]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/nvme/host/pci.c
xhci: fix memleak in xhci_run()
[karo-tx-linux.git] / drivers / nvme / host / pci.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/dmi.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/mm.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/pci.h>
28 #include <linux/poison.h>
29 #include <linux/t10-pi.h>
30 #include <linux/timer.h>
31 #include <linux/types.h>
32 #include <linux/io-64-nonatomic-lo-hi.h>
33 #include <asm/unaligned.h>
34 #include <linux/sed-opal.h>
35
36 #include "nvme.h"
37
38 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
39 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
40
41 /*
42  * We handle AEN commands ourselves and don't even let the
43  * block layer know about them.
44  */
45 #define NVME_AQ_BLKMQ_DEPTH     (NVME_AQ_DEPTH - NVME_NR_AERS)
46
47 static int use_threaded_interrupts;
48 module_param(use_threaded_interrupts, int, 0);
49
50 static bool use_cmb_sqes = true;
51 module_param(use_cmb_sqes, bool, 0644);
52 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
53
54 static unsigned int max_host_mem_size_mb = 128;
55 module_param(max_host_mem_size_mb, uint, 0444);
56 MODULE_PARM_DESC(max_host_mem_size_mb,
57         "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
58
59 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
60 static const struct kernel_param_ops io_queue_depth_ops = {
61         .set = io_queue_depth_set,
62         .get = param_get_int,
63 };
64
65 static int io_queue_depth = 1024;
66 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
67 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
68
69 struct nvme_dev;
70 struct nvme_queue;
71
72 static void nvme_process_cq(struct nvme_queue *nvmeq);
73 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
74
75 /*
76  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
77  */
78 struct nvme_dev {
79         struct nvme_queue **queues;
80         struct blk_mq_tag_set tagset;
81         struct blk_mq_tag_set admin_tagset;
82         u32 __iomem *dbs;
83         struct device *dev;
84         struct dma_pool *prp_page_pool;
85         struct dma_pool *prp_small_pool;
86         unsigned online_queues;
87         unsigned max_qid;
88         int q_depth;
89         u32 db_stride;
90         void __iomem *bar;
91         unsigned long bar_mapped_size;
92         struct work_struct remove_work;
93         struct mutex shutdown_lock;
94         bool subsystem;
95         void __iomem *cmb;
96         dma_addr_t cmb_dma_addr;
97         u64 cmb_size;
98         u32 cmbsz;
99         u32 cmbloc;
100         struct nvme_ctrl ctrl;
101         struct completion ioq_wait;
102
103         /* shadow doorbell buffer support: */
104         u32 *dbbuf_dbs;
105         dma_addr_t dbbuf_dbs_dma_addr;
106         u32 *dbbuf_eis;
107         dma_addr_t dbbuf_eis_dma_addr;
108
109         /* host memory buffer support: */
110         u64 host_mem_size;
111         u32 nr_host_mem_descs;
112         struct nvme_host_mem_buf_desc *host_mem_descs;
113         void **host_mem_desc_bufs;
114 };
115
116 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
117 {
118         int n = 0, ret;
119
120         ret = kstrtoint(val, 10, &n);
121         if (ret != 0 || n < 2)
122                 return -EINVAL;
123
124         return param_set_int(val, kp);
125 }
126
127 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
128 {
129         return qid * 2 * stride;
130 }
131
132 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
133 {
134         return (qid * 2 + 1) * stride;
135 }
136
137 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
138 {
139         return container_of(ctrl, struct nvme_dev, ctrl);
140 }
141
142 /*
143  * An NVM Express queue.  Each device has at least two (one for admin
144  * commands and one for I/O commands).
145  */
146 struct nvme_queue {
147         struct device *q_dmadev;
148         struct nvme_dev *dev;
149         spinlock_t q_lock;
150         struct nvme_command *sq_cmds;
151         struct nvme_command __iomem *sq_cmds_io;
152         volatile struct nvme_completion *cqes;
153         struct blk_mq_tags **tags;
154         dma_addr_t sq_dma_addr;
155         dma_addr_t cq_dma_addr;
156         u32 __iomem *q_db;
157         u16 q_depth;
158         s16 cq_vector;
159         u16 sq_tail;
160         u16 cq_head;
161         u16 qid;
162         u8 cq_phase;
163         u8 cqe_seen;
164         u32 *dbbuf_sq_db;
165         u32 *dbbuf_cq_db;
166         u32 *dbbuf_sq_ei;
167         u32 *dbbuf_cq_ei;
168 };
169
170 /*
171  * The nvme_iod describes the data in an I/O, including the list of PRP
172  * entries.  You can't see it in this data structure because C doesn't let
173  * me express that.  Use nvme_init_iod to ensure there's enough space
174  * allocated to store the PRP list.
175  */
176 struct nvme_iod {
177         struct nvme_request req;
178         struct nvme_queue *nvmeq;
179         int aborted;
180         int npages;             /* In the PRP list. 0 means small pool in use */
181         int nents;              /* Used in scatterlist */
182         int length;             /* Of data, in bytes */
183         dma_addr_t first_dma;
184         struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
185         struct scatterlist *sg;
186         struct scatterlist inline_sg[0];
187 };
188
189 /*
190  * Check we didin't inadvertently grow the command struct
191  */
192 static inline void _nvme_check_size(void)
193 {
194         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
195         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
196         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
197         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
198         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
199         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
200         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
201         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
202         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
203         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
204         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
205         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
206         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
207 }
208
209 static inline unsigned int nvme_dbbuf_size(u32 stride)
210 {
211         return ((num_possible_cpus() + 1) * 8 * stride);
212 }
213
214 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
215 {
216         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
217
218         if (dev->dbbuf_dbs)
219                 return 0;
220
221         dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
222                                             &dev->dbbuf_dbs_dma_addr,
223                                             GFP_KERNEL);
224         if (!dev->dbbuf_dbs)
225                 return -ENOMEM;
226         dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
227                                             &dev->dbbuf_eis_dma_addr,
228                                             GFP_KERNEL);
229         if (!dev->dbbuf_eis) {
230                 dma_free_coherent(dev->dev, mem_size,
231                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
232                 dev->dbbuf_dbs = NULL;
233                 return -ENOMEM;
234         }
235
236         return 0;
237 }
238
239 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
240 {
241         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
242
243         if (dev->dbbuf_dbs) {
244                 dma_free_coherent(dev->dev, mem_size,
245                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
246                 dev->dbbuf_dbs = NULL;
247         }
248         if (dev->dbbuf_eis) {
249                 dma_free_coherent(dev->dev, mem_size,
250                                   dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
251                 dev->dbbuf_eis = NULL;
252         }
253 }
254
255 static void nvme_dbbuf_init(struct nvme_dev *dev,
256                             struct nvme_queue *nvmeq, int qid)
257 {
258         if (!dev->dbbuf_dbs || !qid)
259                 return;
260
261         nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
262         nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
263         nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
264         nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
265 }
266
267 static void nvme_dbbuf_set(struct nvme_dev *dev)
268 {
269         struct nvme_command c;
270
271         if (!dev->dbbuf_dbs)
272                 return;
273
274         memset(&c, 0, sizeof(c));
275         c.dbbuf.opcode = nvme_admin_dbbuf;
276         c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
277         c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
278
279         if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
280                 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
281                 /* Free memory and continue on */
282                 nvme_dbbuf_dma_free(dev);
283         }
284 }
285
286 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
287 {
288         return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
289 }
290
291 /* Update dbbuf and return true if an MMIO is required */
292 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
293                                               volatile u32 *dbbuf_ei)
294 {
295         if (dbbuf_db) {
296                 u16 old_value;
297
298                 /*
299                  * Ensure that the queue is written before updating
300                  * the doorbell in memory
301                  */
302                 wmb();
303
304                 old_value = *dbbuf_db;
305                 *dbbuf_db = value;
306
307                 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
308                         return false;
309         }
310
311         return true;
312 }
313
314 /*
315  * Max size of iod being embedded in the request payload
316  */
317 #define NVME_INT_PAGES          2
318 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->ctrl.page_size)
319
320 /*
321  * Will slightly overestimate the number of pages needed.  This is OK
322  * as it only leads to a small amount of wasted memory for the lifetime of
323  * the I/O.
324  */
325 static int nvme_npages(unsigned size, struct nvme_dev *dev)
326 {
327         unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
328                                       dev->ctrl.page_size);
329         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
330 }
331
332 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
333                 unsigned int size, unsigned int nseg)
334 {
335         return sizeof(__le64 *) * nvme_npages(size, dev) +
336                         sizeof(struct scatterlist) * nseg;
337 }
338
339 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
340 {
341         return sizeof(struct nvme_iod) +
342                 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
343 }
344
345 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
346                                 unsigned int hctx_idx)
347 {
348         struct nvme_dev *dev = data;
349         struct nvme_queue *nvmeq = dev->queues[0];
350
351         WARN_ON(hctx_idx != 0);
352         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
353         WARN_ON(nvmeq->tags);
354
355         hctx->driver_data = nvmeq;
356         nvmeq->tags = &dev->admin_tagset.tags[0];
357         return 0;
358 }
359
360 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
361 {
362         struct nvme_queue *nvmeq = hctx->driver_data;
363
364         nvmeq->tags = NULL;
365 }
366
367 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
368                           unsigned int hctx_idx)
369 {
370         struct nvme_dev *dev = data;
371         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
372
373         if (!nvmeq->tags)
374                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
375
376         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
377         hctx->driver_data = nvmeq;
378         return 0;
379 }
380
381 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
382                 unsigned int hctx_idx, unsigned int numa_node)
383 {
384         struct nvme_dev *dev = set->driver_data;
385         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
386         int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
387         struct nvme_queue *nvmeq = dev->queues[queue_idx];
388
389         BUG_ON(!nvmeq);
390         iod->nvmeq = nvmeq;
391         return 0;
392 }
393
394 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
395 {
396         struct nvme_dev *dev = set->driver_data;
397
398         return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
399 }
400
401 /**
402  * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
403  * @nvmeq: The queue to use
404  * @cmd: The command to send
405  *
406  * Safe to use from interrupt context
407  */
408 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
409                                                 struct nvme_command *cmd)
410 {
411         u16 tail = nvmeq->sq_tail;
412
413         if (nvmeq->sq_cmds_io)
414                 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
415         else
416                 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
417
418         if (++tail == nvmeq->q_depth)
419                 tail = 0;
420         if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
421                                               nvmeq->dbbuf_sq_ei))
422                 writel(tail, nvmeq->q_db);
423         nvmeq->sq_tail = tail;
424 }
425
426 static __le64 **iod_list(struct request *req)
427 {
428         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
429         return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
430 }
431
432 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
433 {
434         struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
435         int nseg = blk_rq_nr_phys_segments(rq);
436         unsigned int size = blk_rq_payload_bytes(rq);
437
438         if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
439                 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
440                 if (!iod->sg)
441                         return BLK_STS_RESOURCE;
442         } else {
443                 iod->sg = iod->inline_sg;
444         }
445
446         iod->aborted = 0;
447         iod->npages = -1;
448         iod->nents = 0;
449         iod->length = size;
450
451         return BLK_STS_OK;
452 }
453
454 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
455 {
456         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
457         const int last_prp = dev->ctrl.page_size / 8 - 1;
458         int i;
459         __le64 **list = iod_list(req);
460         dma_addr_t prp_dma = iod->first_dma;
461
462         if (iod->npages == 0)
463                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
464         for (i = 0; i < iod->npages; i++) {
465                 __le64 *prp_list = list[i];
466                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
467                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
468                 prp_dma = next_prp_dma;
469         }
470
471         if (iod->sg != iod->inline_sg)
472                 kfree(iod->sg);
473 }
474
475 #ifdef CONFIG_BLK_DEV_INTEGRITY
476 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
477 {
478         if (be32_to_cpu(pi->ref_tag) == v)
479                 pi->ref_tag = cpu_to_be32(p);
480 }
481
482 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
483 {
484         if (be32_to_cpu(pi->ref_tag) == p)
485                 pi->ref_tag = cpu_to_be32(v);
486 }
487
488 /**
489  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
490  *
491  * The virtual start sector is the one that was originally submitted by the
492  * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
493  * start sector may be different. Remap protection information to match the
494  * physical LBA on writes, and back to the original seed on reads.
495  *
496  * Type 0 and 3 do not have a ref tag, so no remapping required.
497  */
498 static void nvme_dif_remap(struct request *req,
499                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
500 {
501         struct nvme_ns *ns = req->rq_disk->private_data;
502         struct bio_integrity_payload *bip;
503         struct t10_pi_tuple *pi;
504         void *p, *pmap;
505         u32 i, nlb, ts, phys, virt;
506
507         if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
508                 return;
509
510         bip = bio_integrity(req->bio);
511         if (!bip)
512                 return;
513
514         pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
515
516         p = pmap;
517         virt = bip_get_seed(bip);
518         phys = nvme_block_nr(ns, blk_rq_pos(req));
519         nlb = (blk_rq_bytes(req) >> ns->lba_shift);
520         ts = ns->disk->queue->integrity.tuple_size;
521
522         for (i = 0; i < nlb; i++, virt++, phys++) {
523                 pi = (struct t10_pi_tuple *)p;
524                 dif_swap(phys, virt, pi);
525                 p += ts;
526         }
527         kunmap_atomic(pmap);
528 }
529 #else /* CONFIG_BLK_DEV_INTEGRITY */
530 static void nvme_dif_remap(struct request *req,
531                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
532 {
533 }
534 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
535 {
536 }
537 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
538 {
539 }
540 #endif
541
542 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req)
543 {
544         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
545         struct dma_pool *pool;
546         int length = blk_rq_payload_bytes(req);
547         struct scatterlist *sg = iod->sg;
548         int dma_len = sg_dma_len(sg);
549         u64 dma_addr = sg_dma_address(sg);
550         u32 page_size = dev->ctrl.page_size;
551         int offset = dma_addr & (page_size - 1);
552         __le64 *prp_list;
553         __le64 **list = iod_list(req);
554         dma_addr_t prp_dma;
555         int nprps, i;
556
557         length -= (page_size - offset);
558         if (length <= 0)
559                 return true;
560
561         dma_len -= (page_size - offset);
562         if (dma_len) {
563                 dma_addr += (page_size - offset);
564         } else {
565                 sg = sg_next(sg);
566                 dma_addr = sg_dma_address(sg);
567                 dma_len = sg_dma_len(sg);
568         }
569
570         if (length <= page_size) {
571                 iod->first_dma = dma_addr;
572                 return true;
573         }
574
575         nprps = DIV_ROUND_UP(length, page_size);
576         if (nprps <= (256 / 8)) {
577                 pool = dev->prp_small_pool;
578                 iod->npages = 0;
579         } else {
580                 pool = dev->prp_page_pool;
581                 iod->npages = 1;
582         }
583
584         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
585         if (!prp_list) {
586                 iod->first_dma = dma_addr;
587                 iod->npages = -1;
588                 return false;
589         }
590         list[0] = prp_list;
591         iod->first_dma = prp_dma;
592         i = 0;
593         for (;;) {
594                 if (i == page_size >> 3) {
595                         __le64 *old_prp_list = prp_list;
596                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
597                         if (!prp_list)
598                                 return false;
599                         list[iod->npages++] = prp_list;
600                         prp_list[0] = old_prp_list[i - 1];
601                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
602                         i = 1;
603                 }
604                 prp_list[i++] = cpu_to_le64(dma_addr);
605                 dma_len -= page_size;
606                 dma_addr += page_size;
607                 length -= page_size;
608                 if (length <= 0)
609                         break;
610                 if (dma_len > 0)
611                         continue;
612                 BUG_ON(dma_len < 0);
613                 sg = sg_next(sg);
614                 dma_addr = sg_dma_address(sg);
615                 dma_len = sg_dma_len(sg);
616         }
617
618         return true;
619 }
620
621 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
622                 struct nvme_command *cmnd)
623 {
624         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
625         struct request_queue *q = req->q;
626         enum dma_data_direction dma_dir = rq_data_dir(req) ?
627                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
628         blk_status_t ret = BLK_STS_IOERR;
629
630         sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
631         iod->nents = blk_rq_map_sg(q, req, iod->sg);
632         if (!iod->nents)
633                 goto out;
634
635         ret = BLK_STS_RESOURCE;
636         if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
637                                 DMA_ATTR_NO_WARN))
638                 goto out;
639
640         if (!nvme_setup_prps(dev, req))
641                 goto out_unmap;
642
643         ret = BLK_STS_IOERR;
644         if (blk_integrity_rq(req)) {
645                 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
646                         goto out_unmap;
647
648                 sg_init_table(&iod->meta_sg, 1);
649                 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
650                         goto out_unmap;
651
652                 if (rq_data_dir(req))
653                         nvme_dif_remap(req, nvme_dif_prep);
654
655                 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
656                         goto out_unmap;
657         }
658
659         cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
660         cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
661         if (blk_integrity_rq(req))
662                 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
663         return BLK_STS_OK;
664
665 out_unmap:
666         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
667 out:
668         return ret;
669 }
670
671 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
672 {
673         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
674         enum dma_data_direction dma_dir = rq_data_dir(req) ?
675                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
676
677         if (iod->nents) {
678                 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
679                 if (blk_integrity_rq(req)) {
680                         if (!rq_data_dir(req))
681                                 nvme_dif_remap(req, nvme_dif_complete);
682                         dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
683                 }
684         }
685
686         nvme_cleanup_cmd(req);
687         nvme_free_iod(dev, req);
688 }
689
690 /*
691  * NOTE: ns is NULL when called on the admin queue.
692  */
693 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
694                          const struct blk_mq_queue_data *bd)
695 {
696         struct nvme_ns *ns = hctx->queue->queuedata;
697         struct nvme_queue *nvmeq = hctx->driver_data;
698         struct nvme_dev *dev = nvmeq->dev;
699         struct request *req = bd->rq;
700         struct nvme_command cmnd;
701         blk_status_t ret;
702
703         ret = nvme_setup_cmd(ns, req, &cmnd);
704         if (ret)
705                 return ret;
706
707         ret = nvme_init_iod(req, dev);
708         if (ret)
709                 goto out_free_cmd;
710
711         if (blk_rq_nr_phys_segments(req)) {
712                 ret = nvme_map_data(dev, req, &cmnd);
713                 if (ret)
714                         goto out_cleanup_iod;
715         }
716
717         blk_mq_start_request(req);
718
719         spin_lock_irq(&nvmeq->q_lock);
720         if (unlikely(nvmeq->cq_vector < 0)) {
721                 ret = BLK_STS_IOERR;
722                 spin_unlock_irq(&nvmeq->q_lock);
723                 goto out_cleanup_iod;
724         }
725         __nvme_submit_cmd(nvmeq, &cmnd);
726         nvme_process_cq(nvmeq);
727         spin_unlock_irq(&nvmeq->q_lock);
728         return BLK_STS_OK;
729 out_cleanup_iod:
730         nvme_free_iod(dev, req);
731 out_free_cmd:
732         nvme_cleanup_cmd(req);
733         return ret;
734 }
735
736 static void nvme_pci_complete_rq(struct request *req)
737 {
738         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
739
740         nvme_unmap_data(iod->nvmeq->dev, req);
741         nvme_complete_rq(req);
742 }
743
744 /* We read the CQE phase first to check if the rest of the entry is valid */
745 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
746                 u16 phase)
747 {
748         return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
749 }
750
751 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
752 {
753         u16 head = nvmeq->cq_head;
754
755         if (likely(nvmeq->cq_vector >= 0)) {
756                 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
757                                                       nvmeq->dbbuf_cq_ei))
758                         writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
759         }
760 }
761
762 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
763                 struct nvme_completion *cqe)
764 {
765         struct request *req;
766
767         if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
768                 dev_warn(nvmeq->dev->ctrl.device,
769                         "invalid id %d completed on queue %d\n",
770                         cqe->command_id, le16_to_cpu(cqe->sq_id));
771                 return;
772         }
773
774         /*
775          * AEN requests are special as they don't time out and can
776          * survive any kind of queue freeze and often don't respond to
777          * aborts.  We don't even bother to allocate a struct request
778          * for them but rather special case them here.
779          */
780         if (unlikely(nvmeq->qid == 0 &&
781                         cqe->command_id >= NVME_AQ_BLKMQ_DEPTH)) {
782                 nvme_complete_async_event(&nvmeq->dev->ctrl,
783                                 cqe->status, &cqe->result);
784                 return;
785         }
786
787         req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
788         nvme_end_request(req, cqe->status, cqe->result);
789 }
790
791 static inline bool nvme_read_cqe(struct nvme_queue *nvmeq,
792                 struct nvme_completion *cqe)
793 {
794         if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
795                 *cqe = nvmeq->cqes[nvmeq->cq_head];
796
797                 if (++nvmeq->cq_head == nvmeq->q_depth) {
798                         nvmeq->cq_head = 0;
799                         nvmeq->cq_phase = !nvmeq->cq_phase;
800                 }
801                 return true;
802         }
803         return false;
804 }
805
806 static void nvme_process_cq(struct nvme_queue *nvmeq)
807 {
808         struct nvme_completion cqe;
809         int consumed = 0;
810
811         while (nvme_read_cqe(nvmeq, &cqe)) {
812                 nvme_handle_cqe(nvmeq, &cqe);
813                 consumed++;
814         }
815
816         if (consumed) {
817                 nvme_ring_cq_doorbell(nvmeq);
818                 nvmeq->cqe_seen = 1;
819         }
820 }
821
822 static irqreturn_t nvme_irq(int irq, void *data)
823 {
824         irqreturn_t result;
825         struct nvme_queue *nvmeq = data;
826         spin_lock(&nvmeq->q_lock);
827         nvme_process_cq(nvmeq);
828         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
829         nvmeq->cqe_seen = 0;
830         spin_unlock(&nvmeq->q_lock);
831         return result;
832 }
833
834 static irqreturn_t nvme_irq_check(int irq, void *data)
835 {
836         struct nvme_queue *nvmeq = data;
837         if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
838                 return IRQ_WAKE_THREAD;
839         return IRQ_NONE;
840 }
841
842 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
843 {
844         struct nvme_completion cqe;
845         int found = 0, consumed = 0;
846
847         if (!nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
848                 return 0;
849
850         spin_lock_irq(&nvmeq->q_lock);
851         while (nvme_read_cqe(nvmeq, &cqe)) {
852                 nvme_handle_cqe(nvmeq, &cqe);
853                 consumed++;
854
855                 if (tag == cqe.command_id) {
856                         found = 1;
857                         break;
858                 }
859        }
860
861         if (consumed)
862                 nvme_ring_cq_doorbell(nvmeq);
863         spin_unlock_irq(&nvmeq->q_lock);
864
865         return found;
866 }
867
868 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
869 {
870         struct nvme_queue *nvmeq = hctx->driver_data;
871
872         return __nvme_poll(nvmeq, tag);
873 }
874
875 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
876 {
877         struct nvme_dev *dev = to_nvme_dev(ctrl);
878         struct nvme_queue *nvmeq = dev->queues[0];
879         struct nvme_command c;
880
881         memset(&c, 0, sizeof(c));
882         c.common.opcode = nvme_admin_async_event;
883         c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
884
885         spin_lock_irq(&nvmeq->q_lock);
886         __nvme_submit_cmd(nvmeq, &c);
887         spin_unlock_irq(&nvmeq->q_lock);
888 }
889
890 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
891 {
892         struct nvme_command c;
893
894         memset(&c, 0, sizeof(c));
895         c.delete_queue.opcode = opcode;
896         c.delete_queue.qid = cpu_to_le16(id);
897
898         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
899 }
900
901 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
902                                                 struct nvme_queue *nvmeq)
903 {
904         struct nvme_command c;
905         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
906
907         /*
908          * Note: we (ab)use the fact the the prp fields survive if no data
909          * is attached to the request.
910          */
911         memset(&c, 0, sizeof(c));
912         c.create_cq.opcode = nvme_admin_create_cq;
913         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
914         c.create_cq.cqid = cpu_to_le16(qid);
915         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
916         c.create_cq.cq_flags = cpu_to_le16(flags);
917         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
918
919         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
920 }
921
922 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
923                                                 struct nvme_queue *nvmeq)
924 {
925         struct nvme_command c;
926         int flags = NVME_QUEUE_PHYS_CONTIG;
927
928         /*
929          * Note: we (ab)use the fact the the prp fields survive if no data
930          * is attached to the request.
931          */
932         memset(&c, 0, sizeof(c));
933         c.create_sq.opcode = nvme_admin_create_sq;
934         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
935         c.create_sq.sqid = cpu_to_le16(qid);
936         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
937         c.create_sq.sq_flags = cpu_to_le16(flags);
938         c.create_sq.cqid = cpu_to_le16(qid);
939
940         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
941 }
942
943 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
944 {
945         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
946 }
947
948 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
949 {
950         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
951 }
952
953 static void abort_endio(struct request *req, blk_status_t error)
954 {
955         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
956         struct nvme_queue *nvmeq = iod->nvmeq;
957
958         dev_warn(nvmeq->dev->ctrl.device,
959                  "Abort status: 0x%x", nvme_req(req)->status);
960         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
961         blk_mq_free_request(req);
962 }
963
964 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
965 {
966
967         /* If true, indicates loss of adapter communication, possibly by a
968          * NVMe Subsystem reset.
969          */
970         bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
971
972         /* If there is a reset ongoing, we shouldn't reset again. */
973         if (dev->ctrl.state == NVME_CTRL_RESETTING)
974                 return false;
975
976         /* We shouldn't reset unless the controller is on fatal error state
977          * _or_ if we lost the communication with it.
978          */
979         if (!(csts & NVME_CSTS_CFS) && !nssro)
980                 return false;
981
982         /* If PCI error recovery process is happening, we cannot reset or
983          * the recovery mechanism will surely fail.
984          */
985         if (pci_channel_offline(to_pci_dev(dev->dev)))
986                 return false;
987
988         return true;
989 }
990
991 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
992 {
993         /* Read a config register to help see what died. */
994         u16 pci_status;
995         int result;
996
997         result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
998                                       &pci_status);
999         if (result == PCIBIOS_SUCCESSFUL)
1000                 dev_warn(dev->ctrl.device,
1001                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1002                          csts, pci_status);
1003         else
1004                 dev_warn(dev->ctrl.device,
1005                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1006                          csts, result);
1007 }
1008
1009 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1010 {
1011         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1012         struct nvme_queue *nvmeq = iod->nvmeq;
1013         struct nvme_dev *dev = nvmeq->dev;
1014         struct request *abort_req;
1015         struct nvme_command cmd;
1016         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1017
1018         /*
1019          * Reset immediately if the controller is failed
1020          */
1021         if (nvme_should_reset(dev, csts)) {
1022                 nvme_warn_reset(dev, csts);
1023                 nvme_dev_disable(dev, false);
1024                 nvme_reset_ctrl(&dev->ctrl);
1025                 return BLK_EH_HANDLED;
1026         }
1027
1028         /*
1029          * Did we miss an interrupt?
1030          */
1031         if (__nvme_poll(nvmeq, req->tag)) {
1032                 dev_warn(dev->ctrl.device,
1033                          "I/O %d QID %d timeout, completion polled\n",
1034                          req->tag, nvmeq->qid);
1035                 return BLK_EH_HANDLED;
1036         }
1037
1038         /*
1039          * Shutdown immediately if controller times out while starting. The
1040          * reset work will see the pci device disabled when it gets the forced
1041          * cancellation error. All outstanding requests are completed on
1042          * shutdown, so we return BLK_EH_HANDLED.
1043          */
1044         if (dev->ctrl.state == NVME_CTRL_RESETTING) {
1045                 dev_warn(dev->ctrl.device,
1046                          "I/O %d QID %d timeout, disable controller\n",
1047                          req->tag, nvmeq->qid);
1048                 nvme_dev_disable(dev, false);
1049                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1050                 return BLK_EH_HANDLED;
1051         }
1052
1053         /*
1054          * Shutdown the controller immediately and schedule a reset if the
1055          * command was already aborted once before and still hasn't been
1056          * returned to the driver, or if this is the admin queue.
1057          */
1058         if (!nvmeq->qid || iod->aborted) {
1059                 dev_warn(dev->ctrl.device,
1060                          "I/O %d QID %d timeout, reset controller\n",
1061                          req->tag, nvmeq->qid);
1062                 nvme_dev_disable(dev, false);
1063                 nvme_reset_ctrl(&dev->ctrl);
1064
1065                 /*
1066                  * Mark the request as handled, since the inline shutdown
1067                  * forces all outstanding requests to complete.
1068                  */
1069                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1070                 return BLK_EH_HANDLED;
1071         }
1072
1073         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1074                 atomic_inc(&dev->ctrl.abort_limit);
1075                 return BLK_EH_RESET_TIMER;
1076         }
1077         iod->aborted = 1;
1078
1079         memset(&cmd, 0, sizeof(cmd));
1080         cmd.abort.opcode = nvme_admin_abort_cmd;
1081         cmd.abort.cid = req->tag;
1082         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1083
1084         dev_warn(nvmeq->dev->ctrl.device,
1085                 "I/O %d QID %d timeout, aborting\n",
1086                  req->tag, nvmeq->qid);
1087
1088         abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1089                         BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1090         if (IS_ERR(abort_req)) {
1091                 atomic_inc(&dev->ctrl.abort_limit);
1092                 return BLK_EH_RESET_TIMER;
1093         }
1094
1095         abort_req->timeout = ADMIN_TIMEOUT;
1096         abort_req->end_io_data = NULL;
1097         blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1098
1099         /*
1100          * The aborted req will be completed on receiving the abort req.
1101          * We enable the timer again. If hit twice, it'll cause a device reset,
1102          * as the device then is in a faulty state.
1103          */
1104         return BLK_EH_RESET_TIMER;
1105 }
1106
1107 static void nvme_free_queue(struct nvme_queue *nvmeq)
1108 {
1109         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1110                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1111         if (nvmeq->sq_cmds)
1112                 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1113                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1114         kfree(nvmeq);
1115 }
1116
1117 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1118 {
1119         int i;
1120
1121         for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1122                 struct nvme_queue *nvmeq = dev->queues[i];
1123                 dev->ctrl.queue_count--;
1124                 dev->queues[i] = NULL;
1125                 nvme_free_queue(nvmeq);
1126         }
1127 }
1128
1129 /**
1130  * nvme_suspend_queue - put queue into suspended state
1131  * @nvmeq - queue to suspend
1132  */
1133 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1134 {
1135         int vector;
1136
1137         spin_lock_irq(&nvmeq->q_lock);
1138         if (nvmeq->cq_vector == -1) {
1139                 spin_unlock_irq(&nvmeq->q_lock);
1140                 return 1;
1141         }
1142         vector = nvmeq->cq_vector;
1143         nvmeq->dev->online_queues--;
1144         nvmeq->cq_vector = -1;
1145         spin_unlock_irq(&nvmeq->q_lock);
1146
1147         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1148                 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1149
1150         pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
1151
1152         return 0;
1153 }
1154
1155 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1156 {
1157         struct nvme_queue *nvmeq = dev->queues[0];
1158
1159         if (!nvmeq)
1160                 return;
1161         if (nvme_suspend_queue(nvmeq))
1162                 return;
1163
1164         if (shutdown)
1165                 nvme_shutdown_ctrl(&dev->ctrl);
1166         else
1167                 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1168
1169         spin_lock_irq(&nvmeq->q_lock);
1170         nvme_process_cq(nvmeq);
1171         spin_unlock_irq(&nvmeq->q_lock);
1172 }
1173
1174 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1175                                 int entry_size)
1176 {
1177         int q_depth = dev->q_depth;
1178         unsigned q_size_aligned = roundup(q_depth * entry_size,
1179                                           dev->ctrl.page_size);
1180
1181         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1182                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1183                 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1184                 q_depth = div_u64(mem_per_q, entry_size);
1185
1186                 /*
1187                  * Ensure the reduced q_depth is above some threshold where it
1188                  * would be better to map queues in system memory with the
1189                  * original depth
1190                  */
1191                 if (q_depth < 64)
1192                         return -ENOMEM;
1193         }
1194
1195         return q_depth;
1196 }
1197
1198 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1199                                 int qid, int depth)
1200 {
1201         if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1202                 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1203                                                       dev->ctrl.page_size);
1204                 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1205                 nvmeq->sq_cmds_io = dev->cmb + offset;
1206         } else {
1207                 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1208                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1209                 if (!nvmeq->sq_cmds)
1210                         return -ENOMEM;
1211         }
1212
1213         return 0;
1214 }
1215
1216 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1217                                                         int depth, int node)
1218 {
1219         struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
1220                                                         node);
1221         if (!nvmeq)
1222                 return NULL;
1223
1224         nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1225                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1226         if (!nvmeq->cqes)
1227                 goto free_nvmeq;
1228
1229         if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1230                 goto free_cqdma;
1231
1232         nvmeq->q_dmadev = dev->dev;
1233         nvmeq->dev = dev;
1234         spin_lock_init(&nvmeq->q_lock);
1235         nvmeq->cq_head = 0;
1236         nvmeq->cq_phase = 1;
1237         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1238         nvmeq->q_depth = depth;
1239         nvmeq->qid = qid;
1240         nvmeq->cq_vector = -1;
1241         dev->queues[qid] = nvmeq;
1242         dev->ctrl.queue_count++;
1243
1244         return nvmeq;
1245
1246  free_cqdma:
1247         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1248                                                         nvmeq->cq_dma_addr);
1249  free_nvmeq:
1250         kfree(nvmeq);
1251         return NULL;
1252 }
1253
1254 static int queue_request_irq(struct nvme_queue *nvmeq)
1255 {
1256         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1257         int nr = nvmeq->dev->ctrl.instance;
1258
1259         if (use_threaded_interrupts) {
1260                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1261                                 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1262         } else {
1263                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1264                                 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1265         }
1266 }
1267
1268 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1269 {
1270         struct nvme_dev *dev = nvmeq->dev;
1271
1272         spin_lock_irq(&nvmeq->q_lock);
1273         nvmeq->sq_tail = 0;
1274         nvmeq->cq_head = 0;
1275         nvmeq->cq_phase = 1;
1276         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1277         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1278         nvme_dbbuf_init(dev, nvmeq, qid);
1279         dev->online_queues++;
1280         spin_unlock_irq(&nvmeq->q_lock);
1281 }
1282
1283 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1284 {
1285         struct nvme_dev *dev = nvmeq->dev;
1286         int result;
1287
1288         nvmeq->cq_vector = qid - 1;
1289         result = adapter_alloc_cq(dev, qid, nvmeq);
1290         if (result < 0)
1291                 return result;
1292
1293         result = adapter_alloc_sq(dev, qid, nvmeq);
1294         if (result < 0)
1295                 goto release_cq;
1296
1297         result = queue_request_irq(nvmeq);
1298         if (result < 0)
1299                 goto release_sq;
1300
1301         nvme_init_queue(nvmeq, qid);
1302         return result;
1303
1304  release_sq:
1305         adapter_delete_sq(dev, qid);
1306  release_cq:
1307         adapter_delete_cq(dev, qid);
1308         return result;
1309 }
1310
1311 static const struct blk_mq_ops nvme_mq_admin_ops = {
1312         .queue_rq       = nvme_queue_rq,
1313         .complete       = nvme_pci_complete_rq,
1314         .init_hctx      = nvme_admin_init_hctx,
1315         .exit_hctx      = nvme_admin_exit_hctx,
1316         .init_request   = nvme_init_request,
1317         .timeout        = nvme_timeout,
1318 };
1319
1320 static const struct blk_mq_ops nvme_mq_ops = {
1321         .queue_rq       = nvme_queue_rq,
1322         .complete       = nvme_pci_complete_rq,
1323         .init_hctx      = nvme_init_hctx,
1324         .init_request   = nvme_init_request,
1325         .map_queues     = nvme_pci_map_queues,
1326         .timeout        = nvme_timeout,
1327         .poll           = nvme_poll,
1328 };
1329
1330 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1331 {
1332         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1333                 /*
1334                  * If the controller was reset during removal, it's possible
1335                  * user requests may be waiting on a stopped queue. Start the
1336                  * queue to flush these to completion.
1337                  */
1338                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1339                 blk_cleanup_queue(dev->ctrl.admin_q);
1340                 blk_mq_free_tag_set(&dev->admin_tagset);
1341         }
1342 }
1343
1344 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1345 {
1346         if (!dev->ctrl.admin_q) {
1347                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1348                 dev->admin_tagset.nr_hw_queues = 1;
1349
1350                 /*
1351                  * Subtract one to leave an empty queue entry for 'Full Queue'
1352                  * condition. See NVM-Express 1.2 specification, section 4.1.2.
1353                  */
1354                 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1355                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1356                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1357                 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1358                 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1359                 dev->admin_tagset.driver_data = dev;
1360
1361                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1362                         return -ENOMEM;
1363
1364                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1365                 if (IS_ERR(dev->ctrl.admin_q)) {
1366                         blk_mq_free_tag_set(&dev->admin_tagset);
1367                         return -ENOMEM;
1368                 }
1369                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1370                         nvme_dev_remove_admin(dev);
1371                         dev->ctrl.admin_q = NULL;
1372                         return -ENODEV;
1373                 }
1374         } else
1375                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1376
1377         return 0;
1378 }
1379
1380 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1381 {
1382         return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1383 }
1384
1385 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1386 {
1387         struct pci_dev *pdev = to_pci_dev(dev->dev);
1388
1389         if (size <= dev->bar_mapped_size)
1390                 return 0;
1391         if (size > pci_resource_len(pdev, 0))
1392                 return -ENOMEM;
1393         if (dev->bar)
1394                 iounmap(dev->bar);
1395         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1396         if (!dev->bar) {
1397                 dev->bar_mapped_size = 0;
1398                 return -ENOMEM;
1399         }
1400         dev->bar_mapped_size = size;
1401         dev->dbs = dev->bar + NVME_REG_DBS;
1402
1403         return 0;
1404 }
1405
1406 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1407 {
1408         int result;
1409         u32 aqa;
1410         struct nvme_queue *nvmeq;
1411
1412         result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1413         if (result < 0)
1414                 return result;
1415
1416         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1417                                 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1418
1419         if (dev->subsystem &&
1420             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1421                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1422
1423         result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1424         if (result < 0)
1425                 return result;
1426
1427         nvmeq = dev->queues[0];
1428         if (!nvmeq) {
1429                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1430                                         dev_to_node(dev->dev));
1431                 if (!nvmeq)
1432                         return -ENOMEM;
1433         }
1434
1435         aqa = nvmeq->q_depth - 1;
1436         aqa |= aqa << 16;
1437
1438         writel(aqa, dev->bar + NVME_REG_AQA);
1439         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1440         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1441
1442         result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1443         if (result)
1444                 return result;
1445
1446         nvmeq->cq_vector = 0;
1447         result = queue_request_irq(nvmeq);
1448         if (result) {
1449                 nvmeq->cq_vector = -1;
1450                 return result;
1451         }
1452
1453         return result;
1454 }
1455
1456 static int nvme_create_io_queues(struct nvme_dev *dev)
1457 {
1458         unsigned i, max;
1459         int ret = 0;
1460
1461         for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1462                 /* vector == qid - 1, match nvme_create_queue */
1463                 if (!nvme_alloc_queue(dev, i, dev->q_depth,
1464                      pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
1465                         ret = -ENOMEM;
1466                         break;
1467                 }
1468         }
1469
1470         max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1471         for (i = dev->online_queues; i <= max; i++) {
1472                 ret = nvme_create_queue(dev->queues[i], i);
1473                 if (ret)
1474                         break;
1475         }
1476
1477         /*
1478          * Ignore failing Create SQ/CQ commands, we can continue with less
1479          * than the desired aount of queues, and even a controller without
1480          * I/O queues an still be used to issue admin commands.  This might
1481          * be useful to upgrade a buggy firmware for example.
1482          */
1483         return ret >= 0 ? 0 : ret;
1484 }
1485
1486 static ssize_t nvme_cmb_show(struct device *dev,
1487                              struct device_attribute *attr,
1488                              char *buf)
1489 {
1490         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1491
1492         return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1493                        ndev->cmbloc, ndev->cmbsz);
1494 }
1495 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1496
1497 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1498 {
1499         u64 szu, size, offset;
1500         resource_size_t bar_size;
1501         struct pci_dev *pdev = to_pci_dev(dev->dev);
1502         void __iomem *cmb;
1503         dma_addr_t dma_addr;
1504
1505         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1506         if (!(NVME_CMB_SZ(dev->cmbsz)))
1507                 return NULL;
1508         dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1509
1510         if (!use_cmb_sqes)
1511                 return NULL;
1512
1513         szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1514         size = szu * NVME_CMB_SZ(dev->cmbsz);
1515         offset = szu * NVME_CMB_OFST(dev->cmbloc);
1516         bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
1517
1518         if (offset > bar_size)
1519                 return NULL;
1520
1521         /*
1522          * Controllers may support a CMB size larger than their BAR,
1523          * for example, due to being behind a bridge. Reduce the CMB to
1524          * the reported size of the BAR
1525          */
1526         if (size > bar_size - offset)
1527                 size = bar_size - offset;
1528
1529         dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
1530         cmb = ioremap_wc(dma_addr, size);
1531         if (!cmb)
1532                 return NULL;
1533
1534         dev->cmb_dma_addr = dma_addr;
1535         dev->cmb_size = size;
1536         return cmb;
1537 }
1538
1539 static inline void nvme_release_cmb(struct nvme_dev *dev)
1540 {
1541         if (dev->cmb) {
1542                 iounmap(dev->cmb);
1543                 dev->cmb = NULL;
1544                 if (dev->cmbsz) {
1545                         sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1546                                                      &dev_attr_cmb.attr, NULL);
1547                         dev->cmbsz = 0;
1548                 }
1549         }
1550 }
1551
1552 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1553 {
1554         size_t len = dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs);
1555         struct nvme_command c;
1556         u64 dma_addr;
1557         int ret;
1558
1559         dma_addr = dma_map_single(dev->dev, dev->host_mem_descs, len,
1560                         DMA_TO_DEVICE);
1561         if (dma_mapping_error(dev->dev, dma_addr))
1562                 return -ENOMEM;
1563
1564         memset(&c, 0, sizeof(c));
1565         c.features.opcode       = nvme_admin_set_features;
1566         c.features.fid          = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1567         c.features.dword11      = cpu_to_le32(bits);
1568         c.features.dword12      = cpu_to_le32(dev->host_mem_size >>
1569                                               ilog2(dev->ctrl.page_size));
1570         c.features.dword13      = cpu_to_le32(lower_32_bits(dma_addr));
1571         c.features.dword14      = cpu_to_le32(upper_32_bits(dma_addr));
1572         c.features.dword15      = cpu_to_le32(dev->nr_host_mem_descs);
1573
1574         ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1575         if (ret) {
1576                 dev_warn(dev->ctrl.device,
1577                          "failed to set host mem (err %d, flags %#x).\n",
1578                          ret, bits);
1579         }
1580         dma_unmap_single(dev->dev, dma_addr, len, DMA_TO_DEVICE);
1581         return ret;
1582 }
1583
1584 static void nvme_free_host_mem(struct nvme_dev *dev)
1585 {
1586         int i;
1587
1588         for (i = 0; i < dev->nr_host_mem_descs; i++) {
1589                 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1590                 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1591
1592                 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1593                                 le64_to_cpu(desc->addr));
1594         }
1595
1596         kfree(dev->host_mem_desc_bufs);
1597         dev->host_mem_desc_bufs = NULL;
1598         kfree(dev->host_mem_descs);
1599         dev->host_mem_descs = NULL;
1600 }
1601
1602 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1603 {
1604         struct nvme_host_mem_buf_desc *descs;
1605         u32 chunk_size, max_entries;
1606         int i = 0;
1607         void **bufs;
1608         u64 size = 0, tmp;
1609
1610         /* start big and work our way down */
1611         chunk_size = min(preferred, (u64)PAGE_SIZE << MAX_ORDER);
1612 retry:
1613         tmp = (preferred + chunk_size - 1);
1614         do_div(tmp, chunk_size);
1615         max_entries = tmp;
1616         descs = kcalloc(max_entries, sizeof(*descs), GFP_KERNEL);
1617         if (!descs)
1618                 goto out;
1619
1620         bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1621         if (!bufs)
1622                 goto out_free_descs;
1623
1624         for (size = 0; size < preferred; size += chunk_size) {
1625                 u32 len = min_t(u64, chunk_size, preferred - size);
1626                 dma_addr_t dma_addr;
1627
1628                 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1629                                 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1630                 if (!bufs[i])
1631                         break;
1632
1633                 descs[i].addr = cpu_to_le64(dma_addr);
1634                 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1635                 i++;
1636         }
1637
1638         if (!size || (min && size < min)) {
1639                 dev_warn(dev->ctrl.device,
1640                         "failed to allocate host memory buffer.\n");
1641                 goto out_free_bufs;
1642         }
1643
1644         dev_info(dev->ctrl.device,
1645                 "allocated %lld MiB host memory buffer.\n",
1646                 size >> ilog2(SZ_1M));
1647         dev->nr_host_mem_descs = i;
1648         dev->host_mem_size = size;
1649         dev->host_mem_descs = descs;
1650         dev->host_mem_desc_bufs = bufs;
1651         return 0;
1652
1653 out_free_bufs:
1654         while (--i >= 0) {
1655                 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1656
1657                 dma_free_coherent(dev->dev, size, bufs[i],
1658                                 le64_to_cpu(descs[i].addr));
1659         }
1660
1661         kfree(bufs);
1662 out_free_descs:
1663         kfree(descs);
1664 out:
1665         /* try a smaller chunk size if we failed early */
1666         if (chunk_size >= PAGE_SIZE * 2 && (i == 0 || size < min)) {
1667                 chunk_size /= 2;
1668                 goto retry;
1669         }
1670         dev->host_mem_descs = NULL;
1671         return -ENOMEM;
1672 }
1673
1674 static void nvme_setup_host_mem(struct nvme_dev *dev)
1675 {
1676         u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1677         u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1678         u64 min = (u64)dev->ctrl.hmmin * 4096;
1679         u32 enable_bits = NVME_HOST_MEM_ENABLE;
1680
1681         preferred = min(preferred, max);
1682         if (min > max) {
1683                 dev_warn(dev->ctrl.device,
1684                         "min host memory (%lld MiB) above limit (%d MiB).\n",
1685                         min >> ilog2(SZ_1M), max_host_mem_size_mb);
1686                 nvme_free_host_mem(dev);
1687                 return;
1688         }
1689
1690         /*
1691          * If we already have a buffer allocated check if we can reuse it.
1692          */
1693         if (dev->host_mem_descs) {
1694                 if (dev->host_mem_size >= min)
1695                         enable_bits |= NVME_HOST_MEM_RETURN;
1696                 else
1697                         nvme_free_host_mem(dev);
1698         }
1699
1700         if (!dev->host_mem_descs) {
1701                 if (nvme_alloc_host_mem(dev, min, preferred))
1702                         return;
1703         }
1704
1705         if (nvme_set_host_mem(dev, enable_bits))
1706                 nvme_free_host_mem(dev);
1707 }
1708
1709 static int nvme_setup_io_queues(struct nvme_dev *dev)
1710 {
1711         struct nvme_queue *adminq = dev->queues[0];
1712         struct pci_dev *pdev = to_pci_dev(dev->dev);
1713         int result, nr_io_queues;
1714         unsigned long size;
1715
1716         nr_io_queues = num_present_cpus();
1717         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1718         if (result < 0)
1719                 return result;
1720
1721         if (nr_io_queues == 0)
1722                 return 0;
1723
1724         if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1725                 result = nvme_cmb_qdepth(dev, nr_io_queues,
1726                                 sizeof(struct nvme_command));
1727                 if (result > 0)
1728                         dev->q_depth = result;
1729                 else
1730                         nvme_release_cmb(dev);
1731         }
1732
1733         do {
1734                 size = db_bar_size(dev, nr_io_queues);
1735                 result = nvme_remap_bar(dev, size);
1736                 if (!result)
1737                         break;
1738                 if (!--nr_io_queues)
1739                         return -ENOMEM;
1740         } while (1);
1741         adminq->q_db = dev->dbs;
1742
1743         /* Deregister the admin queue's interrupt */
1744         pci_free_irq(pdev, 0, adminq);
1745
1746         /*
1747          * If we enable msix early due to not intx, disable it again before
1748          * setting up the full range we need.
1749          */
1750         pci_free_irq_vectors(pdev);
1751         nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1752                         PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1753         if (nr_io_queues <= 0)
1754                 return -EIO;
1755         dev->max_qid = nr_io_queues;
1756
1757         /*
1758          * Should investigate if there's a performance win from allocating
1759          * more queues than interrupt vectors; it might allow the submission
1760          * path to scale better, even if the receive path is limited by the
1761          * number of interrupts.
1762          */
1763
1764         result = queue_request_irq(adminq);
1765         if (result) {
1766                 adminq->cq_vector = -1;
1767                 return result;
1768         }
1769         return nvme_create_io_queues(dev);
1770 }
1771
1772 static void nvme_del_queue_end(struct request *req, blk_status_t error)
1773 {
1774         struct nvme_queue *nvmeq = req->end_io_data;
1775
1776         blk_mq_free_request(req);
1777         complete(&nvmeq->dev->ioq_wait);
1778 }
1779
1780 static void nvme_del_cq_end(struct request *req, blk_status_t error)
1781 {
1782         struct nvme_queue *nvmeq = req->end_io_data;
1783
1784         if (!error) {
1785                 unsigned long flags;
1786
1787                 /*
1788                  * We might be called with the AQ q_lock held
1789                  * and the I/O queue q_lock should always
1790                  * nest inside the AQ one.
1791                  */
1792                 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1793                                         SINGLE_DEPTH_NESTING);
1794                 nvme_process_cq(nvmeq);
1795                 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1796         }
1797
1798         nvme_del_queue_end(req, error);
1799 }
1800
1801 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1802 {
1803         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1804         struct request *req;
1805         struct nvme_command cmd;
1806
1807         memset(&cmd, 0, sizeof(cmd));
1808         cmd.delete_queue.opcode = opcode;
1809         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1810
1811         req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1812         if (IS_ERR(req))
1813                 return PTR_ERR(req);
1814
1815         req->timeout = ADMIN_TIMEOUT;
1816         req->end_io_data = nvmeq;
1817
1818         blk_execute_rq_nowait(q, NULL, req, false,
1819                         opcode == nvme_admin_delete_cq ?
1820                                 nvme_del_cq_end : nvme_del_queue_end);
1821         return 0;
1822 }
1823
1824 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
1825 {
1826         int pass;
1827         unsigned long timeout;
1828         u8 opcode = nvme_admin_delete_sq;
1829
1830         for (pass = 0; pass < 2; pass++) {
1831                 int sent = 0, i = queues;
1832
1833                 reinit_completion(&dev->ioq_wait);
1834  retry:
1835                 timeout = ADMIN_TIMEOUT;
1836                 for (; i > 0; i--, sent++)
1837                         if (nvme_delete_queue(dev->queues[i], opcode))
1838                                 break;
1839
1840                 while (sent--) {
1841                         timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1842                         if (timeout == 0)
1843                                 return;
1844                         if (i)
1845                                 goto retry;
1846                 }
1847                 opcode = nvme_admin_delete_cq;
1848         }
1849 }
1850
1851 /*
1852  * Return: error value if an error occurred setting up the queues or calling
1853  * Identify Device.  0 if these succeeded, even if adding some of the
1854  * namespaces failed.  At the moment, these failures are silent.  TBD which
1855  * failures should be reported.
1856  */
1857 static int nvme_dev_add(struct nvme_dev *dev)
1858 {
1859         if (!dev->ctrl.tagset) {
1860                 dev->tagset.ops = &nvme_mq_ops;
1861                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1862                 dev->tagset.timeout = NVME_IO_TIMEOUT;
1863                 dev->tagset.numa_node = dev_to_node(dev->dev);
1864                 dev->tagset.queue_depth =
1865                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1866                 dev->tagset.cmd_size = nvme_cmd_size(dev);
1867                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1868                 dev->tagset.driver_data = dev;
1869
1870                 if (blk_mq_alloc_tag_set(&dev->tagset))
1871                         return 0;
1872                 dev->ctrl.tagset = &dev->tagset;
1873
1874                 nvme_dbbuf_set(dev);
1875         } else {
1876                 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1877
1878                 /* Free previously allocated queues that are no longer usable */
1879                 nvme_free_queues(dev, dev->online_queues);
1880         }
1881
1882         return 0;
1883 }
1884
1885 static int nvme_pci_enable(struct nvme_dev *dev)
1886 {
1887         int result = -ENOMEM;
1888         struct pci_dev *pdev = to_pci_dev(dev->dev);
1889
1890         if (pci_enable_device_mem(pdev))
1891                 return result;
1892
1893         pci_set_master(pdev);
1894
1895         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1896             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1897                 goto disable;
1898
1899         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1900                 result = -ENODEV;
1901                 goto disable;
1902         }
1903
1904         /*
1905          * Some devices and/or platforms don't advertise or work with INTx
1906          * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1907          * adjust this later.
1908          */
1909         result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1910         if (result < 0)
1911                 return result;
1912
1913         dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1914
1915         dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
1916                                 io_queue_depth);
1917         dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
1918         dev->dbs = dev->bar + 4096;
1919
1920         /*
1921          * Temporary fix for the Apple controller found in the MacBook8,1 and
1922          * some MacBook7,1 to avoid controller resets and data loss.
1923          */
1924         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1925                 dev->q_depth = 2;
1926                 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
1927                         "set queue depth=%u to work around controller resets\n",
1928                         dev->q_depth);
1929         } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
1930                    (pdev->device == 0xa821 || pdev->device == 0xa822) &&
1931                    NVME_CAP_MQES(dev->ctrl.cap) == 0) {
1932                 dev->q_depth = 64;
1933                 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
1934                         "set queue depth=%u\n", dev->q_depth);
1935         }
1936
1937         /*
1938          * CMBs can currently only exist on >=1.2 PCIe devices. We only
1939          * populate sysfs if a CMB is implemented. Note that we add the
1940          * CMB attribute to the nvme_ctrl kobj which removes the need to remove
1941          * it on exit. Since nvme_dev_attrs_group has no name we can pass
1942          * NULL as final argument to sysfs_add_file_to_group.
1943          */
1944
1945         if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
1946                 dev->cmb = nvme_map_cmb(dev);
1947
1948                 if (dev->cmbsz) {
1949                         if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1950                                                     &dev_attr_cmb.attr, NULL))
1951                                 dev_warn(dev->ctrl.device,
1952                                          "failed to add sysfs attribute for CMB\n");
1953                 }
1954         }
1955
1956         pci_enable_pcie_error_reporting(pdev);
1957         pci_save_state(pdev);
1958         return 0;
1959
1960  disable:
1961         pci_disable_device(pdev);
1962         return result;
1963 }
1964
1965 static void nvme_dev_unmap(struct nvme_dev *dev)
1966 {
1967         if (dev->bar)
1968                 iounmap(dev->bar);
1969         pci_release_mem_regions(to_pci_dev(dev->dev));
1970 }
1971
1972 static void nvme_pci_disable(struct nvme_dev *dev)
1973 {
1974         struct pci_dev *pdev = to_pci_dev(dev->dev);
1975
1976         nvme_release_cmb(dev);
1977         pci_free_irq_vectors(pdev);
1978
1979         if (pci_is_enabled(pdev)) {
1980                 pci_disable_pcie_error_reporting(pdev);
1981                 pci_disable_device(pdev);
1982         }
1983 }
1984
1985 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1986 {
1987         int i, queues;
1988         bool dead = true;
1989         struct pci_dev *pdev = to_pci_dev(dev->dev);
1990
1991         mutex_lock(&dev->shutdown_lock);
1992         if (pci_is_enabled(pdev)) {
1993                 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1994
1995                 if (dev->ctrl.state == NVME_CTRL_LIVE ||
1996                     dev->ctrl.state == NVME_CTRL_RESETTING)
1997                         nvme_start_freeze(&dev->ctrl);
1998                 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
1999                         pdev->error_state  != pci_channel_io_normal);
2000         }
2001
2002         /*
2003          * Give the controller a chance to complete all entered requests if
2004          * doing a safe shutdown.
2005          */
2006         if (!dead) {
2007                 if (shutdown)
2008                         nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2009
2010                 /*
2011                  * If the controller is still alive tell it to stop using the
2012                  * host memory buffer.  In theory the shutdown / reset should
2013                  * make sure that it doesn't access the host memoery anymore,
2014                  * but I'd rather be safe than sorry..
2015                  */
2016                 if (dev->host_mem_descs)
2017                         nvme_set_host_mem(dev, 0);
2018
2019         }
2020         nvme_stop_queues(&dev->ctrl);
2021
2022         queues = dev->online_queues - 1;
2023         for (i = dev->ctrl.queue_count - 1; i > 0; i--)
2024                 nvme_suspend_queue(dev->queues[i]);
2025
2026         if (dead) {
2027                 /* A device might become IO incapable very soon during
2028                  * probe, before the admin queue is configured. Thus,
2029                  * queue_count can be 0 here.
2030                  */
2031                 if (dev->ctrl.queue_count)
2032                         nvme_suspend_queue(dev->queues[0]);
2033         } else {
2034                 nvme_disable_io_queues(dev, queues);
2035                 nvme_disable_admin_queue(dev, shutdown);
2036         }
2037         nvme_pci_disable(dev);
2038
2039         blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2040         blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2041
2042         /*
2043          * The driver will not be starting up queues again if shutting down so
2044          * must flush all entered requests to their failed completion to avoid
2045          * deadlocking blk-mq hot-cpu notifier.
2046          */
2047         if (shutdown)
2048                 nvme_start_queues(&dev->ctrl);
2049         mutex_unlock(&dev->shutdown_lock);
2050 }
2051
2052 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2053 {
2054         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2055                                                 PAGE_SIZE, PAGE_SIZE, 0);
2056         if (!dev->prp_page_pool)
2057                 return -ENOMEM;
2058
2059         /* Optimisation for I/Os between 4k and 128k */
2060         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2061                                                 256, 256, 0);
2062         if (!dev->prp_small_pool) {
2063                 dma_pool_destroy(dev->prp_page_pool);
2064                 return -ENOMEM;
2065         }
2066         return 0;
2067 }
2068
2069 static void nvme_release_prp_pools(struct nvme_dev *dev)
2070 {
2071         dma_pool_destroy(dev->prp_page_pool);
2072         dma_pool_destroy(dev->prp_small_pool);
2073 }
2074
2075 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2076 {
2077         struct nvme_dev *dev = to_nvme_dev(ctrl);
2078
2079         nvme_dbbuf_dma_free(dev);
2080         put_device(dev->dev);
2081         if (dev->tagset.tags)
2082                 blk_mq_free_tag_set(&dev->tagset);
2083         if (dev->ctrl.admin_q)
2084                 blk_put_queue(dev->ctrl.admin_q);
2085         kfree(dev->queues);
2086         free_opal_dev(dev->ctrl.opal_dev);
2087         kfree(dev);
2088 }
2089
2090 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2091 {
2092         dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2093
2094         kref_get(&dev->ctrl.kref);
2095         nvme_dev_disable(dev, false);
2096         if (!schedule_work(&dev->remove_work))
2097                 nvme_put_ctrl(&dev->ctrl);
2098 }
2099
2100 static void nvme_reset_work(struct work_struct *work)
2101 {
2102         struct nvme_dev *dev =
2103                 container_of(work, struct nvme_dev, ctrl.reset_work);
2104         bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2105         int result = -ENODEV;
2106
2107         if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2108                 goto out;
2109
2110         /*
2111          * If we're called to reset a live controller first shut it down before
2112          * moving on.
2113          */
2114         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2115                 nvme_dev_disable(dev, false);
2116
2117         result = nvme_pci_enable(dev);
2118         if (result)
2119                 goto out;
2120
2121         result = nvme_pci_configure_admin_queue(dev);
2122         if (result)
2123                 goto out;
2124
2125         nvme_init_queue(dev->queues[0], 0);
2126         result = nvme_alloc_admin_tags(dev);
2127         if (result)
2128                 goto out;
2129
2130         result = nvme_init_identify(&dev->ctrl);
2131         if (result)
2132                 goto out;
2133
2134         if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2135                 if (!dev->ctrl.opal_dev)
2136                         dev->ctrl.opal_dev =
2137                                 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2138                 else if (was_suspend)
2139                         opal_unlock_from_suspend(dev->ctrl.opal_dev);
2140         } else {
2141                 free_opal_dev(dev->ctrl.opal_dev);
2142                 dev->ctrl.opal_dev = NULL;
2143         }
2144
2145         if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2146                 result = nvme_dbbuf_dma_alloc(dev);
2147                 if (result)
2148                         dev_warn(dev->dev,
2149                                  "unable to allocate dma for dbbuf\n");
2150         }
2151
2152         if (dev->ctrl.hmpre)
2153                 nvme_setup_host_mem(dev);
2154
2155         result = nvme_setup_io_queues(dev);
2156         if (result)
2157                 goto out;
2158
2159         /*
2160          * Keep the controller around but remove all namespaces if we don't have
2161          * any working I/O queue.
2162          */
2163         if (dev->online_queues < 2) {
2164                 dev_warn(dev->ctrl.device, "IO queues not created\n");
2165                 nvme_kill_queues(&dev->ctrl);
2166                 nvme_remove_namespaces(&dev->ctrl);
2167         } else {
2168                 nvme_start_queues(&dev->ctrl);
2169                 nvme_wait_freeze(&dev->ctrl);
2170                 nvme_dev_add(dev);
2171                 nvme_unfreeze(&dev->ctrl);
2172         }
2173
2174         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2175                 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
2176                 goto out;
2177         }
2178
2179         nvme_start_ctrl(&dev->ctrl);
2180         return;
2181
2182  out:
2183         nvme_remove_dead_ctrl(dev, result);
2184 }
2185
2186 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2187 {
2188         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2189         struct pci_dev *pdev = to_pci_dev(dev->dev);
2190
2191         nvme_kill_queues(&dev->ctrl);
2192         if (pci_get_drvdata(pdev))
2193                 device_release_driver(&pdev->dev);
2194         nvme_put_ctrl(&dev->ctrl);
2195 }
2196
2197 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2198 {
2199         *val = readl(to_nvme_dev(ctrl)->bar + off);
2200         return 0;
2201 }
2202
2203 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2204 {
2205         writel(val, to_nvme_dev(ctrl)->bar + off);
2206         return 0;
2207 }
2208
2209 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2210 {
2211         *val = readq(to_nvme_dev(ctrl)->bar + off);
2212         return 0;
2213 }
2214
2215 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2216         .name                   = "pcie",
2217         .module                 = THIS_MODULE,
2218         .flags                  = NVME_F_METADATA_SUPPORTED,
2219         .reg_read32             = nvme_pci_reg_read32,
2220         .reg_write32            = nvme_pci_reg_write32,
2221         .reg_read64             = nvme_pci_reg_read64,
2222         .free_ctrl              = nvme_pci_free_ctrl,
2223         .submit_async_event     = nvme_pci_submit_async_event,
2224 };
2225
2226 static int nvme_dev_map(struct nvme_dev *dev)
2227 {
2228         struct pci_dev *pdev = to_pci_dev(dev->dev);
2229
2230         if (pci_request_mem_regions(pdev, "nvme"))
2231                 return -ENODEV;
2232
2233         if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2234                 goto release;
2235
2236         return 0;
2237   release:
2238         pci_release_mem_regions(pdev);
2239         return -ENODEV;
2240 }
2241
2242 static unsigned long check_dell_samsung_bug(struct pci_dev *pdev)
2243 {
2244         if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2245                 /*
2246                  * Several Samsung devices seem to drop off the PCIe bus
2247                  * randomly when APST is on and uses the deepest sleep state.
2248                  * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2249                  * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2250                  * 950 PRO 256GB", but it seems to be restricted to two Dell
2251                  * laptops.
2252                  */
2253                 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2254                     (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2255                      dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2256                         return NVME_QUIRK_NO_DEEPEST_PS;
2257         }
2258
2259         return 0;
2260 }
2261
2262 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2263 {
2264         int node, result = -ENOMEM;
2265         struct nvme_dev *dev;
2266         unsigned long quirks = id->driver_data;
2267
2268         node = dev_to_node(&pdev->dev);
2269         if (node == NUMA_NO_NODE)
2270                 set_dev_node(&pdev->dev, first_memory_node);
2271
2272         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2273         if (!dev)
2274                 return -ENOMEM;
2275         dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2276                                                         GFP_KERNEL, node);
2277         if (!dev->queues)
2278                 goto free;
2279
2280         dev->dev = get_device(&pdev->dev);
2281         pci_set_drvdata(pdev, dev);
2282
2283         result = nvme_dev_map(dev);
2284         if (result)
2285                 goto free;
2286
2287         INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2288         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2289         mutex_init(&dev->shutdown_lock);
2290         init_completion(&dev->ioq_wait);
2291
2292         result = nvme_setup_prp_pools(dev);
2293         if (result)
2294                 goto put_pci;
2295
2296         quirks |= check_dell_samsung_bug(pdev);
2297
2298         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2299                         quirks);
2300         if (result)
2301                 goto release_pools;
2302
2303         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING);
2304         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2305
2306         queue_work(nvme_wq, &dev->ctrl.reset_work);
2307         return 0;
2308
2309  release_pools:
2310         nvme_release_prp_pools(dev);
2311  put_pci:
2312         put_device(dev->dev);
2313         nvme_dev_unmap(dev);
2314  free:
2315         kfree(dev->queues);
2316         kfree(dev);
2317         return result;
2318 }
2319
2320 static void nvme_reset_prepare(struct pci_dev *pdev)
2321 {
2322         struct nvme_dev *dev = pci_get_drvdata(pdev);
2323         nvme_dev_disable(dev, false);
2324 }
2325
2326 static void nvme_reset_done(struct pci_dev *pdev)
2327 {
2328         struct nvme_dev *dev = pci_get_drvdata(pdev);
2329         nvme_reset_ctrl(&dev->ctrl);
2330 }
2331
2332 static void nvme_shutdown(struct pci_dev *pdev)
2333 {
2334         struct nvme_dev *dev = pci_get_drvdata(pdev);
2335         nvme_dev_disable(dev, true);
2336 }
2337
2338 /*
2339  * The driver's remove may be called on a device in a partially initialized
2340  * state. This function must not have any dependencies on the device state in
2341  * order to proceed.
2342  */
2343 static void nvme_remove(struct pci_dev *pdev)
2344 {
2345         struct nvme_dev *dev = pci_get_drvdata(pdev);
2346
2347         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2348
2349         cancel_work_sync(&dev->ctrl.reset_work);
2350         pci_set_drvdata(pdev, NULL);
2351
2352         if (!pci_device_is_present(pdev)) {
2353                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2354                 nvme_dev_disable(dev, false);
2355         }
2356
2357         flush_work(&dev->ctrl.reset_work);
2358         nvme_stop_ctrl(&dev->ctrl);
2359         nvme_remove_namespaces(&dev->ctrl);
2360         nvme_dev_disable(dev, true);
2361         nvme_free_host_mem(dev);
2362         nvme_dev_remove_admin(dev);
2363         nvme_free_queues(dev, 0);
2364         nvme_uninit_ctrl(&dev->ctrl);
2365         nvme_release_prp_pools(dev);
2366         nvme_dev_unmap(dev);
2367         nvme_put_ctrl(&dev->ctrl);
2368 }
2369
2370 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2371 {
2372         int ret = 0;
2373
2374         if (numvfs == 0) {
2375                 if (pci_vfs_assigned(pdev)) {
2376                         dev_warn(&pdev->dev,
2377                                 "Cannot disable SR-IOV VFs while assigned\n");
2378                         return -EPERM;
2379                 }
2380                 pci_disable_sriov(pdev);
2381                 return 0;
2382         }
2383
2384         ret = pci_enable_sriov(pdev, numvfs);
2385         return ret ? ret : numvfs;
2386 }
2387
2388 #ifdef CONFIG_PM_SLEEP
2389 static int nvme_suspend(struct device *dev)
2390 {
2391         struct pci_dev *pdev = to_pci_dev(dev);
2392         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2393
2394         nvme_dev_disable(ndev, true);
2395         return 0;
2396 }
2397
2398 static int nvme_resume(struct device *dev)
2399 {
2400         struct pci_dev *pdev = to_pci_dev(dev);
2401         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2402
2403         nvme_reset_ctrl(&ndev->ctrl);
2404         return 0;
2405 }
2406 #endif
2407
2408 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2409
2410 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2411                                                 pci_channel_state_t state)
2412 {
2413         struct nvme_dev *dev = pci_get_drvdata(pdev);
2414
2415         /*
2416          * A frozen channel requires a reset. When detected, this method will
2417          * shutdown the controller to quiesce. The controller will be restarted
2418          * after the slot reset through driver's slot_reset callback.
2419          */
2420         switch (state) {
2421         case pci_channel_io_normal:
2422                 return PCI_ERS_RESULT_CAN_RECOVER;
2423         case pci_channel_io_frozen:
2424                 dev_warn(dev->ctrl.device,
2425                         "frozen state error detected, reset controller\n");
2426                 nvme_dev_disable(dev, false);
2427                 return PCI_ERS_RESULT_NEED_RESET;
2428         case pci_channel_io_perm_failure:
2429                 dev_warn(dev->ctrl.device,
2430                         "failure state error detected, request disconnect\n");
2431                 return PCI_ERS_RESULT_DISCONNECT;
2432         }
2433         return PCI_ERS_RESULT_NEED_RESET;
2434 }
2435
2436 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2437 {
2438         struct nvme_dev *dev = pci_get_drvdata(pdev);
2439
2440         dev_info(dev->ctrl.device, "restart after slot reset\n");
2441         pci_restore_state(pdev);
2442         nvme_reset_ctrl(&dev->ctrl);
2443         return PCI_ERS_RESULT_RECOVERED;
2444 }
2445
2446 static void nvme_error_resume(struct pci_dev *pdev)
2447 {
2448         pci_cleanup_aer_uncorrect_error_status(pdev);
2449 }
2450
2451 static const struct pci_error_handlers nvme_err_handler = {
2452         .error_detected = nvme_error_detected,
2453         .slot_reset     = nvme_slot_reset,
2454         .resume         = nvme_error_resume,
2455         .reset_prepare  = nvme_reset_prepare,
2456         .reset_done     = nvme_reset_done,
2457 };
2458
2459 static const struct pci_device_id nvme_id_table[] = {
2460         { PCI_VDEVICE(INTEL, 0x0953),
2461                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2462                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2463         { PCI_VDEVICE(INTEL, 0x0a53),
2464                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2465                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2466         { PCI_VDEVICE(INTEL, 0x0a54),
2467                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2468                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2469         { PCI_VDEVICE(INTEL, 0xf1a5),   /* Intel 600P/P3100 */
2470                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS },
2471         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
2472                 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2473         { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
2474                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2475         { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
2476                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2477         { PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
2478                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2479         { PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
2480                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2481         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2482         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2483         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2484         { 0, }
2485 };
2486 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2487
2488 static struct pci_driver nvme_driver = {
2489         .name           = "nvme",
2490         .id_table       = nvme_id_table,
2491         .probe          = nvme_probe,
2492         .remove         = nvme_remove,
2493         .shutdown       = nvme_shutdown,
2494         .driver         = {
2495                 .pm     = &nvme_dev_pm_ops,
2496         },
2497         .sriov_configure = nvme_pci_sriov_configure,
2498         .err_handler    = &nvme_err_handler,
2499 };
2500
2501 static int __init nvme_init(void)
2502 {
2503         return pci_register_driver(&nvme_driver);
2504 }
2505
2506 static void __exit nvme_exit(void)
2507 {
2508         pci_unregister_driver(&nvme_driver);
2509         _nvme_check_size();
2510 }
2511
2512 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2513 MODULE_LICENSE("GPL");
2514 MODULE_VERSION("1.0");
2515 module_init(nvme_init);
2516 module_exit(nvme_exit);