2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/cpu.h>
21 #include <linux/delay.h>
22 #include <linux/dmi.h>
23 #include <linux/errno.h>
25 #include <linux/genhd.h>
26 #include <linux/hdreg.h>
27 #include <linux/idr.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
31 #include <linux/kdev_t.h>
32 #include <linux/kernel.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/mutex.h>
37 #include <linux/pci.h>
38 #include <linux/poison.h>
39 #include <linux/ptrace.h>
40 #include <linux/sched.h>
41 #include <linux/slab.h>
42 #include <linux/t10-pi.h>
43 #include <linux/timer.h>
44 #include <linux/types.h>
45 #include <linux/io-64-nonatomic-lo-hi.h>
46 #include <asm/unaligned.h>
47 #include <linux/sed-opal.h>
51 #define NVME_Q_DEPTH 1024
52 #define NVME_AQ_DEPTH 256
53 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
54 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
57 * We handle AEN commands ourselves and don't even let the
58 * block layer know about them.
60 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
62 static int use_threaded_interrupts;
63 module_param(use_threaded_interrupts, int, 0);
65 static bool use_cmb_sqes = true;
66 module_param(use_cmb_sqes, bool, 0644);
67 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
69 static struct workqueue_struct *nvme_workq;
74 static int nvme_reset(struct nvme_dev *dev);
75 static void nvme_process_cq(struct nvme_queue *nvmeq);
76 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
79 * Represents an NVM Express device. Each nvme_dev is a PCI function.
82 struct nvme_queue **queues;
83 struct blk_mq_tag_set tagset;
84 struct blk_mq_tag_set admin_tagset;
87 struct dma_pool *prp_page_pool;
88 struct dma_pool *prp_small_pool;
90 unsigned online_queues;
95 struct work_struct reset_work;
96 struct work_struct remove_work;
97 struct timer_list watchdog_timer;
98 struct mutex shutdown_lock;
101 dma_addr_t cmb_dma_addr;
105 struct nvme_ctrl ctrl;
106 struct completion ioq_wait;
109 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
111 return container_of(ctrl, struct nvme_dev, ctrl);
115 * An NVM Express queue. Each device has at least two (one for admin
116 * commands and one for I/O commands).
119 struct device *q_dmadev;
120 struct nvme_dev *dev;
121 char irqname[24]; /* nvme4294967295-65535\0 */
123 struct nvme_command *sq_cmds;
124 struct nvme_command __iomem *sq_cmds_io;
125 volatile struct nvme_completion *cqes;
126 struct blk_mq_tags **tags;
127 dma_addr_t sq_dma_addr;
128 dma_addr_t cq_dma_addr;
140 * The nvme_iod describes the data in an I/O, including the list of PRP
141 * entries. You can't see it in this data structure because C doesn't let
142 * me express that. Use nvme_init_iod to ensure there's enough space
143 * allocated to store the PRP list.
146 struct nvme_request req;
147 struct nvme_queue *nvmeq;
149 int npages; /* In the PRP list. 0 means small pool in use */
150 int nents; /* Used in scatterlist */
151 int length; /* Of data, in bytes */
152 dma_addr_t first_dma;
153 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
154 struct scatterlist *sg;
155 struct scatterlist inline_sg[0];
159 * Check we didin't inadvertently grow the command struct
161 static inline void _nvme_check_size(void)
163 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
164 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
165 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
166 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
167 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
168 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
169 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
170 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
171 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
172 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
173 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
174 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
178 * Max size of iod being embedded in the request payload
180 #define NVME_INT_PAGES 2
181 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
184 * Will slightly overestimate the number of pages needed. This is OK
185 * as it only leads to a small amount of wasted memory for the lifetime of
188 static int nvme_npages(unsigned size, struct nvme_dev *dev)
190 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
191 dev->ctrl.page_size);
192 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
195 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
196 unsigned int size, unsigned int nseg)
198 return sizeof(__le64 *) * nvme_npages(size, dev) +
199 sizeof(struct scatterlist) * nseg;
202 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
204 return sizeof(struct nvme_iod) +
205 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
208 static int nvmeq_irq(struct nvme_queue *nvmeq)
210 return pci_irq_vector(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector);
213 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
214 unsigned int hctx_idx)
216 struct nvme_dev *dev = data;
217 struct nvme_queue *nvmeq = dev->queues[0];
219 WARN_ON(hctx_idx != 0);
220 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
221 WARN_ON(nvmeq->tags);
223 hctx->driver_data = nvmeq;
224 nvmeq->tags = &dev->admin_tagset.tags[0];
228 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
230 struct nvme_queue *nvmeq = hctx->driver_data;
235 static int nvme_admin_init_request(void *data, struct request *req,
236 unsigned int hctx_idx, unsigned int rq_idx,
237 unsigned int numa_node)
239 struct nvme_dev *dev = data;
240 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
241 struct nvme_queue *nvmeq = dev->queues[0];
248 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
249 unsigned int hctx_idx)
251 struct nvme_dev *dev = data;
252 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
255 nvmeq->tags = &dev->tagset.tags[hctx_idx];
257 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
258 hctx->driver_data = nvmeq;
262 static int nvme_init_request(void *data, struct request *req,
263 unsigned int hctx_idx, unsigned int rq_idx,
264 unsigned int numa_node)
266 struct nvme_dev *dev = data;
267 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
268 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
275 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
277 struct nvme_dev *dev = set->driver_data;
279 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
283 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
284 * @nvmeq: The queue to use
285 * @cmd: The command to send
287 * Safe to use from interrupt context
289 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
290 struct nvme_command *cmd)
292 u16 tail = nvmeq->sq_tail;
294 if (nvmeq->sq_cmds_io)
295 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
297 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
299 if (++tail == nvmeq->q_depth)
301 writel(tail, nvmeq->q_db);
302 nvmeq->sq_tail = tail;
305 static __le64 **iod_list(struct request *req)
307 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
308 return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
311 static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
313 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
314 int nseg = blk_rq_nr_phys_segments(rq);
315 unsigned int size = blk_rq_payload_bytes(rq);
317 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
318 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
320 return BLK_MQ_RQ_QUEUE_BUSY;
322 iod->sg = iod->inline_sg;
330 if (!(rq->rq_flags & RQF_DONTPREP)) {
332 rq->rq_flags |= RQF_DONTPREP;
334 return BLK_MQ_RQ_QUEUE_OK;
337 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
339 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
340 const int last_prp = dev->ctrl.page_size / 8 - 1;
342 __le64 **list = iod_list(req);
343 dma_addr_t prp_dma = iod->first_dma;
345 if (iod->npages == 0)
346 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
347 for (i = 0; i < iod->npages; i++) {
348 __le64 *prp_list = list[i];
349 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
350 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
351 prp_dma = next_prp_dma;
354 if (iod->sg != iod->inline_sg)
358 #ifdef CONFIG_BLK_DEV_INTEGRITY
359 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
361 if (be32_to_cpu(pi->ref_tag) == v)
362 pi->ref_tag = cpu_to_be32(p);
365 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
367 if (be32_to_cpu(pi->ref_tag) == p)
368 pi->ref_tag = cpu_to_be32(v);
372 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
374 * The virtual start sector is the one that was originally submitted by the
375 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
376 * start sector may be different. Remap protection information to match the
377 * physical LBA on writes, and back to the original seed on reads.
379 * Type 0 and 3 do not have a ref tag, so no remapping required.
381 static void nvme_dif_remap(struct request *req,
382 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
384 struct nvme_ns *ns = req->rq_disk->private_data;
385 struct bio_integrity_payload *bip;
386 struct t10_pi_tuple *pi;
388 u32 i, nlb, ts, phys, virt;
390 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
393 bip = bio_integrity(req->bio);
397 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
400 virt = bip_get_seed(bip);
401 phys = nvme_block_nr(ns, blk_rq_pos(req));
402 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
403 ts = ns->disk->queue->integrity.tuple_size;
405 for (i = 0; i < nlb; i++, virt++, phys++) {
406 pi = (struct t10_pi_tuple *)p;
407 dif_swap(phys, virt, pi);
412 #else /* CONFIG_BLK_DEV_INTEGRITY */
413 static void nvme_dif_remap(struct request *req,
414 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
417 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
420 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
425 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req)
427 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
428 struct dma_pool *pool;
429 int length = blk_rq_payload_bytes(req);
430 struct scatterlist *sg = iod->sg;
431 int dma_len = sg_dma_len(sg);
432 u64 dma_addr = sg_dma_address(sg);
433 u32 page_size = dev->ctrl.page_size;
434 int offset = dma_addr & (page_size - 1);
436 __le64 **list = iod_list(req);
440 length -= (page_size - offset);
444 dma_len -= (page_size - offset);
446 dma_addr += (page_size - offset);
449 dma_addr = sg_dma_address(sg);
450 dma_len = sg_dma_len(sg);
453 if (length <= page_size) {
454 iod->first_dma = dma_addr;
458 nprps = DIV_ROUND_UP(length, page_size);
459 if (nprps <= (256 / 8)) {
460 pool = dev->prp_small_pool;
463 pool = dev->prp_page_pool;
467 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
469 iod->first_dma = dma_addr;
474 iod->first_dma = prp_dma;
477 if (i == page_size >> 3) {
478 __le64 *old_prp_list = prp_list;
479 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
482 list[iod->npages++] = prp_list;
483 prp_list[0] = old_prp_list[i - 1];
484 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
487 prp_list[i++] = cpu_to_le64(dma_addr);
488 dma_len -= page_size;
489 dma_addr += page_size;
497 dma_addr = sg_dma_address(sg);
498 dma_len = sg_dma_len(sg);
504 static int nvme_map_data(struct nvme_dev *dev, struct request *req,
505 struct nvme_command *cmnd)
507 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
508 struct request_queue *q = req->q;
509 enum dma_data_direction dma_dir = rq_data_dir(req) ?
510 DMA_TO_DEVICE : DMA_FROM_DEVICE;
511 int ret = BLK_MQ_RQ_QUEUE_ERROR;
513 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
514 iod->nents = blk_rq_map_sg(q, req, iod->sg);
518 ret = BLK_MQ_RQ_QUEUE_BUSY;
519 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
523 if (!nvme_setup_prps(dev, req))
526 ret = BLK_MQ_RQ_QUEUE_ERROR;
527 if (blk_integrity_rq(req)) {
528 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
531 sg_init_table(&iod->meta_sg, 1);
532 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
535 if (rq_data_dir(req))
536 nvme_dif_remap(req, nvme_dif_prep);
538 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
542 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
543 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
544 if (blk_integrity_rq(req))
545 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
546 return BLK_MQ_RQ_QUEUE_OK;
549 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
554 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
556 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
557 enum dma_data_direction dma_dir = rq_data_dir(req) ?
558 DMA_TO_DEVICE : DMA_FROM_DEVICE;
561 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
562 if (blk_integrity_rq(req)) {
563 if (!rq_data_dir(req))
564 nvme_dif_remap(req, nvme_dif_complete);
565 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
569 nvme_cleanup_cmd(req);
570 nvme_free_iod(dev, req);
574 * NOTE: ns is NULL when called on the admin queue.
576 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
577 const struct blk_mq_queue_data *bd)
579 struct nvme_ns *ns = hctx->queue->queuedata;
580 struct nvme_queue *nvmeq = hctx->driver_data;
581 struct nvme_dev *dev = nvmeq->dev;
582 struct request *req = bd->rq;
583 struct nvme_command cmnd;
584 int ret = BLK_MQ_RQ_QUEUE_OK;
587 * If formated with metadata, require the block layer provide a buffer
588 * unless this namespace is formated such that the metadata can be
589 * stripped/generated by the controller with PRACT=1.
591 if (ns && ns->ms && !blk_integrity_rq(req)) {
592 if (!(ns->pi_type && ns->ms == 8) &&
593 !blk_rq_is_passthrough(req)) {
594 blk_mq_end_request(req, -EFAULT);
595 return BLK_MQ_RQ_QUEUE_OK;
599 ret = nvme_setup_cmd(ns, req, &cmnd);
600 if (ret != BLK_MQ_RQ_QUEUE_OK)
603 ret = nvme_init_iod(req, dev);
604 if (ret != BLK_MQ_RQ_QUEUE_OK)
607 if (blk_rq_nr_phys_segments(req))
608 ret = nvme_map_data(dev, req, &cmnd);
610 if (ret != BLK_MQ_RQ_QUEUE_OK)
611 goto out_cleanup_iod;
613 blk_mq_start_request(req);
615 spin_lock_irq(&nvmeq->q_lock);
616 if (unlikely(nvmeq->cq_vector < 0)) {
617 ret = BLK_MQ_RQ_QUEUE_ERROR;
618 spin_unlock_irq(&nvmeq->q_lock);
619 goto out_cleanup_iod;
621 __nvme_submit_cmd(nvmeq, &cmnd);
622 nvme_process_cq(nvmeq);
623 spin_unlock_irq(&nvmeq->q_lock);
624 return BLK_MQ_RQ_QUEUE_OK;
626 nvme_free_iod(dev, req);
628 nvme_cleanup_cmd(req);
632 static void nvme_complete_rq(struct request *req)
634 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
635 struct nvme_dev *dev = iod->nvmeq->dev;
638 nvme_unmap_data(dev, req);
640 if (unlikely(req->errors)) {
641 if (nvme_req_needs_retry(req, req->errors)) {
643 nvme_requeue_req(req);
647 if (blk_rq_is_passthrough(req))
650 error = nvme_error_status(req->errors);
653 if (unlikely(iod->aborted)) {
654 dev_warn(dev->ctrl.device,
655 "completing aborted command with status: %04x\n",
659 blk_mq_end_request(req, error);
662 /* We read the CQE phase first to check if the rest of the entry is valid */
663 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
666 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
669 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
673 head = nvmeq->cq_head;
674 phase = nvmeq->cq_phase;
676 while (nvme_cqe_valid(nvmeq, head, phase)) {
677 struct nvme_completion cqe = nvmeq->cqes[head];
680 if (++head == nvmeq->q_depth) {
685 if (tag && *tag == cqe.command_id)
688 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
689 dev_warn(nvmeq->dev->ctrl.device,
690 "invalid id %d completed on queue %d\n",
691 cqe.command_id, le16_to_cpu(cqe.sq_id));
696 * AEN requests are special as they don't time out and can
697 * survive any kind of queue freeze and often don't respond to
698 * aborts. We don't even bother to allocate a struct request
699 * for them but rather special case them here.
701 if (unlikely(nvmeq->qid == 0 &&
702 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
703 nvme_complete_async_event(&nvmeq->dev->ctrl,
704 cqe.status, &cqe.result);
708 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
709 nvme_req(req)->result = cqe.result;
710 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
713 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
716 if (likely(nvmeq->cq_vector >= 0))
717 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
718 nvmeq->cq_head = head;
719 nvmeq->cq_phase = phase;
724 static void nvme_process_cq(struct nvme_queue *nvmeq)
726 __nvme_process_cq(nvmeq, NULL);
729 static irqreturn_t nvme_irq(int irq, void *data)
732 struct nvme_queue *nvmeq = data;
733 spin_lock(&nvmeq->q_lock);
734 nvme_process_cq(nvmeq);
735 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
737 spin_unlock(&nvmeq->q_lock);
741 static irqreturn_t nvme_irq_check(int irq, void *data)
743 struct nvme_queue *nvmeq = data;
744 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
745 return IRQ_WAKE_THREAD;
749 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
751 struct nvme_queue *nvmeq = hctx->driver_data;
753 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
754 spin_lock_irq(&nvmeq->q_lock);
755 __nvme_process_cq(nvmeq, &tag);
756 spin_unlock_irq(&nvmeq->q_lock);
765 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
767 struct nvme_dev *dev = to_nvme_dev(ctrl);
768 struct nvme_queue *nvmeq = dev->queues[0];
769 struct nvme_command c;
771 memset(&c, 0, sizeof(c));
772 c.common.opcode = nvme_admin_async_event;
773 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
775 spin_lock_irq(&nvmeq->q_lock);
776 __nvme_submit_cmd(nvmeq, &c);
777 spin_unlock_irq(&nvmeq->q_lock);
780 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
782 struct nvme_command c;
784 memset(&c, 0, sizeof(c));
785 c.delete_queue.opcode = opcode;
786 c.delete_queue.qid = cpu_to_le16(id);
788 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
791 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
792 struct nvme_queue *nvmeq)
794 struct nvme_command c;
795 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
798 * Note: we (ab)use the fact the the prp fields survive if no data
799 * is attached to the request.
801 memset(&c, 0, sizeof(c));
802 c.create_cq.opcode = nvme_admin_create_cq;
803 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
804 c.create_cq.cqid = cpu_to_le16(qid);
805 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
806 c.create_cq.cq_flags = cpu_to_le16(flags);
807 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
809 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
812 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
813 struct nvme_queue *nvmeq)
815 struct nvme_command c;
816 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
819 * Note: we (ab)use the fact the the prp fields survive if no data
820 * is attached to the request.
822 memset(&c, 0, sizeof(c));
823 c.create_sq.opcode = nvme_admin_create_sq;
824 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
825 c.create_sq.sqid = cpu_to_le16(qid);
826 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
827 c.create_sq.sq_flags = cpu_to_le16(flags);
828 c.create_sq.cqid = cpu_to_le16(qid);
830 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
833 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
835 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
838 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
840 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
843 static void abort_endio(struct request *req, int error)
845 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
846 struct nvme_queue *nvmeq = iod->nvmeq;
847 u16 status = req->errors;
849 dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
850 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
851 blk_mq_free_request(req);
854 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
856 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
857 struct nvme_queue *nvmeq = iod->nvmeq;
858 struct nvme_dev *dev = nvmeq->dev;
859 struct request *abort_req;
860 struct nvme_command cmd;
863 * Shutdown immediately if controller times out while starting. The
864 * reset work will see the pci device disabled when it gets the forced
865 * cancellation error. All outstanding requests are completed on
866 * shutdown, so we return BLK_EH_HANDLED.
868 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
869 dev_warn(dev->ctrl.device,
870 "I/O %d QID %d timeout, disable controller\n",
871 req->tag, nvmeq->qid);
872 nvme_dev_disable(dev, false);
873 req->errors = NVME_SC_CANCELLED;
874 return BLK_EH_HANDLED;
878 * Shutdown the controller immediately and schedule a reset if the
879 * command was already aborted once before and still hasn't been
880 * returned to the driver, or if this is the admin queue.
882 if (!nvmeq->qid || iod->aborted) {
883 dev_warn(dev->ctrl.device,
884 "I/O %d QID %d timeout, reset controller\n",
885 req->tag, nvmeq->qid);
886 nvme_dev_disable(dev, false);
890 * Mark the request as handled, since the inline shutdown
891 * forces all outstanding requests to complete.
893 req->errors = NVME_SC_CANCELLED;
894 return BLK_EH_HANDLED;
897 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
898 atomic_inc(&dev->ctrl.abort_limit);
899 return BLK_EH_RESET_TIMER;
903 memset(&cmd, 0, sizeof(cmd));
904 cmd.abort.opcode = nvme_admin_abort_cmd;
905 cmd.abort.cid = req->tag;
906 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
908 dev_warn(nvmeq->dev->ctrl.device,
909 "I/O %d QID %d timeout, aborting\n",
910 req->tag, nvmeq->qid);
912 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
913 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
914 if (IS_ERR(abort_req)) {
915 atomic_inc(&dev->ctrl.abort_limit);
916 return BLK_EH_RESET_TIMER;
919 abort_req->timeout = ADMIN_TIMEOUT;
920 abort_req->end_io_data = NULL;
921 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
924 * The aborted req will be completed on receiving the abort req.
925 * We enable the timer again. If hit twice, it'll cause a device reset,
926 * as the device then is in a faulty state.
928 return BLK_EH_RESET_TIMER;
931 static void nvme_free_queue(struct nvme_queue *nvmeq)
933 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
934 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
936 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
937 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
941 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
945 for (i = dev->queue_count - 1; i >= lowest; i--) {
946 struct nvme_queue *nvmeq = dev->queues[i];
948 dev->queues[i] = NULL;
949 nvme_free_queue(nvmeq);
954 * nvme_suspend_queue - put queue into suspended state
955 * @nvmeq - queue to suspend
957 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
961 spin_lock_irq(&nvmeq->q_lock);
962 if (nvmeq->cq_vector == -1) {
963 spin_unlock_irq(&nvmeq->q_lock);
966 vector = nvmeq_irq(nvmeq);
967 nvmeq->dev->online_queues--;
968 nvmeq->cq_vector = -1;
969 spin_unlock_irq(&nvmeq->q_lock);
971 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
972 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
974 free_irq(vector, nvmeq);
979 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
981 struct nvme_queue *nvmeq = dev->queues[0];
985 if (nvme_suspend_queue(nvmeq))
989 nvme_shutdown_ctrl(&dev->ctrl);
991 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
992 dev->bar + NVME_REG_CAP));
994 spin_lock_irq(&nvmeq->q_lock);
995 nvme_process_cq(nvmeq);
996 spin_unlock_irq(&nvmeq->q_lock);
999 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1002 int q_depth = dev->q_depth;
1003 unsigned q_size_aligned = roundup(q_depth * entry_size,
1004 dev->ctrl.page_size);
1006 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1007 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1008 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1009 q_depth = div_u64(mem_per_q, entry_size);
1012 * Ensure the reduced q_depth is above some threshold where it
1013 * would be better to map queues in system memory with the
1023 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1026 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1027 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1028 dev->ctrl.page_size);
1029 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1030 nvmeq->sq_cmds_io = dev->cmb + offset;
1032 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1033 &nvmeq->sq_dma_addr, GFP_KERNEL);
1034 if (!nvmeq->sq_cmds)
1041 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1042 int depth, int node)
1044 struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
1049 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1050 &nvmeq->cq_dma_addr, GFP_KERNEL);
1054 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1057 nvmeq->q_dmadev = dev->dev;
1059 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1060 dev->ctrl.instance, qid);
1061 spin_lock_init(&nvmeq->q_lock);
1063 nvmeq->cq_phase = 1;
1064 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1065 nvmeq->q_depth = depth;
1067 nvmeq->cq_vector = -1;
1068 dev->queues[qid] = nvmeq;
1074 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1075 nvmeq->cq_dma_addr);
1081 static int queue_request_irq(struct nvme_queue *nvmeq)
1083 if (use_threaded_interrupts)
1084 return request_threaded_irq(nvmeq_irq(nvmeq), nvme_irq_check,
1085 nvme_irq, IRQF_SHARED, nvmeq->irqname, nvmeq);
1087 return request_irq(nvmeq_irq(nvmeq), nvme_irq, IRQF_SHARED,
1088 nvmeq->irqname, nvmeq);
1091 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1093 struct nvme_dev *dev = nvmeq->dev;
1095 spin_lock_irq(&nvmeq->q_lock);
1098 nvmeq->cq_phase = 1;
1099 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1100 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1101 dev->online_queues++;
1102 spin_unlock_irq(&nvmeq->q_lock);
1105 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1107 struct nvme_dev *dev = nvmeq->dev;
1110 nvmeq->cq_vector = qid - 1;
1111 result = adapter_alloc_cq(dev, qid, nvmeq);
1115 result = adapter_alloc_sq(dev, qid, nvmeq);
1119 result = queue_request_irq(nvmeq);
1123 nvme_init_queue(nvmeq, qid);
1127 adapter_delete_sq(dev, qid);
1129 adapter_delete_cq(dev, qid);
1133 static struct blk_mq_ops nvme_mq_admin_ops = {
1134 .queue_rq = nvme_queue_rq,
1135 .complete = nvme_complete_rq,
1136 .init_hctx = nvme_admin_init_hctx,
1137 .exit_hctx = nvme_admin_exit_hctx,
1138 .init_request = nvme_admin_init_request,
1139 .timeout = nvme_timeout,
1142 static struct blk_mq_ops nvme_mq_ops = {
1143 .queue_rq = nvme_queue_rq,
1144 .complete = nvme_complete_rq,
1145 .init_hctx = nvme_init_hctx,
1146 .init_request = nvme_init_request,
1147 .map_queues = nvme_pci_map_queues,
1148 .timeout = nvme_timeout,
1152 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1154 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1156 * If the controller was reset during removal, it's possible
1157 * user requests may be waiting on a stopped queue. Start the
1158 * queue to flush these to completion.
1160 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1161 blk_cleanup_queue(dev->ctrl.admin_q);
1162 blk_mq_free_tag_set(&dev->admin_tagset);
1166 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1168 if (!dev->ctrl.admin_q) {
1169 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1170 dev->admin_tagset.nr_hw_queues = 1;
1173 * Subtract one to leave an empty queue entry for 'Full Queue'
1174 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1176 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1177 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1178 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1179 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1180 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1181 dev->admin_tagset.driver_data = dev;
1183 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1186 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1187 if (IS_ERR(dev->ctrl.admin_q)) {
1188 blk_mq_free_tag_set(&dev->admin_tagset);
1191 if (!blk_get_queue(dev->ctrl.admin_q)) {
1192 nvme_dev_remove_admin(dev);
1193 dev->ctrl.admin_q = NULL;
1197 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1202 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1206 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1207 struct nvme_queue *nvmeq;
1209 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1210 NVME_CAP_NSSRC(cap) : 0;
1212 if (dev->subsystem &&
1213 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1214 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1216 result = nvme_disable_ctrl(&dev->ctrl, cap);
1220 nvmeq = dev->queues[0];
1222 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1223 dev_to_node(dev->dev));
1228 aqa = nvmeq->q_depth - 1;
1231 writel(aqa, dev->bar + NVME_REG_AQA);
1232 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1233 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1235 result = nvme_enable_ctrl(&dev->ctrl, cap);
1239 nvmeq->cq_vector = 0;
1240 result = queue_request_irq(nvmeq);
1242 nvmeq->cq_vector = -1;
1249 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1252 /* If true, indicates loss of adapter communication, possibly by a
1253 * NVMe Subsystem reset.
1255 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1257 /* If there is a reset ongoing, we shouldn't reset again. */
1258 if (work_busy(&dev->reset_work))
1261 /* We shouldn't reset unless the controller is on fatal error state
1262 * _or_ if we lost the communication with it.
1264 if (!(csts & NVME_CSTS_CFS) && !nssro)
1267 /* If PCI error recovery process is happening, we cannot reset or
1268 * the recovery mechanism will surely fail.
1270 if (pci_channel_offline(to_pci_dev(dev->dev)))
1276 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1278 /* Read a config register to help see what died. */
1282 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1284 if (result == PCIBIOS_SUCCESSFUL)
1286 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1290 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1294 static void nvme_watchdog_timer(unsigned long data)
1296 struct nvme_dev *dev = (struct nvme_dev *)data;
1297 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1299 /* Skip controllers under certain specific conditions. */
1300 if (nvme_should_reset(dev, csts)) {
1301 if (!nvme_reset(dev))
1302 nvme_warn_reset(dev, csts);
1306 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1309 static int nvme_create_io_queues(struct nvme_dev *dev)
1314 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1315 /* vector == qid - 1, match nvme_create_queue */
1316 if (!nvme_alloc_queue(dev, i, dev->q_depth,
1317 pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
1323 max = min(dev->max_qid, dev->queue_count - 1);
1324 for (i = dev->online_queues; i <= max; i++) {
1325 ret = nvme_create_queue(dev->queues[i], i);
1331 * Ignore failing Create SQ/CQ commands, we can continue with less
1332 * than the desired aount of queues, and even a controller without
1333 * I/O queues an still be used to issue admin commands. This might
1334 * be useful to upgrade a buggy firmware for example.
1336 return ret >= 0 ? 0 : ret;
1339 static ssize_t nvme_cmb_show(struct device *dev,
1340 struct device_attribute *attr,
1343 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1345 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
1346 ndev->cmbloc, ndev->cmbsz);
1348 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1350 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1352 u64 szu, size, offset;
1353 resource_size_t bar_size;
1354 struct pci_dev *pdev = to_pci_dev(dev->dev);
1356 dma_addr_t dma_addr;
1358 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1359 if (!(NVME_CMB_SZ(dev->cmbsz)))
1361 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1366 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1367 size = szu * NVME_CMB_SZ(dev->cmbsz);
1368 offset = szu * NVME_CMB_OFST(dev->cmbloc);
1369 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
1371 if (offset > bar_size)
1375 * Controllers may support a CMB size larger than their BAR,
1376 * for example, due to being behind a bridge. Reduce the CMB to
1377 * the reported size of the BAR
1379 if (size > bar_size - offset)
1380 size = bar_size - offset;
1382 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
1383 cmb = ioremap_wc(dma_addr, size);
1387 dev->cmb_dma_addr = dma_addr;
1388 dev->cmb_size = size;
1392 static inline void nvme_release_cmb(struct nvme_dev *dev)
1400 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1402 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1405 static int nvme_setup_io_queues(struct nvme_dev *dev)
1407 struct nvme_queue *adminq = dev->queues[0];
1408 struct pci_dev *pdev = to_pci_dev(dev->dev);
1409 int result, nr_io_queues, size;
1411 nr_io_queues = num_online_cpus();
1412 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1416 if (nr_io_queues == 0)
1419 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1420 result = nvme_cmb_qdepth(dev, nr_io_queues,
1421 sizeof(struct nvme_command));
1423 dev->q_depth = result;
1425 nvme_release_cmb(dev);
1428 size = db_bar_size(dev, nr_io_queues);
1432 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1435 if (!--nr_io_queues)
1437 size = db_bar_size(dev, nr_io_queues);
1439 dev->dbs = dev->bar + 4096;
1440 adminq->q_db = dev->dbs;
1443 /* Deregister the admin queue's interrupt */
1444 free_irq(pci_irq_vector(pdev, 0), adminq);
1447 * If we enable msix early due to not intx, disable it again before
1448 * setting up the full range we need.
1450 pci_free_irq_vectors(pdev);
1451 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1452 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1453 if (nr_io_queues <= 0)
1455 dev->max_qid = nr_io_queues;
1458 * Should investigate if there's a performance win from allocating
1459 * more queues than interrupt vectors; it might allow the submission
1460 * path to scale better, even if the receive path is limited by the
1461 * number of interrupts.
1464 result = queue_request_irq(adminq);
1466 adminq->cq_vector = -1;
1469 return nvme_create_io_queues(dev);
1472 static void nvme_del_queue_end(struct request *req, int error)
1474 struct nvme_queue *nvmeq = req->end_io_data;
1476 blk_mq_free_request(req);
1477 complete(&nvmeq->dev->ioq_wait);
1480 static void nvme_del_cq_end(struct request *req, int error)
1482 struct nvme_queue *nvmeq = req->end_io_data;
1485 unsigned long flags;
1488 * We might be called with the AQ q_lock held
1489 * and the I/O queue q_lock should always
1490 * nest inside the AQ one.
1492 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1493 SINGLE_DEPTH_NESTING);
1494 nvme_process_cq(nvmeq);
1495 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1498 nvme_del_queue_end(req, error);
1501 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1503 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1504 struct request *req;
1505 struct nvme_command cmd;
1507 memset(&cmd, 0, sizeof(cmd));
1508 cmd.delete_queue.opcode = opcode;
1509 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1511 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1513 return PTR_ERR(req);
1515 req->timeout = ADMIN_TIMEOUT;
1516 req->end_io_data = nvmeq;
1518 blk_execute_rq_nowait(q, NULL, req, false,
1519 opcode == nvme_admin_delete_cq ?
1520 nvme_del_cq_end : nvme_del_queue_end);
1524 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
1527 unsigned long timeout;
1528 u8 opcode = nvme_admin_delete_sq;
1530 for (pass = 0; pass < 2; pass++) {
1531 int sent = 0, i = queues;
1533 reinit_completion(&dev->ioq_wait);
1535 timeout = ADMIN_TIMEOUT;
1536 for (; i > 0; i--, sent++)
1537 if (nvme_delete_queue(dev->queues[i], opcode))
1541 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1547 opcode = nvme_admin_delete_cq;
1552 * Return: error value if an error occurred setting up the queues or calling
1553 * Identify Device. 0 if these succeeded, even if adding some of the
1554 * namespaces failed. At the moment, these failures are silent. TBD which
1555 * failures should be reported.
1557 static int nvme_dev_add(struct nvme_dev *dev)
1559 if (!dev->ctrl.tagset) {
1560 dev->tagset.ops = &nvme_mq_ops;
1561 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1562 dev->tagset.timeout = NVME_IO_TIMEOUT;
1563 dev->tagset.numa_node = dev_to_node(dev->dev);
1564 dev->tagset.queue_depth =
1565 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1566 dev->tagset.cmd_size = nvme_cmd_size(dev);
1567 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1568 dev->tagset.driver_data = dev;
1570 if (blk_mq_alloc_tag_set(&dev->tagset))
1572 dev->ctrl.tagset = &dev->tagset;
1574 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1576 /* Free previously allocated queues that are no longer usable */
1577 nvme_free_queues(dev, dev->online_queues);
1583 static int nvme_pci_enable(struct nvme_dev *dev)
1586 int result = -ENOMEM;
1587 struct pci_dev *pdev = to_pci_dev(dev->dev);
1589 if (pci_enable_device_mem(pdev))
1592 pci_set_master(pdev);
1594 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1595 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1598 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1604 * Some devices and/or platforms don't advertise or work with INTx
1605 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1606 * adjust this later.
1608 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1612 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1614 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1615 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1616 dev->dbs = dev->bar + 4096;
1619 * Temporary fix for the Apple controller found in the MacBook8,1 and
1620 * some MacBook7,1 to avoid controller resets and data loss.
1622 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1624 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1625 "queue depth=%u to work around controller resets\n",
1630 * CMBs can currently only exist on >=1.2 PCIe devices. We only
1631 * populate sysfs if a CMB is implemented. Note that we add the
1632 * CMB attribute to the nvme_ctrl kobj which removes the need to remove
1633 * it on exit. Since nvme_dev_attrs_group has no name we can pass
1634 * NULL as final argument to sysfs_add_file_to_group.
1637 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
1638 dev->cmb = nvme_map_cmb(dev);
1641 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1642 &dev_attr_cmb.attr, NULL))
1644 "failed to add sysfs attribute for CMB\n");
1648 pci_enable_pcie_error_reporting(pdev);
1649 pci_save_state(pdev);
1653 pci_disable_device(pdev);
1657 static void nvme_dev_unmap(struct nvme_dev *dev)
1661 pci_release_mem_regions(to_pci_dev(dev->dev));
1664 static void nvme_pci_disable(struct nvme_dev *dev)
1666 struct pci_dev *pdev = to_pci_dev(dev->dev);
1668 pci_free_irq_vectors(pdev);
1670 if (pci_is_enabled(pdev)) {
1671 pci_disable_pcie_error_reporting(pdev);
1672 pci_disable_device(pdev);
1676 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1680 struct pci_dev *pdev = to_pci_dev(dev->dev);
1682 del_timer_sync(&dev->watchdog_timer);
1684 mutex_lock(&dev->shutdown_lock);
1685 if (pci_is_enabled(pdev)) {
1686 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1688 if (dev->ctrl.state == NVME_CTRL_LIVE)
1689 nvme_start_freeze(&dev->ctrl);
1690 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
1691 pdev->error_state != pci_channel_io_normal);
1695 * Give the controller a chance to complete all entered requests if
1696 * doing a safe shutdown.
1698 if (!dead && shutdown)
1699 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
1700 nvme_stop_queues(&dev->ctrl);
1702 queues = dev->online_queues - 1;
1703 for (i = dev->queue_count - 1; i > 0; i--)
1704 nvme_suspend_queue(dev->queues[i]);
1707 /* A device might become IO incapable very soon during
1708 * probe, before the admin queue is configured. Thus,
1709 * queue_count can be 0 here.
1711 if (dev->queue_count)
1712 nvme_suspend_queue(dev->queues[0]);
1714 nvme_disable_io_queues(dev, queues);
1715 nvme_disable_admin_queue(dev, shutdown);
1717 nvme_pci_disable(dev);
1719 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
1720 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
1723 * The driver will not be starting up queues again if shutting down so
1724 * must flush all entered requests to their failed completion to avoid
1725 * deadlocking blk-mq hot-cpu notifier.
1728 nvme_start_queues(&dev->ctrl);
1729 mutex_unlock(&dev->shutdown_lock);
1732 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1734 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1735 PAGE_SIZE, PAGE_SIZE, 0);
1736 if (!dev->prp_page_pool)
1739 /* Optimisation for I/Os between 4k and 128k */
1740 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1742 if (!dev->prp_small_pool) {
1743 dma_pool_destroy(dev->prp_page_pool);
1749 static void nvme_release_prp_pools(struct nvme_dev *dev)
1751 dma_pool_destroy(dev->prp_page_pool);
1752 dma_pool_destroy(dev->prp_small_pool);
1755 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1757 struct nvme_dev *dev = to_nvme_dev(ctrl);
1759 put_device(dev->dev);
1760 if (dev->tagset.tags)
1761 blk_mq_free_tag_set(&dev->tagset);
1762 if (dev->ctrl.admin_q)
1763 blk_put_queue(dev->ctrl.admin_q);
1765 free_opal_dev(dev->ctrl.opal_dev);
1769 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1771 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
1773 kref_get(&dev->ctrl.kref);
1774 nvme_dev_disable(dev, false);
1775 if (!schedule_work(&dev->remove_work))
1776 nvme_put_ctrl(&dev->ctrl);
1779 static void nvme_reset_work(struct work_struct *work)
1781 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1782 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
1783 int result = -ENODEV;
1785 if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
1789 * If we're called to reset a live controller first shut it down before
1792 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
1793 nvme_dev_disable(dev, false);
1795 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
1798 result = nvme_pci_enable(dev);
1802 result = nvme_configure_admin_queue(dev);
1806 nvme_init_queue(dev->queues[0], 0);
1807 result = nvme_alloc_admin_tags(dev);
1811 result = nvme_init_identify(&dev->ctrl);
1815 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
1816 if (!dev->ctrl.opal_dev)
1817 dev->ctrl.opal_dev =
1818 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
1819 else if (was_suspend)
1820 opal_unlock_from_suspend(dev->ctrl.opal_dev);
1822 free_opal_dev(dev->ctrl.opal_dev);
1823 dev->ctrl.opal_dev = NULL;
1826 result = nvme_setup_io_queues(dev);
1831 * A controller that can not execute IO typically requires user
1832 * intervention to correct. For such degraded controllers, the driver
1833 * should not submit commands the user did not request, so skip
1834 * registering for asynchronous event notification on this condition.
1836 if (dev->online_queues > 1)
1837 nvme_queue_async_events(&dev->ctrl);
1839 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1842 * Keep the controller around but remove all namespaces if we don't have
1843 * any working I/O queue.
1845 if (dev->online_queues < 2) {
1846 dev_warn(dev->ctrl.device, "IO queues not created\n");
1847 nvme_kill_queues(&dev->ctrl);
1848 nvme_remove_namespaces(&dev->ctrl);
1850 nvme_start_queues(&dev->ctrl);
1851 nvme_wait_freeze(&dev->ctrl);
1853 nvme_unfreeze(&dev->ctrl);
1856 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1857 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1861 if (dev->online_queues > 1)
1862 nvme_queue_scan(&dev->ctrl);
1866 nvme_remove_dead_ctrl(dev, result);
1869 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1871 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1872 struct pci_dev *pdev = to_pci_dev(dev->dev);
1874 nvme_kill_queues(&dev->ctrl);
1875 if (pci_get_drvdata(pdev))
1876 device_release_driver(&pdev->dev);
1877 nvme_put_ctrl(&dev->ctrl);
1880 static int nvme_reset(struct nvme_dev *dev)
1882 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1884 if (work_busy(&dev->reset_work))
1886 if (!queue_work(nvme_workq, &dev->reset_work))
1891 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
1893 *val = readl(to_nvme_dev(ctrl)->bar + off);
1897 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
1899 writel(val, to_nvme_dev(ctrl)->bar + off);
1903 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1905 *val = readq(to_nvme_dev(ctrl)->bar + off);
1909 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1911 struct nvme_dev *dev = to_nvme_dev(ctrl);
1912 int ret = nvme_reset(dev);
1915 flush_work(&dev->reset_work);
1919 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1921 .module = THIS_MODULE,
1922 .reg_read32 = nvme_pci_reg_read32,
1923 .reg_write32 = nvme_pci_reg_write32,
1924 .reg_read64 = nvme_pci_reg_read64,
1925 .reset_ctrl = nvme_pci_reset_ctrl,
1926 .free_ctrl = nvme_pci_free_ctrl,
1927 .submit_async_event = nvme_pci_submit_async_event,
1930 static int nvme_dev_map(struct nvme_dev *dev)
1932 struct pci_dev *pdev = to_pci_dev(dev->dev);
1934 if (pci_request_mem_regions(pdev, "nvme"))
1937 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1943 pci_release_mem_regions(pdev);
1947 static unsigned long check_dell_samsung_bug(struct pci_dev *pdev)
1949 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
1951 * Several Samsung devices seem to drop off the PCIe bus
1952 * randomly when APST is on and uses the deepest sleep state.
1953 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
1954 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
1955 * 950 PRO 256GB", but it seems to be restricted to two Dell
1958 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
1959 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
1960 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
1961 return NVME_QUIRK_NO_DEEPEST_PS;
1967 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1969 int node, result = -ENOMEM;
1970 struct nvme_dev *dev;
1971 unsigned long quirks = id->driver_data;
1973 node = dev_to_node(&pdev->dev);
1974 if (node == NUMA_NO_NODE)
1975 set_dev_node(&pdev->dev, first_memory_node);
1977 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
1980 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
1985 dev->dev = get_device(&pdev->dev);
1986 pci_set_drvdata(pdev, dev);
1988 result = nvme_dev_map(dev);
1992 INIT_WORK(&dev->reset_work, nvme_reset_work);
1993 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
1994 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
1995 (unsigned long)dev);
1996 mutex_init(&dev->shutdown_lock);
1997 init_completion(&dev->ioq_wait);
1999 result = nvme_setup_prp_pools(dev);
2003 quirks |= check_dell_samsung_bug(pdev);
2005 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2010 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2012 queue_work(nvme_workq, &dev->reset_work);
2016 nvme_release_prp_pools(dev);
2018 put_device(dev->dev);
2019 nvme_dev_unmap(dev);
2026 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2028 struct nvme_dev *dev = pci_get_drvdata(pdev);
2031 nvme_dev_disable(dev, false);
2036 static void nvme_shutdown(struct pci_dev *pdev)
2038 struct nvme_dev *dev = pci_get_drvdata(pdev);
2039 nvme_dev_disable(dev, true);
2043 * The driver's remove may be called on a device in a partially initialized
2044 * state. This function must not have any dependencies on the device state in
2047 static void nvme_remove(struct pci_dev *pdev)
2049 struct nvme_dev *dev = pci_get_drvdata(pdev);
2051 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2053 pci_set_drvdata(pdev, NULL);
2055 if (!pci_device_is_present(pdev)) {
2056 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2057 nvme_dev_disable(dev, false);
2060 flush_work(&dev->reset_work);
2061 nvme_uninit_ctrl(&dev->ctrl);
2062 nvme_dev_disable(dev, true);
2063 nvme_dev_remove_admin(dev);
2064 nvme_free_queues(dev, 0);
2065 nvme_release_cmb(dev);
2066 nvme_release_prp_pools(dev);
2067 nvme_dev_unmap(dev);
2068 nvme_put_ctrl(&dev->ctrl);
2071 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2076 if (pci_vfs_assigned(pdev)) {
2077 dev_warn(&pdev->dev,
2078 "Cannot disable SR-IOV VFs while assigned\n");
2081 pci_disable_sriov(pdev);
2085 ret = pci_enable_sriov(pdev, numvfs);
2086 return ret ? ret : numvfs;
2089 #ifdef CONFIG_PM_SLEEP
2090 static int nvme_suspend(struct device *dev)
2092 struct pci_dev *pdev = to_pci_dev(dev);
2093 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2095 nvme_dev_disable(ndev, true);
2099 static int nvme_resume(struct device *dev)
2101 struct pci_dev *pdev = to_pci_dev(dev);
2102 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2109 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2111 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2112 pci_channel_state_t state)
2114 struct nvme_dev *dev = pci_get_drvdata(pdev);
2117 * A frozen channel requires a reset. When detected, this method will
2118 * shutdown the controller to quiesce. The controller will be restarted
2119 * after the slot reset through driver's slot_reset callback.
2122 case pci_channel_io_normal:
2123 return PCI_ERS_RESULT_CAN_RECOVER;
2124 case pci_channel_io_frozen:
2125 dev_warn(dev->ctrl.device,
2126 "frozen state error detected, reset controller\n");
2127 nvme_dev_disable(dev, false);
2128 return PCI_ERS_RESULT_NEED_RESET;
2129 case pci_channel_io_perm_failure:
2130 dev_warn(dev->ctrl.device,
2131 "failure state error detected, request disconnect\n");
2132 return PCI_ERS_RESULT_DISCONNECT;
2134 return PCI_ERS_RESULT_NEED_RESET;
2137 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2139 struct nvme_dev *dev = pci_get_drvdata(pdev);
2141 dev_info(dev->ctrl.device, "restart after slot reset\n");
2142 pci_restore_state(pdev);
2144 return PCI_ERS_RESULT_RECOVERED;
2147 static void nvme_error_resume(struct pci_dev *pdev)
2149 pci_cleanup_aer_uncorrect_error_status(pdev);
2152 static const struct pci_error_handlers nvme_err_handler = {
2153 .error_detected = nvme_error_detected,
2154 .slot_reset = nvme_slot_reset,
2155 .resume = nvme_error_resume,
2156 .reset_notify = nvme_reset_notify,
2159 static const struct pci_device_id nvme_id_table[] = {
2160 { PCI_VDEVICE(INTEL, 0x0953),
2161 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2162 NVME_QUIRK_DISCARD_ZEROES, },
2163 { PCI_VDEVICE(INTEL, 0x0a53),
2164 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2165 NVME_QUIRK_DISCARD_ZEROES, },
2166 { PCI_VDEVICE(INTEL, 0x0a54),
2167 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2168 NVME_QUIRK_DISCARD_ZEROES, },
2169 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2170 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2171 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
2172 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2173 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
2174 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2175 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2176 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2177 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2180 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2182 static struct pci_driver nvme_driver = {
2184 .id_table = nvme_id_table,
2185 .probe = nvme_probe,
2186 .remove = nvme_remove,
2187 .shutdown = nvme_shutdown,
2189 .pm = &nvme_dev_pm_ops,
2191 .sriov_configure = nvme_pci_sriov_configure,
2192 .err_handler = &nvme_err_handler,
2195 static int __init nvme_init(void)
2199 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2203 result = pci_register_driver(&nvme_driver);
2205 destroy_workqueue(nvme_workq);
2209 static void __exit nvme_exit(void)
2211 pci_unregister_driver(&nvme_driver);
2212 destroy_workqueue(nvme_workq);
2216 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2217 MODULE_LICENSE("GPL");
2218 MODULE_VERSION("1.0");
2219 module_init(nvme_init);
2220 module_exit(nvme_exit);