]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/nvme/host/fc.c
Merge tag 'for-linus-4.12-ofs-1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / drivers / nvme / host / fc.c
1 /*
2  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful.
9  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10  * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11  * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12  * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13  * See the GNU General Public License for more details, a copy of which
14  * can be found in the file COPYING included with this package
15  *
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/parser.h>
20 #include <uapi/scsi/fc/fc_fs.h>
21 #include <uapi/scsi/fc/fc_els.h>
22 #include <linux/delay.h>
23
24 #include "nvme.h"
25 #include "fabrics.h"
26 #include <linux/nvme-fc-driver.h>
27 #include <linux/nvme-fc.h>
28
29
30 /* *************************** Data Structures/Defines ****************** */
31
32
33 /*
34  * We handle AEN commands ourselves and don't even let the
35  * block layer know about them.
36  */
37 #define NVME_FC_NR_AEN_COMMANDS 1
38 #define NVME_FC_AQ_BLKMQ_DEPTH  \
39         (NVMF_AQ_DEPTH - NVME_FC_NR_AEN_COMMANDS)
40 #define AEN_CMDID_BASE          (NVME_FC_AQ_BLKMQ_DEPTH + 1)
41
42 enum nvme_fc_queue_flags {
43         NVME_FC_Q_CONNECTED = (1 << 0),
44 };
45
46 #define NVMEFC_QUEUE_DELAY      3               /* ms units */
47
48 #define NVME_FC_MAX_CONNECT_ATTEMPTS    1
49
50 struct nvme_fc_queue {
51         struct nvme_fc_ctrl     *ctrl;
52         struct device           *dev;
53         struct blk_mq_hw_ctx    *hctx;
54         void                    *lldd_handle;
55         int                     queue_size;
56         size_t                  cmnd_capsule_len;
57         u32                     qnum;
58         u32                     rqcnt;
59         u32                     seqno;
60
61         u64                     connection_id;
62         atomic_t                csn;
63
64         unsigned long           flags;
65 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
66
67 enum nvme_fcop_flags {
68         FCOP_FLAGS_TERMIO       = (1 << 0),
69         FCOP_FLAGS_RELEASED     = (1 << 1),
70         FCOP_FLAGS_COMPLETE     = (1 << 2),
71         FCOP_FLAGS_AEN          = (1 << 3),
72 };
73
74 struct nvmefc_ls_req_op {
75         struct nvmefc_ls_req    ls_req;
76
77         struct nvme_fc_rport    *rport;
78         struct nvme_fc_queue    *queue;
79         struct request          *rq;
80         u32                     flags;
81
82         int                     ls_error;
83         struct completion       ls_done;
84         struct list_head        lsreq_list;     /* rport->ls_req_list */
85         bool                    req_queued;
86 };
87
88 enum nvme_fcpop_state {
89         FCPOP_STATE_UNINIT      = 0,
90         FCPOP_STATE_IDLE        = 1,
91         FCPOP_STATE_ACTIVE      = 2,
92         FCPOP_STATE_ABORTED     = 3,
93         FCPOP_STATE_COMPLETE    = 4,
94 };
95
96 struct nvme_fc_fcp_op {
97         struct nvme_request     nreq;           /*
98                                                  * nvme/host/core.c
99                                                  * requires this to be
100                                                  * the 1st element in the
101                                                  * private structure
102                                                  * associated with the
103                                                  * request.
104                                                  */
105         struct nvmefc_fcp_req   fcp_req;
106
107         struct nvme_fc_ctrl     *ctrl;
108         struct nvme_fc_queue    *queue;
109         struct request          *rq;
110
111         atomic_t                state;
112         u32                     flags;
113         u32                     rqno;
114         u32                     nents;
115
116         struct nvme_fc_cmd_iu   cmd_iu;
117         struct nvme_fc_ersp_iu  rsp_iu;
118 };
119
120 struct nvme_fc_lport {
121         struct nvme_fc_local_port       localport;
122
123         struct ida                      endp_cnt;
124         struct list_head                port_list;      /* nvme_fc_port_list */
125         struct list_head                endp_list;
126         struct device                   *dev;   /* physical device for dma */
127         struct nvme_fc_port_template    *ops;
128         struct kref                     ref;
129 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
130
131 struct nvme_fc_rport {
132         struct nvme_fc_remote_port      remoteport;
133
134         struct list_head                endp_list; /* for lport->endp_list */
135         struct list_head                ctrl_list;
136         struct list_head                ls_req_list;
137         struct device                   *dev;   /* physical device for dma */
138         struct nvme_fc_lport            *lport;
139         spinlock_t                      lock;
140         struct kref                     ref;
141 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
142
143 enum nvme_fcctrl_flags {
144         FCCTRL_TERMIO           = (1 << 0),
145 };
146
147 struct nvme_fc_ctrl {
148         spinlock_t              lock;
149         struct nvme_fc_queue    *queues;
150         struct device           *dev;
151         struct nvme_fc_lport    *lport;
152         struct nvme_fc_rport    *rport;
153         u32                     queue_count;
154         u32                     cnum;
155
156         u64                     association_id;
157
158         u64                     cap;
159
160         struct list_head        ctrl_list;      /* rport->ctrl_list */
161
162         struct blk_mq_tag_set   admin_tag_set;
163         struct blk_mq_tag_set   tag_set;
164
165         struct work_struct      delete_work;
166         struct work_struct      reset_work;
167         struct delayed_work     connect_work;
168         int                     reconnect_delay;
169         int                     connect_attempts;
170
171         struct kref             ref;
172         u32                     flags;
173         u32                     iocnt;
174
175         struct nvme_fc_fcp_op   aen_ops[NVME_FC_NR_AEN_COMMANDS];
176
177         struct nvme_ctrl        ctrl;
178 };
179
180 static inline struct nvme_fc_ctrl *
181 to_fc_ctrl(struct nvme_ctrl *ctrl)
182 {
183         return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
184 }
185
186 static inline struct nvme_fc_lport *
187 localport_to_lport(struct nvme_fc_local_port *portptr)
188 {
189         return container_of(portptr, struct nvme_fc_lport, localport);
190 }
191
192 static inline struct nvme_fc_rport *
193 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
194 {
195         return container_of(portptr, struct nvme_fc_rport, remoteport);
196 }
197
198 static inline struct nvmefc_ls_req_op *
199 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
200 {
201         return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
202 }
203
204 static inline struct nvme_fc_fcp_op *
205 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
206 {
207         return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
208 }
209
210
211
212 /* *************************** Globals **************************** */
213
214
215 static DEFINE_SPINLOCK(nvme_fc_lock);
216
217 static LIST_HEAD(nvme_fc_lport_list);
218 static DEFINE_IDA(nvme_fc_local_port_cnt);
219 static DEFINE_IDA(nvme_fc_ctrl_cnt);
220
221 static struct workqueue_struct *nvme_fc_wq;
222
223
224
225 /* *********************** FC-NVME Port Management ************************ */
226
227 static int __nvme_fc_del_ctrl(struct nvme_fc_ctrl *);
228 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
229                         struct nvme_fc_queue *, unsigned int);
230
231
232 /**
233  * nvme_fc_register_localport - transport entry point called by an
234  *                              LLDD to register the existence of a NVME
235  *                              host FC port.
236  * @pinfo:     pointer to information about the port to be registered
237  * @template:  LLDD entrypoints and operational parameters for the port
238  * @dev:       physical hardware device node port corresponds to. Will be
239  *             used for DMA mappings
240  * @lport_p:   pointer to a local port pointer. Upon success, the routine
241  *             will allocate a nvme_fc_local_port structure and place its
242  *             address in the local port pointer. Upon failure, local port
243  *             pointer will be set to 0.
244  *
245  * Returns:
246  * a completion status. Must be 0 upon success; a negative errno
247  * (ex: -ENXIO) upon failure.
248  */
249 int
250 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
251                         struct nvme_fc_port_template *template,
252                         struct device *dev,
253                         struct nvme_fc_local_port **portptr)
254 {
255         struct nvme_fc_lport *newrec;
256         unsigned long flags;
257         int ret, idx;
258
259         if (!template->localport_delete || !template->remoteport_delete ||
260             !template->ls_req || !template->fcp_io ||
261             !template->ls_abort || !template->fcp_abort ||
262             !template->max_hw_queues || !template->max_sgl_segments ||
263             !template->max_dif_sgl_segments || !template->dma_boundary) {
264                 ret = -EINVAL;
265                 goto out_reghost_failed;
266         }
267
268         newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
269                          GFP_KERNEL);
270         if (!newrec) {
271                 ret = -ENOMEM;
272                 goto out_reghost_failed;
273         }
274
275         idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
276         if (idx < 0) {
277                 ret = -ENOSPC;
278                 goto out_fail_kfree;
279         }
280
281         if (!get_device(dev) && dev) {
282                 ret = -ENODEV;
283                 goto out_ida_put;
284         }
285
286         INIT_LIST_HEAD(&newrec->port_list);
287         INIT_LIST_HEAD(&newrec->endp_list);
288         kref_init(&newrec->ref);
289         newrec->ops = template;
290         newrec->dev = dev;
291         ida_init(&newrec->endp_cnt);
292         newrec->localport.private = &newrec[1];
293         newrec->localport.node_name = pinfo->node_name;
294         newrec->localport.port_name = pinfo->port_name;
295         newrec->localport.port_role = pinfo->port_role;
296         newrec->localport.port_id = pinfo->port_id;
297         newrec->localport.port_state = FC_OBJSTATE_ONLINE;
298         newrec->localport.port_num = idx;
299
300         spin_lock_irqsave(&nvme_fc_lock, flags);
301         list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
302         spin_unlock_irqrestore(&nvme_fc_lock, flags);
303
304         if (dev)
305                 dma_set_seg_boundary(dev, template->dma_boundary);
306
307         *portptr = &newrec->localport;
308         return 0;
309
310 out_ida_put:
311         ida_simple_remove(&nvme_fc_local_port_cnt, idx);
312 out_fail_kfree:
313         kfree(newrec);
314 out_reghost_failed:
315         *portptr = NULL;
316
317         return ret;
318 }
319 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
320
321 static void
322 nvme_fc_free_lport(struct kref *ref)
323 {
324         struct nvme_fc_lport *lport =
325                 container_of(ref, struct nvme_fc_lport, ref);
326         unsigned long flags;
327
328         WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
329         WARN_ON(!list_empty(&lport->endp_list));
330
331         /* remove from transport list */
332         spin_lock_irqsave(&nvme_fc_lock, flags);
333         list_del(&lport->port_list);
334         spin_unlock_irqrestore(&nvme_fc_lock, flags);
335
336         /* let the LLDD know we've finished tearing it down */
337         lport->ops->localport_delete(&lport->localport);
338
339         ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
340         ida_destroy(&lport->endp_cnt);
341
342         put_device(lport->dev);
343
344         kfree(lport);
345 }
346
347 static void
348 nvme_fc_lport_put(struct nvme_fc_lport *lport)
349 {
350         kref_put(&lport->ref, nvme_fc_free_lport);
351 }
352
353 static int
354 nvme_fc_lport_get(struct nvme_fc_lport *lport)
355 {
356         return kref_get_unless_zero(&lport->ref);
357 }
358
359 /**
360  * nvme_fc_unregister_localport - transport entry point called by an
361  *                              LLDD to deregister/remove a previously
362  *                              registered a NVME host FC port.
363  * @localport: pointer to the (registered) local port that is to be
364  *             deregistered.
365  *
366  * Returns:
367  * a completion status. Must be 0 upon success; a negative errno
368  * (ex: -ENXIO) upon failure.
369  */
370 int
371 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
372 {
373         struct nvme_fc_lport *lport = localport_to_lport(portptr);
374         unsigned long flags;
375
376         if (!portptr)
377                 return -EINVAL;
378
379         spin_lock_irqsave(&nvme_fc_lock, flags);
380
381         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
382                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
383                 return -EINVAL;
384         }
385         portptr->port_state = FC_OBJSTATE_DELETED;
386
387         spin_unlock_irqrestore(&nvme_fc_lock, flags);
388
389         nvme_fc_lport_put(lport);
390
391         return 0;
392 }
393 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
394
395 /**
396  * nvme_fc_register_remoteport - transport entry point called by an
397  *                              LLDD to register the existence of a NVME
398  *                              subsystem FC port on its fabric.
399  * @localport: pointer to the (registered) local port that the remote
400  *             subsystem port is connected to.
401  * @pinfo:     pointer to information about the port to be registered
402  * @rport_p:   pointer to a remote port pointer. Upon success, the routine
403  *             will allocate a nvme_fc_remote_port structure and place its
404  *             address in the remote port pointer. Upon failure, remote port
405  *             pointer will be set to 0.
406  *
407  * Returns:
408  * a completion status. Must be 0 upon success; a negative errno
409  * (ex: -ENXIO) upon failure.
410  */
411 int
412 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
413                                 struct nvme_fc_port_info *pinfo,
414                                 struct nvme_fc_remote_port **portptr)
415 {
416         struct nvme_fc_lport *lport = localport_to_lport(localport);
417         struct nvme_fc_rport *newrec;
418         unsigned long flags;
419         int ret, idx;
420
421         newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
422                          GFP_KERNEL);
423         if (!newrec) {
424                 ret = -ENOMEM;
425                 goto out_reghost_failed;
426         }
427
428         if (!nvme_fc_lport_get(lport)) {
429                 ret = -ESHUTDOWN;
430                 goto out_kfree_rport;
431         }
432
433         idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
434         if (idx < 0) {
435                 ret = -ENOSPC;
436                 goto out_lport_put;
437         }
438
439         INIT_LIST_HEAD(&newrec->endp_list);
440         INIT_LIST_HEAD(&newrec->ctrl_list);
441         INIT_LIST_HEAD(&newrec->ls_req_list);
442         kref_init(&newrec->ref);
443         spin_lock_init(&newrec->lock);
444         newrec->remoteport.localport = &lport->localport;
445         newrec->dev = lport->dev;
446         newrec->lport = lport;
447         newrec->remoteport.private = &newrec[1];
448         newrec->remoteport.port_role = pinfo->port_role;
449         newrec->remoteport.node_name = pinfo->node_name;
450         newrec->remoteport.port_name = pinfo->port_name;
451         newrec->remoteport.port_id = pinfo->port_id;
452         newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
453         newrec->remoteport.port_num = idx;
454
455         spin_lock_irqsave(&nvme_fc_lock, flags);
456         list_add_tail(&newrec->endp_list, &lport->endp_list);
457         spin_unlock_irqrestore(&nvme_fc_lock, flags);
458
459         *portptr = &newrec->remoteport;
460         return 0;
461
462 out_lport_put:
463         nvme_fc_lport_put(lport);
464 out_kfree_rport:
465         kfree(newrec);
466 out_reghost_failed:
467         *portptr = NULL;
468         return ret;
469 }
470 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
471
472 static void
473 nvme_fc_free_rport(struct kref *ref)
474 {
475         struct nvme_fc_rport *rport =
476                 container_of(ref, struct nvme_fc_rport, ref);
477         struct nvme_fc_lport *lport =
478                         localport_to_lport(rport->remoteport.localport);
479         unsigned long flags;
480
481         WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
482         WARN_ON(!list_empty(&rport->ctrl_list));
483
484         /* remove from lport list */
485         spin_lock_irqsave(&nvme_fc_lock, flags);
486         list_del(&rport->endp_list);
487         spin_unlock_irqrestore(&nvme_fc_lock, flags);
488
489         /* let the LLDD know we've finished tearing it down */
490         lport->ops->remoteport_delete(&rport->remoteport);
491
492         ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
493
494         kfree(rport);
495
496         nvme_fc_lport_put(lport);
497 }
498
499 static void
500 nvme_fc_rport_put(struct nvme_fc_rport *rport)
501 {
502         kref_put(&rport->ref, nvme_fc_free_rport);
503 }
504
505 static int
506 nvme_fc_rport_get(struct nvme_fc_rport *rport)
507 {
508         return kref_get_unless_zero(&rport->ref);
509 }
510
511 static int
512 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
513 {
514         struct nvmefc_ls_req_op *lsop;
515         unsigned long flags;
516
517 restart:
518         spin_lock_irqsave(&rport->lock, flags);
519
520         list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
521                 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
522                         lsop->flags |= FCOP_FLAGS_TERMIO;
523                         spin_unlock_irqrestore(&rport->lock, flags);
524                         rport->lport->ops->ls_abort(&rport->lport->localport,
525                                                 &rport->remoteport,
526                                                 &lsop->ls_req);
527                         goto restart;
528                 }
529         }
530         spin_unlock_irqrestore(&rport->lock, flags);
531
532         return 0;
533 }
534
535 /**
536  * nvme_fc_unregister_remoteport - transport entry point called by an
537  *                              LLDD to deregister/remove a previously
538  *                              registered a NVME subsystem FC port.
539  * @remoteport: pointer to the (registered) remote port that is to be
540  *              deregistered.
541  *
542  * Returns:
543  * a completion status. Must be 0 upon success; a negative errno
544  * (ex: -ENXIO) upon failure.
545  */
546 int
547 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
548 {
549         struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
550         struct nvme_fc_ctrl *ctrl;
551         unsigned long flags;
552
553         if (!portptr)
554                 return -EINVAL;
555
556         spin_lock_irqsave(&rport->lock, flags);
557
558         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
559                 spin_unlock_irqrestore(&rport->lock, flags);
560                 return -EINVAL;
561         }
562         portptr->port_state = FC_OBJSTATE_DELETED;
563
564         /* tear down all associations to the remote port */
565         list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
566                 __nvme_fc_del_ctrl(ctrl);
567
568         spin_unlock_irqrestore(&rport->lock, flags);
569
570         nvme_fc_abort_lsops(rport);
571
572         nvme_fc_rport_put(rport);
573         return 0;
574 }
575 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
576
577
578 /* *********************** FC-NVME DMA Handling **************************** */
579
580 /*
581  * The fcloop device passes in a NULL device pointer. Real LLD's will
582  * pass in a valid device pointer. If NULL is passed to the dma mapping
583  * routines, depending on the platform, it may or may not succeed, and
584  * may crash.
585  *
586  * As such:
587  * Wrapper all the dma routines and check the dev pointer.
588  *
589  * If simple mappings (return just a dma address, we'll noop them,
590  * returning a dma address of 0.
591  *
592  * On more complex mappings (dma_map_sg), a pseudo routine fills
593  * in the scatter list, setting all dma addresses to 0.
594  */
595
596 static inline dma_addr_t
597 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
598                 enum dma_data_direction dir)
599 {
600         return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
601 }
602
603 static inline int
604 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
605 {
606         return dev ? dma_mapping_error(dev, dma_addr) : 0;
607 }
608
609 static inline void
610 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
611         enum dma_data_direction dir)
612 {
613         if (dev)
614                 dma_unmap_single(dev, addr, size, dir);
615 }
616
617 static inline void
618 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
619                 enum dma_data_direction dir)
620 {
621         if (dev)
622                 dma_sync_single_for_cpu(dev, addr, size, dir);
623 }
624
625 static inline void
626 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
627                 enum dma_data_direction dir)
628 {
629         if (dev)
630                 dma_sync_single_for_device(dev, addr, size, dir);
631 }
632
633 /* pseudo dma_map_sg call */
634 static int
635 fc_map_sg(struct scatterlist *sg, int nents)
636 {
637         struct scatterlist *s;
638         int i;
639
640         WARN_ON(nents == 0 || sg[0].length == 0);
641
642         for_each_sg(sg, s, nents, i) {
643                 s->dma_address = 0L;
644 #ifdef CONFIG_NEED_SG_DMA_LENGTH
645                 s->dma_length = s->length;
646 #endif
647         }
648         return nents;
649 }
650
651 static inline int
652 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
653                 enum dma_data_direction dir)
654 {
655         return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
656 }
657
658 static inline void
659 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
660                 enum dma_data_direction dir)
661 {
662         if (dev)
663                 dma_unmap_sg(dev, sg, nents, dir);
664 }
665
666
667 /* *********************** FC-NVME LS Handling **************************** */
668
669 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
670 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
671
672
673 static void
674 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
675 {
676         struct nvme_fc_rport *rport = lsop->rport;
677         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
678         unsigned long flags;
679
680         spin_lock_irqsave(&rport->lock, flags);
681
682         if (!lsop->req_queued) {
683                 spin_unlock_irqrestore(&rport->lock, flags);
684                 return;
685         }
686
687         list_del(&lsop->lsreq_list);
688
689         lsop->req_queued = false;
690
691         spin_unlock_irqrestore(&rport->lock, flags);
692
693         fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
694                                   (lsreq->rqstlen + lsreq->rsplen),
695                                   DMA_BIDIRECTIONAL);
696
697         nvme_fc_rport_put(rport);
698 }
699
700 static int
701 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
702                 struct nvmefc_ls_req_op *lsop,
703                 void (*done)(struct nvmefc_ls_req *req, int status))
704 {
705         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
706         unsigned long flags;
707         int ret = 0;
708
709         if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
710                 return -ECONNREFUSED;
711
712         if (!nvme_fc_rport_get(rport))
713                 return -ESHUTDOWN;
714
715         lsreq->done = done;
716         lsop->rport = rport;
717         lsop->req_queued = false;
718         INIT_LIST_HEAD(&lsop->lsreq_list);
719         init_completion(&lsop->ls_done);
720
721         lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
722                                   lsreq->rqstlen + lsreq->rsplen,
723                                   DMA_BIDIRECTIONAL);
724         if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
725                 ret = -EFAULT;
726                 goto out_putrport;
727         }
728         lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
729
730         spin_lock_irqsave(&rport->lock, flags);
731
732         list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
733
734         lsop->req_queued = true;
735
736         spin_unlock_irqrestore(&rport->lock, flags);
737
738         ret = rport->lport->ops->ls_req(&rport->lport->localport,
739                                         &rport->remoteport, lsreq);
740         if (ret)
741                 goto out_unlink;
742
743         return 0;
744
745 out_unlink:
746         lsop->ls_error = ret;
747         spin_lock_irqsave(&rport->lock, flags);
748         lsop->req_queued = false;
749         list_del(&lsop->lsreq_list);
750         spin_unlock_irqrestore(&rport->lock, flags);
751         fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
752                                   (lsreq->rqstlen + lsreq->rsplen),
753                                   DMA_BIDIRECTIONAL);
754 out_putrport:
755         nvme_fc_rport_put(rport);
756
757         return ret;
758 }
759
760 static void
761 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
762 {
763         struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
764
765         lsop->ls_error = status;
766         complete(&lsop->ls_done);
767 }
768
769 static int
770 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
771 {
772         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
773         struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
774         int ret;
775
776         ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
777
778         if (!ret) {
779                 /*
780                  * No timeout/not interruptible as we need the struct
781                  * to exist until the lldd calls us back. Thus mandate
782                  * wait until driver calls back. lldd responsible for
783                  * the timeout action
784                  */
785                 wait_for_completion(&lsop->ls_done);
786
787                 __nvme_fc_finish_ls_req(lsop);
788
789                 ret = lsop->ls_error;
790         }
791
792         if (ret)
793                 return ret;
794
795         /* ACC or RJT payload ? */
796         if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
797                 return -ENXIO;
798
799         return 0;
800 }
801
802 static int
803 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
804                 struct nvmefc_ls_req_op *lsop,
805                 void (*done)(struct nvmefc_ls_req *req, int status))
806 {
807         /* don't wait for completion */
808
809         return __nvme_fc_send_ls_req(rport, lsop, done);
810 }
811
812 /* Validation Error indexes into the string table below */
813 enum {
814         VERR_NO_ERROR           = 0,
815         VERR_LSACC              = 1,
816         VERR_LSDESC_RQST        = 2,
817         VERR_LSDESC_RQST_LEN    = 3,
818         VERR_ASSOC_ID           = 4,
819         VERR_ASSOC_ID_LEN       = 5,
820         VERR_CONN_ID            = 6,
821         VERR_CONN_ID_LEN        = 7,
822         VERR_CR_ASSOC           = 8,
823         VERR_CR_ASSOC_ACC_LEN   = 9,
824         VERR_CR_CONN            = 10,
825         VERR_CR_CONN_ACC_LEN    = 11,
826         VERR_DISCONN            = 12,
827         VERR_DISCONN_ACC_LEN    = 13,
828 };
829
830 static char *validation_errors[] = {
831         "OK",
832         "Not LS_ACC",
833         "Not LSDESC_RQST",
834         "Bad LSDESC_RQST Length",
835         "Not Association ID",
836         "Bad Association ID Length",
837         "Not Connection ID",
838         "Bad Connection ID Length",
839         "Not CR_ASSOC Rqst",
840         "Bad CR_ASSOC ACC Length",
841         "Not CR_CONN Rqst",
842         "Bad CR_CONN ACC Length",
843         "Not Disconnect Rqst",
844         "Bad Disconnect ACC Length",
845 };
846
847 static int
848 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
849         struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
850 {
851         struct nvmefc_ls_req_op *lsop;
852         struct nvmefc_ls_req *lsreq;
853         struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
854         struct fcnvme_ls_cr_assoc_acc *assoc_acc;
855         int ret, fcret = 0;
856
857         lsop = kzalloc((sizeof(*lsop) +
858                          ctrl->lport->ops->lsrqst_priv_sz +
859                          sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
860         if (!lsop) {
861                 ret = -ENOMEM;
862                 goto out_no_memory;
863         }
864         lsreq = &lsop->ls_req;
865
866         lsreq->private = (void *)&lsop[1];
867         assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
868                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
869         assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
870
871         assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
872         assoc_rqst->desc_list_len =
873                         cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
874
875         assoc_rqst->assoc_cmd.desc_tag =
876                         cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
877         assoc_rqst->assoc_cmd.desc_len =
878                         fcnvme_lsdesc_len(
879                                 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
880
881         assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
882         assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize);
883         /* Linux supports only Dynamic controllers */
884         assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
885         memcpy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id,
886                 min_t(size_t, FCNVME_ASSOC_HOSTID_LEN, sizeof(uuid_be)));
887         strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
888                 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
889         strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
890                 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
891
892         lsop->queue = queue;
893         lsreq->rqstaddr = assoc_rqst;
894         lsreq->rqstlen = sizeof(*assoc_rqst);
895         lsreq->rspaddr = assoc_acc;
896         lsreq->rsplen = sizeof(*assoc_acc);
897         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
898
899         ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
900         if (ret)
901                 goto out_free_buffer;
902
903         /* process connect LS completion */
904
905         /* validate the ACC response */
906         if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
907                 fcret = VERR_LSACC;
908         else if (assoc_acc->hdr.desc_list_len !=
909                         fcnvme_lsdesc_len(
910                                 sizeof(struct fcnvme_ls_cr_assoc_acc)))
911                 fcret = VERR_CR_ASSOC_ACC_LEN;
912         else if (assoc_acc->hdr.rqst.desc_tag !=
913                         cpu_to_be32(FCNVME_LSDESC_RQST))
914                 fcret = VERR_LSDESC_RQST;
915         else if (assoc_acc->hdr.rqst.desc_len !=
916                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
917                 fcret = VERR_LSDESC_RQST_LEN;
918         else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
919                 fcret = VERR_CR_ASSOC;
920         else if (assoc_acc->associd.desc_tag !=
921                         cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
922                 fcret = VERR_ASSOC_ID;
923         else if (assoc_acc->associd.desc_len !=
924                         fcnvme_lsdesc_len(
925                                 sizeof(struct fcnvme_lsdesc_assoc_id)))
926                 fcret = VERR_ASSOC_ID_LEN;
927         else if (assoc_acc->connectid.desc_tag !=
928                         cpu_to_be32(FCNVME_LSDESC_CONN_ID))
929                 fcret = VERR_CONN_ID;
930         else if (assoc_acc->connectid.desc_len !=
931                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
932                 fcret = VERR_CONN_ID_LEN;
933
934         if (fcret) {
935                 ret = -EBADF;
936                 dev_err(ctrl->dev,
937                         "q %d connect failed: %s\n",
938                         queue->qnum, validation_errors[fcret]);
939         } else {
940                 ctrl->association_id =
941                         be64_to_cpu(assoc_acc->associd.association_id);
942                 queue->connection_id =
943                         be64_to_cpu(assoc_acc->connectid.connection_id);
944                 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
945         }
946
947 out_free_buffer:
948         kfree(lsop);
949 out_no_memory:
950         if (ret)
951                 dev_err(ctrl->dev,
952                         "queue %d connect admin queue failed (%d).\n",
953                         queue->qnum, ret);
954         return ret;
955 }
956
957 static int
958 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
959                         u16 qsize, u16 ersp_ratio)
960 {
961         struct nvmefc_ls_req_op *lsop;
962         struct nvmefc_ls_req *lsreq;
963         struct fcnvme_ls_cr_conn_rqst *conn_rqst;
964         struct fcnvme_ls_cr_conn_acc *conn_acc;
965         int ret, fcret = 0;
966
967         lsop = kzalloc((sizeof(*lsop) +
968                          ctrl->lport->ops->lsrqst_priv_sz +
969                          sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
970         if (!lsop) {
971                 ret = -ENOMEM;
972                 goto out_no_memory;
973         }
974         lsreq = &lsop->ls_req;
975
976         lsreq->private = (void *)&lsop[1];
977         conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
978                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
979         conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
980
981         conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
982         conn_rqst->desc_list_len = cpu_to_be32(
983                                 sizeof(struct fcnvme_lsdesc_assoc_id) +
984                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
985
986         conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
987         conn_rqst->associd.desc_len =
988                         fcnvme_lsdesc_len(
989                                 sizeof(struct fcnvme_lsdesc_assoc_id));
990         conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
991         conn_rqst->connect_cmd.desc_tag =
992                         cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
993         conn_rqst->connect_cmd.desc_len =
994                         fcnvme_lsdesc_len(
995                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
996         conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
997         conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
998         conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize);
999
1000         lsop->queue = queue;
1001         lsreq->rqstaddr = conn_rqst;
1002         lsreq->rqstlen = sizeof(*conn_rqst);
1003         lsreq->rspaddr = conn_acc;
1004         lsreq->rsplen = sizeof(*conn_acc);
1005         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1006
1007         ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1008         if (ret)
1009                 goto out_free_buffer;
1010
1011         /* process connect LS completion */
1012
1013         /* validate the ACC response */
1014         if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1015                 fcret = VERR_LSACC;
1016         else if (conn_acc->hdr.desc_list_len !=
1017                         fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1018                 fcret = VERR_CR_CONN_ACC_LEN;
1019         else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1020                 fcret = VERR_LSDESC_RQST;
1021         else if (conn_acc->hdr.rqst.desc_len !=
1022                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1023                 fcret = VERR_LSDESC_RQST_LEN;
1024         else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1025                 fcret = VERR_CR_CONN;
1026         else if (conn_acc->connectid.desc_tag !=
1027                         cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1028                 fcret = VERR_CONN_ID;
1029         else if (conn_acc->connectid.desc_len !=
1030                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1031                 fcret = VERR_CONN_ID_LEN;
1032
1033         if (fcret) {
1034                 ret = -EBADF;
1035                 dev_err(ctrl->dev,
1036                         "q %d connect failed: %s\n",
1037                         queue->qnum, validation_errors[fcret]);
1038         } else {
1039                 queue->connection_id =
1040                         be64_to_cpu(conn_acc->connectid.connection_id);
1041                 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1042         }
1043
1044 out_free_buffer:
1045         kfree(lsop);
1046 out_no_memory:
1047         if (ret)
1048                 dev_err(ctrl->dev,
1049                         "queue %d connect command failed (%d).\n",
1050                         queue->qnum, ret);
1051         return ret;
1052 }
1053
1054 static void
1055 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1056 {
1057         struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1058
1059         __nvme_fc_finish_ls_req(lsop);
1060
1061         /* fc-nvme iniator doesn't care about success or failure of cmd */
1062
1063         kfree(lsop);
1064 }
1065
1066 /*
1067  * This routine sends a FC-NVME LS to disconnect (aka terminate)
1068  * the FC-NVME Association.  Terminating the association also
1069  * terminates the FC-NVME connections (per queue, both admin and io
1070  * queues) that are part of the association. E.g. things are torn
1071  * down, and the related FC-NVME Association ID and Connection IDs
1072  * become invalid.
1073  *
1074  * The behavior of the fc-nvme initiator is such that it's
1075  * understanding of the association and connections will implicitly
1076  * be torn down. The action is implicit as it may be due to a loss of
1077  * connectivity with the fc-nvme target, so you may never get a
1078  * response even if you tried.  As such, the action of this routine
1079  * is to asynchronously send the LS, ignore any results of the LS, and
1080  * continue on with terminating the association. If the fc-nvme target
1081  * is present and receives the LS, it too can tear down.
1082  */
1083 static void
1084 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1085 {
1086         struct fcnvme_ls_disconnect_rqst *discon_rqst;
1087         struct fcnvme_ls_disconnect_acc *discon_acc;
1088         struct nvmefc_ls_req_op *lsop;
1089         struct nvmefc_ls_req *lsreq;
1090         int ret;
1091
1092         lsop = kzalloc((sizeof(*lsop) +
1093                          ctrl->lport->ops->lsrqst_priv_sz +
1094                          sizeof(*discon_rqst) + sizeof(*discon_acc)),
1095                         GFP_KERNEL);
1096         if (!lsop)
1097                 /* couldn't sent it... too bad */
1098                 return;
1099
1100         lsreq = &lsop->ls_req;
1101
1102         lsreq->private = (void *)&lsop[1];
1103         discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
1104                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1105         discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
1106
1107         discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
1108         discon_rqst->desc_list_len = cpu_to_be32(
1109                                 sizeof(struct fcnvme_lsdesc_assoc_id) +
1110                                 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1111
1112         discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1113         discon_rqst->associd.desc_len =
1114                         fcnvme_lsdesc_len(
1115                                 sizeof(struct fcnvme_lsdesc_assoc_id));
1116
1117         discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1118
1119         discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1120                                                 FCNVME_LSDESC_DISCONN_CMD);
1121         discon_rqst->discon_cmd.desc_len =
1122                         fcnvme_lsdesc_len(
1123                                 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1124         discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
1125         discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
1126
1127         lsreq->rqstaddr = discon_rqst;
1128         lsreq->rqstlen = sizeof(*discon_rqst);
1129         lsreq->rspaddr = discon_acc;
1130         lsreq->rsplen = sizeof(*discon_acc);
1131         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1132
1133         ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1134                                 nvme_fc_disconnect_assoc_done);
1135         if (ret)
1136                 kfree(lsop);
1137
1138         /* only meaningful part to terminating the association */
1139         ctrl->association_id = 0;
1140 }
1141
1142
1143 /* *********************** NVME Ctrl Routines **************************** */
1144
1145 static void __nvme_fc_final_op_cleanup(struct request *rq);
1146
1147 static int
1148 nvme_fc_reinit_request(void *data, struct request *rq)
1149 {
1150         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1151         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1152
1153         memset(cmdiu, 0, sizeof(*cmdiu));
1154         cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1155         cmdiu->fc_id = NVME_CMD_FC_ID;
1156         cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1157         memset(&op->rsp_iu, 0, sizeof(op->rsp_iu));
1158
1159         return 0;
1160 }
1161
1162 static void
1163 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1164                 struct nvme_fc_fcp_op *op)
1165 {
1166         fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1167                                 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1168         fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1169                                 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1170
1171         atomic_set(&op->state, FCPOP_STATE_UNINIT);
1172 }
1173
1174 static void
1175 nvme_fc_exit_request(void *data, struct request *rq,
1176                                 unsigned int hctx_idx, unsigned int rq_idx)
1177 {
1178         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1179
1180         return __nvme_fc_exit_request(data, op);
1181 }
1182
1183 static int
1184 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1185 {
1186         int state;
1187
1188         state = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1189         if (state != FCPOP_STATE_ACTIVE) {
1190                 atomic_set(&op->state, state);
1191                 return -ECANCELED;
1192         }
1193
1194         ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1195                                         &ctrl->rport->remoteport,
1196                                         op->queue->lldd_handle,
1197                                         &op->fcp_req);
1198
1199         return 0;
1200 }
1201
1202 static void
1203 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1204 {
1205         struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1206         unsigned long flags;
1207         int i, ret;
1208
1209         for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1210                 if (atomic_read(&aen_op->state) != FCPOP_STATE_ACTIVE)
1211                         continue;
1212
1213                 spin_lock_irqsave(&ctrl->lock, flags);
1214                 if (ctrl->flags & FCCTRL_TERMIO) {
1215                         ctrl->iocnt++;
1216                         aen_op->flags |= FCOP_FLAGS_TERMIO;
1217                 }
1218                 spin_unlock_irqrestore(&ctrl->lock, flags);
1219
1220                 ret = __nvme_fc_abort_op(ctrl, aen_op);
1221                 if (ret) {
1222                         /*
1223                          * if __nvme_fc_abort_op failed the io wasn't
1224                          * active. Thus this call path is running in
1225                          * parallel to the io complete. Treat as non-error.
1226                          */
1227
1228                         /* back out the flags/counters */
1229                         spin_lock_irqsave(&ctrl->lock, flags);
1230                         if (ctrl->flags & FCCTRL_TERMIO)
1231                                 ctrl->iocnt--;
1232                         aen_op->flags &= ~FCOP_FLAGS_TERMIO;
1233                         spin_unlock_irqrestore(&ctrl->lock, flags);
1234                         return;
1235                 }
1236         }
1237 }
1238
1239 static inline int
1240 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1241                 struct nvme_fc_fcp_op *op)
1242 {
1243         unsigned long flags;
1244         bool complete_rq = false;
1245
1246         spin_lock_irqsave(&ctrl->lock, flags);
1247         if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) {
1248                 if (ctrl->flags & FCCTRL_TERMIO)
1249                         ctrl->iocnt--;
1250         }
1251         if (op->flags & FCOP_FLAGS_RELEASED)
1252                 complete_rq = true;
1253         else
1254                 op->flags |= FCOP_FLAGS_COMPLETE;
1255         spin_unlock_irqrestore(&ctrl->lock, flags);
1256
1257         return complete_rq;
1258 }
1259
1260 static void
1261 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1262 {
1263         struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1264         struct request *rq = op->rq;
1265         struct nvmefc_fcp_req *freq = &op->fcp_req;
1266         struct nvme_fc_ctrl *ctrl = op->ctrl;
1267         struct nvme_fc_queue *queue = op->queue;
1268         struct nvme_completion *cqe = &op->rsp_iu.cqe;
1269         struct nvme_command *sqe = &op->cmd_iu.sqe;
1270         __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1271         union nvme_result result;
1272         bool complete_rq;
1273
1274         /*
1275          * WARNING:
1276          * The current linux implementation of a nvme controller
1277          * allocates a single tag set for all io queues and sizes
1278          * the io queues to fully hold all possible tags. Thus, the
1279          * implementation does not reference or care about the sqhd
1280          * value as it never needs to use the sqhd/sqtail pointers
1281          * for submission pacing.
1282          *
1283          * This affects the FC-NVME implementation in two ways:
1284          * 1) As the value doesn't matter, we don't need to waste
1285          *    cycles extracting it from ERSPs and stamping it in the
1286          *    cases where the transport fabricates CQEs on successful
1287          *    completions.
1288          * 2) The FC-NVME implementation requires that delivery of
1289          *    ERSP completions are to go back to the nvme layer in order
1290          *    relative to the rsn, such that the sqhd value will always
1291          *    be "in order" for the nvme layer. As the nvme layer in
1292          *    linux doesn't care about sqhd, there's no need to return
1293          *    them in order.
1294          *
1295          * Additionally:
1296          * As the core nvme layer in linux currently does not look at
1297          * every field in the cqe - in cases where the FC transport must
1298          * fabricate a CQE, the following fields will not be set as they
1299          * are not referenced:
1300          *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1301          */
1302
1303         fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1304                                 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1305
1306         if (atomic_read(&op->state) == FCPOP_STATE_ABORTED)
1307                 status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1308         else if (freq->status)
1309                 status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1310
1311         /*
1312          * For the linux implementation, if we have an unsuccesful
1313          * status, they blk-mq layer can typically be called with the
1314          * non-zero status and the content of the cqe isn't important.
1315          */
1316         if (status)
1317                 goto done;
1318
1319         /*
1320          * command completed successfully relative to the wire
1321          * protocol. However, validate anything received and
1322          * extract the status and result from the cqe (create it
1323          * where necessary).
1324          */
1325
1326         switch (freq->rcv_rsplen) {
1327
1328         case 0:
1329         case NVME_FC_SIZEOF_ZEROS_RSP:
1330                 /*
1331                  * No response payload or 12 bytes of payload (which
1332                  * should all be zeros) are considered successful and
1333                  * no payload in the CQE by the transport.
1334                  */
1335                 if (freq->transferred_length !=
1336                         be32_to_cpu(op->cmd_iu.data_len)) {
1337                         status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1338                         goto done;
1339                 }
1340                 result.u64 = 0;
1341                 break;
1342
1343         case sizeof(struct nvme_fc_ersp_iu):
1344                 /*
1345                  * The ERSP IU contains a full completion with CQE.
1346                  * Validate ERSP IU and look at cqe.
1347                  */
1348                 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1349                                         (freq->rcv_rsplen / 4) ||
1350                              be32_to_cpu(op->rsp_iu.xfrd_len) !=
1351                                         freq->transferred_length ||
1352                              op->rsp_iu.status_code ||
1353                              sqe->common.command_id != cqe->command_id)) {
1354                         status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1355                         goto done;
1356                 }
1357                 result = cqe->result;
1358                 status = cqe->status;
1359                 break;
1360
1361         default:
1362                 status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1363                 goto done;
1364         }
1365
1366 done:
1367         if (op->flags & FCOP_FLAGS_AEN) {
1368                 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
1369                 complete_rq = __nvme_fc_fcpop_chk_teardowns(ctrl, op);
1370                 atomic_set(&op->state, FCPOP_STATE_IDLE);
1371                 op->flags = FCOP_FLAGS_AEN;     /* clear other flags */
1372                 nvme_fc_ctrl_put(ctrl);
1373                 return;
1374         }
1375
1376         complete_rq = __nvme_fc_fcpop_chk_teardowns(ctrl, op);
1377         if (!complete_rq) {
1378                 if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) {
1379                         status = cpu_to_le16(NVME_SC_ABORT_REQ);
1380                         if (blk_queue_dying(rq->q))
1381                                 status |= cpu_to_le16(NVME_SC_DNR);
1382                 }
1383                 nvme_end_request(rq, status, result);
1384         } else
1385                 __nvme_fc_final_op_cleanup(rq);
1386 }
1387
1388 static int
1389 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1390                 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1391                 struct request *rq, u32 rqno)
1392 {
1393         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1394         int ret = 0;
1395
1396         memset(op, 0, sizeof(*op));
1397         op->fcp_req.cmdaddr = &op->cmd_iu;
1398         op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1399         op->fcp_req.rspaddr = &op->rsp_iu;
1400         op->fcp_req.rsplen = sizeof(op->rsp_iu);
1401         op->fcp_req.done = nvme_fc_fcpio_done;
1402         op->fcp_req.first_sgl = (struct scatterlist *)&op[1];
1403         op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE];
1404         op->ctrl = ctrl;
1405         op->queue = queue;
1406         op->rq = rq;
1407         op->rqno = rqno;
1408
1409         cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1410         cmdiu->fc_id = NVME_CMD_FC_ID;
1411         cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1412
1413         op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1414                                 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1415         if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1416                 dev_err(ctrl->dev,
1417                         "FCP Op failed - cmdiu dma mapping failed.\n");
1418                 ret = EFAULT;
1419                 goto out_on_error;
1420         }
1421
1422         op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1423                                 &op->rsp_iu, sizeof(op->rsp_iu),
1424                                 DMA_FROM_DEVICE);
1425         if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1426                 dev_err(ctrl->dev,
1427                         "FCP Op failed - rspiu dma mapping failed.\n");
1428                 ret = EFAULT;
1429         }
1430
1431         atomic_set(&op->state, FCPOP_STATE_IDLE);
1432 out_on_error:
1433         return ret;
1434 }
1435
1436 static int
1437 nvme_fc_init_request(void *data, struct request *rq,
1438                                 unsigned int hctx_idx, unsigned int rq_idx,
1439                                 unsigned int numa_node)
1440 {
1441         struct nvme_fc_ctrl *ctrl = data;
1442         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1443         struct nvme_fc_queue *queue = &ctrl->queues[hctx_idx+1];
1444
1445         return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1446 }
1447
1448 static int
1449 nvme_fc_init_admin_request(void *data, struct request *rq,
1450                                 unsigned int hctx_idx, unsigned int rq_idx,
1451                                 unsigned int numa_node)
1452 {
1453         struct nvme_fc_ctrl *ctrl = data;
1454         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1455         struct nvme_fc_queue *queue = &ctrl->queues[0];
1456
1457         return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1458 }
1459
1460 static int
1461 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1462 {
1463         struct nvme_fc_fcp_op *aen_op;
1464         struct nvme_fc_cmd_iu *cmdiu;
1465         struct nvme_command *sqe;
1466         void *private;
1467         int i, ret;
1468
1469         aen_op = ctrl->aen_ops;
1470         for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1471                 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
1472                                                 GFP_KERNEL);
1473                 if (!private)
1474                         return -ENOMEM;
1475
1476                 cmdiu = &aen_op->cmd_iu;
1477                 sqe = &cmdiu->sqe;
1478                 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1479                                 aen_op, (struct request *)NULL,
1480                                 (AEN_CMDID_BASE + i));
1481                 if (ret) {
1482                         kfree(private);
1483                         return ret;
1484                 }
1485
1486                 aen_op->flags = FCOP_FLAGS_AEN;
1487                 aen_op->fcp_req.first_sgl = NULL; /* no sg list */
1488                 aen_op->fcp_req.private = private;
1489
1490                 memset(sqe, 0, sizeof(*sqe));
1491                 sqe->common.opcode = nvme_admin_async_event;
1492                 /* Note: core layer may overwrite the sqe.command_id value */
1493                 sqe->common.command_id = AEN_CMDID_BASE + i;
1494         }
1495         return 0;
1496 }
1497
1498 static void
1499 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
1500 {
1501         struct nvme_fc_fcp_op *aen_op;
1502         int i;
1503
1504         aen_op = ctrl->aen_ops;
1505         for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1506                 if (!aen_op->fcp_req.private)
1507                         continue;
1508
1509                 __nvme_fc_exit_request(ctrl, aen_op);
1510
1511                 kfree(aen_op->fcp_req.private);
1512                 aen_op->fcp_req.private = NULL;
1513         }
1514 }
1515
1516 static inline void
1517 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1518                 unsigned int qidx)
1519 {
1520         struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1521
1522         hctx->driver_data = queue;
1523         queue->hctx = hctx;
1524 }
1525
1526 static int
1527 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1528                 unsigned int hctx_idx)
1529 {
1530         struct nvme_fc_ctrl *ctrl = data;
1531
1532         __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1533
1534         return 0;
1535 }
1536
1537 static int
1538 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1539                 unsigned int hctx_idx)
1540 {
1541         struct nvme_fc_ctrl *ctrl = data;
1542
1543         __nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1544
1545         return 0;
1546 }
1547
1548 static void
1549 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx, size_t queue_size)
1550 {
1551         struct nvme_fc_queue *queue;
1552
1553         queue = &ctrl->queues[idx];
1554         memset(queue, 0, sizeof(*queue));
1555         queue->ctrl = ctrl;
1556         queue->qnum = idx;
1557         atomic_set(&queue->csn, 1);
1558         queue->dev = ctrl->dev;
1559
1560         if (idx > 0)
1561                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1562         else
1563                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
1564
1565         queue->queue_size = queue_size;
1566
1567         /*
1568          * Considered whether we should allocate buffers for all SQEs
1569          * and CQEs and dma map them - mapping their respective entries
1570          * into the request structures (kernel vm addr and dma address)
1571          * thus the driver could use the buffers/mappings directly.
1572          * It only makes sense if the LLDD would use them for its
1573          * messaging api. It's very unlikely most adapter api's would use
1574          * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1575          * structures were used instead.
1576          */
1577 }
1578
1579 /*
1580  * This routine terminates a queue at the transport level.
1581  * The transport has already ensured that all outstanding ios on
1582  * the queue have been terminated.
1583  * The transport will send a Disconnect LS request to terminate
1584  * the queue's connection. Termination of the admin queue will also
1585  * terminate the association at the target.
1586  */
1587 static void
1588 nvme_fc_free_queue(struct nvme_fc_queue *queue)
1589 {
1590         if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1591                 return;
1592
1593         /*
1594          * Current implementation never disconnects a single queue.
1595          * It always terminates a whole association. So there is never
1596          * a disconnect(queue) LS sent to the target.
1597          */
1598
1599         queue->connection_id = 0;
1600         clear_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1601 }
1602
1603 static void
1604 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1605         struct nvme_fc_queue *queue, unsigned int qidx)
1606 {
1607         if (ctrl->lport->ops->delete_queue)
1608                 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1609                                 queue->lldd_handle);
1610         queue->lldd_handle = NULL;
1611 }
1612
1613 static void
1614 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1615 {
1616         int i;
1617
1618         for (i = 1; i < ctrl->queue_count; i++)
1619                 nvme_fc_free_queue(&ctrl->queues[i]);
1620 }
1621
1622 static int
1623 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1624         struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1625 {
1626         int ret = 0;
1627
1628         queue->lldd_handle = NULL;
1629         if (ctrl->lport->ops->create_queue)
1630                 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1631                                 qidx, qsize, &queue->lldd_handle);
1632
1633         return ret;
1634 }
1635
1636 static void
1637 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1638 {
1639         struct nvme_fc_queue *queue = &ctrl->queues[ctrl->queue_count - 1];
1640         int i;
1641
1642         for (i = ctrl->queue_count - 1; i >= 1; i--, queue--)
1643                 __nvme_fc_delete_hw_queue(ctrl, queue, i);
1644 }
1645
1646 static int
1647 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1648 {
1649         struct nvme_fc_queue *queue = &ctrl->queues[1];
1650         int i, ret;
1651
1652         for (i = 1; i < ctrl->queue_count; i++, queue++) {
1653                 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1654                 if (ret)
1655                         goto delete_queues;
1656         }
1657
1658         return 0;
1659
1660 delete_queues:
1661         for (; i >= 0; i--)
1662                 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
1663         return ret;
1664 }
1665
1666 static int
1667 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1668 {
1669         int i, ret = 0;
1670
1671         for (i = 1; i < ctrl->queue_count; i++) {
1672                 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
1673                                         (qsize / 5));
1674                 if (ret)
1675                         break;
1676                 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
1677                 if (ret)
1678                         break;
1679         }
1680
1681         return ret;
1682 }
1683
1684 static void
1685 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
1686 {
1687         int i;
1688
1689         for (i = 1; i < ctrl->queue_count; i++)
1690                 nvme_fc_init_queue(ctrl, i, ctrl->ctrl.sqsize);
1691 }
1692
1693 static void
1694 nvme_fc_ctrl_free(struct kref *ref)
1695 {
1696         struct nvme_fc_ctrl *ctrl =
1697                 container_of(ref, struct nvme_fc_ctrl, ref);
1698         unsigned long flags;
1699
1700         if (ctrl->ctrl.tagset) {
1701                 blk_cleanup_queue(ctrl->ctrl.connect_q);
1702                 blk_mq_free_tag_set(&ctrl->tag_set);
1703         }
1704
1705         /* remove from rport list */
1706         spin_lock_irqsave(&ctrl->rport->lock, flags);
1707         list_del(&ctrl->ctrl_list);
1708         spin_unlock_irqrestore(&ctrl->rport->lock, flags);
1709
1710         blk_cleanup_queue(ctrl->ctrl.admin_q);
1711         blk_mq_free_tag_set(&ctrl->admin_tag_set);
1712
1713         kfree(ctrl->queues);
1714
1715         put_device(ctrl->dev);
1716         nvme_fc_rport_put(ctrl->rport);
1717
1718         ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
1719         if (ctrl->ctrl.opts)
1720                 nvmf_free_options(ctrl->ctrl.opts);
1721         kfree(ctrl);
1722 }
1723
1724 static void
1725 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
1726 {
1727         kref_put(&ctrl->ref, nvme_fc_ctrl_free);
1728 }
1729
1730 static int
1731 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
1732 {
1733         return kref_get_unless_zero(&ctrl->ref);
1734 }
1735
1736 /*
1737  * All accesses from nvme core layer done - can now free the
1738  * controller. Called after last nvme_put_ctrl() call
1739  */
1740 static void
1741 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
1742 {
1743         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
1744
1745         WARN_ON(nctrl != &ctrl->ctrl);
1746
1747         nvme_fc_ctrl_put(ctrl);
1748 }
1749
1750 static void
1751 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
1752 {
1753         dev_warn(ctrl->ctrl.device,
1754                 "NVME-FC{%d}: transport association error detected: %s\n",
1755                 ctrl->cnum, errmsg);
1756         dev_info(ctrl->ctrl.device,
1757                 "NVME-FC{%d}: resetting controller\n", ctrl->cnum);
1758
1759         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) {
1760                 dev_err(ctrl->ctrl.device,
1761                         "NVME-FC{%d}: error_recovery: Couldn't change state "
1762                         "to RECONNECTING\n", ctrl->cnum);
1763                 return;
1764         }
1765
1766         if (!queue_work(nvme_fc_wq, &ctrl->reset_work))
1767                 dev_err(ctrl->ctrl.device,
1768                         "NVME-FC{%d}: error_recovery: Failed to schedule "
1769                         "reset work\n", ctrl->cnum);
1770 }
1771
1772 static enum blk_eh_timer_return
1773 nvme_fc_timeout(struct request *rq, bool reserved)
1774 {
1775         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1776         struct nvme_fc_ctrl *ctrl = op->ctrl;
1777         int ret;
1778
1779         if (reserved)
1780                 return BLK_EH_RESET_TIMER;
1781
1782         ret = __nvme_fc_abort_op(ctrl, op);
1783         if (ret)
1784                 /* io wasn't active to abort consider it done */
1785                 return BLK_EH_HANDLED;
1786
1787         /*
1788          * we can't individually ABTS an io without affecting the queue,
1789          * thus killing the queue, adn thus the association.
1790          * So resolve by performing a controller reset, which will stop
1791          * the host/io stack, terminate the association on the link,
1792          * and recreate an association on the link.
1793          */
1794         nvme_fc_error_recovery(ctrl, "io timeout error");
1795
1796         return BLK_EH_HANDLED;
1797 }
1798
1799 static int
1800 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
1801                 struct nvme_fc_fcp_op *op)
1802 {
1803         struct nvmefc_fcp_req *freq = &op->fcp_req;
1804         enum dma_data_direction dir;
1805         int ret;
1806
1807         freq->sg_cnt = 0;
1808
1809         if (!blk_rq_payload_bytes(rq))
1810                 return 0;
1811
1812         freq->sg_table.sgl = freq->first_sgl;
1813         ret = sg_alloc_table_chained(&freq->sg_table,
1814                         blk_rq_nr_phys_segments(rq), freq->sg_table.sgl);
1815         if (ret)
1816                 return -ENOMEM;
1817
1818         op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
1819         WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
1820         dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
1821         freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
1822                                 op->nents, dir);
1823         if (unlikely(freq->sg_cnt <= 0)) {
1824                 sg_free_table_chained(&freq->sg_table, true);
1825                 freq->sg_cnt = 0;
1826                 return -EFAULT;
1827         }
1828
1829         /*
1830          * TODO: blk_integrity_rq(rq)  for DIF
1831          */
1832         return 0;
1833 }
1834
1835 static void
1836 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
1837                 struct nvme_fc_fcp_op *op)
1838 {
1839         struct nvmefc_fcp_req *freq = &op->fcp_req;
1840
1841         if (!freq->sg_cnt)
1842                 return;
1843
1844         fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
1845                                 ((rq_data_dir(rq) == WRITE) ?
1846                                         DMA_TO_DEVICE : DMA_FROM_DEVICE));
1847
1848         nvme_cleanup_cmd(rq);
1849
1850         sg_free_table_chained(&freq->sg_table, true);
1851
1852         freq->sg_cnt = 0;
1853 }
1854
1855 /*
1856  * In FC, the queue is a logical thing. At transport connect, the target
1857  * creates its "queue" and returns a handle that is to be given to the
1858  * target whenever it posts something to the corresponding SQ.  When an
1859  * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
1860  * command contained within the SQE, an io, and assigns a FC exchange
1861  * to it. The SQE and the associated SQ handle are sent in the initial
1862  * CMD IU sents on the exchange. All transfers relative to the io occur
1863  * as part of the exchange.  The CQE is the last thing for the io,
1864  * which is transferred (explicitly or implicitly) with the RSP IU
1865  * sent on the exchange. After the CQE is received, the FC exchange is
1866  * terminaed and the Exchange may be used on a different io.
1867  *
1868  * The transport to LLDD api has the transport making a request for a
1869  * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
1870  * resource and transfers the command. The LLDD will then process all
1871  * steps to complete the io. Upon completion, the transport done routine
1872  * is called.
1873  *
1874  * So - while the operation is outstanding to the LLDD, there is a link
1875  * level FC exchange resource that is also outstanding. This must be
1876  * considered in all cleanup operations.
1877  */
1878 static int
1879 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1880         struct nvme_fc_fcp_op *op, u32 data_len,
1881         enum nvmefc_fcp_datadir io_dir)
1882 {
1883         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1884         struct nvme_command *sqe = &cmdiu->sqe;
1885         u32 csn;
1886         int ret;
1887
1888         /*
1889          * before attempting to send the io, check to see if we believe
1890          * the target device is present
1891          */
1892         if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1893                 return BLK_MQ_RQ_QUEUE_ERROR;
1894
1895         if (!nvme_fc_ctrl_get(ctrl))
1896                 return BLK_MQ_RQ_QUEUE_ERROR;
1897
1898         /* format the FC-NVME CMD IU and fcp_req */
1899         cmdiu->connection_id = cpu_to_be64(queue->connection_id);
1900         csn = atomic_inc_return(&queue->csn);
1901         cmdiu->csn = cpu_to_be32(csn);
1902         cmdiu->data_len = cpu_to_be32(data_len);
1903         switch (io_dir) {
1904         case NVMEFC_FCP_WRITE:
1905                 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
1906                 break;
1907         case NVMEFC_FCP_READ:
1908                 cmdiu->flags = FCNVME_CMD_FLAGS_READ;
1909                 break;
1910         case NVMEFC_FCP_NODATA:
1911                 cmdiu->flags = 0;
1912                 break;
1913         }
1914         op->fcp_req.payload_length = data_len;
1915         op->fcp_req.io_dir = io_dir;
1916         op->fcp_req.transferred_length = 0;
1917         op->fcp_req.rcv_rsplen = 0;
1918         op->fcp_req.status = NVME_SC_SUCCESS;
1919         op->fcp_req.sqid = cpu_to_le16(queue->qnum);
1920
1921         /*
1922          * validate per fabric rules, set fields mandated by fabric spec
1923          * as well as those by FC-NVME spec.
1924          */
1925         WARN_ON_ONCE(sqe->common.metadata);
1926         WARN_ON_ONCE(sqe->common.dptr.prp1);
1927         WARN_ON_ONCE(sqe->common.dptr.prp2);
1928         sqe->common.flags |= NVME_CMD_SGL_METABUF;
1929
1930         /*
1931          * format SQE DPTR field per FC-NVME rules
1932          *    type=data block descr; subtype=offset;
1933          *    offset is currently 0.
1934          */
1935         sqe->rw.dptr.sgl.type = NVME_SGL_FMT_OFFSET;
1936         sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
1937         sqe->rw.dptr.sgl.addr = 0;
1938
1939         if (!(op->flags & FCOP_FLAGS_AEN)) {
1940                 ret = nvme_fc_map_data(ctrl, op->rq, op);
1941                 if (ret < 0) {
1942                         nvme_cleanup_cmd(op->rq);
1943                         nvme_fc_ctrl_put(ctrl);
1944                         return (ret == -ENOMEM || ret == -EAGAIN) ?
1945                                 BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR;
1946                 }
1947         }
1948
1949         fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
1950                                   sizeof(op->cmd_iu), DMA_TO_DEVICE);
1951
1952         atomic_set(&op->state, FCPOP_STATE_ACTIVE);
1953
1954         if (!(op->flags & FCOP_FLAGS_AEN))
1955                 blk_mq_start_request(op->rq);
1956
1957         ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
1958                                         &ctrl->rport->remoteport,
1959                                         queue->lldd_handle, &op->fcp_req);
1960
1961         if (ret) {
1962                 if (op->rq) {                   /* normal request */
1963                         nvme_fc_unmap_data(ctrl, op->rq, op);
1964                         nvme_cleanup_cmd(op->rq);
1965                 }
1966                 /* else - aen. no cleanup needed */
1967
1968                 nvme_fc_ctrl_put(ctrl);
1969
1970                 if (ret != -EBUSY)
1971                         return BLK_MQ_RQ_QUEUE_ERROR;
1972
1973                 if (op->rq) {
1974                         blk_mq_stop_hw_queues(op->rq->q);
1975                         blk_mq_delay_queue(queue->hctx, NVMEFC_QUEUE_DELAY);
1976                 }
1977                 return BLK_MQ_RQ_QUEUE_BUSY;
1978         }
1979
1980         return BLK_MQ_RQ_QUEUE_OK;
1981 }
1982
1983 static int
1984 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
1985                         const struct blk_mq_queue_data *bd)
1986 {
1987         struct nvme_ns *ns = hctx->queue->queuedata;
1988         struct nvme_fc_queue *queue = hctx->driver_data;
1989         struct nvme_fc_ctrl *ctrl = queue->ctrl;
1990         struct request *rq = bd->rq;
1991         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1992         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1993         struct nvme_command *sqe = &cmdiu->sqe;
1994         enum nvmefc_fcp_datadir io_dir;
1995         u32 data_len;
1996         int ret;
1997
1998         ret = nvme_setup_cmd(ns, rq, sqe);
1999         if (ret)
2000                 return ret;
2001
2002         data_len = blk_rq_payload_bytes(rq);
2003         if (data_len)
2004                 io_dir = ((rq_data_dir(rq) == WRITE) ?
2005                                         NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2006         else
2007                 io_dir = NVMEFC_FCP_NODATA;
2008
2009         return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2010 }
2011
2012 static struct blk_mq_tags *
2013 nvme_fc_tagset(struct nvme_fc_queue *queue)
2014 {
2015         if (queue->qnum == 0)
2016                 return queue->ctrl->admin_tag_set.tags[queue->qnum];
2017
2018         return queue->ctrl->tag_set.tags[queue->qnum - 1];
2019 }
2020
2021 static int
2022 nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
2023
2024 {
2025         struct nvme_fc_queue *queue = hctx->driver_data;
2026         struct nvme_fc_ctrl *ctrl = queue->ctrl;
2027         struct request *req;
2028         struct nvme_fc_fcp_op *op;
2029
2030         req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag);
2031         if (!req)
2032                 return 0;
2033
2034         op = blk_mq_rq_to_pdu(req);
2035
2036         if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) &&
2037                  (ctrl->lport->ops->poll_queue))
2038                 ctrl->lport->ops->poll_queue(&ctrl->lport->localport,
2039                                                  queue->lldd_handle);
2040
2041         return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE));
2042 }
2043
2044 static void
2045 nvme_fc_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
2046 {
2047         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2048         struct nvme_fc_fcp_op *aen_op;
2049         unsigned long flags;
2050         bool terminating = false;
2051         int ret;
2052
2053         if (aer_idx > NVME_FC_NR_AEN_COMMANDS)
2054                 return;
2055
2056         spin_lock_irqsave(&ctrl->lock, flags);
2057         if (ctrl->flags & FCCTRL_TERMIO)
2058                 terminating = true;
2059         spin_unlock_irqrestore(&ctrl->lock, flags);
2060
2061         if (terminating)
2062                 return;
2063
2064         aen_op = &ctrl->aen_ops[aer_idx];
2065
2066         ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2067                                         NVMEFC_FCP_NODATA);
2068         if (ret)
2069                 dev_err(ctrl->ctrl.device,
2070                         "failed async event work [%d]\n", aer_idx);
2071 }
2072
2073 static void
2074 __nvme_fc_final_op_cleanup(struct request *rq)
2075 {
2076         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2077         struct nvme_fc_ctrl *ctrl = op->ctrl;
2078
2079         atomic_set(&op->state, FCPOP_STATE_IDLE);
2080         op->flags &= ~(FCOP_FLAGS_TERMIO | FCOP_FLAGS_RELEASED |
2081                         FCOP_FLAGS_COMPLETE);
2082
2083         nvme_cleanup_cmd(rq);
2084         nvme_fc_unmap_data(ctrl, rq, op);
2085         nvme_complete_rq(rq);
2086         nvme_fc_ctrl_put(ctrl);
2087
2088 }
2089
2090 static void
2091 nvme_fc_complete_rq(struct request *rq)
2092 {
2093         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2094         struct nvme_fc_ctrl *ctrl = op->ctrl;
2095         unsigned long flags;
2096         bool completed = false;
2097
2098         /*
2099          * the core layer, on controller resets after calling
2100          * nvme_shutdown_ctrl(), calls complete_rq without our
2101          * calling blk_mq_complete_request(), thus there may still
2102          * be live i/o outstanding with the LLDD. Means transport has
2103          * to track complete calls vs fcpio_done calls to know what
2104          * path to take on completes and dones.
2105          */
2106         spin_lock_irqsave(&ctrl->lock, flags);
2107         if (op->flags & FCOP_FLAGS_COMPLETE)
2108                 completed = true;
2109         else
2110                 op->flags |= FCOP_FLAGS_RELEASED;
2111         spin_unlock_irqrestore(&ctrl->lock, flags);
2112
2113         if (completed)
2114                 __nvme_fc_final_op_cleanup(rq);
2115 }
2116
2117 /*
2118  * This routine is used by the transport when it needs to find active
2119  * io on a queue that is to be terminated. The transport uses
2120  * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2121  * this routine to kill them on a 1 by 1 basis.
2122  *
2123  * As FC allocates FC exchange for each io, the transport must contact
2124  * the LLDD to terminate the exchange, thus releasing the FC exchange.
2125  * After terminating the exchange the LLDD will call the transport's
2126  * normal io done path for the request, but it will have an aborted
2127  * status. The done path will return the io request back to the block
2128  * layer with an error status.
2129  */
2130 static void
2131 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2132 {
2133         struct nvme_ctrl *nctrl = data;
2134         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2135         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2136         unsigned long flags;
2137         int status;
2138
2139         if (!blk_mq_request_started(req))
2140                 return;
2141
2142         spin_lock_irqsave(&ctrl->lock, flags);
2143         if (ctrl->flags & FCCTRL_TERMIO) {
2144                 ctrl->iocnt++;
2145                 op->flags |= FCOP_FLAGS_TERMIO;
2146         }
2147         spin_unlock_irqrestore(&ctrl->lock, flags);
2148
2149         status = __nvme_fc_abort_op(ctrl, op);
2150         if (status) {
2151                 /*
2152                  * if __nvme_fc_abort_op failed the io wasn't
2153                  * active. Thus this call path is running in
2154                  * parallel to the io complete. Treat as non-error.
2155                  */
2156
2157                 /* back out the flags/counters */
2158                 spin_lock_irqsave(&ctrl->lock, flags);
2159                 if (ctrl->flags & FCCTRL_TERMIO)
2160                         ctrl->iocnt--;
2161                 op->flags &= ~FCOP_FLAGS_TERMIO;
2162                 spin_unlock_irqrestore(&ctrl->lock, flags);
2163                 return;
2164         }
2165 }
2166
2167
2168 static const struct blk_mq_ops nvme_fc_mq_ops = {
2169         .queue_rq       = nvme_fc_queue_rq,
2170         .complete       = nvme_fc_complete_rq,
2171         .init_request   = nvme_fc_init_request,
2172         .exit_request   = nvme_fc_exit_request,
2173         .reinit_request = nvme_fc_reinit_request,
2174         .init_hctx      = nvme_fc_init_hctx,
2175         .poll           = nvme_fc_poll,
2176         .timeout        = nvme_fc_timeout,
2177 };
2178
2179 static int
2180 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2181 {
2182         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2183         int ret;
2184
2185         ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues);
2186         if (ret) {
2187                 dev_info(ctrl->ctrl.device,
2188                         "set_queue_count failed: %d\n", ret);
2189                 return ret;
2190         }
2191
2192         ctrl->queue_count = opts->nr_io_queues + 1;
2193         if (!opts->nr_io_queues)
2194                 return 0;
2195
2196         dev_info(ctrl->ctrl.device, "creating %d I/O queues.\n",
2197                         opts->nr_io_queues);
2198
2199         nvme_fc_init_io_queues(ctrl);
2200
2201         memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2202         ctrl->tag_set.ops = &nvme_fc_mq_ops;
2203         ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2204         ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2205         ctrl->tag_set.numa_node = NUMA_NO_NODE;
2206         ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2207         ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2208                                         (SG_CHUNK_SIZE *
2209                                                 sizeof(struct scatterlist)) +
2210                                         ctrl->lport->ops->fcprqst_priv_sz;
2211         ctrl->tag_set.driver_data = ctrl;
2212         ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1;
2213         ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2214
2215         ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2216         if (ret)
2217                 return ret;
2218
2219         ctrl->ctrl.tagset = &ctrl->tag_set;
2220
2221         ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2222         if (IS_ERR(ctrl->ctrl.connect_q)) {
2223                 ret = PTR_ERR(ctrl->ctrl.connect_q);
2224                 goto out_free_tag_set;
2225         }
2226
2227         ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2228         if (ret)
2229                 goto out_cleanup_blk_queue;
2230
2231         ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2232         if (ret)
2233                 goto out_delete_hw_queues;
2234
2235         return 0;
2236
2237 out_delete_hw_queues:
2238         nvme_fc_delete_hw_io_queues(ctrl);
2239 out_cleanup_blk_queue:
2240         nvme_stop_keep_alive(&ctrl->ctrl);
2241         blk_cleanup_queue(ctrl->ctrl.connect_q);
2242 out_free_tag_set:
2243         blk_mq_free_tag_set(&ctrl->tag_set);
2244         nvme_fc_free_io_queues(ctrl);
2245
2246         /* force put free routine to ignore io queues */
2247         ctrl->ctrl.tagset = NULL;
2248
2249         return ret;
2250 }
2251
2252 static int
2253 nvme_fc_reinit_io_queues(struct nvme_fc_ctrl *ctrl)
2254 {
2255         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2256         int ret;
2257
2258         ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues);
2259         if (ret) {
2260                 dev_info(ctrl->ctrl.device,
2261                         "set_queue_count failed: %d\n", ret);
2262                 return ret;
2263         }
2264
2265         /* check for io queues existing */
2266         if (ctrl->queue_count == 1)
2267                 return 0;
2268
2269         dev_info(ctrl->ctrl.device, "Recreating %d I/O queues.\n",
2270                         opts->nr_io_queues);
2271
2272         nvme_fc_init_io_queues(ctrl);
2273
2274         ret = blk_mq_reinit_tagset(&ctrl->tag_set);
2275         if (ret)
2276                 goto out_free_io_queues;
2277
2278         ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2279         if (ret)
2280                 goto out_free_io_queues;
2281
2282         ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2283         if (ret)
2284                 goto out_delete_hw_queues;
2285
2286         return 0;
2287
2288 out_delete_hw_queues:
2289         nvme_fc_delete_hw_io_queues(ctrl);
2290 out_free_io_queues:
2291         nvme_fc_free_io_queues(ctrl);
2292         return ret;
2293 }
2294
2295 /*
2296  * This routine restarts the controller on the host side, and
2297  * on the link side, recreates the controller association.
2298  */
2299 static int
2300 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
2301 {
2302         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2303         u32 segs;
2304         int ret;
2305         bool changed;
2306
2307         ctrl->connect_attempts++;
2308
2309         /*
2310          * Create the admin queue
2311          */
2312
2313         nvme_fc_init_queue(ctrl, 0, NVME_FC_AQ_BLKMQ_DEPTH);
2314
2315         ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2316                                 NVME_FC_AQ_BLKMQ_DEPTH);
2317         if (ret)
2318                 goto out_free_queue;
2319
2320         ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2321                                 NVME_FC_AQ_BLKMQ_DEPTH,
2322                                 (NVME_FC_AQ_BLKMQ_DEPTH / 4));
2323         if (ret)
2324                 goto out_delete_hw_queue;
2325
2326         if (ctrl->ctrl.state != NVME_CTRL_NEW)
2327                 blk_mq_start_stopped_hw_queues(ctrl->ctrl.admin_q, true);
2328
2329         ret = nvmf_connect_admin_queue(&ctrl->ctrl);
2330         if (ret)
2331                 goto out_disconnect_admin_queue;
2332
2333         /*
2334          * Check controller capabilities
2335          *
2336          * todo:- add code to check if ctrl attributes changed from
2337          * prior connection values
2338          */
2339
2340         ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap);
2341         if (ret) {
2342                 dev_err(ctrl->ctrl.device,
2343                         "prop_get NVME_REG_CAP failed\n");
2344                 goto out_disconnect_admin_queue;
2345         }
2346
2347         ctrl->ctrl.sqsize =
2348                 min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize);
2349
2350         ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
2351         if (ret)
2352                 goto out_disconnect_admin_queue;
2353
2354         segs = min_t(u32, NVME_FC_MAX_SEGMENTS,
2355                         ctrl->lport->ops->max_sgl_segments);
2356         ctrl->ctrl.max_hw_sectors = (segs - 1) << (PAGE_SHIFT - 9);
2357
2358         ret = nvme_init_identify(&ctrl->ctrl);
2359         if (ret)
2360                 goto out_disconnect_admin_queue;
2361
2362         /* sanity checks */
2363
2364         /* FC-NVME does not have other data in the capsule */
2365         if (ctrl->ctrl.icdoff) {
2366                 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2367                                 ctrl->ctrl.icdoff);
2368                 goto out_disconnect_admin_queue;
2369         }
2370
2371         nvme_start_keep_alive(&ctrl->ctrl);
2372
2373         /* FC-NVME supports normal SGL Data Block Descriptors */
2374
2375         if (opts->queue_size > ctrl->ctrl.maxcmd) {
2376                 /* warn if maxcmd is lower than queue_size */
2377                 dev_warn(ctrl->ctrl.device,
2378                         "queue_size %zu > ctrl maxcmd %u, reducing "
2379                         "to queue_size\n",
2380                         opts->queue_size, ctrl->ctrl.maxcmd);
2381                 opts->queue_size = ctrl->ctrl.maxcmd;
2382         }
2383
2384         ret = nvme_fc_init_aen_ops(ctrl);
2385         if (ret)
2386                 goto out_term_aen_ops;
2387
2388         /*
2389          * Create the io queues
2390          */
2391
2392         if (ctrl->queue_count > 1) {
2393                 if (ctrl->ctrl.state == NVME_CTRL_NEW)
2394                         ret = nvme_fc_create_io_queues(ctrl);
2395                 else
2396                         ret = nvme_fc_reinit_io_queues(ctrl);
2397                 if (ret)
2398                         goto out_term_aen_ops;
2399         }
2400
2401         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2402         WARN_ON_ONCE(!changed);
2403
2404         ctrl->connect_attempts = 0;
2405
2406         kref_get(&ctrl->ctrl.kref);
2407
2408         if (ctrl->queue_count > 1) {
2409                 nvme_start_queues(&ctrl->ctrl);
2410                 nvme_queue_scan(&ctrl->ctrl);
2411                 nvme_queue_async_events(&ctrl->ctrl);
2412         }
2413
2414         return 0;       /* Success */
2415
2416 out_term_aen_ops:
2417         nvme_fc_term_aen_ops(ctrl);
2418         nvme_stop_keep_alive(&ctrl->ctrl);
2419 out_disconnect_admin_queue:
2420         /* send a Disconnect(association) LS to fc-nvme target */
2421         nvme_fc_xmt_disconnect_assoc(ctrl);
2422 out_delete_hw_queue:
2423         __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2424 out_free_queue:
2425         nvme_fc_free_queue(&ctrl->queues[0]);
2426
2427         return ret;
2428 }
2429
2430 /*
2431  * This routine stops operation of the controller on the host side.
2432  * On the host os stack side: Admin and IO queues are stopped,
2433  *   outstanding ios on them terminated via FC ABTS.
2434  * On the link side: the association is terminated.
2435  */
2436 static void
2437 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
2438 {
2439         unsigned long flags;
2440
2441         nvme_stop_keep_alive(&ctrl->ctrl);
2442
2443         spin_lock_irqsave(&ctrl->lock, flags);
2444         ctrl->flags |= FCCTRL_TERMIO;
2445         ctrl->iocnt = 0;
2446         spin_unlock_irqrestore(&ctrl->lock, flags);
2447
2448         /*
2449          * If io queues are present, stop them and terminate all outstanding
2450          * ios on them. As FC allocates FC exchange for each io, the
2451          * transport must contact the LLDD to terminate the exchange,
2452          * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2453          * to tell us what io's are busy and invoke a transport routine
2454          * to kill them with the LLDD.  After terminating the exchange
2455          * the LLDD will call the transport's normal io done path, but it
2456          * will have an aborted status. The done path will return the
2457          * io requests back to the block layer as part of normal completions
2458          * (but with error status).
2459          */
2460         if (ctrl->queue_count > 1) {
2461                 nvme_stop_queues(&ctrl->ctrl);
2462                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
2463                                 nvme_fc_terminate_exchange, &ctrl->ctrl);
2464         }
2465
2466         /*
2467          * Other transports, which don't have link-level contexts bound
2468          * to sqe's, would try to gracefully shutdown the controller by
2469          * writing the registers for shutdown and polling (call
2470          * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2471          * just aborted and we will wait on those contexts, and given
2472          * there was no indication of how live the controlelr is on the
2473          * link, don't send more io to create more contexts for the
2474          * shutdown. Let the controller fail via keepalive failure if
2475          * its still present.
2476          */
2477
2478         /*
2479          * clean up the admin queue. Same thing as above.
2480          * use blk_mq_tagset_busy_itr() and the transport routine to
2481          * terminate the exchanges.
2482          */
2483         blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
2484         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2485                                 nvme_fc_terminate_exchange, &ctrl->ctrl);
2486
2487         /* kill the aens as they are a separate path */
2488         nvme_fc_abort_aen_ops(ctrl);
2489
2490         /* wait for all io that had to be aborted */
2491         spin_lock_irqsave(&ctrl->lock, flags);
2492         while (ctrl->iocnt) {
2493                 spin_unlock_irqrestore(&ctrl->lock, flags);
2494                 msleep(1000);
2495                 spin_lock_irqsave(&ctrl->lock, flags);
2496         }
2497         ctrl->flags &= ~FCCTRL_TERMIO;
2498         spin_unlock_irqrestore(&ctrl->lock, flags);
2499
2500         nvme_fc_term_aen_ops(ctrl);
2501
2502         /*
2503          * send a Disconnect(association) LS to fc-nvme target
2504          * Note: could have been sent at top of process, but
2505          * cleaner on link traffic if after the aborts complete.
2506          * Note: if association doesn't exist, association_id will be 0
2507          */
2508         if (ctrl->association_id)
2509                 nvme_fc_xmt_disconnect_assoc(ctrl);
2510
2511         if (ctrl->ctrl.tagset) {
2512                 nvme_fc_delete_hw_io_queues(ctrl);
2513                 nvme_fc_free_io_queues(ctrl);
2514         }
2515
2516         __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2517         nvme_fc_free_queue(&ctrl->queues[0]);
2518 }
2519
2520 static void
2521 nvme_fc_delete_ctrl_work(struct work_struct *work)
2522 {
2523         struct nvme_fc_ctrl *ctrl =
2524                 container_of(work, struct nvme_fc_ctrl, delete_work);
2525
2526         cancel_work_sync(&ctrl->reset_work);
2527         cancel_delayed_work_sync(&ctrl->connect_work);
2528
2529         /*
2530          * kill the association on the link side.  this will block
2531          * waiting for io to terminate
2532          */
2533         nvme_fc_delete_association(ctrl);
2534
2535         /*
2536          * tear down the controller
2537          * This will result in the last reference on the nvme ctrl to
2538          * expire, calling the transport nvme_fc_nvme_ctrl_freed() callback.
2539          * From there, the transport will tear down it's logical queues and
2540          * association.
2541          */
2542         nvme_uninit_ctrl(&ctrl->ctrl);
2543
2544         nvme_put_ctrl(&ctrl->ctrl);
2545 }
2546
2547 static int
2548 __nvme_fc_del_ctrl(struct nvme_fc_ctrl *ctrl)
2549 {
2550         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
2551                 return -EBUSY;
2552
2553         if (!queue_work(nvme_fc_wq, &ctrl->delete_work))
2554                 return -EBUSY;
2555
2556         return 0;
2557 }
2558
2559 /*
2560  * Request from nvme core layer to delete the controller
2561  */
2562 static int
2563 nvme_fc_del_nvme_ctrl(struct nvme_ctrl *nctrl)
2564 {
2565         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2566         int ret;
2567
2568         if (!kref_get_unless_zero(&ctrl->ctrl.kref))
2569                 return -EBUSY;
2570
2571         ret = __nvme_fc_del_ctrl(ctrl);
2572
2573         if (!ret)
2574                 flush_workqueue(nvme_fc_wq);
2575
2576         nvme_put_ctrl(&ctrl->ctrl);
2577
2578         return ret;
2579 }
2580
2581 static void
2582 nvme_fc_reset_ctrl_work(struct work_struct *work)
2583 {
2584         struct nvme_fc_ctrl *ctrl =
2585                         container_of(work, struct nvme_fc_ctrl, reset_work);
2586         int ret;
2587
2588         /* will block will waiting for io to terminate */
2589         nvme_fc_delete_association(ctrl);
2590
2591         ret = nvme_fc_create_association(ctrl);
2592         if (ret) {
2593                 dev_warn(ctrl->ctrl.device,
2594                         "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2595                         ctrl->cnum, ret);
2596                 if (ctrl->connect_attempts >= NVME_FC_MAX_CONNECT_ATTEMPTS) {
2597                         dev_warn(ctrl->ctrl.device,
2598                                 "NVME-FC{%d}: Max reconnect attempts (%d) "
2599                                 "reached. Removing controller\n",
2600                                 ctrl->cnum, ctrl->connect_attempts);
2601
2602                         if (!nvme_change_ctrl_state(&ctrl->ctrl,
2603                                 NVME_CTRL_DELETING)) {
2604                                 dev_err(ctrl->ctrl.device,
2605                                         "NVME-FC{%d}: failed to change state "
2606                                         "to DELETING\n", ctrl->cnum);
2607                                 return;
2608                         }
2609
2610                         WARN_ON(!queue_work(nvme_fc_wq, &ctrl->delete_work));
2611                         return;
2612                 }
2613
2614                 dev_warn(ctrl->ctrl.device,
2615                         "NVME-FC{%d}: Reconnect attempt in %d seconds.\n",
2616                         ctrl->cnum, ctrl->reconnect_delay);
2617                 queue_delayed_work(nvme_fc_wq, &ctrl->connect_work,
2618                                 ctrl->reconnect_delay * HZ);
2619         } else
2620                 dev_info(ctrl->ctrl.device,
2621                         "NVME-FC{%d}: controller reset complete\n", ctrl->cnum);
2622 }
2623
2624 /*
2625  * called by the nvme core layer, for sysfs interface that requests
2626  * a reset of the nvme controller
2627  */
2628 static int
2629 nvme_fc_reset_nvme_ctrl(struct nvme_ctrl *nctrl)
2630 {
2631         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2632
2633         dev_warn(ctrl->ctrl.device,
2634                 "NVME-FC{%d}: admin requested controller reset\n", ctrl->cnum);
2635
2636         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
2637                 return -EBUSY;
2638
2639         if (!queue_work(nvme_fc_wq, &ctrl->reset_work))
2640                 return -EBUSY;
2641
2642         flush_work(&ctrl->reset_work);
2643
2644         return 0;
2645 }
2646
2647 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
2648         .name                   = "fc",
2649         .module                 = THIS_MODULE,
2650         .is_fabrics             = true,
2651         .reg_read32             = nvmf_reg_read32,
2652         .reg_read64             = nvmf_reg_read64,
2653         .reg_write32            = nvmf_reg_write32,
2654         .reset_ctrl             = nvme_fc_reset_nvme_ctrl,
2655         .free_ctrl              = nvme_fc_nvme_ctrl_freed,
2656         .submit_async_event     = nvme_fc_submit_async_event,
2657         .delete_ctrl            = nvme_fc_del_nvme_ctrl,
2658         .get_subsysnqn          = nvmf_get_subsysnqn,
2659         .get_address            = nvmf_get_address,
2660 };
2661
2662 static void
2663 nvme_fc_connect_ctrl_work(struct work_struct *work)
2664 {
2665         int ret;
2666
2667         struct nvme_fc_ctrl *ctrl =
2668                         container_of(to_delayed_work(work),
2669                                 struct nvme_fc_ctrl, connect_work);
2670
2671         ret = nvme_fc_create_association(ctrl);
2672         if (ret) {
2673                 dev_warn(ctrl->ctrl.device,
2674                         "NVME-FC{%d}: Reconnect attempt failed (%d)\n",
2675                         ctrl->cnum, ret);
2676                 if (ctrl->connect_attempts >= NVME_FC_MAX_CONNECT_ATTEMPTS) {
2677                         dev_warn(ctrl->ctrl.device,
2678                                 "NVME-FC{%d}: Max reconnect attempts (%d) "
2679                                 "reached. Removing controller\n",
2680                                 ctrl->cnum, ctrl->connect_attempts);
2681
2682                         if (!nvme_change_ctrl_state(&ctrl->ctrl,
2683                                 NVME_CTRL_DELETING)) {
2684                                 dev_err(ctrl->ctrl.device,
2685                                         "NVME-FC{%d}: failed to change state "
2686                                         "to DELETING\n", ctrl->cnum);
2687                                 return;
2688                         }
2689
2690                         WARN_ON(!queue_work(nvme_fc_wq, &ctrl->delete_work));
2691                         return;
2692                 }
2693
2694                 dev_warn(ctrl->ctrl.device,
2695                         "NVME-FC{%d}: Reconnect attempt in %d seconds.\n",
2696                         ctrl->cnum, ctrl->reconnect_delay);
2697                 queue_delayed_work(nvme_fc_wq, &ctrl->connect_work,
2698                                 ctrl->reconnect_delay * HZ);
2699         } else
2700                 dev_info(ctrl->ctrl.device,
2701                         "NVME-FC{%d}: controller reconnect complete\n",
2702                         ctrl->cnum);
2703 }
2704
2705
2706 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
2707         .queue_rq       = nvme_fc_queue_rq,
2708         .complete       = nvme_fc_complete_rq,
2709         .init_request   = nvme_fc_init_admin_request,
2710         .exit_request   = nvme_fc_exit_request,
2711         .reinit_request = nvme_fc_reinit_request,
2712         .init_hctx      = nvme_fc_init_admin_hctx,
2713         .timeout        = nvme_fc_timeout,
2714 };
2715
2716
2717 static struct nvme_ctrl *
2718 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
2719         struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
2720 {
2721         struct nvme_fc_ctrl *ctrl;
2722         unsigned long flags;
2723         int ret, idx;
2724
2725         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2726         if (!ctrl) {
2727                 ret = -ENOMEM;
2728                 goto out_fail;
2729         }
2730
2731         idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
2732         if (idx < 0) {
2733                 ret = -ENOSPC;
2734                 goto out_free_ctrl;
2735         }
2736
2737         ctrl->ctrl.opts = opts;
2738         INIT_LIST_HEAD(&ctrl->ctrl_list);
2739         ctrl->lport = lport;
2740         ctrl->rport = rport;
2741         ctrl->dev = lport->dev;
2742         ctrl->cnum = idx;
2743
2744         get_device(ctrl->dev);
2745         kref_init(&ctrl->ref);
2746
2747         INIT_WORK(&ctrl->delete_work, nvme_fc_delete_ctrl_work);
2748         INIT_WORK(&ctrl->reset_work, nvme_fc_reset_ctrl_work);
2749         INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
2750         ctrl->reconnect_delay = opts->reconnect_delay;
2751         spin_lock_init(&ctrl->lock);
2752
2753         /* io queue count */
2754         ctrl->queue_count = min_t(unsigned int,
2755                                 opts->nr_io_queues,
2756                                 lport->ops->max_hw_queues);
2757         opts->nr_io_queues = ctrl->queue_count; /* so opts has valid value */
2758         ctrl->queue_count++;    /* +1 for admin queue */
2759
2760         ctrl->ctrl.sqsize = opts->queue_size - 1;
2761         ctrl->ctrl.kato = opts->kato;
2762
2763         ret = -ENOMEM;
2764         ctrl->queues = kcalloc(ctrl->queue_count, sizeof(struct nvme_fc_queue),
2765                                 GFP_KERNEL);
2766         if (!ctrl->queues)
2767                 goto out_free_ida;
2768
2769         memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
2770         ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
2771         ctrl->admin_tag_set.queue_depth = NVME_FC_AQ_BLKMQ_DEPTH;
2772         ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
2773         ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
2774         ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2775                                         (SG_CHUNK_SIZE *
2776                                                 sizeof(struct scatterlist)) +
2777                                         ctrl->lport->ops->fcprqst_priv_sz;
2778         ctrl->admin_tag_set.driver_data = ctrl;
2779         ctrl->admin_tag_set.nr_hw_queues = 1;
2780         ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
2781
2782         ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
2783         if (ret)
2784                 goto out_free_queues;
2785
2786         ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
2787         if (IS_ERR(ctrl->ctrl.admin_q)) {
2788                 ret = PTR_ERR(ctrl->ctrl.admin_q);
2789                 goto out_free_admin_tag_set;
2790         }
2791
2792         /*
2793          * Would have been nice to init io queues tag set as well.
2794          * However, we require interaction from the controller
2795          * for max io queue count before we can do so.
2796          * Defer this to the connect path.
2797          */
2798
2799         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
2800         if (ret)
2801                 goto out_cleanup_admin_q;
2802
2803         /* at this point, teardown path changes to ref counting on nvme ctrl */
2804
2805         spin_lock_irqsave(&rport->lock, flags);
2806         list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
2807         spin_unlock_irqrestore(&rport->lock, flags);
2808
2809         ret = nvme_fc_create_association(ctrl);
2810         if (ret) {
2811                 ctrl->ctrl.opts = NULL;
2812                 /* initiate nvme ctrl ref counting teardown */
2813                 nvme_uninit_ctrl(&ctrl->ctrl);
2814                 nvme_put_ctrl(&ctrl->ctrl);
2815
2816                 /* as we're past the point where we transition to the ref
2817                  * counting teardown path, if we return a bad pointer here,
2818                  * the calling routine, thinking it's prior to the
2819                  * transition, will do an rport put. Since the teardown
2820                  * path also does a rport put, we do an extra get here to
2821                  * so proper order/teardown happens.
2822                  */
2823                 nvme_fc_rport_get(rport);
2824
2825                 if (ret > 0)
2826                         ret = -EIO;
2827                 return ERR_PTR(ret);
2828         }
2829
2830         dev_info(ctrl->ctrl.device,
2831                 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
2832                 ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
2833
2834         return &ctrl->ctrl;
2835
2836 out_cleanup_admin_q:
2837         blk_cleanup_queue(ctrl->ctrl.admin_q);
2838 out_free_admin_tag_set:
2839         blk_mq_free_tag_set(&ctrl->admin_tag_set);
2840 out_free_queues:
2841         kfree(ctrl->queues);
2842 out_free_ida:
2843         put_device(ctrl->dev);
2844         ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2845 out_free_ctrl:
2846         kfree(ctrl);
2847 out_fail:
2848         /* exit via here doesn't follow ctlr ref points */
2849         return ERR_PTR(ret);
2850 }
2851
2852 enum {
2853         FCT_TRADDR_ERR          = 0,
2854         FCT_TRADDR_WWNN         = 1 << 0,
2855         FCT_TRADDR_WWPN         = 1 << 1,
2856 };
2857
2858 struct nvmet_fc_traddr {
2859         u64     nn;
2860         u64     pn;
2861 };
2862
2863 static const match_table_t traddr_opt_tokens = {
2864         { FCT_TRADDR_WWNN,      "nn-%s"         },
2865         { FCT_TRADDR_WWPN,      "pn-%s"         },
2866         { FCT_TRADDR_ERR,       NULL            }
2867 };
2868
2869 static int
2870 nvme_fc_parse_address(struct nvmet_fc_traddr *traddr, char *buf)
2871 {
2872         substring_t args[MAX_OPT_ARGS];
2873         char *options, *o, *p;
2874         int token, ret = 0;
2875         u64 token64;
2876
2877         options = o = kstrdup(buf, GFP_KERNEL);
2878         if (!options)
2879                 return -ENOMEM;
2880
2881         while ((p = strsep(&o, ":\n")) != NULL) {
2882                 if (!*p)
2883                         continue;
2884
2885                 token = match_token(p, traddr_opt_tokens, args);
2886                 switch (token) {
2887                 case FCT_TRADDR_WWNN:
2888                         if (match_u64(args, &token64)) {
2889                                 ret = -EINVAL;
2890                                 goto out;
2891                         }
2892                         traddr->nn = token64;
2893                         break;
2894                 case FCT_TRADDR_WWPN:
2895                         if (match_u64(args, &token64)) {
2896                                 ret = -EINVAL;
2897                                 goto out;
2898                         }
2899                         traddr->pn = token64;
2900                         break;
2901                 default:
2902                         pr_warn("unknown traddr token or missing value '%s'\n",
2903                                         p);
2904                         ret = -EINVAL;
2905                         goto out;
2906                 }
2907         }
2908
2909 out:
2910         kfree(options);
2911         return ret;
2912 }
2913
2914 static struct nvme_ctrl *
2915 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
2916 {
2917         struct nvme_fc_lport *lport;
2918         struct nvme_fc_rport *rport;
2919         struct nvme_ctrl *ctrl;
2920         struct nvmet_fc_traddr laddr = { 0L, 0L };
2921         struct nvmet_fc_traddr raddr = { 0L, 0L };
2922         unsigned long flags;
2923         int ret;
2924
2925         ret = nvme_fc_parse_address(&raddr, opts->traddr);
2926         if (ret || !raddr.nn || !raddr.pn)
2927                 return ERR_PTR(-EINVAL);
2928
2929         ret = nvme_fc_parse_address(&laddr, opts->host_traddr);
2930         if (ret || !laddr.nn || !laddr.pn)
2931                 return ERR_PTR(-EINVAL);
2932
2933         /* find the host and remote ports to connect together */
2934         spin_lock_irqsave(&nvme_fc_lock, flags);
2935         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
2936                 if (lport->localport.node_name != laddr.nn ||
2937                     lport->localport.port_name != laddr.pn)
2938                         continue;
2939
2940                 list_for_each_entry(rport, &lport->endp_list, endp_list) {
2941                         if (rport->remoteport.node_name != raddr.nn ||
2942                             rport->remoteport.port_name != raddr.pn)
2943                                 continue;
2944
2945                         /* if fail to get reference fall through. Will error */
2946                         if (!nvme_fc_rport_get(rport))
2947                                 break;
2948
2949                         spin_unlock_irqrestore(&nvme_fc_lock, flags);
2950
2951                         ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
2952                         if (IS_ERR(ctrl))
2953                                 nvme_fc_rport_put(rport);
2954                         return ctrl;
2955                 }
2956         }
2957         spin_unlock_irqrestore(&nvme_fc_lock, flags);
2958
2959         return ERR_PTR(-ENOENT);
2960 }
2961
2962
2963 static struct nvmf_transport_ops nvme_fc_transport = {
2964         .name           = "fc",
2965         .required_opts  = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
2966         .allowed_opts   = NVMF_OPT_RECONNECT_DELAY,
2967         .create_ctrl    = nvme_fc_create_ctrl,
2968 };
2969
2970 static int __init nvme_fc_init_module(void)
2971 {
2972         int ret;
2973
2974         nvme_fc_wq = create_workqueue("nvme_fc_wq");
2975         if (!nvme_fc_wq)
2976                 return -ENOMEM;
2977
2978         ret = nvmf_register_transport(&nvme_fc_transport);
2979         if (ret)
2980                 goto err;
2981
2982         return 0;
2983 err:
2984         destroy_workqueue(nvme_fc_wq);
2985         return ret;
2986 }
2987
2988 static void __exit nvme_fc_exit_module(void)
2989 {
2990         /* sanity check - all lports should be removed */
2991         if (!list_empty(&nvme_fc_lport_list))
2992                 pr_warn("%s: localport list not empty\n", __func__);
2993
2994         nvmf_unregister_transport(&nvme_fc_transport);
2995
2996         destroy_workqueue(nvme_fc_wq);
2997
2998         ida_destroy(&nvme_fc_local_port_cnt);
2999         ida_destroy(&nvme_fc_ctrl_cnt);
3000 }
3001
3002 module_init(nvme_fc_init_module);
3003 module_exit(nvme_fc_exit_module);
3004
3005 MODULE_LICENSE("GPL v2");