme_fc_ctrl_free(struct kref *ref)
1541 {
1542         struct nvme_fc_ctrl *ctrl =
1543                 container_of(ref, struct nvme_fc_ctrl, ref);
1544         unsigned long flags;
1545
1546         if (ctrl->state != FCCTRL_INIT) {
1547                 /* remove from rport list */
1548                 spin_lock_irqsave(&ctrl->rport->lock, flags);
1549                 list_del(&ctrl->ctrl_list);
1550                 spin_unlock_irqrestore(&ctrl->rport->lock, flags);
1551         }
1552
1553         put_device(ctrl->dev);
1554         nvme_fc_rport_put(ctrl->rport);
1555
1556         kfree(ctrl->queues);
1557         ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
1558         nvmf_free_options(ctrl->ctrl.opts);
1559         kfree(ctrl);
1560 }
1561
1562 static void
1563 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
1564 {
1565         kref_put(&ctrl->ref, nvme_fc_ctrl_free);
1566 }
1567
1568 static int
1569 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
1570 {
1571         return kref_get_unless_zero(&ctrl->ref);
1572 }
1573
1574 /*
1575  * All accesses from nvme core layer done - can now free the
1576  * controller. Called after last nvme_put_ctrl() call
1577  */
1578 static void
1579 nvme_fc_free_nvme_ctrl(struct nvme_ctrl *nctrl)
1580 {
1581         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
1582
1583         WARN_ON(nctrl != &ctrl->ctrl);
1584
1585         /*
1586          * Tear down the association, which will generate link
1587          * traffic to terminate connections
1588          */
1589
1590         if (ctrl->state != FCCTRL_INIT) {
1591                 /* send a Disconnect(association) LS to fc-nvme target */
1592                 nvme_fc_xmt_disconnect_assoc(ctrl);
1593
1594                 if (ctrl->ctrl.tagset) {
1595                         blk_cleanup_queue(ctrl->ctrl.connect_q);
1596                         blk_mq_free_tag_set(&ctrl->tag_set);
1597                         nvme_fc_delete_hw_io_queues(ctrl);
1598                         nvme_fc_free_io_queues(ctrl);
1599                 }
1600
1601                 nvme_fc_exit_aen_ops(ctrl);
1602
1603                 nvme_fc_destroy_admin_queue(ctrl);
1604         }
1605
1606         nvme_fc_ctrl_put(ctrl);
1607 }
1608
1609
1610 static int
1611 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1612 {
1613         int state;
1614
1615         state = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1616         if (state != FCPOP_STATE_ACTIVE) {
1617                 atomic_set(&op->state, state);
1618                 return -ECANCELED; /* fail */
1619         }
1620
1621         ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1622                                         &ctrl->rport->remoteport,
1623                                         op->queue->lldd_handle,
1624                                         &op->fcp_req);
1625
1626         return 0;
1627 }
1628
1629 enum blk_eh_timer_return
1630 nvme_fc_timeout(struct request *rq, bool reserved)
1631 {
1632         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1633         struct nvme_fc_ctrl *ctrl = op->ctrl;
1634         int ret;
1635
1636         if (reserved)
1637                 return BLK_EH_RESET_TIMER;
1638
1639         ret = __nvme_fc_abort_op(ctrl, op);
1640         if (ret)
1641                 /* io wasn't active to abort consider it done */
1642                 return BLK_EH_HANDLED;
1643
1644         /*
1645          * TODO: force a controller reset
1646          *   when that happens, queues will be torn down and outstanding
1647          *   ios will be terminated, and the above abort, on a single io
1648          *   will no longer be needed.
1649          */
1650
1651         return BLK_EH_HANDLED;
1652 }
1653
1654 static int
1655 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
1656                 struct nvme_fc_fcp_op *op)
1657 {
1658         struct nvmefc_fcp_req *freq = &op->fcp_req;
1659         enum dma_data_direction dir;
1660         int ret;
1661
1662         freq->sg_cnt = 0;
1663
1664         if (!blk_rq_payload_bytes(rq))
1665                 return 0;
1666
1667         freq->sg_table.sgl = freq->first_sgl;
1668         ret = sg_alloc_table_chained(&freq->sg_table,
1669                         blk_rq_nr_phys_segments(rq), freq->sg_table.sgl);
1670         if (ret)
1671                 return -ENOMEM;
1672
1673         op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
1674         WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
1675         dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
1676         freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
1677                                 op->nents, dir);
1678         if (unlikely(freq->sg_cnt <= 0)) {
1679                 sg_free_table_chained(&freq->sg_table, true);
1680                 freq->sg_cnt = 0;
1681                 return -EFAULT;
1682         }
1683
1684         /*
1685          * TODO: blk_integrity_rq(rq)  for DIF
1686          */
1687         return 0;
1688 }
1689
1690 static void
1691 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
1692                 struct nvme_fc_fcp_op *op)
1693 {
1694         struct nvmefc_fcp_req *freq = &op->fcp_req;
1695
1696         if (!freq->sg_cnt)
1697                 return;
1698
1699         fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
1700                                 ((rq_data_dir(rq) == WRITE) ?
1701                                         DMA_TO_DEVICE : DMA_FROM_DEVICE));
1702
1703         nvme_cleanup_cmd(rq);
1704
1705         sg_free_table_chained(&freq->sg_table, true);
1706
1707         freq->sg_cnt = 0;
1708 }
1709
1710 /*
1711  * In FC, the queue is a logical thing. At transport connect, the target
1712  * creates its "queue" and returns a handle that is to be given to the
1713  * target whenever it posts something to the corresponding SQ.  When an
1714  * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
1715  * command contained within the SQE, an io, and assigns a FC exchange
1716  * to it. The SQE and the associated SQ handle are sent in the initial
1717  * CMD IU sents on the exchange. All transfers relative to the io occur
1718  * as part of the exchange.  The CQE is the last thing for the io,
1719  * which is transferred (explicitly or implicitly) with the RSP IU
1720  * sent on the exchange. After the CQE is received, the FC exchange is
1721  * terminaed and the Exchange may be used on a different io.
1722  *
1723  * The transport to LLDD api has the transport making a request for a
1724  * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
1725  * resource and transfers the command. The LLDD will then process all
1726  * steps to complete the io. Upon completion, the transport done routine
1727  * is called.
1728  *
1729  * So - while the operation is outstanding to the LLDD, there is a link
1730  * level FC exchange resource that is also outstanding. This must be
1731  * considered in all cleanup operations.
1732  */
1733 static int
1734 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1735         struct nvme_fc_fcp_op *op, u32 data_len,
1736         enum nvmefc_fcp_datadir io_dir)
1737 {
1738         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1739         struct nvme_command *sqe = &cmdiu->sqe;
1740         u32 csn;
1741         int ret;
1742
1743         if (!nvme_fc_ctrl_get(ctrl))
1744                 return BLK_MQ_RQ_QUEUE_ERROR;
1745
1746         /* format the FC-NVME CMD IU and fcp_req */
1747         cmdiu->connection_id = cpu_to_be64(queue->connection_id);
1748         csn = atomic_inc_return(&queue->csn);
1749         cmdiu->csn = cpu_to_be32(csn);
1750         cmdiu->data_len = cpu_to_be32(data_len);
1751         switch (io_dir) {
1752         case NVMEFC_FCP_WRITE:
1753                 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
1754                 break;
1755         case NVMEFC_FCP_READ:
1756                 cmdiu->flags = FCNVME_CMD_FLAGS_READ;
1757                 break;
1758         case NVMEFC_FCP_NODATA:
1759                 cmdiu->flags = 0;
1760                 break;
1761         }
1762         op->fcp_req.payload_length = data_len;
1763         op->fcp_req.io_dir = io_dir;
1764         op->fcp_req.transferred_length = 0;
1765         op->fcp_req.rcv_rsplen = 0;
1766         op->fcp_req.status = NVME_SC_SUCCESS;
1767         op->fcp_req.sqid = cpu_to_le16(queue->qnum);
1768
1769         /*
1770          * validate per fabric rules, set fields mandated by fabric spec
1771          * as well as those by FC-NVME spec.
1772          */
1773         WARN_ON_ONCE(sqe->common.metadata);
1774         WARN_ON_ONCE(sqe->common.dptr.prp1);
1775         WARN_ON_ONCE(sqe->common.dptr.prp2);
1776         sqe->common.flags |= NVME_CMD_SGL_METABUF;
1777
1778         /*
1779          * format SQE DPTR field per FC-NVME rules
1780          *    type=data block descr; subtype=offset;
1781          *    offset is currently 0.
1782          */
1783         sqe->rw.dptr.sgl.type = NVME_SGL_FMT_OFFSET;
1784         sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
1785         sqe->rw.dptr.sgl.addr = 0;
1786
1787         /* odd that we set the command_id - should come from nvme-fabrics */
1788         WARN_ON_ONCE(sqe->common.command_id != cpu_to_le16(op->rqno));
1789
1790         if (op->rq) {                           /* skipped on aens */
1791                 ret = nvme_fc_map_data(ctrl, op->rq, op);
1792                 if (ret < 0) {
1793                         dev_err(queue->ctrl->ctrl.device,
1794                              "Failed to map data (%d)\n", ret);
1795                         nvme_cleanup_cmd(op->rq);
1796                         nvme_fc_ctrl_put(ctrl);
1797                         return (ret == -ENOMEM || ret == -EAGAIN) ?
1798                                 BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR;
1799                 }
1800         }
1801
1802         fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
1803                                   sizeof(op->cmd_iu), DMA_TO_DEVICE);
1804
1805         atomic_set(&op->state, FCPOP_STATE_ACTIVE);
1806
1807         if (op->rq)
1808                 blk_mq_start_request(op->rq);
1809
1810         ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
1811                                         &ctrl->rport->remoteport,
1812                                         queue->lldd_handle, &op->fcp_req);
1813
1814         if (ret) {
1815                 dev_err(ctrl->dev,
1816                         "Send nvme command failed - lldd returned %d.\n", ret);
1817
1818                 if (op->rq) {                   /* normal request */
1819                         nvme_fc_unmap_data(ctrl, op->rq, op);
1820                         nvme_cleanup_cmd(op->rq);
1821                 }
1822                 /* else - aen. no cleanup needed */
1823
1824                 nvme_fc_ctrl_put(ctrl);
1825
1826                 if (ret != -EBUSY)
1827                         return BLK_MQ_RQ_QUEUE_ERROR;
1828
1829                 if (op->rq) {
1830                         blk_mq_stop_hw_queues(op->rq->q);
1831                         blk_mq_delay_queue(queue->hctx, NVMEFC_QUEUE_DELAY);
1832                 }
1833                 return BLK_MQ_RQ_QUEUE_BUSY;
1834         }
1835
1836         return BLK_MQ_RQ_QUEUE_OK;
1837 }
1838
1839 static int
1840 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
1841                         const struct blk_mq_queue_data *bd)
1842 {
1843         struct nvme_ns *ns = hctx->queue->queuedata;
1844         struct nvme_fc_queue *queue = hctx->driver_data;
1845         struct nvme_fc_ctrl *ctrl = queue->ctrl;
1846         struct request *rq = bd->rq;
1847         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1848         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1849         struct nvme_command *sqe = &cmdiu->sqe;
1850         enum nvmefc_fcp_datadir io_dir;
1851         u32 data_len;
1852         int ret;
1853
1854         ret = nvme_setup_cmd(ns, rq, sqe);
1855         if (ret)
1856                 return ret;
1857
1858         data_len = blk_rq_payload_bytes(rq);
1859         if (data_len)
1860                 io_dir = ((rq_data_dir(rq) == WRITE) ?
1861                                         NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
1862         else
1863                 io_dir = NVMEFC_FCP_NODATA;
1864
1865         return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
1866 }
1867
1868 static struct blk_mq_tags *
1869 nvme_fc_tagset(struct nvme_fc_queue *queue)
1870 {
1871         if (queue->qnum == 0)
1872                 return queue->ctrl->admin_tag_set.tags[queue->qnum];
1873
1874         return queue->ctrl->tag_set.tags[queue->qnum - 1];
1875 }
1876
1877 static int
1878 nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1879
1880 {
1881         struct nvme_fc_queue *queue = hctx->driver_data;
1882         struct nvme_fc_ctrl *ctrl = queue->ctrl;
1883         struct request *req;
1884         struct nvme_fc_fcp_op *op;
1885
1886         req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag);
1887         if (!req) {
1888                 dev_err(queue->ctrl->ctrl.device,
1889                          "tag 0x%x on QNum %#x not found\n",
1890                         tag, queue->qnum);
1891                 return 0;
1892         }
1893
1894         op = blk_mq_rq_to_pdu(req);
1895
1896         if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) &&
1897                  (ctrl->lport->ops->poll_queue))
1898                 ctrl->lport->ops->poll_queue(&ctrl->lport->localport,
1899                                                  queue->lldd_handle);
1900
1901         return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE));
1902 }
1903
1904 static void
1905 nvme_fc_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
1906 {
1907         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
1908         struct nvme_fc_fcp_op *aen_op;
1909         int ret;
1910
1911         if (aer_idx > NVME_FC_NR_AEN_COMMANDS)
1912                 return;
1913
1914         aen_op = &ctrl->aen_ops[aer_idx];
1915
1916         ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
1917                                         NVMEFC_FCP_NODATA);
1918         if (ret)
1919                 dev_err(ctrl->ctrl.device,
1920                         "failed async event work [%d]\n", aer_idx);
1921 }
1922
1923 static void
1924 nvme_fc_complete_rq(struct request *rq)
1925 {
1926         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1927         struct nvme_fc_ctrl *ctrl = op->ctrl;
1928         int state;
1929
1930         state = atomic_xchg(&op->state, FCPOP_STATE_IDLE);
1931
1932         nvme_cleanup_cmd(rq);
1933         nvme_fc_unmap_data(ctrl, rq, op);
1934         nvme_complete_rq(rq);
1935         nvme_fc_ctrl_put(ctrl);
1936
1937 }
1938
1939 static const struct blk_mq_ops nvme_fc_mq_ops = {
1940         .queue_rq       = nvme_fc_queue_rq,
1941         .complete       = nvme_fc_complete_rq,
1942         .init_request   = nvme_fc_init_request,
1943         .exit_request   = nvme_fc_exit_request,
1944         .reinit_request = nvme_fc_reinit_request,
1945         .init_hctx      = nvme_fc_init_hctx,
1946         .poll           = nvme_fc_poll,
1947         .timeout        = nvme_fc_timeout,
1948 };
1949
1950 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
1951         .queue_rq       = nvme_fc_queue_rq,
1952         .complete       = nvme_fc_complete_rq,
1953         .init_request   = nvme_fc_init_admin_request,
1954         .exit_request   = nvme_fc_exit_request,
1955         .reinit_request = nvme_fc_reinit_request,
1956         .init_hctx      = nvme_fc_init_admin_hctx,
1957         .timeout        = nvme_fc_timeout,
1958 };
1959
1960 static int
1961 nvme_fc_configure_admin_queue(struct nvme_fc_ctrl *ctrl)
1962 {
1963         u32 segs;
1964         int error;
1965
1966         nvme_fc_init_queue(ctrl, 0, NVME_FC_AQ_BLKMQ_DEPTH);
1967
1968         error = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
1969                                 NVME_FC_AQ_BLKMQ_DEPTH,
1970                                 (NVME_FC_AQ_BLKMQ_DEPTH / 4));
1971         if (error)
1972                 return error;
1973
1974         memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
1975         ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
1976         ctrl->admin_tag_set.queue_depth = NVME_FC_AQ_BLKMQ_DEPTH;
1977         ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
1978         ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
1979         ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
1980                                         (SG_CHUNK_SIZE *
1981                                                 sizeof(struct scatterlist)) +
1982                                         ctrl->lport->ops->fcprqst_priv_sz;
1983         ctrl->admin_tag_set.driver_data = ctrl;
1984         ctrl->admin_tag_set.nr_hw_queues = 1;
1985         ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
1986
1987         error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
1988         if (error)
1989                 goto out_free_queue;
1990
1991         ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
1992         if (IS_ERR(ctrl->ctrl.admin_q)) {
1993                 error = PTR_ERR(ctrl->ctrl.admin_q);
1994                 goto out_free_tagset;
1995         }
1996
1997         error = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
1998                                 NVME_FC_AQ_BLKMQ_DEPTH);
1999         if (error)
2000                 goto out_cleanup_queue;
2001
2002         error = nvmf_connect_admin_queue(&ctrl->ctrl);
2003         if (error)
2004                 goto out_delete_hw_queue;
2005
2006         error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap);
2007         if (error) {
2008                 dev_err(ctrl->ctrl.device,
2009                         "prop_get NVME_REG_CAP failed\n");
2010                 goto out_delete_hw_queue;
2011         }
2012
2013         ctrl->ctrl.sqsize =
2014                 min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize);
2015
2016         error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
2017         if (error)
2018                 goto out_delete_hw_queue;
2019
2020         segs = min_t(u32, NVME_FC_MAX_SEGMENTS,
2021                         ctrl->lport->ops->max_sgl_segments);
2022         ctrl->ctrl.max_hw_sectors = (segs - 1) << (PAGE_SHIFT - 9);
2023
2024         error = nvme_init_identify(&ctrl->ctrl);
2025         if (error)
2026                 goto out_delete_hw_queue;
2027
2028         nvme_start_keep_alive(&ctrl->ctrl);
2029
2030         return 0;
2031
2032 out_delete_hw_queue:
2033         __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2034 out_cleanup_queue:
2035         blk_cleanup_queue(ctrl->ctrl.admin_q);
2036 out_free_tagset:
2037         blk_mq_free_tag_set(&ctrl->admin_tag_set);
2038 out_free_queue:
2039         nvme_fc_free_queue(&ctrl->queues[0]);
2040         return error;
2041 }
2042
2043 /*
2044  * This routine is used by the transport when it needs to find active
2045  * io on a queue that is to be terminated. The transport uses
2046  * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2047  * this routine to kill them on a 1 by 1 basis.
2048  *
2049  * As FC allocates FC exchange for each io, the transport must contact
2050  * the LLDD to terminate the exchange, thus releasing the FC exchange.
2051  * After terminating the exchange the LLDD will call the transport's
2052  * normal io done path for the request, but it will have an aborted
2053  * status. The done path will return the io request back to the block
2054  * layer with an error status.
2055  */
2056 static void
2057 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2058 {
2059         struct nvme_ctrl *nctrl = data;
2060         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2061         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2062 int status;
2063
2064         if (!blk_mq_request_started(req))
2065                 return;
2066
2067         /* this performs an ABTS-LS on the FC exchange for the io */
2068         status = __nvme_fc_abort_op(ctrl, op);
2069         /*
2070          * if __nvme_fc_abort_op failed: io wasn't active to abort
2071          * consider it done. Assume completion path already completing
2072          * in parallel
2073          */
2074         if (status)
2075                 /* io wasn't active to abort consider it done */
2076                 /* assume completion path already completing in parallel */
2077                 return;
2078 }
2079
2080
2081 /*
2082  * This routine stops operation of the controller. Admin and IO queues
2083  * are stopped, outstanding ios on them terminated, and the nvme ctrl
2084  * is shutdown.
2085  */
2086 static void
2087 nvme_fc_shutdown_ctrl(struct nvme_fc_ctrl *ctrl)
2088 {
2089         /*
2090          * If io queues are present, stop them and terminate all outstanding
2091          * ios on them. As FC allocates FC exchange for each io, the
2092          * transport must contact the LLDD to terminate the exchange,
2093          * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2094          * to tell us what io's are busy and invoke a transport routine
2095          * to kill them with the LLDD.  After terminating the exchange
2096          * the LLDD will call the transport's normal io done path, but it
2097          * will have an aborted status. The done path will return the
2098          * io requests back to the block layer as part of normal completions
2099          * (but with error status).
2100          */
2101         if (ctrl->queue_count > 1) {
2102                 nvme_stop_queues(&ctrl->ctrl);
2103                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
2104                                 nvme_fc_terminate_exchange, &ctrl->ctrl);
2105         }
2106
2107         if (ctrl->ctrl.state == NVME_CTRL_LIVE)
2108                 nvme_shutdown_ctrl(&ctrl->ctrl);
2109
2110         /*
2111          * now clean up the admin queue. Same thing as above.
2112          * use blk_mq_tagset_busy_itr() and the transport routine to
2113          * terminate the exchanges.
2114          */
2115         blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
2116         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2117                                 nvme_fc_terminate_exchange, &ctrl->ctrl);
2118 }
2119
2120 /*
2121  * Called to teardown an association.
2122  * May be called with association fully in place or partially in place.
2123  */
2124 static void
2125 __nvme_fc_remove_ctrl(struct nvme_fc_ctrl *ctrl)
2126 {
2127         nvme_stop_keep_alive(&ctrl->ctrl);
2128
2129         /* stop and terminate ios on admin and io queues */
2130         nvme_fc_shutdown_ctrl(ctrl);
2131
2132         /*
2133          * tear down the controller
2134          * This will result in the last reference on the nvme ctrl to
2135          * expire, calling the transport nvme_fc_free_nvme_ctrl() callback.
2136          * From there, the transport will tear down it's logical queues and
2137          * association.
2138          */
2139         nvme_uninit_ctrl(&ctrl->ctrl);
2140
2141         nvme_put_ctrl(&ctrl->ctrl);
2142 }
2143
2144 static void
2145 nvme_fc_del_ctrl_work(struct work_struct *work)
2146 {
2147         struct nvme_fc_ctrl *ctrl =
2148                         container_of(work, struct nvme_fc_ctrl, delete_work);
2149
2150         __nvme_fc_remove_ctrl(ctrl);
2151 }
2152
2153 static int
2154 __nvme_fc_del_ctrl(struct nvme_fc_ctrl *ctrl)
2155 {
2156         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
2157                 return -EBUSY;
2158
2159         if (!queue_work(nvme_fc_wq, &ctrl->delete_work))
2160                 return -EBUSY;
2161
2162         return 0;
2163 }
2164
2165 /*
2166  * Request from nvme core layer to delete the controller
2167  */
2168 static int
2169 nvme_fc_del_nvme_ctrl(struct nvme_ctrl *nctrl)
2170 {
2171         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2172         struct nvme_fc_rport *rport = ctrl->rport;
2173         unsigned long flags;
2174         int ret;
2175
2176         spin_lock_irqsave(&rport->lock, flags);
2177         ret = __nvme_fc_del_ctrl(ctrl);
2178         spin_unlock_irqrestore(&rport->lock, flags);
2179         if (ret)
2180                 return ret;
2181
2182         flush_work(&ctrl->delete_work);
2183
2184         return 0;
2185 }
2186
2187 static int
2188 nvme_fc_reset_nvme_ctrl(struct nvme_ctrl *nctrl)
2189 {
2190         return -EIO;
2191 }
2192
2193 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
2194         .name                   = "fc",
2195         .module                 = THIS_MODULE,
2196         .is_fabrics             = true,
2197         .reg_read32             = nvmf_reg_read32,
2198         .reg_read64             = nvmf_reg_read64,
2199         .reg_write32            = nvmf_reg_write32,
2200         .reset_ctrl             = nvme_fc_reset_nvme_ctrl,
2201         .free_ctrl              = nvme_fc_free_nvme_ctrl,
2202         .submit_async_event     = nvme_fc_submit_async_event,
2203         .delete_ctrl            = nvme_fc_del_nvme_ctrl,
2204         .get_subsysnqn          = nvmf_get_subsysnqn,
2205         .get_address            = nvmf_get_address,
2206 };
2207
2208 static int
2209 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2210 {
2211         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2212         int ret;
2213
2214         ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues);
2215         if (ret) {
2216                 dev_info(ctrl->ctrl.device,
2217                         "set_queue_count failed: %d\n", ret);
2218                 return ret;
2219         }
2220
2221         ctrl->queue_count = opts->nr_io_queues + 1;
2222         if (!opts->nr_io_queues)
2223                 return 0;
2224
2225         dev_info(ctrl->ctrl.device, "creating %d I/O queues.\n",
2226                         opts->nr_io_queues);
2227
2228         nvme_fc_init_io_queues(ctrl);
2229
2230         memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2231         ctrl->tag_set.ops = &nvme_fc_mq_ops;
2232         ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2233         ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2234         ctrl->tag_set.numa_node = NUMA_NO_NODE;
2235         ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2236         ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2237                                         (SG_CHUNK_SIZE *
2238                                                 sizeof(struct scatterlist)) +
2239                                         ctrl->lport->ops->fcprqst_priv_sz;
2240         ctrl->tag_set.driver_data = ctrl;
2241         ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1;
2242         ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2243
2244         ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2245         if (ret)
2246                 return ret;
2247
2248         ctrl->ctrl.tagset = &ctrl->tag_set;
2249
2250         ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2251         if (IS_ERR(ctrl->ctrl.connect_q)) {
2252                 ret = PTR_ERR(ctrl->ctrl.connect_q);
2253                 goto out_free_tag_set;
2254         }
2255
2256         ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2257         if (ret)
2258                 goto out_cleanup_blk_queue;
2259
2260         ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2261         if (ret)
2262                 goto out_delete_hw_queues;
2263
2264         return 0;
2265
2266 out_delete_hw_queues:
2267         nvme_fc_delete_hw_io_queues(ctrl);
2268 out_cleanup_blk_queue:
2269         nvme_stop_keep_alive(&ctrl->ctrl);
2270         blk_cleanup_queue(ctrl->ctrl.connect_q);
2271 out_free_tag_set:
2272         blk_mq_free_tag_set(&ctrl->tag_set);
2273         nvme_fc_free_io_queues(ctrl);
2274
2275         /* force put free routine to ignore io queues */
2276         ctrl->ctrl.tagset = NULL;
2277
2278         return ret;
2279 }
2280
2281
2282 static struct nvme_ctrl *
2283 __nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
2284         struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
2285 {
2286         struct nvme_fc_ctrl *ctrl;
2287         unsigned long flags;
2288         int ret, idx;
2289         bool changed;
2290
2291         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2292         if (!ctrl) {
2293                 ret = -ENOMEM;
2294                 goto out_fail;
2295         }
2296
2297         idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
2298         if (idx < 0) {
2299                 ret = -ENOSPC;
2300                 goto out_free_ctrl;
2301         }
2302
2303         ctrl->ctrl.opts = opts;
2304         INIT_LIST_HEAD(&ctrl->ctrl_list);
2305         INIT_LIST_HEAD(&ctrl->ls_req_list);
2306         ctrl->lport = lport;
2307         ctrl->rport = rport;
2308         ctrl->dev = lport->dev;
2309         ctrl->state = FCCTRL_INIT;
2310         ctrl->cnum = idx;
2311
2312         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
2313         if (ret)
2314                 goto out_free_ida;
2315
2316         get_device(ctrl->dev);
2317         kref_init(&ctrl->ref);
2318
2319         INIT_WORK(&ctrl->delete_work, nvme_fc_del_ctrl_work);
2320         spin_lock_init(&ctrl->lock);
2321
2322         /* io queue count */
2323         ctrl->queue_count = min_t(unsigned int,
2324                                 opts->nr_io_queues,
2325                                 lport->ops->max_hw_queues);
2326         opts->nr_io_queues = ctrl->queue_count; /* so opts has valid value */
2327         ctrl->queue_count++;    /* +1 for admin queue */
2328
2329         ctrl->ctrl.sqsize = opts->queue_size - 1;
2330         ctrl->ctrl.kato = opts->kato;
2331
2332         ret = -ENOMEM;
2333         ctrl->queues = kcalloc(ctrl->queue_count, sizeof(struct nvme_fc_queue),
2334                                 GFP_KERNEL);
2335         if (!ctrl->queues)
2336                 goto out_uninit_ctrl;
2337
2338         ret = nvme_fc_configure_admin_queue(ctrl);
2339         if (ret)
2340                 goto out_uninit_ctrl;
2341
2342         /* sanity checks */
2343
2344         /* FC-NVME does not have other data in the capsule */
2345         if (ctrl->ctrl.icdoff) {
2346                 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2347                                 ctrl->ctrl.icdoff);
2348                 goto out_remove_admin_queue;
2349         }
2350
2351         /* FC-NVME supports normal SGL Data Block Descriptors */
2352
2353         if (opts->queue_size > ctrl->ctrl.maxcmd) {
2354                 /* warn if maxcmd is lower than queue_size */
2355                 dev_warn(ctrl->ctrl.device,
2356                         "queue_size %zu > ctrl maxcmd %u, reducing "
2357                         "to queue_size\n",
2358                         opts->queue_size, ctrl->ctrl.maxcmd);
2359                 opts->queue_size = ctrl->ctrl.maxcmd;
2360         }
2361
2362         ret = nvme_fc_init_aen_ops(ctrl);
2363         if (ret)
2364                 goto out_exit_aen_ops;
2365
2366         if (ctrl->queue_count > 1) {
2367                 ret = nvme_fc_create_io_queues(ctrl);
2368                 if (ret)
2369                         goto out_exit_aen_ops;
2370         }
2371
2372         spin_lock_irqsave(&ctrl->lock, flags);
2373         ctrl->state = FCCTRL_ACTIVE;
2374         spin_unlock_irqrestore(&ctrl->lock, flags);
2375
2376         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2377         WARN_ON_ONCE(!changed);
2378
2379         dev_info(ctrl->ctrl.device,
2380                 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
2381                 ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
2382
2383         kref_get(&ctrl->ctrl.kref);
2384
2385         spin_lock_irqsave(&rport->lock, flags);
2386         list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
2387         spin_unlock_irqrestore(&rport->lock, flags);
2388
2389         if (opts->nr_io_queues) {
2390                 nvme_queue_scan(&ctrl->ctrl);
2391                 nvme_queue_async_events(&ctrl->ctrl);
2392         }
2393
2394         return &ctrl->ctrl;
2395
2396 out_exit_aen_ops:
2397         nvme_fc_exit_aen_ops(ctrl);
2398 out_remove_admin_queue:
2399         /* send a Disconnect(association) LS to fc-nvme target */
2400         nvme_fc_xmt_disconnect_assoc(ctrl);
2401         nvme_stop_keep_alive(&ctrl->ctrl);
2402         nvme_fc_destroy_admin_queue(ctrl);
2403 out_uninit_ctrl:
2404         nvme_uninit_ctrl(&ctrl->ctrl);
2405         nvme_put_ctrl(&ctrl->ctrl);
2406         if (ret > 0)
2407                 ret = -EIO;
2408         /* exit via here will follow ctlr ref point callbacks to free */
2409         return ERR_PTR(ret);
2410
2411 out_free_ida:
2412         ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2413 out_free_ctrl:
2414         kfree(ctrl);
2415 out_fail:
2416         nvme_fc_rport_put(rport);
2417         /* exit via here doesn't follow ctlr ref points */
2418         return ERR_PTR(ret);
2419 }
2420
2421 enum {
2422         FCT_TRADDR_ERR          = 0,
2423         FCT_TRADDR_WWNN         = 1 << 0,
2424         FCT_TRADDR_WWPN         = 1 << 1,
2425 };
2426
2427 struct nvmet_fc_traddr {
2428         u64     nn;
2429         u64     pn;
2430 };
2431
2432 static const match_table_t traddr_opt_tokens = {
2433         { FCT_TRADDR_WWNN,      "nn-%s"         },
2434         { FCT_TRADDR_WWPN,      "pn-%s"         },
2435         { FCT_TRADDR_ERR,       NULL            }
2436 };
2437
2438 static int
2439 nvme_fc_parse_address(struct nvmet_fc_traddr *traddr, char *buf)
2440 {
2441         substring_t args[MAX_OPT_ARGS];
2442         char *options, *o, *p;
2443         int token, ret = 0;
2444         u64 token64;
2445
2446         options = o = kstrdup(buf, GFP_KERNEL);
2447         if (!options)
2448                 return -ENOMEM;
2449
2450         while ((p = strsep(&o, ":\n")) != NULL) {
2451                 if (!*p)
2452                         continue;
2453
2454                 token = match_token(p, traddr_opt_tokens, args);
2455                 switch (token) {
2456                 case FCT_TRADDR_WWNN:
2457                         if (match_u64(args, &token64)) {
2458                                 ret = -EINVAL;
2459                                 goto out;
2460                         }
2461                         traddr->nn = token64;
2462                         break;
2463                 case FCT_TRADDR_WWPN:
2464                         if (match_u64(args, &token64)) {
2465                                 ret = -EINVAL;
2466                                 goto out;
2467                         }
2468                         traddr->pn = token64;
2469                         break;
2470                 default:
2471                         pr_warn("unknown traddr token or missing value '%s'\n",
2472                                         p);
2473                         ret = -EINVAL;
2474                         goto out;
2475                 }
2476         }
2477
2478 out:
2479         kfree(options);
2480         return ret;
2481 }
2482
2483 static struct nvme_ctrl *
2484 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
2485 {
2486         struct nvme_fc_lport *lport;
2487         struct nvme_fc_rport *rport;
2488         struct nvmet_fc_traddr laddr = { 0L, 0L };
2489         struct nvmet_fc_traddr raddr = { 0L, 0L };
2490         unsigned long flags;
2491         int ret;
2492
2493         ret = nvme_fc_parse_address(&raddr, opts->traddr);
2494         if (ret || !raddr.nn || !raddr.pn)
2495                 return ERR_PTR(-EINVAL);
2496
2497         ret = nvme_fc_parse_address(&laddr, opts->host_traddr);
2498         if (ret || !laddr.nn || !laddr.pn)
2499                 return ERR_PTR(-EINVAL);
2500
2501         /* find the host and remote ports to connect together */
2502         spin_lock_irqsave(&nvme_fc_lock, flags);
2503         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
2504                 if (lport->localport.node_name != laddr.nn ||
2505                     lport->localport.port_name != laddr.pn)
2506                         continue;
2507
2508                 list_for_each_entry(rport, &lport->endp_list, endp_list) {
2509                         if (rport->remoteport.node_name != raddr.nn ||
2510                             rport->remoteport.port_name != raddr.pn)
2511                                 continue;
2512
2513                         /* if fail to get reference fall through. Will error */
2514                         if (!nvme_fc_rport_get(rport))
2515                                 break;
2516
2517                         spin_unlock_irqrestore(&nvme_fc_lock, flags);
2518
2519                         return __nvme_fc_create_ctrl(dev, opts, lport, rport);
2520                 }
2521         }
2522         spin_unlock_irqrestore(&nvme_fc_lock, flags);
2523
2524         return ERR_PTR(-ENOENT);
2525 }
2526
2527
2528 static struct nvmf_transport_ops nvme_fc_transport = {
2529         .name           = "fc",
2530         .required_opts  = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
2531         .allowed_opts   = NVMF_OPT_RECONNECT_DELAY,
2532         .create_ctrl    = nvme_fc_create_ctrl,
2533 };
2534
2535 static int __init nvme_fc_init_module(void)
2536 {
2537         int ret;
2538
2539         nvme_fc_wq = create_workqueue("nvme_fc_wq");
2540         if (!nvme_fc_wq)
2541                 return -ENOMEM;
2542
2543         ret = nvmf_register_transport(&nvme_fc_transport);
2544         if (ret)
2545                 goto err;
2546
2547         return 0;
2548 err:
2549         destroy_workqueue(nvme_fc_wq);
2550         return ret;
2551 }
2552
2553 static void __exit nvme_fc_exit_module(void)
2554 {
2555         /* sanity check - all lports should be removed */
2556         if (!list_empty(&nvme_fc_lport_list))
2557                 pr_warn("%s: localport list not empty\n", __func__);
2558
2559         nvmf_unregister_transport(&nvme_fc_transport);
2560
2561         destroy_workqueue(nvme_fc_wq);
2562
2563         ida_destroy(&nvme_fc_local_port_cnt);
2564         ida_destroy(&nvme_fc_ctrl_cnt);
2565 }
2566
2567 module_init(nvme_fc_init_module);
2568 module_exit(nvme_fc_exit_module);
2569
2570 MODULE_LICENSE("GPL v2");