]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/nvme/host/pci.c
c8541c3dcd19dbbf16e1f9b687a5a30fad0eb6d8
[karo-tx-linux.git] / drivers / nvme / host / pci.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/cpu.h>
21 #include <linux/delay.h>
22 #include <linux/dmi.h>
23 #include <linux/errno.h>
24 #include <linux/fs.h>
25 #include <linux/genhd.h>
26 #include <linux/hdreg.h>
27 #include <linux/idr.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kdev_t.h>
32 #include <linux/kernel.h>
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/mutex.h>
37 #include <linux/pci.h>
38 #include <linux/poison.h>
39 #include <linux/ptrace.h>
40 #include <linux/sched.h>
41 #include <linux/slab.h>
42 #include <linux/t10-pi.h>
43 #include <linux/timer.h>
44 #include <linux/types.h>
45 #include <linux/io-64-nonatomic-lo-hi.h>
46 #include <asm/unaligned.h>
47 #include <linux/sed-opal.h>
48
49 #include "nvme.h"
50
51 #define NVME_Q_DEPTH            1024
52 #define NVME_AQ_DEPTH           256
53 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
54 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
55
56 /*
57  * We handle AEN commands ourselves and don't even let the
58  * block layer know about them.
59  */
60 #define NVME_AQ_BLKMQ_DEPTH     (NVME_AQ_DEPTH - NVME_NR_AERS)
61
62 static int use_threaded_interrupts;
63 module_param(use_threaded_interrupts, int, 0);
64
65 static bool use_cmb_sqes = true;
66 module_param(use_cmb_sqes, bool, 0644);
67 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
68
69 static struct workqueue_struct *nvme_workq;
70
71 struct nvme_dev;
72 struct nvme_queue;
73
74 static int nvme_reset(struct nvme_dev *dev);
75 static void nvme_process_cq(struct nvme_queue *nvmeq);
76 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
77
78 /*
79  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
80  */
81 struct nvme_dev {
82         struct nvme_queue **queues;
83         struct blk_mq_tag_set tagset;
84         struct blk_mq_tag_set admin_tagset;
85         u32 __iomem *dbs;
86         struct device *dev;
87         struct dma_pool *prp_page_pool;
88         struct dma_pool *prp_small_pool;
89         unsigned queue_count;
90         unsigned online_queues;
91         unsigned max_qid;
92         int q_depth;
93         u32 db_stride;
94         void __iomem *bar;
95         struct work_struct reset_work;
96         struct work_struct remove_work;
97         struct timer_list watchdog_timer;
98         struct mutex shutdown_lock;
99         bool subsystem;
100         void __iomem *cmb;
101         dma_addr_t cmb_dma_addr;
102         u64 cmb_size;
103         u32 cmbsz;
104         u32 cmbloc;
105         struct nvme_ctrl ctrl;
106         struct completion ioq_wait;
107         u32 *dbbuf_dbs;
108         dma_addr_t dbbuf_dbs_dma_addr;
109         u32 *dbbuf_eis;
110         dma_addr_t dbbuf_eis_dma_addr;
111 };
112
113 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
114 {
115         return qid * 2 * stride;
116 }
117
118 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
119 {
120         return (qid * 2 + 1) * stride;
121 }
122
123 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
124 {
125         return container_of(ctrl, struct nvme_dev, ctrl);
126 }
127
128 /*
129  * An NVM Express queue.  Each device has at least two (one for admin
130  * commands and one for I/O commands).
131  */
132 struct nvme_queue {
133         struct device *q_dmadev;
134         struct nvme_dev *dev;
135         char irqname[24];       /* nvme4294967295-65535\0 */
136         spinlock_t q_lock;
137         struct nvme_command *sq_cmds;
138         struct nvme_command __iomem *sq_cmds_io;
139         volatile struct nvme_completion *cqes;
140         struct blk_mq_tags **tags;
141         dma_addr_t sq_dma_addr;
142         dma_addr_t cq_dma_addr;
143         u32 __iomem *q_db;
144         u16 q_depth;
145         s16 cq_vector;
146         u16 sq_tail;
147         u16 cq_head;
148         u16 qid;
149         u8 cq_phase;
150         u8 cqe_seen;
151         u32 *dbbuf_sq_db;
152         u32 *dbbuf_cq_db;
153         u32 *dbbuf_sq_ei;
154         u32 *dbbuf_cq_ei;
155 };
156
157 /*
158  * The nvme_iod describes the data in an I/O, including the list of PRP
159  * entries.  You can't see it in this data structure because C doesn't let
160  * me express that.  Use nvme_init_iod to ensure there's enough space
161  * allocated to store the PRP list.
162  */
163 struct nvme_iod {
164         struct nvme_request req;
165         struct nvme_queue *nvmeq;
166         int aborted;
167         int npages;             /* In the PRP list. 0 means small pool in use */
168         int nents;              /* Used in scatterlist */
169         int length;             /* Of data, in bytes */
170         dma_addr_t first_dma;
171         struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
172         struct scatterlist *sg;
173         struct scatterlist inline_sg[0];
174 };
175
176 /*
177  * Check we didin't inadvertently grow the command struct
178  */
179 static inline void _nvme_check_size(void)
180 {
181         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
182         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
183         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
184         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
185         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
186         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
187         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
188         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
189         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
190         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
191         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
192         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
193         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
194 }
195
196 static inline unsigned int nvme_dbbuf_size(u32 stride)
197 {
198         return ((num_possible_cpus() + 1) * 8 * stride);
199 }
200
201 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
202 {
203         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
204
205         if (dev->dbbuf_dbs)
206                 return 0;
207
208         dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
209                                             &dev->dbbuf_dbs_dma_addr,
210                                             GFP_KERNEL);
211         if (!dev->dbbuf_dbs)
212                 return -ENOMEM;
213         dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
214                                             &dev->dbbuf_eis_dma_addr,
215                                             GFP_KERNEL);
216         if (!dev->dbbuf_eis) {
217                 dma_free_coherent(dev->dev, mem_size,
218                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
219                 dev->dbbuf_dbs = NULL;
220                 return -ENOMEM;
221         }
222
223         return 0;
224 }
225
226 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
227 {
228         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
229
230         if (dev->dbbuf_dbs) {
231                 dma_free_coherent(dev->dev, mem_size,
232                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
233                 dev->dbbuf_dbs = NULL;
234         }
235         if (dev->dbbuf_eis) {
236                 dma_free_coherent(dev->dev, mem_size,
237                                   dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
238                 dev->dbbuf_eis = NULL;
239         }
240 }
241
242 static void nvme_dbbuf_init(struct nvme_dev *dev,
243                             struct nvme_queue *nvmeq, int qid)
244 {
245         if (!dev->dbbuf_dbs || !qid)
246                 return;
247
248         nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
249         nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
250         nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
251         nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
252 }
253
254 static void nvme_dbbuf_set(struct nvme_dev *dev)
255 {
256         struct nvme_command c;
257
258         if (!dev->dbbuf_dbs)
259                 return;
260
261         memset(&c, 0, sizeof(c));
262         c.dbbuf.opcode = nvme_admin_dbbuf;
263         c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
264         c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
265
266         if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
267                 dev_warn(dev->dev, "unable to set dbbuf\n");
268                 /* Free memory and continue on */
269                 nvme_dbbuf_dma_free(dev);
270         }
271 }
272
273 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
274 {
275         return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
276 }
277
278 /* Update dbbuf and return true if an MMIO is required */
279 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
280                                               volatile u32 *dbbuf_ei)
281 {
282         if (dbbuf_db) {
283                 u16 old_value;
284
285                 /*
286                  * Ensure that the queue is written before updating
287                  * the doorbell in memory
288                  */
289                 wmb();
290
291                 old_value = *dbbuf_db;
292                 *dbbuf_db = value;
293
294                 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
295                         return false;
296         }
297
298         return true;
299 }
300
301 /*
302  * Max size of iod being embedded in the request payload
303  */
304 #define NVME_INT_PAGES          2
305 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->ctrl.page_size)
306
307 /*
308  * Will slightly overestimate the number of pages needed.  This is OK
309  * as it only leads to a small amount of wasted memory for the lifetime of
310  * the I/O.
311  */
312 static int nvme_npages(unsigned size, struct nvme_dev *dev)
313 {
314         unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
315                                       dev->ctrl.page_size);
316         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
317 }
318
319 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
320                 unsigned int size, unsigned int nseg)
321 {
322         return sizeof(__le64 *) * nvme_npages(size, dev) +
323                         sizeof(struct scatterlist) * nseg;
324 }
325
326 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
327 {
328         return sizeof(struct nvme_iod) +
329                 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
330 }
331
332 static int nvmeq_irq(struct nvme_queue *nvmeq)
333 {
334         return pci_irq_vector(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector);
335 }
336
337 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
338                                 unsigned int hctx_idx)
339 {
340         struct nvme_dev *dev = data;
341         struct nvme_queue *nvmeq = dev->queues[0];
342
343         WARN_ON(hctx_idx != 0);
344         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
345         WARN_ON(nvmeq->tags);
346
347         hctx->driver_data = nvmeq;
348         nvmeq->tags = &dev->admin_tagset.tags[0];
349         return 0;
350 }
351
352 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
353 {
354         struct nvme_queue *nvmeq = hctx->driver_data;
355
356         nvmeq->tags = NULL;
357 }
358
359 static int nvme_admin_init_request(void *data, struct request *req,
360                                 unsigned int hctx_idx, unsigned int rq_idx,
361                                 unsigned int numa_node)
362 {
363         struct nvme_dev *dev = data;
364         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
365         struct nvme_queue *nvmeq = dev->queues[0];
366
367         BUG_ON(!nvmeq);
368         iod->nvmeq = nvmeq;
369         return 0;
370 }
371
372 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
373                           unsigned int hctx_idx)
374 {
375         struct nvme_dev *dev = data;
376         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
377
378         if (!nvmeq->tags)
379                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
380
381         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
382         hctx->driver_data = nvmeq;
383         return 0;
384 }
385
386 static int nvme_init_request(void *data, struct request *req,
387                                 unsigned int hctx_idx, unsigned int rq_idx,
388                                 unsigned int numa_node)
389 {
390         struct nvme_dev *dev = data;
391         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
392         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
393
394         BUG_ON(!nvmeq);
395         iod->nvmeq = nvmeq;
396         return 0;
397 }
398
399 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
400 {
401         struct nvme_dev *dev = set->driver_data;
402
403         return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
404 }
405
406 /**
407  * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
408  * @nvmeq: The queue to use
409  * @cmd: The command to send
410  *
411  * Safe to use from interrupt context
412  */
413 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
414                                                 struct nvme_command *cmd)
415 {
416         u16 tail = nvmeq->sq_tail;
417
418         if (nvmeq->sq_cmds_io)
419                 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
420         else
421                 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
422
423         if (++tail == nvmeq->q_depth)
424                 tail = 0;
425         if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
426                                               nvmeq->dbbuf_sq_ei))
427                 writel(tail, nvmeq->q_db);
428         nvmeq->sq_tail = tail;
429 }
430
431 static __le64 **iod_list(struct request *req)
432 {
433         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
434         return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
435 }
436
437 static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
438 {
439         struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
440         int nseg = blk_rq_nr_phys_segments(rq);
441         unsigned int size = blk_rq_payload_bytes(rq);
442
443         if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
444                 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
445                 if (!iod->sg)
446                         return BLK_MQ_RQ_QUEUE_BUSY;
447         } else {
448                 iod->sg = iod->inline_sg;
449         }
450
451         iod->aborted = 0;
452         iod->npages = -1;
453         iod->nents = 0;
454         iod->length = size;
455
456         return BLK_MQ_RQ_QUEUE_OK;
457 }
458
459 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
460 {
461         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
462         const int last_prp = dev->ctrl.page_size / 8 - 1;
463         int i;
464         __le64 **list = iod_list(req);
465         dma_addr_t prp_dma = iod->first_dma;
466
467         if (iod->npages == 0)
468                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
469         for (i = 0; i < iod->npages; i++) {
470                 __le64 *prp_list = list[i];
471                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
472                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
473                 prp_dma = next_prp_dma;
474         }
475
476         if (iod->sg != iod->inline_sg)
477                 kfree(iod->sg);
478 }
479
480 #ifdef CONFIG_BLK_DEV_INTEGRITY
481 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
482 {
483         if (be32_to_cpu(pi->ref_tag) == v)
484                 pi->ref_tag = cpu_to_be32(p);
485 }
486
487 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
488 {
489         if (be32_to_cpu(pi->ref_tag) == p)
490                 pi->ref_tag = cpu_to_be32(v);
491 }
492
493 /**
494  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
495  *
496  * The virtual start sector is the one that was originally submitted by the
497  * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
498  * start sector may be different. Remap protection information to match the
499  * physical LBA on writes, and back to the original seed on reads.
500  *
501  * Type 0 and 3 do not have a ref tag, so no remapping required.
502  */
503 static void nvme_dif_remap(struct request *req,
504                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
505 {
506         struct nvme_ns *ns = req->rq_disk->private_data;
507         struct bio_integrity_payload *bip;
508         struct t10_pi_tuple *pi;
509         void *p, *pmap;
510         u32 i, nlb, ts, phys, virt;
511
512         if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
513                 return;
514
515         bip = bio_integrity(req->bio);
516         if (!bip)
517                 return;
518
519         pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
520
521         p = pmap;
522         virt = bip_get_seed(bip);
523         phys = nvme_block_nr(ns, blk_rq_pos(req));
524         nlb = (blk_rq_bytes(req) >> ns->lba_shift);
525         ts = ns->disk->queue->integrity.tuple_size;
526
527         for (i = 0; i < nlb; i++, virt++, phys++) {
528                 pi = (struct t10_pi_tuple *)p;
529                 dif_swap(phys, virt, pi);
530                 p += ts;
531         }
532         kunmap_atomic(pmap);
533 }
534 #else /* CONFIG_BLK_DEV_INTEGRITY */
535 static void nvme_dif_remap(struct request *req,
536                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
537 {
538 }
539 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
540 {
541 }
542 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
543 {
544 }
545 #endif
546
547 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req)
548 {
549         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
550         struct dma_pool *pool;
551         int length = blk_rq_payload_bytes(req);
552         struct scatterlist *sg = iod->sg;
553         int dma_len = sg_dma_len(sg);
554         u64 dma_addr = sg_dma_address(sg);
555         u32 page_size = dev->ctrl.page_size;
556         int offset = dma_addr & (page_size - 1);
557         __le64 *prp_list;
558         __le64 **list = iod_list(req);
559         dma_addr_t prp_dma;
560         int nprps, i;
561
562         length -= (page_size - offset);
563         if (length <= 0)
564                 return true;
565
566         dma_len -= (page_size - offset);
567         if (dma_len) {
568                 dma_addr += (page_size - offset);
569         } else {
570                 sg = sg_next(sg);
571                 dma_addr = sg_dma_address(sg);
572                 dma_len = sg_dma_len(sg);
573         }
574
575         if (length <= page_size) {
576                 iod->first_dma = dma_addr;
577                 return true;
578         }
579
580         nprps = DIV_ROUND_UP(length, page_size);
581         if (nprps <= (256 / 8)) {
582                 pool = dev->prp_small_pool;
583                 iod->npages = 0;
584         } else {
585                 pool = dev->prp_page_pool;
586                 iod->npages = 1;
587         }
588
589         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
590         if (!prp_list) {
591                 iod->first_dma = dma_addr;
592                 iod->npages = -1;
593                 return false;
594         }
595         list[0] = prp_list;
596         iod->first_dma = prp_dma;
597         i = 0;
598         for (;;) {
599                 if (i == page_size >> 3) {
600                         __le64 *old_prp_list = prp_list;
601                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
602                         if (!prp_list)
603                                 return false;
604                         list[iod->npages++] = prp_list;
605                         prp_list[0] = old_prp_list[i - 1];
606                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
607                         i = 1;
608                 }
609                 prp_list[i++] = cpu_to_le64(dma_addr);
610                 dma_len -= page_size;
611                 dma_addr += page_size;
612                 length -= page_size;
613                 if (length <= 0)
614                         break;
615                 if (dma_len > 0)
616                         continue;
617                 BUG_ON(dma_len < 0);
618                 sg = sg_next(sg);
619                 dma_addr = sg_dma_address(sg);
620                 dma_len = sg_dma_len(sg);
621         }
622
623         return true;
624 }
625
626 static int nvme_map_data(struct nvme_dev *dev, struct request *req,
627                 struct nvme_command *cmnd)
628 {
629         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
630         struct request_queue *q = req->q;
631         enum dma_data_direction dma_dir = rq_data_dir(req) ?
632                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
633         int ret = BLK_MQ_RQ_QUEUE_ERROR;
634
635         sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
636         iod->nents = blk_rq_map_sg(q, req, iod->sg);
637         if (!iod->nents)
638                 goto out;
639
640         ret = BLK_MQ_RQ_QUEUE_BUSY;
641         if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
642                                 DMA_ATTR_NO_WARN))
643                 goto out;
644
645         if (!nvme_setup_prps(dev, req))
646                 goto out_unmap;
647
648         ret = BLK_MQ_RQ_QUEUE_ERROR;
649         if (blk_integrity_rq(req)) {
650                 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
651                         goto out_unmap;
652
653                 sg_init_table(&iod->meta_sg, 1);
654                 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
655                         goto out_unmap;
656
657                 if (rq_data_dir(req))
658                         nvme_dif_remap(req, nvme_dif_prep);
659
660                 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
661                         goto out_unmap;
662         }
663
664         cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
665         cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
666         if (blk_integrity_rq(req))
667                 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
668         return BLK_MQ_RQ_QUEUE_OK;
669
670 out_unmap:
671         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
672 out:
673         return ret;
674 }
675
676 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
677 {
678         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
679         enum dma_data_direction dma_dir = rq_data_dir(req) ?
680                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
681
682         if (iod->nents) {
683                 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
684                 if (blk_integrity_rq(req)) {
685                         if (!rq_data_dir(req))
686                                 nvme_dif_remap(req, nvme_dif_complete);
687                         dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
688                 }
689         }
690
691         nvme_cleanup_cmd(req);
692         nvme_free_iod(dev, req);
693 }
694
695 /*
696  * NOTE: ns is NULL when called on the admin queue.
697  */
698 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
699                          const struct blk_mq_queue_data *bd)
700 {
701         struct nvme_ns *ns = hctx->queue->queuedata;
702         struct nvme_queue *nvmeq = hctx->driver_data;
703         struct nvme_dev *dev = nvmeq->dev;
704         struct request *req = bd->rq;
705         struct nvme_command cmnd;
706         int ret = BLK_MQ_RQ_QUEUE_OK;
707
708         /*
709          * If formated with metadata, require the block layer provide a buffer
710          * unless this namespace is formated such that the metadata can be
711          * stripped/generated by the controller with PRACT=1.
712          */
713         if (ns && ns->ms && !blk_integrity_rq(req)) {
714                 if (!(ns->pi_type && ns->ms == 8) &&
715                     !blk_rq_is_passthrough(req)) {
716                         blk_mq_end_request(req, -EFAULT);
717                         return BLK_MQ_RQ_QUEUE_OK;
718                 }
719         }
720
721         ret = nvme_setup_cmd(ns, req, &cmnd);
722         if (ret != BLK_MQ_RQ_QUEUE_OK)
723                 return ret;
724
725         ret = nvme_init_iod(req, dev);
726         if (ret != BLK_MQ_RQ_QUEUE_OK)
727                 goto out_free_cmd;
728
729         if (blk_rq_nr_phys_segments(req))
730                 ret = nvme_map_data(dev, req, &cmnd);
731
732         if (ret != BLK_MQ_RQ_QUEUE_OK)
733                 goto out_cleanup_iod;
734
735         blk_mq_start_request(req);
736
737         spin_lock_irq(&nvmeq->q_lock);
738         if (unlikely(nvmeq->cq_vector < 0)) {
739                 ret = BLK_MQ_RQ_QUEUE_ERROR;
740                 spin_unlock_irq(&nvmeq->q_lock);
741                 goto out_cleanup_iod;
742         }
743         __nvme_submit_cmd(nvmeq, &cmnd);
744         nvme_process_cq(nvmeq);
745         spin_unlock_irq(&nvmeq->q_lock);
746         return BLK_MQ_RQ_QUEUE_OK;
747 out_cleanup_iod:
748         nvme_free_iod(dev, req);
749 out_free_cmd:
750         nvme_cleanup_cmd(req);
751         return ret;
752 }
753
754 static void nvme_pci_complete_rq(struct request *req)
755 {
756         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
757
758         nvme_unmap_data(iod->nvmeq->dev, req);
759         nvme_complete_rq(req);
760 }
761
762 /* We read the CQE phase first to check if the rest of the entry is valid */
763 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
764                 u16 phase)
765 {
766         return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
767 }
768
769 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
770 {
771         u16 head, phase;
772
773         head = nvmeq->cq_head;
774         phase = nvmeq->cq_phase;
775
776         while (nvme_cqe_valid(nvmeq, head, phase)) {
777                 struct nvme_completion cqe = nvmeq->cqes[head];
778                 struct request *req;
779
780                 if (++head == nvmeq->q_depth) {
781                         head = 0;
782                         phase = !phase;
783                 }
784
785                 if (tag && *tag == cqe.command_id)
786                         *tag = -1;
787
788                 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
789                         dev_warn(nvmeq->dev->ctrl.device,
790                                 "invalid id %d completed on queue %d\n",
791                                 cqe.command_id, le16_to_cpu(cqe.sq_id));
792                         continue;
793                 }
794
795                 /*
796                  * AEN requests are special as they don't time out and can
797                  * survive any kind of queue freeze and often don't respond to
798                  * aborts.  We don't even bother to allocate a struct request
799                  * for them but rather special case them here.
800                  */
801                 if (unlikely(nvmeq->qid == 0 &&
802                                 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
803                         nvme_complete_async_event(&nvmeq->dev->ctrl,
804                                         cqe.status, &cqe.result);
805                         continue;
806                 }
807
808                 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
809                 nvme_end_request(req, cqe.status, cqe.result);
810         }
811
812         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
813                 return;
814
815         if (likely(nvmeq->cq_vector >= 0))
816                 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
817                                                       nvmeq->dbbuf_cq_ei))
818                         writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
819         nvmeq->cq_head = head;
820         nvmeq->cq_phase = phase;
821
822         nvmeq->cqe_seen = 1;
823 }
824
825 static void nvme_process_cq(struct nvme_queue *nvmeq)
826 {
827         __nvme_process_cq(nvmeq, NULL);
828 }
829
830 static irqreturn_t nvme_irq(int irq, void *data)
831 {
832         irqreturn_t result;
833         struct nvme_queue *nvmeq = data;
834         spin_lock(&nvmeq->q_lock);
835         nvme_process_cq(nvmeq);
836         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
837         nvmeq->cqe_seen = 0;
838         spin_unlock(&nvmeq->q_lock);
839         return result;
840 }
841
842 static irqreturn_t nvme_irq_check(int irq, void *data)
843 {
844         struct nvme_queue *nvmeq = data;
845         if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
846                 return IRQ_WAKE_THREAD;
847         return IRQ_NONE;
848 }
849
850 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
851 {
852         if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
853                 spin_lock_irq(&nvmeq->q_lock);
854                 __nvme_process_cq(nvmeq, &tag);
855                 spin_unlock_irq(&nvmeq->q_lock);
856
857                 if (tag == -1)
858                         return 1;
859         }
860
861         return 0;
862 }
863
864 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
865 {
866         struct nvme_queue *nvmeq = hctx->driver_data;
867
868         return __nvme_poll(nvmeq, tag);
869 }
870
871 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
872 {
873         struct nvme_dev *dev = to_nvme_dev(ctrl);
874         struct nvme_queue *nvmeq = dev->queues[0];
875         struct nvme_command c;
876
877         memset(&c, 0, sizeof(c));
878         c.common.opcode = nvme_admin_async_event;
879         c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
880
881         spin_lock_irq(&nvmeq->q_lock);
882         __nvme_submit_cmd(nvmeq, &c);
883         spin_unlock_irq(&nvmeq->q_lock);
884 }
885
886 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
887 {
888         struct nvme_command c;
889
890         memset(&c, 0, sizeof(c));
891         c.delete_queue.opcode = opcode;
892         c.delete_queue.qid = cpu_to_le16(id);
893
894         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
895 }
896
897 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
898                                                 struct nvme_queue *nvmeq)
899 {
900         struct nvme_command c;
901         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
902
903         /*
904          * Note: we (ab)use the fact the the prp fields survive if no data
905          * is attached to the request.
906          */
907         memset(&c, 0, sizeof(c));
908         c.create_cq.opcode = nvme_admin_create_cq;
909         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
910         c.create_cq.cqid = cpu_to_le16(qid);
911         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
912         c.create_cq.cq_flags = cpu_to_le16(flags);
913         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
914
915         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
916 }
917
918 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
919                                                 struct nvme_queue *nvmeq)
920 {
921         struct nvme_command c;
922         int flags = NVME_QUEUE_PHYS_CONTIG;
923
924         /*
925          * Note: we (ab)use the fact the the prp fields survive if no data
926          * is attached to the request.
927          */
928         memset(&c, 0, sizeof(c));
929         c.create_sq.opcode = nvme_admin_create_sq;
930         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
931         c.create_sq.sqid = cpu_to_le16(qid);
932         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
933         c.create_sq.sq_flags = cpu_to_le16(flags);
934         c.create_sq.cqid = cpu_to_le16(qid);
935
936         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
937 }
938
939 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
940 {
941         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
942 }
943
944 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
945 {
946         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
947 }
948
949 static void abort_endio(struct request *req, int error)
950 {
951         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
952         struct nvme_queue *nvmeq = iod->nvmeq;
953
954         dev_warn(nvmeq->dev->ctrl.device,
955                  "Abort status: 0x%x", nvme_req(req)->status);
956         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
957         blk_mq_free_request(req);
958 }
959
960 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
961 {
962         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
963         struct nvme_queue *nvmeq = iod->nvmeq;
964         struct nvme_dev *dev = nvmeq->dev;
965         struct request *abort_req;
966         struct nvme_command cmd;
967
968         /*
969          * Did we miss an interrupt?
970          */
971         if (__nvme_poll(nvmeq, req->tag)) {
972                 dev_warn(dev->ctrl.device,
973                          "I/O %d QID %d timeout, completion polled\n",
974                          req->tag, nvmeq->qid);
975                 return BLK_EH_HANDLED;
976         }
977
978         /*
979          * Shutdown immediately if controller times out while starting. The
980          * reset work will see the pci device disabled when it gets the forced
981          * cancellation error. All outstanding requests are completed on
982          * shutdown, so we return BLK_EH_HANDLED.
983          */
984         if (dev->ctrl.state == NVME_CTRL_RESETTING) {
985                 dev_warn(dev->ctrl.device,
986                          "I/O %d QID %d timeout, disable controller\n",
987                          req->tag, nvmeq->qid);
988                 nvme_dev_disable(dev, false);
989                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
990                 return BLK_EH_HANDLED;
991         }
992
993         /*
994          * Shutdown the controller immediately and schedule a reset if the
995          * command was already aborted once before and still hasn't been
996          * returned to the driver, or if this is the admin queue.
997          */
998         if (!nvmeq->qid || iod->aborted) {
999                 dev_warn(dev->ctrl.device,
1000                          "I/O %d QID %d timeout, reset controller\n",
1001                          req->tag, nvmeq->qid);
1002                 nvme_dev_disable(dev, false);
1003                 nvme_reset(dev);
1004
1005                 /*
1006                  * Mark the request as handled, since the inline shutdown
1007                  * forces all outstanding requests to complete.
1008                  */
1009                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1010                 return BLK_EH_HANDLED;
1011         }
1012
1013         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1014                 atomic_inc(&dev->ctrl.abort_limit);
1015                 return BLK_EH_RESET_TIMER;
1016         }
1017         iod->aborted = 1;
1018
1019         memset(&cmd, 0, sizeof(cmd));
1020         cmd.abort.opcode = nvme_admin_abort_cmd;
1021         cmd.abort.cid = req->tag;
1022         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1023
1024         dev_warn(nvmeq->dev->ctrl.device,
1025                 "I/O %d QID %d timeout, aborting\n",
1026                  req->tag, nvmeq->qid);
1027
1028         abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1029                         BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1030         if (IS_ERR(abort_req)) {
1031                 atomic_inc(&dev->ctrl.abort_limit);
1032                 return BLK_EH_RESET_TIMER;
1033         }
1034
1035         abort_req->timeout = ADMIN_TIMEOUT;
1036         abort_req->end_io_data = NULL;
1037         blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1038
1039         /*
1040          * The aborted req will be completed on receiving the abort req.
1041          * We enable the timer again. If hit twice, it'll cause a device reset,
1042          * as the device then is in a faulty state.
1043          */
1044         return BLK_EH_RESET_TIMER;
1045 }
1046
1047 static void nvme_free_queue(struct nvme_queue *nvmeq)
1048 {
1049         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1050                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1051         if (nvmeq->sq_cmds)
1052                 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1053                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1054         kfree(nvmeq);
1055 }
1056
1057 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1058 {
1059         int i;
1060
1061         for (i = dev->queue_count - 1; i >= lowest; i--) {
1062                 struct nvme_queue *nvmeq = dev->queues[i];
1063                 dev->queue_count--;
1064                 dev->queues[i] = NULL;
1065                 nvme_free_queue(nvmeq);
1066         }
1067 }
1068
1069 /**
1070  * nvme_suspend_queue - put queue into suspended state
1071  * @nvmeq - queue to suspend
1072  */
1073 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1074 {
1075         int vector;
1076
1077         spin_lock_irq(&nvmeq->q_lock);
1078         if (nvmeq->cq_vector == -1) {
1079                 spin_unlock_irq(&nvmeq->q_lock);
1080                 return 1;
1081         }
1082         vector = nvmeq_irq(nvmeq);
1083         nvmeq->dev->online_queues--;
1084         nvmeq->cq_vector = -1;
1085         spin_unlock_irq(&nvmeq->q_lock);
1086
1087         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1088                 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
1089
1090         free_irq(vector, nvmeq);
1091
1092         return 0;
1093 }
1094
1095 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1096 {
1097         struct nvme_queue *nvmeq = dev->queues[0];
1098
1099         if (!nvmeq)
1100                 return;
1101         if (nvme_suspend_queue(nvmeq))
1102                 return;
1103
1104         if (shutdown)
1105                 nvme_shutdown_ctrl(&dev->ctrl);
1106         else
1107                 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1108                                                 dev->bar + NVME_REG_CAP));
1109
1110         spin_lock_irq(&nvmeq->q_lock);
1111         nvme_process_cq(nvmeq);
1112         spin_unlock_irq(&nvmeq->q_lock);
1113 }
1114
1115 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1116                                 int entry_size)
1117 {
1118         int q_depth = dev->q_depth;
1119         unsigned q_size_aligned = roundup(q_depth * entry_size,
1120                                           dev->ctrl.page_size);
1121
1122         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1123                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1124                 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1125                 q_depth = div_u64(mem_per_q, entry_size);
1126
1127                 /*
1128                  * Ensure the reduced q_depth is above some threshold where it
1129                  * would be better to map queues in system memory with the
1130                  * original depth
1131                  */
1132                 if (q_depth < 64)
1133                         return -ENOMEM;
1134         }
1135
1136         return q_depth;
1137 }
1138
1139 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1140                                 int qid, int depth)
1141 {
1142         if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1143                 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1144                                                       dev->ctrl.page_size);
1145                 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1146                 nvmeq->sq_cmds_io = dev->cmb + offset;
1147         } else {
1148                 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1149                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1150                 if (!nvmeq->sq_cmds)
1151                         return -ENOMEM;
1152         }
1153
1154         return 0;
1155 }
1156
1157 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1158                                                         int depth, int node)
1159 {
1160         struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
1161                                                         node);
1162         if (!nvmeq)
1163                 return NULL;
1164
1165         nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1166                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1167         if (!nvmeq->cqes)
1168                 goto free_nvmeq;
1169
1170         if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1171                 goto free_cqdma;
1172
1173         nvmeq->q_dmadev = dev->dev;
1174         nvmeq->dev = dev;
1175         snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1176                         dev->ctrl.instance, qid);
1177         spin_lock_init(&nvmeq->q_lock);
1178         nvmeq->cq_head = 0;
1179         nvmeq->cq_phase = 1;
1180         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1181         nvmeq->q_depth = depth;
1182         nvmeq->qid = qid;
1183         nvmeq->cq_vector = -1;
1184         dev->queues[qid] = nvmeq;
1185         dev->queue_count++;
1186
1187         return nvmeq;
1188
1189  free_cqdma:
1190         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1191                                                         nvmeq->cq_dma_addr);
1192  free_nvmeq:
1193         kfree(nvmeq);
1194         return NULL;
1195 }
1196
1197 static int queue_request_irq(struct nvme_queue *nvmeq)
1198 {
1199         if (use_threaded_interrupts)
1200                 return request_threaded_irq(nvmeq_irq(nvmeq), nvme_irq_check,
1201                                 nvme_irq, IRQF_SHARED, nvmeq->irqname, nvmeq);
1202         else
1203                 return request_irq(nvmeq_irq(nvmeq), nvme_irq, IRQF_SHARED,
1204                                 nvmeq->irqname, nvmeq);
1205 }
1206
1207 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1208 {
1209         struct nvme_dev *dev = nvmeq->dev;
1210
1211         spin_lock_irq(&nvmeq->q_lock);
1212         nvmeq->sq_tail = 0;
1213         nvmeq->cq_head = 0;
1214         nvmeq->cq_phase = 1;
1215         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1216         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1217         nvme_dbbuf_init(dev, nvmeq, qid);
1218         dev->online_queues++;
1219         spin_unlock_irq(&nvmeq->q_lock);
1220 }
1221
1222 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1223 {
1224         struct nvme_dev *dev = nvmeq->dev;
1225         int result;
1226
1227         nvmeq->cq_vector = qid - 1;
1228         result = adapter_alloc_cq(dev, qid, nvmeq);
1229         if (result < 0)
1230                 return result;
1231
1232         result = adapter_alloc_sq(dev, qid, nvmeq);
1233         if (result < 0)
1234                 goto release_cq;
1235
1236         result = queue_request_irq(nvmeq);
1237         if (result < 0)
1238                 goto release_sq;
1239
1240         nvme_init_queue(nvmeq, qid);
1241         return result;
1242
1243  release_sq:
1244         adapter_delete_sq(dev, qid);
1245  release_cq:
1246         adapter_delete_cq(dev, qid);
1247         return result;
1248 }
1249
1250 static const struct blk_mq_ops nvme_mq_admin_ops = {
1251         .queue_rq       = nvme_queue_rq,
1252         .complete       = nvme_pci_complete_rq,
1253         .init_hctx      = nvme_admin_init_hctx,
1254         .exit_hctx      = nvme_admin_exit_hctx,
1255         .init_request   = nvme_admin_init_request,
1256         .timeout        = nvme_timeout,
1257 };
1258
1259 static const struct blk_mq_ops nvme_mq_ops = {
1260         .queue_rq       = nvme_queue_rq,
1261         .complete       = nvme_pci_complete_rq,
1262         .init_hctx      = nvme_init_hctx,
1263         .init_request   = nvme_init_request,
1264         .map_queues     = nvme_pci_map_queues,
1265         .timeout        = nvme_timeout,
1266         .poll           = nvme_poll,
1267 };
1268
1269 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1270 {
1271         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1272                 /*
1273                  * If the controller was reset during removal, it's possible
1274                  * user requests may be waiting on a stopped queue. Start the
1275                  * queue to flush these to completion.
1276                  */
1277                 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1278                 blk_cleanup_queue(dev->ctrl.admin_q);
1279                 blk_mq_free_tag_set(&dev->admin_tagset);
1280         }
1281 }
1282
1283 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1284 {
1285         if (!dev->ctrl.admin_q) {
1286                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1287                 dev->admin_tagset.nr_hw_queues = 1;
1288
1289                 /*
1290                  * Subtract one to leave an empty queue entry for 'Full Queue'
1291                  * condition. See NVM-Express 1.2 specification, section 4.1.2.
1292                  */
1293                 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1294                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1295                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1296                 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1297                 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1298                 dev->admin_tagset.driver_data = dev;
1299
1300                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1301                         return -ENOMEM;
1302
1303                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1304                 if (IS_ERR(dev->ctrl.admin_q)) {
1305                         blk_mq_free_tag_set(&dev->admin_tagset);
1306                         return -ENOMEM;
1307                 }
1308                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1309                         nvme_dev_remove_admin(dev);
1310                         dev->ctrl.admin_q = NULL;
1311                         return -ENODEV;
1312                 }
1313         } else
1314                 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1315
1316         return 0;
1317 }
1318
1319 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1320 {
1321         int result;
1322         u32 aqa;
1323         u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1324         struct nvme_queue *nvmeq;
1325
1326         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1327                                                 NVME_CAP_NSSRC(cap) : 0;
1328
1329         if (dev->subsystem &&
1330             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1331                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1332
1333         result = nvme_disable_ctrl(&dev->ctrl, cap);
1334         if (result < 0)
1335                 return result;
1336
1337         nvmeq = dev->queues[0];
1338         if (!nvmeq) {
1339                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1340                                         dev_to_node(dev->dev));
1341                 if (!nvmeq)
1342                         return -ENOMEM;
1343         }
1344
1345         aqa = nvmeq->q_depth - 1;
1346         aqa |= aqa << 16;
1347
1348         writel(aqa, dev->bar + NVME_REG_AQA);
1349         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1350         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1351
1352         result = nvme_enable_ctrl(&dev->ctrl, cap);
1353         if (result)
1354                 return result;
1355
1356         nvmeq->cq_vector = 0;
1357         result = queue_request_irq(nvmeq);
1358         if (result) {
1359                 nvmeq->cq_vector = -1;
1360                 return result;
1361         }
1362
1363         return result;
1364 }
1365
1366 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1367 {
1368
1369         /* If true, indicates loss of adapter communication, possibly by a
1370          * NVMe Subsystem reset.
1371          */
1372         bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1373
1374         /* If there is a reset ongoing, we shouldn't reset again. */
1375         if (work_busy(&dev->reset_work))
1376                 return false;
1377
1378         /* We shouldn't reset unless the controller is on fatal error state
1379          * _or_ if we lost the communication with it.
1380          */
1381         if (!(csts & NVME_CSTS_CFS) && !nssro)
1382                 return false;
1383
1384         /* If PCI error recovery process is happening, we cannot reset or
1385          * the recovery mechanism will surely fail.
1386          */
1387         if (pci_channel_offline(to_pci_dev(dev->dev)))
1388                 return false;
1389
1390         return true;
1391 }
1392
1393 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1394 {
1395         /* Read a config register to help see what died. */
1396         u16 pci_status;
1397         int result;
1398
1399         result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1400                                       &pci_status);
1401         if (result == PCIBIOS_SUCCESSFUL)
1402                 dev_warn(dev->dev,
1403                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1404                          csts, pci_status);
1405         else
1406                 dev_warn(dev->dev,
1407                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1408                          csts, result);
1409 }
1410
1411 static void nvme_watchdog_timer(unsigned long data)
1412 {
1413         struct nvme_dev *dev = (struct nvme_dev *)data;
1414         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1415
1416         /* Skip controllers under certain specific conditions. */
1417         if (nvme_should_reset(dev, csts)) {
1418                 if (!nvme_reset(dev))
1419                         nvme_warn_reset(dev, csts);
1420                 return;
1421         }
1422
1423         mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1424 }
1425
1426 static int nvme_create_io_queues(struct nvme_dev *dev)
1427 {
1428         unsigned i, max;
1429         int ret = 0;
1430
1431         for (i = dev->queue_count; i <= dev->max_qid; i++) {
1432                 /* vector == qid - 1, match nvme_create_queue */
1433                 if (!nvme_alloc_queue(dev, i, dev->q_depth,
1434                      pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
1435                         ret = -ENOMEM;
1436                         break;
1437                 }
1438         }
1439
1440         max = min(dev->max_qid, dev->queue_count - 1);
1441         for (i = dev->online_queues; i <= max; i++) {
1442                 ret = nvme_create_queue(dev->queues[i], i);
1443                 if (ret)
1444                         break;
1445         }
1446
1447         /*
1448          * Ignore failing Create SQ/CQ commands, we can continue with less
1449          * than the desired aount of queues, and even a controller without
1450          * I/O queues an still be used to issue admin commands.  This might
1451          * be useful to upgrade a buggy firmware for example.
1452          */
1453         return ret >= 0 ? 0 : ret;
1454 }
1455
1456 static ssize_t nvme_cmb_show(struct device *dev,
1457                              struct device_attribute *attr,
1458                              char *buf)
1459 {
1460         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1461
1462         return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1463                        ndev->cmbloc, ndev->cmbsz);
1464 }
1465 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1466
1467 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1468 {
1469         u64 szu, size, offset;
1470         resource_size_t bar_size;
1471         struct pci_dev *pdev = to_pci_dev(dev->dev);
1472         void __iomem *cmb;
1473         dma_addr_t dma_addr;
1474
1475         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1476         if (!(NVME_CMB_SZ(dev->cmbsz)))
1477                 return NULL;
1478         dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1479
1480         if (!use_cmb_sqes)
1481                 return NULL;
1482
1483         szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1484         size = szu * NVME_CMB_SZ(dev->cmbsz);
1485         offset = szu * NVME_CMB_OFST(dev->cmbloc);
1486         bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
1487
1488         if (offset > bar_size)
1489                 return NULL;
1490
1491         /*
1492          * Controllers may support a CMB size larger than their BAR,
1493          * for example, due to being behind a bridge. Reduce the CMB to
1494          * the reported size of the BAR
1495          */
1496         if (size > bar_size - offset)
1497                 size = bar_size - offset;
1498
1499         dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
1500         cmb = ioremap_wc(dma_addr, size);
1501         if (!cmb)
1502                 return NULL;
1503
1504         dev->cmb_dma_addr = dma_addr;
1505         dev->cmb_size = size;
1506         return cmb;
1507 }
1508
1509 static inline void nvme_release_cmb(struct nvme_dev *dev)
1510 {
1511         if (dev->cmb) {
1512                 iounmap(dev->cmb);
1513                 dev->cmb = NULL;
1514         }
1515 }
1516
1517 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1518 {
1519         return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1520 }
1521
1522 static int nvme_setup_io_queues(struct nvme_dev *dev)
1523 {
1524         struct nvme_queue *adminq = dev->queues[0];
1525         struct pci_dev *pdev = to_pci_dev(dev->dev);
1526         int result, nr_io_queues, size;
1527
1528         nr_io_queues = num_online_cpus();
1529         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1530         if (result < 0)
1531                 return result;
1532
1533         if (nr_io_queues == 0)
1534                 return 0;
1535
1536         if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1537                 result = nvme_cmb_qdepth(dev, nr_io_queues,
1538                                 sizeof(struct nvme_command));
1539                 if (result > 0)
1540                         dev->q_depth = result;
1541                 else
1542                         nvme_release_cmb(dev);
1543         }
1544
1545         size = db_bar_size(dev, nr_io_queues);
1546         if (size > 8192) {
1547                 iounmap(dev->bar);
1548                 do {
1549                         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1550                         if (dev->bar)
1551                                 break;
1552                         if (!--nr_io_queues)
1553                                 return -ENOMEM;
1554                         size = db_bar_size(dev, nr_io_queues);
1555                 } while (1);
1556                 dev->dbs = dev->bar + 4096;
1557                 adminq->q_db = dev->dbs;
1558         }
1559
1560         /* Deregister the admin queue's interrupt */
1561         free_irq(pci_irq_vector(pdev, 0), adminq);
1562
1563         /*
1564          * If we enable msix early due to not intx, disable it again before
1565          * setting up the full range we need.
1566          */
1567         pci_free_irq_vectors(pdev);
1568         nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1569                         PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1570         if (nr_io_queues <= 0)
1571                 return -EIO;
1572         dev->max_qid = nr_io_queues;
1573
1574         /*
1575          * Should investigate if there's a performance win from allocating
1576          * more queues than interrupt vectors; it might allow the submission
1577          * path to scale better, even if the receive path is limited by the
1578          * number of interrupts.
1579          */
1580
1581         result = queue_request_irq(adminq);
1582         if (result) {
1583                 adminq->cq_vector = -1;
1584                 return result;
1585         }
1586         return nvme_create_io_queues(dev);
1587 }
1588
1589 static void nvme_del_queue_end(struct request *req, int error)
1590 {
1591         struct nvme_queue *nvmeq = req->end_io_data;
1592
1593         blk_mq_free_request(req);
1594         complete(&nvmeq->dev->ioq_wait);
1595 }
1596
1597 static void nvme_del_cq_end(struct request *req, int error)
1598 {
1599         struct nvme_queue *nvmeq = req->end_io_data;
1600
1601         if (!error) {
1602                 unsigned long flags;
1603
1604                 /*
1605                  * We might be called with the AQ q_lock held
1606                  * and the I/O queue q_lock should always
1607                  * nest inside the AQ one.
1608                  */
1609                 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1610                                         SINGLE_DEPTH_NESTING);
1611                 nvme_process_cq(nvmeq);
1612                 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1613         }
1614
1615         nvme_del_queue_end(req, error);
1616 }
1617
1618 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1619 {
1620         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1621         struct request *req;
1622         struct nvme_command cmd;
1623
1624         memset(&cmd, 0, sizeof(cmd));
1625         cmd.delete_queue.opcode = opcode;
1626         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1627
1628         req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1629         if (IS_ERR(req))
1630                 return PTR_ERR(req);
1631
1632         req->timeout = ADMIN_TIMEOUT;
1633         req->end_io_data = nvmeq;
1634
1635         blk_execute_rq_nowait(q, NULL, req, false,
1636                         opcode == nvme_admin_delete_cq ?
1637                                 nvme_del_cq_end : nvme_del_queue_end);
1638         return 0;
1639 }
1640
1641 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
1642 {
1643         int pass;
1644         unsigned long timeout;
1645         u8 opcode = nvme_admin_delete_sq;
1646
1647         for (pass = 0; pass < 2; pass++) {
1648                 int sent = 0, i = queues;
1649
1650                 reinit_completion(&dev->ioq_wait);
1651  retry:
1652                 timeout = ADMIN_TIMEOUT;
1653                 for (; i > 0; i--, sent++)
1654                         if (nvme_delete_queue(dev->queues[i], opcode))
1655                                 break;
1656
1657                 while (sent--) {
1658                         timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1659                         if (timeout == 0)
1660                                 return;
1661                         if (i)
1662                                 goto retry;
1663                 }
1664                 opcode = nvme_admin_delete_cq;
1665         }
1666 }
1667
1668 /*
1669  * Return: error value if an error occurred setting up the queues or calling
1670  * Identify Device.  0 if these succeeded, even if adding some of the
1671  * namespaces failed.  At the moment, these failures are silent.  TBD which
1672  * failures should be reported.
1673  */
1674 static int nvme_dev_add(struct nvme_dev *dev)
1675 {
1676         if (!dev->ctrl.tagset) {
1677                 dev->tagset.ops = &nvme_mq_ops;
1678                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1679                 dev->tagset.timeout = NVME_IO_TIMEOUT;
1680                 dev->tagset.numa_node = dev_to_node(dev->dev);
1681                 dev->tagset.queue_depth =
1682                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1683                 dev->tagset.cmd_size = nvme_cmd_size(dev);
1684                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1685                 dev->tagset.driver_data = dev;
1686
1687                 if (blk_mq_alloc_tag_set(&dev->tagset))
1688                         return 0;
1689                 dev->ctrl.tagset = &dev->tagset;
1690
1691                 nvme_dbbuf_set(dev);
1692         } else {
1693                 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1694
1695                 /* Free previously allocated queues that are no longer usable */
1696                 nvme_free_queues(dev, dev->online_queues);
1697         }
1698
1699         return 0;
1700 }
1701
1702 static int nvme_pci_enable(struct nvme_dev *dev)
1703 {
1704         u64 cap;
1705         int result = -ENOMEM;
1706         struct pci_dev *pdev = to_pci_dev(dev->dev);
1707
1708         if (pci_enable_device_mem(pdev))
1709                 return result;
1710
1711         pci_set_master(pdev);
1712
1713         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1714             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1715                 goto disable;
1716
1717         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1718                 result = -ENODEV;
1719                 goto disable;
1720         }
1721
1722         /*
1723          * Some devices and/or platforms don't advertise or work with INTx
1724          * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1725          * adjust this later.
1726          */
1727         result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1728         if (result < 0)
1729                 return result;
1730
1731         cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1732
1733         dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1734         dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1735         dev->dbs = dev->bar + 4096;
1736
1737         /*
1738          * Temporary fix for the Apple controller found in the MacBook8,1 and
1739          * some MacBook7,1 to avoid controller resets and data loss.
1740          */
1741         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1742                 dev->q_depth = 2;
1743                 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1744                         "queue depth=%u to work around controller resets\n",
1745                         dev->q_depth);
1746         }
1747
1748         /*
1749          * CMBs can currently only exist on >=1.2 PCIe devices. We only
1750          * populate sysfs if a CMB is implemented. Note that we add the
1751          * CMB attribute to the nvme_ctrl kobj which removes the need to remove
1752          * it on exit. Since nvme_dev_attrs_group has no name we can pass
1753          * NULL as final argument to sysfs_add_file_to_group.
1754          */
1755
1756         if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
1757                 dev->cmb = nvme_map_cmb(dev);
1758
1759                 if (dev->cmbsz) {
1760                         if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1761                                                     &dev_attr_cmb.attr, NULL))
1762                                 dev_warn(dev->dev,
1763                                          "failed to add sysfs attribute for CMB\n");
1764                 }
1765         }
1766
1767         pci_enable_pcie_error_reporting(pdev);
1768         pci_save_state(pdev);
1769         return 0;
1770
1771  disable:
1772         pci_disable_device(pdev);
1773         return result;
1774 }
1775
1776 static void nvme_dev_unmap(struct nvme_dev *dev)
1777 {
1778         if (dev->bar)
1779                 iounmap(dev->bar);
1780         pci_release_mem_regions(to_pci_dev(dev->dev));
1781 }
1782
1783 static void nvme_pci_disable(struct nvme_dev *dev)
1784 {
1785         struct pci_dev *pdev = to_pci_dev(dev->dev);
1786
1787         pci_free_irq_vectors(pdev);
1788
1789         if (pci_is_enabled(pdev)) {
1790                 pci_disable_pcie_error_reporting(pdev);
1791                 pci_disable_device(pdev);
1792         }
1793 }
1794
1795 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1796 {
1797         int i, queues;
1798         bool dead = true;
1799         struct pci_dev *pdev = to_pci_dev(dev->dev);
1800
1801         del_timer_sync(&dev->watchdog_timer);
1802
1803         mutex_lock(&dev->shutdown_lock);
1804         if (pci_is_enabled(pdev)) {
1805                 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1806
1807                 if (dev->ctrl.state == NVME_CTRL_LIVE)
1808                         nvme_start_freeze(&dev->ctrl);
1809                 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
1810                         pdev->error_state  != pci_channel_io_normal);
1811         }
1812
1813         /*
1814          * Give the controller a chance to complete all entered requests if
1815          * doing a safe shutdown.
1816          */
1817         if (!dead && shutdown)
1818                 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
1819         nvme_stop_queues(&dev->ctrl);
1820
1821         queues = dev->online_queues - 1;
1822         for (i = dev->queue_count - 1; i > 0; i--)
1823                 nvme_suspend_queue(dev->queues[i]);
1824
1825         if (dead) {
1826                 /* A device might become IO incapable very soon during
1827                  * probe, before the admin queue is configured. Thus,
1828                  * queue_count can be 0 here.
1829                  */
1830                 if (dev->queue_count)
1831                         nvme_suspend_queue(dev->queues[0]);
1832         } else {
1833                 nvme_disable_io_queues(dev, queues);
1834                 nvme_disable_admin_queue(dev, shutdown);
1835         }
1836         nvme_pci_disable(dev);
1837
1838         blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
1839         blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
1840
1841         /*
1842          * The driver will not be starting up queues again if shutting down so
1843          * must flush all entered requests to their failed completion to avoid
1844          * deadlocking blk-mq hot-cpu notifier.
1845          */
1846         if (shutdown)
1847                 nvme_start_queues(&dev->ctrl);
1848         mutex_unlock(&dev->shutdown_lock);
1849 }
1850
1851 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1852 {
1853         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1854                                                 PAGE_SIZE, PAGE_SIZE, 0);
1855         if (!dev->prp_page_pool)
1856                 return -ENOMEM;
1857
1858         /* Optimisation for I/Os between 4k and 128k */
1859         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1860                                                 256, 256, 0);
1861         if (!dev->prp_small_pool) {
1862                 dma_pool_destroy(dev->prp_page_pool);
1863                 return -ENOMEM;
1864         }
1865         return 0;
1866 }
1867
1868 static void nvme_release_prp_pools(struct nvme_dev *dev)
1869 {
1870         dma_pool_destroy(dev->prp_page_pool);
1871         dma_pool_destroy(dev->prp_small_pool);
1872 }
1873
1874 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1875 {
1876         struct nvme_dev *dev = to_nvme_dev(ctrl);
1877
1878         nvme_dbbuf_dma_free(dev);
1879         put_device(dev->dev);
1880         if (dev->tagset.tags)
1881                 blk_mq_free_tag_set(&dev->tagset);
1882         if (dev->ctrl.admin_q)
1883                 blk_put_queue(dev->ctrl.admin_q);
1884         kfree(dev->queues);
1885         free_opal_dev(dev->ctrl.opal_dev);
1886         kfree(dev);
1887 }
1888
1889 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1890 {
1891         dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
1892
1893         kref_get(&dev->ctrl.kref);
1894         nvme_dev_disable(dev, false);
1895         if (!schedule_work(&dev->remove_work))
1896                 nvme_put_ctrl(&dev->ctrl);
1897 }
1898
1899 static void nvme_reset_work(struct work_struct *work)
1900 {
1901         struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1902         bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
1903         int result = -ENODEV;
1904
1905         if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
1906                 goto out;
1907
1908         /*
1909          * If we're called to reset a live controller first shut it down before
1910          * moving on.
1911          */
1912         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
1913                 nvme_dev_disable(dev, false);
1914
1915         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
1916                 goto out;
1917
1918         result = nvme_pci_enable(dev);
1919         if (result)
1920                 goto out;
1921
1922         result = nvme_configure_admin_queue(dev);
1923         if (result)
1924                 goto out;
1925
1926         nvme_init_queue(dev->queues[0], 0);
1927         result = nvme_alloc_admin_tags(dev);
1928         if (result)
1929                 goto out;
1930
1931         result = nvme_init_identify(&dev->ctrl);
1932         if (result)
1933                 goto out;
1934
1935         if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
1936                 if (!dev->ctrl.opal_dev)
1937                         dev->ctrl.opal_dev =
1938                                 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
1939                 else if (was_suspend)
1940                         opal_unlock_from_suspend(dev->ctrl.opal_dev);
1941         } else {
1942                 free_opal_dev(dev->ctrl.opal_dev);
1943                 dev->ctrl.opal_dev = NULL;
1944         }
1945
1946         if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
1947                 result = nvme_dbbuf_dma_alloc(dev);
1948                 if (result)
1949                         dev_warn(dev->dev,
1950                                  "unable to allocate dma for dbbuf\n");
1951         }
1952
1953         result = nvme_setup_io_queues(dev);
1954         if (result)
1955                 goto out;
1956
1957         /*
1958          * A controller that can not execute IO typically requires user
1959          * intervention to correct. For such degraded controllers, the driver
1960          * should not submit commands the user did not request, so skip
1961          * registering for asynchronous event notification on this condition.
1962          */
1963         if (dev->online_queues > 1)
1964                 nvme_queue_async_events(&dev->ctrl);
1965
1966         mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1967
1968         /*
1969          * Keep the controller around but remove all namespaces if we don't have
1970          * any working I/O queue.
1971          */
1972         if (dev->online_queues < 2) {
1973                 dev_warn(dev->ctrl.device, "IO queues not created\n");
1974                 nvme_kill_queues(&dev->ctrl);
1975                 nvme_remove_namespaces(&dev->ctrl);
1976         } else {
1977                 nvme_start_queues(&dev->ctrl);
1978                 nvme_wait_freeze(&dev->ctrl);
1979                 nvme_dev_add(dev);
1980                 nvme_unfreeze(&dev->ctrl);
1981         }
1982
1983         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1984                 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1985                 goto out;
1986         }
1987
1988         if (dev->online_queues > 1)
1989                 nvme_queue_scan(&dev->ctrl);
1990         return;
1991
1992  out:
1993         nvme_remove_dead_ctrl(dev, result);
1994 }
1995
1996 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1997 {
1998         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1999         struct pci_dev *pdev = to_pci_dev(dev->dev);
2000
2001         nvme_kill_queues(&dev->ctrl);
2002         if (pci_get_drvdata(pdev))
2003                 device_release_driver(&pdev->dev);
2004         nvme_put_ctrl(&dev->ctrl);
2005 }
2006
2007 static int nvme_reset(struct nvme_dev *dev)
2008 {
2009         if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
2010                 return -ENODEV;
2011         if (work_busy(&dev->reset_work))
2012                 return -ENODEV;
2013         if (!queue_work(nvme_workq, &dev->reset_work))
2014                 return -EBUSY;
2015         return 0;
2016 }
2017
2018 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2019 {
2020         *val = readl(to_nvme_dev(ctrl)->bar + off);
2021         return 0;
2022 }
2023
2024 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2025 {
2026         writel(val, to_nvme_dev(ctrl)->bar + off);
2027         return 0;
2028 }
2029
2030 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2031 {
2032         *val = readq(to_nvme_dev(ctrl)->bar + off);
2033         return 0;
2034 }
2035
2036 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
2037 {
2038         struct nvme_dev *dev = to_nvme_dev(ctrl);
2039         int ret = nvme_reset(dev);
2040
2041         if (!ret)
2042                 flush_work(&dev->reset_work);
2043         return ret;
2044 }
2045
2046 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2047         .name                   = "pcie",
2048         .module                 = THIS_MODULE,
2049         .reg_read32             = nvme_pci_reg_read32,
2050         .reg_write32            = nvme_pci_reg_write32,
2051         .reg_read64             = nvme_pci_reg_read64,
2052         .reset_ctrl             = nvme_pci_reset_ctrl,
2053         .free_ctrl              = nvme_pci_free_ctrl,
2054         .submit_async_event     = nvme_pci_submit_async_event,
2055 };
2056
2057 static int nvme_dev_map(struct nvme_dev *dev)
2058 {
2059         struct pci_dev *pdev = to_pci_dev(dev->dev);
2060
2061         if (pci_request_mem_regions(pdev, "nvme"))
2062                 return -ENODEV;
2063
2064         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2065         if (!dev->bar)
2066                 goto release;
2067
2068         return 0;
2069   release:
2070         pci_release_mem_regions(pdev);
2071         return -ENODEV;
2072 }
2073
2074 static unsigned long check_dell_samsung_bug(struct pci_dev *pdev)
2075 {
2076         if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2077                 /*
2078                  * Several Samsung devices seem to drop off the PCIe bus
2079                  * randomly when APST is on and uses the deepest sleep state.
2080                  * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2081                  * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2082                  * 950 PRO 256GB", but it seems to be restricted to two Dell
2083                  * laptops.
2084                  */
2085                 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2086                     (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2087                      dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2088                         return NVME_QUIRK_NO_DEEPEST_PS;
2089         }
2090
2091         return 0;
2092 }
2093
2094 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2095 {
2096         int node, result = -ENOMEM;
2097         struct nvme_dev *dev;
2098         unsigned long quirks = id->driver_data;
2099
2100         node = dev_to_node(&pdev->dev);
2101         if (node == NUMA_NO_NODE)
2102                 set_dev_node(&pdev->dev, first_memory_node);
2103
2104         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2105         if (!dev)
2106                 return -ENOMEM;
2107         dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2108                                                         GFP_KERNEL, node);
2109         if (!dev->queues)
2110                 goto free;
2111
2112         dev->dev = get_device(&pdev->dev);
2113         pci_set_drvdata(pdev, dev);
2114
2115         result = nvme_dev_map(dev);
2116         if (result)
2117                 goto free;
2118
2119         INIT_WORK(&dev->reset_work, nvme_reset_work);
2120         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2121         setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
2122                 (unsigned long)dev);
2123         mutex_init(&dev->shutdown_lock);
2124         init_completion(&dev->ioq_wait);
2125
2126         result = nvme_setup_prp_pools(dev);
2127         if (result)
2128                 goto put_pci;
2129
2130         quirks |= check_dell_samsung_bug(pdev);
2131
2132         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2133                         quirks);
2134         if (result)
2135                 goto release_pools;
2136
2137         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2138
2139         queue_work(nvme_workq, &dev->reset_work);
2140         return 0;
2141
2142  release_pools:
2143         nvme_release_prp_pools(dev);
2144  put_pci:
2145         put_device(dev->dev);
2146         nvme_dev_unmap(dev);
2147  free:
2148         kfree(dev->queues);
2149         kfree(dev);
2150         return result;
2151 }
2152
2153 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2154 {
2155         struct nvme_dev *dev = pci_get_drvdata(pdev);
2156
2157         if (prepare)
2158                 nvme_dev_disable(dev, false);
2159         else
2160                 nvme_reset(dev);
2161 }
2162
2163 static void nvme_shutdown(struct pci_dev *pdev)
2164 {
2165         struct nvme_dev *dev = pci_get_drvdata(pdev);
2166         nvme_dev_disable(dev, true);
2167 }
2168
2169 /*
2170  * The driver's remove may be called on a device in a partially initialized
2171  * state. This function must not have any dependencies on the device state in
2172  * order to proceed.
2173  */
2174 static void nvme_remove(struct pci_dev *pdev)
2175 {
2176         struct nvme_dev *dev = pci_get_drvdata(pdev);
2177
2178         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2179
2180         pci_set_drvdata(pdev, NULL);
2181
2182         if (!pci_device_is_present(pdev)) {
2183                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2184                 nvme_dev_disable(dev, false);
2185         }
2186
2187         flush_work(&dev->reset_work);
2188         nvme_uninit_ctrl(&dev->ctrl);
2189         nvme_dev_disable(dev, true);
2190         nvme_dev_remove_admin(dev);
2191         nvme_free_queues(dev, 0);
2192         nvme_release_cmb(dev);
2193         nvme_release_prp_pools(dev);
2194         nvme_dev_unmap(dev);
2195         nvme_put_ctrl(&dev->ctrl);
2196 }
2197
2198 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2199 {
2200         int ret = 0;
2201
2202         if (numvfs == 0) {
2203                 if (pci_vfs_assigned(pdev)) {
2204                         dev_warn(&pdev->dev,
2205                                 "Cannot disable SR-IOV VFs while assigned\n");
2206                         return -EPERM;
2207                 }
2208                 pci_disable_sriov(pdev);
2209                 return 0;
2210         }
2211
2212         ret = pci_enable_sriov(pdev, numvfs);
2213         return ret ? ret : numvfs;
2214 }
2215
2216 #ifdef CONFIG_PM_SLEEP
2217 static int nvme_suspend(struct device *dev)
2218 {
2219         struct pci_dev *pdev = to_pci_dev(dev);
2220         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2221
2222         nvme_dev_disable(ndev, true);
2223         return 0;
2224 }
2225
2226 static int nvme_resume(struct device *dev)
2227 {
2228         struct pci_dev *pdev = to_pci_dev(dev);
2229         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2230
2231         nvme_reset(ndev);
2232         return 0;
2233 }
2234 #endif
2235
2236 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2237
2238 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2239                                                 pci_channel_state_t state)
2240 {
2241         struct nvme_dev *dev = pci_get_drvdata(pdev);
2242
2243         /*
2244          * A frozen channel requires a reset. When detected, this method will
2245          * shutdown the controller to quiesce. The controller will be restarted
2246          * after the slot reset through driver's slot_reset callback.
2247          */
2248         switch (state) {
2249         case pci_channel_io_normal:
2250                 return PCI_ERS_RESULT_CAN_RECOVER;
2251         case pci_channel_io_frozen:
2252                 dev_warn(dev->ctrl.device,
2253                         "frozen state error detected, reset controller\n");
2254                 nvme_dev_disable(dev, false);
2255                 return PCI_ERS_RESULT_NEED_RESET;
2256         case pci_channel_io_perm_failure:
2257                 dev_warn(dev->ctrl.device,
2258                         "failure state error detected, request disconnect\n");
2259                 return PCI_ERS_RESULT_DISCONNECT;
2260         }
2261         return PCI_ERS_RESULT_NEED_RESET;
2262 }
2263
2264 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2265 {
2266         struct nvme_dev *dev = pci_get_drvdata(pdev);
2267
2268         dev_info(dev->ctrl.device, "restart after slot reset\n");
2269         pci_restore_state(pdev);
2270         nvme_reset(dev);
2271         return PCI_ERS_RESULT_RECOVERED;
2272 }
2273
2274 static void nvme_error_resume(struct pci_dev *pdev)
2275 {
2276         pci_cleanup_aer_uncorrect_error_status(pdev);
2277 }
2278
2279 static const struct pci_error_handlers nvme_err_handler = {
2280         .error_detected = nvme_error_detected,
2281         .slot_reset     = nvme_slot_reset,
2282         .resume         = nvme_error_resume,
2283         .reset_notify   = nvme_reset_notify,
2284 };
2285
2286 static const struct pci_device_id nvme_id_table[] = {
2287         { PCI_VDEVICE(INTEL, 0x0953),
2288                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2289                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2290         { PCI_VDEVICE(INTEL, 0x0a53),
2291                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2292                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2293         { PCI_VDEVICE(INTEL, 0x0a54),
2294                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2295                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2296         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
2297                 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2298         { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
2299                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2300         { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
2301                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2302         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2303         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2304         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2305         { 0, }
2306 };
2307 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2308
2309 static struct pci_driver nvme_driver = {
2310         .name           = "nvme",
2311         .id_table       = nvme_id_table,
2312         .probe          = nvme_probe,
2313         .remove         = nvme_remove,
2314         .shutdown       = nvme_shutdown,
2315         .driver         = {
2316                 .pm     = &nvme_dev_pm_ops,
2317         },
2318         .sriov_configure = nvme_pci_sriov_configure,
2319         .err_handler    = &nvme_err_handler,
2320 };
2321
2322 static int __init nvme_init(void)
2323 {
2324         int result;
2325
2326         nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2327         if (!nvme_workq)
2328                 return -ENOMEM;
2329
2330         result = pci_register_driver(&nvme_driver);
2331         if (result)
2332                 destroy_workqueue(nvme_workq);
2333         return result;
2334 }
2335
2336 static void __exit nvme_exit(void)
2337 {
2338         pci_unregister_driver(&nvme_driver);
2339         destroy_workqueue(nvme_workq);
2340         _nvme_check_size();
2341 }
2342
2343 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2344 MODULE_LICENSE("GPL");
2345 MODULE_VERSION("1.0");
2346 module_init(nvme_init);
2347 module_exit(nvme_exit);