]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/nvme/host/rdma.c
Merge tag 'befs-v4.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/luisbg...
[karo-tx-linux.git] / drivers / nvme / host / rdma.c
1 /*
2  * NVMe over Fabrics RDMA host code.
3  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/err.h>
19 #include <linux/string.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/types.h>
23 #include <linux/list.h>
24 #include <linux/mutex.h>
25 #include <linux/scatterlist.h>
26 #include <linux/nvme.h>
27 #include <asm/unaligned.h>
28
29 #include <rdma/ib_verbs.h>
30 #include <rdma/rdma_cm.h>
31 #include <linux/nvme-rdma.h>
32
33 #include "nvme.h"
34 #include "fabrics.h"
35
36
37 #define NVME_RDMA_CONNECT_TIMEOUT_MS    3000            /* 3 second */
38
39 #define NVME_RDMA_MAX_SEGMENT_SIZE      0xffffff        /* 24-bit SGL field */
40
41 #define NVME_RDMA_MAX_SEGMENTS          256
42
43 #define NVME_RDMA_MAX_INLINE_SEGMENTS   1
44
45 /*
46  * We handle AEN commands ourselves and don't even let the
47  * block layer know about them.
48  */
49 #define NVME_RDMA_NR_AEN_COMMANDS      1
50 #define NVME_RDMA_AQ_BLKMQ_DEPTH       \
51         (NVME_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS)
52
53 struct nvme_rdma_device {
54         struct ib_device       *dev;
55         struct ib_pd           *pd;
56         struct kref             ref;
57         struct list_head        entry;
58 };
59
60 struct nvme_rdma_qe {
61         struct ib_cqe           cqe;
62         void                    *data;
63         u64                     dma;
64 };
65
66 struct nvme_rdma_queue;
67 struct nvme_rdma_request {
68         struct nvme_request     req;
69         struct ib_mr            *mr;
70         struct nvme_rdma_qe     sqe;
71         struct ib_sge           sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
72         u32                     num_sge;
73         int                     nents;
74         bool                    inline_data;
75         struct ib_reg_wr        reg_wr;
76         struct ib_cqe           reg_cqe;
77         struct nvme_rdma_queue  *queue;
78         struct sg_table         sg_table;
79         struct scatterlist      first_sgl[];
80 };
81
82 enum nvme_rdma_queue_flags {
83         NVME_RDMA_Q_LIVE                = 0,
84         NVME_RDMA_Q_DELETING            = 1,
85 };
86
87 struct nvme_rdma_queue {
88         struct nvme_rdma_qe     *rsp_ring;
89         atomic_t                sig_count;
90         int                     queue_size;
91         size_t                  cmnd_capsule_len;
92         struct nvme_rdma_ctrl   *ctrl;
93         struct nvme_rdma_device *device;
94         struct ib_cq            *ib_cq;
95         struct ib_qp            *qp;
96
97         unsigned long           flags;
98         struct rdma_cm_id       *cm_id;
99         int                     cm_error;
100         struct completion       cm_done;
101 };
102
103 struct nvme_rdma_ctrl {
104         /* read only in the hot path */
105         struct nvme_rdma_queue  *queues;
106
107         /* other member variables */
108         struct blk_mq_tag_set   tag_set;
109         struct work_struct      delete_work;
110         struct work_struct      err_work;
111
112         struct nvme_rdma_qe     async_event_sqe;
113
114         struct delayed_work     reconnect_work;
115
116         struct list_head        list;
117
118         struct blk_mq_tag_set   admin_tag_set;
119         struct nvme_rdma_device *device;
120
121         u32                     max_fr_pages;
122
123         struct sockaddr_storage addr;
124         struct sockaddr_storage src_addr;
125
126         struct nvme_ctrl        ctrl;
127 };
128
129 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
130 {
131         return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
132 }
133
134 static LIST_HEAD(device_list);
135 static DEFINE_MUTEX(device_list_mutex);
136
137 static LIST_HEAD(nvme_rdma_ctrl_list);
138 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
139
140 /*
141  * Disabling this option makes small I/O goes faster, but is fundamentally
142  * unsafe.  With it turned off we will have to register a global rkey that
143  * allows read and write access to all physical memory.
144  */
145 static bool register_always = true;
146 module_param(register_always, bool, 0444);
147 MODULE_PARM_DESC(register_always,
148          "Use memory registration even for contiguous memory regions");
149
150 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
151                 struct rdma_cm_event *event);
152 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
153
154 /* XXX: really should move to a generic header sooner or later.. */
155 static inline void put_unaligned_le24(u32 val, u8 *p)
156 {
157         *p++ = val;
158         *p++ = val >> 8;
159         *p++ = val >> 16;
160 }
161
162 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
163 {
164         return queue - queue->ctrl->queues;
165 }
166
167 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
168 {
169         return queue->cmnd_capsule_len - sizeof(struct nvme_command);
170 }
171
172 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
173                 size_t capsule_size, enum dma_data_direction dir)
174 {
175         ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
176         kfree(qe->data);
177 }
178
179 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
180                 size_t capsule_size, enum dma_data_direction dir)
181 {
182         qe->data = kzalloc(capsule_size, GFP_KERNEL);
183         if (!qe->data)
184                 return -ENOMEM;
185
186         qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
187         if (ib_dma_mapping_error(ibdev, qe->dma)) {
188                 kfree(qe->data);
189                 return -ENOMEM;
190         }
191
192         return 0;
193 }
194
195 static void nvme_rdma_free_ring(struct ib_device *ibdev,
196                 struct nvme_rdma_qe *ring, size_t ib_queue_size,
197                 size_t capsule_size, enum dma_data_direction dir)
198 {
199         int i;
200
201         for (i = 0; i < ib_queue_size; i++)
202                 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
203         kfree(ring);
204 }
205
206 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
207                 size_t ib_queue_size, size_t capsule_size,
208                 enum dma_data_direction dir)
209 {
210         struct nvme_rdma_qe *ring;
211         int i;
212
213         ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
214         if (!ring)
215                 return NULL;
216
217         for (i = 0; i < ib_queue_size; i++) {
218                 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
219                         goto out_free_ring;
220         }
221
222         return ring;
223
224 out_free_ring:
225         nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
226         return NULL;
227 }
228
229 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
230 {
231         pr_debug("QP event %s (%d)\n",
232                  ib_event_msg(event->event), event->event);
233
234 }
235
236 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
237 {
238         wait_for_completion_interruptible_timeout(&queue->cm_done,
239                         msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
240         return queue->cm_error;
241 }
242
243 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
244 {
245         struct nvme_rdma_device *dev = queue->device;
246         struct ib_qp_init_attr init_attr;
247         int ret;
248
249         memset(&init_attr, 0, sizeof(init_attr));
250         init_attr.event_handler = nvme_rdma_qp_event;
251         /* +1 for drain */
252         init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
253         /* +1 for drain */
254         init_attr.cap.max_recv_wr = queue->queue_size + 1;
255         init_attr.cap.max_recv_sge = 1;
256         init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
257         init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
258         init_attr.qp_type = IB_QPT_RC;
259         init_attr.send_cq = queue->ib_cq;
260         init_attr.recv_cq = queue->ib_cq;
261
262         ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
263
264         queue->qp = queue->cm_id->qp;
265         return ret;
266 }
267
268 static int nvme_rdma_reinit_request(void *data, struct request *rq)
269 {
270         struct nvme_rdma_ctrl *ctrl = data;
271         struct nvme_rdma_device *dev = ctrl->device;
272         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
273         int ret = 0;
274
275         ib_dereg_mr(req->mr);
276
277         req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
278                         ctrl->max_fr_pages);
279         if (IS_ERR(req->mr)) {
280                 ret = PTR_ERR(req->mr);
281                 req->mr = NULL;
282                 goto out;
283         }
284
285         req->mr->need_inval = false;
286
287 out:
288         return ret;
289 }
290
291 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
292                 struct request *rq, unsigned int hctx_idx)
293 {
294         struct nvme_rdma_ctrl *ctrl = set->driver_data;
295         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
296         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
297         struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
298         struct nvme_rdma_device *dev = queue->device;
299
300         if (req->mr)
301                 ib_dereg_mr(req->mr);
302
303         nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
304                         DMA_TO_DEVICE);
305 }
306
307 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
308                 struct request *rq, unsigned int hctx_idx,
309                 unsigned int numa_node)
310 {
311         struct nvme_rdma_ctrl *ctrl = set->driver_data;
312         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
313         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
314         struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
315         struct nvme_rdma_device *dev = queue->device;
316         struct ib_device *ibdev = dev->dev;
317         int ret;
318
319         ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
320                         DMA_TO_DEVICE);
321         if (ret)
322                 return ret;
323
324         req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
325                         ctrl->max_fr_pages);
326         if (IS_ERR(req->mr)) {
327                 ret = PTR_ERR(req->mr);
328                 goto out_free_qe;
329         }
330
331         req->queue = queue;
332
333         return 0;
334
335 out_free_qe:
336         nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
337                         DMA_TO_DEVICE);
338         return -ENOMEM;
339 }
340
341 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
342                 unsigned int hctx_idx)
343 {
344         struct nvme_rdma_ctrl *ctrl = data;
345         struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
346
347         BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
348
349         hctx->driver_data = queue;
350         return 0;
351 }
352
353 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
354                 unsigned int hctx_idx)
355 {
356         struct nvme_rdma_ctrl *ctrl = data;
357         struct nvme_rdma_queue *queue = &ctrl->queues[0];
358
359         BUG_ON(hctx_idx != 0);
360
361         hctx->driver_data = queue;
362         return 0;
363 }
364
365 static void nvme_rdma_free_dev(struct kref *ref)
366 {
367         struct nvme_rdma_device *ndev =
368                 container_of(ref, struct nvme_rdma_device, ref);
369
370         mutex_lock(&device_list_mutex);
371         list_del(&ndev->entry);
372         mutex_unlock(&device_list_mutex);
373
374         ib_dealloc_pd(ndev->pd);
375         kfree(ndev);
376 }
377
378 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
379 {
380         kref_put(&dev->ref, nvme_rdma_free_dev);
381 }
382
383 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
384 {
385         return kref_get_unless_zero(&dev->ref);
386 }
387
388 static struct nvme_rdma_device *
389 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
390 {
391         struct nvme_rdma_device *ndev;
392
393         mutex_lock(&device_list_mutex);
394         list_for_each_entry(ndev, &device_list, entry) {
395                 if (ndev->dev->node_guid == cm_id->device->node_guid &&
396                     nvme_rdma_dev_get(ndev))
397                         goto out_unlock;
398         }
399
400         ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
401         if (!ndev)
402                 goto out_err;
403
404         ndev->dev = cm_id->device;
405         kref_init(&ndev->ref);
406
407         ndev->pd = ib_alloc_pd(ndev->dev,
408                 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
409         if (IS_ERR(ndev->pd))
410                 goto out_free_dev;
411
412         if (!(ndev->dev->attrs.device_cap_flags &
413               IB_DEVICE_MEM_MGT_EXTENSIONS)) {
414                 dev_err(&ndev->dev->dev,
415                         "Memory registrations not supported.\n");
416                 goto out_free_pd;
417         }
418
419         list_add(&ndev->entry, &device_list);
420 out_unlock:
421         mutex_unlock(&device_list_mutex);
422         return ndev;
423
424 out_free_pd:
425         ib_dealloc_pd(ndev->pd);
426 out_free_dev:
427         kfree(ndev);
428 out_err:
429         mutex_unlock(&device_list_mutex);
430         return NULL;
431 }
432
433 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
434 {
435         struct nvme_rdma_device *dev;
436         struct ib_device *ibdev;
437
438         dev = queue->device;
439         ibdev = dev->dev;
440         rdma_destroy_qp(queue->cm_id);
441         ib_free_cq(queue->ib_cq);
442
443         nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
444                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
445
446         nvme_rdma_dev_put(dev);
447 }
448
449 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
450 {
451         struct ib_device *ibdev;
452         const int send_wr_factor = 3;                   /* MR, SEND, INV */
453         const int cq_factor = send_wr_factor + 1;       /* + RECV */
454         int comp_vector, idx = nvme_rdma_queue_idx(queue);
455         int ret;
456
457         queue->device = nvme_rdma_find_get_device(queue->cm_id);
458         if (!queue->device) {
459                 dev_err(queue->cm_id->device->dev.parent,
460                         "no client data found!\n");
461                 return -ECONNREFUSED;
462         }
463         ibdev = queue->device->dev;
464
465         /*
466          * The admin queue is barely used once the controller is live, so don't
467          * bother to spread it out.
468          */
469         if (idx == 0)
470                 comp_vector = 0;
471         else
472                 comp_vector = idx % ibdev->num_comp_vectors;
473
474
475         /* +1 for ib_stop_cq */
476         queue->ib_cq = ib_alloc_cq(ibdev, queue,
477                                 cq_factor * queue->queue_size + 1,
478                                 comp_vector, IB_POLL_SOFTIRQ);
479         if (IS_ERR(queue->ib_cq)) {
480                 ret = PTR_ERR(queue->ib_cq);
481                 goto out_put_dev;
482         }
483
484         ret = nvme_rdma_create_qp(queue, send_wr_factor);
485         if (ret)
486                 goto out_destroy_ib_cq;
487
488         queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
489                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
490         if (!queue->rsp_ring) {
491                 ret = -ENOMEM;
492                 goto out_destroy_qp;
493         }
494
495         return 0;
496
497 out_destroy_qp:
498         ib_destroy_qp(queue->qp);
499 out_destroy_ib_cq:
500         ib_free_cq(queue->ib_cq);
501 out_put_dev:
502         nvme_rdma_dev_put(queue->device);
503         return ret;
504 }
505
506 static int nvme_rdma_init_queue(struct nvme_rdma_ctrl *ctrl,
507                 int idx, size_t queue_size)
508 {
509         struct nvme_rdma_queue *queue;
510         struct sockaddr *src_addr = NULL;
511         int ret;
512
513         queue = &ctrl->queues[idx];
514         queue->ctrl = ctrl;
515         init_completion(&queue->cm_done);
516
517         if (idx > 0)
518                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
519         else
520                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
521
522         queue->queue_size = queue_size;
523         atomic_set(&queue->sig_count, 0);
524
525         queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
526                         RDMA_PS_TCP, IB_QPT_RC);
527         if (IS_ERR(queue->cm_id)) {
528                 dev_info(ctrl->ctrl.device,
529                         "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
530                 return PTR_ERR(queue->cm_id);
531         }
532
533         if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
534                 src_addr = (struct sockaddr *)&ctrl->src_addr;
535
536         queue->cm_error = -ETIMEDOUT;
537         ret = rdma_resolve_addr(queue->cm_id, src_addr,
538                         (struct sockaddr *)&ctrl->addr,
539                         NVME_RDMA_CONNECT_TIMEOUT_MS);
540         if (ret) {
541                 dev_info(ctrl->ctrl.device,
542                         "rdma_resolve_addr failed (%d).\n", ret);
543                 goto out_destroy_cm_id;
544         }
545
546         ret = nvme_rdma_wait_for_cm(queue);
547         if (ret) {
548                 dev_info(ctrl->ctrl.device,
549                         "rdma_resolve_addr wait failed (%d).\n", ret);
550                 goto out_destroy_cm_id;
551         }
552
553         clear_bit(NVME_RDMA_Q_DELETING, &queue->flags);
554
555         return 0;
556
557 out_destroy_cm_id:
558         rdma_destroy_id(queue->cm_id);
559         return ret;
560 }
561
562 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
563 {
564         rdma_disconnect(queue->cm_id);
565         ib_drain_qp(queue->qp);
566 }
567
568 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
569 {
570         nvme_rdma_destroy_queue_ib(queue);
571         rdma_destroy_id(queue->cm_id);
572 }
573
574 static void nvme_rdma_stop_and_free_queue(struct nvme_rdma_queue *queue)
575 {
576         if (test_and_set_bit(NVME_RDMA_Q_DELETING, &queue->flags))
577                 return;
578         nvme_rdma_stop_queue(queue);
579         nvme_rdma_free_queue(queue);
580 }
581
582 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
583 {
584         int i;
585
586         for (i = 1; i < ctrl->ctrl.queue_count; i++)
587                 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
588 }
589
590 static int nvme_rdma_connect_io_queues(struct nvme_rdma_ctrl *ctrl)
591 {
592         int i, ret = 0;
593
594         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
595                 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
596                 if (ret) {
597                         dev_info(ctrl->ctrl.device,
598                                 "failed to connect i/o queue: %d\n", ret);
599                         goto out_free_queues;
600                 }
601                 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[i].flags);
602         }
603
604         return 0;
605
606 out_free_queues:
607         nvme_rdma_free_io_queues(ctrl);
608         return ret;
609 }
610
611 static int nvme_rdma_init_io_queues(struct nvme_rdma_ctrl *ctrl)
612 {
613         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
614         unsigned int nr_io_queues;
615         int i, ret;
616
617         nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
618         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
619         if (ret)
620                 return ret;
621
622         ctrl->ctrl.queue_count = nr_io_queues + 1;
623         if (ctrl->ctrl.queue_count < 2)
624                 return 0;
625
626         dev_info(ctrl->ctrl.device,
627                 "creating %d I/O queues.\n", nr_io_queues);
628
629         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
630                 ret = nvme_rdma_init_queue(ctrl, i,
631                                            ctrl->ctrl.opts->queue_size);
632                 if (ret) {
633                         dev_info(ctrl->ctrl.device,
634                                 "failed to initialize i/o queue: %d\n", ret);
635                         goto out_free_queues;
636                 }
637         }
638
639         return 0;
640
641 out_free_queues:
642         for (i--; i >= 1; i--)
643                 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
644
645         return ret;
646 }
647
648 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl)
649 {
650         nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe,
651                         sizeof(struct nvme_command), DMA_TO_DEVICE);
652         nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
653         blk_cleanup_queue(ctrl->ctrl.admin_q);
654         blk_mq_free_tag_set(&ctrl->admin_tag_set);
655         nvme_rdma_dev_put(ctrl->device);
656 }
657
658 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
659 {
660         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
661
662         if (list_empty(&ctrl->list))
663                 goto free_ctrl;
664
665         mutex_lock(&nvme_rdma_ctrl_mutex);
666         list_del(&ctrl->list);
667         mutex_unlock(&nvme_rdma_ctrl_mutex);
668
669         kfree(ctrl->queues);
670         nvmf_free_options(nctrl->opts);
671 free_ctrl:
672         kfree(ctrl);
673 }
674
675 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
676 {
677         /* If we are resetting/deleting then do nothing */
678         if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) {
679                 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
680                         ctrl->ctrl.state == NVME_CTRL_LIVE);
681                 return;
682         }
683
684         if (nvmf_should_reconnect(&ctrl->ctrl)) {
685                 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
686                         ctrl->ctrl.opts->reconnect_delay);
687                 queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
688                                 ctrl->ctrl.opts->reconnect_delay * HZ);
689         } else {
690                 dev_info(ctrl->ctrl.device, "Removing controller...\n");
691                 queue_work(nvme_wq, &ctrl->delete_work);
692         }
693 }
694
695 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
696 {
697         struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
698                         struct nvme_rdma_ctrl, reconnect_work);
699         bool changed;
700         int ret;
701
702         ++ctrl->ctrl.nr_reconnects;
703
704         if (ctrl->ctrl.queue_count > 1) {
705                 nvme_rdma_free_io_queues(ctrl);
706
707                 ret = blk_mq_reinit_tagset(&ctrl->tag_set);
708                 if (ret)
709                         goto requeue;
710         }
711
712         nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
713
714         ret = blk_mq_reinit_tagset(&ctrl->admin_tag_set);
715         if (ret)
716                 goto requeue;
717
718         ret = nvme_rdma_init_queue(ctrl, 0, NVME_AQ_DEPTH);
719         if (ret)
720                 goto requeue;
721
722         ret = nvmf_connect_admin_queue(&ctrl->ctrl);
723         if (ret)
724                 goto requeue;
725
726         set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags);
727
728         ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
729         if (ret)
730                 goto requeue;
731
732         if (ctrl->ctrl.queue_count > 1) {
733                 ret = nvme_rdma_init_io_queues(ctrl);
734                 if (ret)
735                         goto requeue;
736
737                 ret = nvme_rdma_connect_io_queues(ctrl);
738                 if (ret)
739                         goto requeue;
740
741                 blk_mq_update_nr_hw_queues(&ctrl->tag_set,
742                                 ctrl->ctrl.queue_count - 1);
743         }
744
745         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
746         WARN_ON_ONCE(!changed);
747         ctrl->ctrl.nr_reconnects = 0;
748
749         nvme_start_ctrl(&ctrl->ctrl);
750
751         dev_info(ctrl->ctrl.device, "Successfully reconnected\n");
752
753         return;
754
755 requeue:
756         dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
757                         ctrl->ctrl.nr_reconnects);
758         nvme_rdma_reconnect_or_remove(ctrl);
759 }
760
761 static void nvme_rdma_error_recovery_work(struct work_struct *work)
762 {
763         struct nvme_rdma_ctrl *ctrl = container_of(work,
764                         struct nvme_rdma_ctrl, err_work);
765         int i;
766
767         nvme_stop_ctrl(&ctrl->ctrl);
768
769         for (i = 0; i < ctrl->ctrl.queue_count; i++)
770                 clear_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[i].flags);
771
772         if (ctrl->ctrl.queue_count > 1)
773                 nvme_stop_queues(&ctrl->ctrl);
774         blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
775
776         /* We must take care of fastfail/requeue all our inflight requests */
777         if (ctrl->ctrl.queue_count > 1)
778                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
779                                         nvme_cancel_request, &ctrl->ctrl);
780         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
781                                 nvme_cancel_request, &ctrl->ctrl);
782
783         /*
784          * queues are not a live anymore, so restart the queues to fail fast
785          * new IO
786          */
787         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
788         nvme_start_queues(&ctrl->ctrl);
789
790         nvme_rdma_reconnect_or_remove(ctrl);
791 }
792
793 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
794 {
795         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING))
796                 return;
797
798         queue_work(nvme_wq, &ctrl->err_work);
799 }
800
801 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
802                 const char *op)
803 {
804         struct nvme_rdma_queue *queue = cq->cq_context;
805         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
806
807         if (ctrl->ctrl.state == NVME_CTRL_LIVE)
808                 dev_info(ctrl->ctrl.device,
809                              "%s for CQE 0x%p failed with status %s (%d)\n",
810                              op, wc->wr_cqe,
811                              ib_wc_status_msg(wc->status), wc->status);
812         nvme_rdma_error_recovery(ctrl);
813 }
814
815 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
816 {
817         if (unlikely(wc->status != IB_WC_SUCCESS))
818                 nvme_rdma_wr_error(cq, wc, "MEMREG");
819 }
820
821 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
822 {
823         if (unlikely(wc->status != IB_WC_SUCCESS))
824                 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
825 }
826
827 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
828                 struct nvme_rdma_request *req)
829 {
830         struct ib_send_wr *bad_wr;
831         struct ib_send_wr wr = {
832                 .opcode             = IB_WR_LOCAL_INV,
833                 .next               = NULL,
834                 .num_sge            = 0,
835                 .send_flags         = 0,
836                 .ex.invalidate_rkey = req->mr->rkey,
837         };
838
839         req->reg_cqe.done = nvme_rdma_inv_rkey_done;
840         wr.wr_cqe = &req->reg_cqe;
841
842         return ib_post_send(queue->qp, &wr, &bad_wr);
843 }
844
845 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
846                 struct request *rq)
847 {
848         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
849         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
850         struct nvme_rdma_device *dev = queue->device;
851         struct ib_device *ibdev = dev->dev;
852         int res;
853
854         if (!blk_rq_bytes(rq))
855                 return;
856
857         if (req->mr->need_inval) {
858                 res = nvme_rdma_inv_rkey(queue, req);
859                 if (res < 0) {
860                         dev_err(ctrl->ctrl.device,
861                                 "Queueing INV WR for rkey %#x failed (%d)\n",
862                                 req->mr->rkey, res);
863                         nvme_rdma_error_recovery(queue->ctrl);
864                 }
865         }
866
867         ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
868                         req->nents, rq_data_dir(rq) ==
869                                     WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
870
871         nvme_cleanup_cmd(rq);
872         sg_free_table_chained(&req->sg_table, true);
873 }
874
875 static int nvme_rdma_set_sg_null(struct nvme_command *c)
876 {
877         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
878
879         sg->addr = 0;
880         put_unaligned_le24(0, sg->length);
881         put_unaligned_le32(0, sg->key);
882         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
883         return 0;
884 }
885
886 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
887                 struct nvme_rdma_request *req, struct nvme_command *c)
888 {
889         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
890
891         req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
892         req->sge[1].length = sg_dma_len(req->sg_table.sgl);
893         req->sge[1].lkey = queue->device->pd->local_dma_lkey;
894
895         sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
896         sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
897         sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
898
899         req->inline_data = true;
900         req->num_sge++;
901         return 0;
902 }
903
904 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
905                 struct nvme_rdma_request *req, struct nvme_command *c)
906 {
907         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
908
909         sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
910         put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
911         put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
912         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
913         return 0;
914 }
915
916 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
917                 struct nvme_rdma_request *req, struct nvme_command *c,
918                 int count)
919 {
920         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
921         int nr;
922
923         nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, PAGE_SIZE);
924         if (nr < count) {
925                 if (nr < 0)
926                         return nr;
927                 return -EINVAL;
928         }
929
930         ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
931
932         req->reg_cqe.done = nvme_rdma_memreg_done;
933         memset(&req->reg_wr, 0, sizeof(req->reg_wr));
934         req->reg_wr.wr.opcode = IB_WR_REG_MR;
935         req->reg_wr.wr.wr_cqe = &req->reg_cqe;
936         req->reg_wr.wr.num_sge = 0;
937         req->reg_wr.mr = req->mr;
938         req->reg_wr.key = req->mr->rkey;
939         req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
940                              IB_ACCESS_REMOTE_READ |
941                              IB_ACCESS_REMOTE_WRITE;
942
943         req->mr->need_inval = true;
944
945         sg->addr = cpu_to_le64(req->mr->iova);
946         put_unaligned_le24(req->mr->length, sg->length);
947         put_unaligned_le32(req->mr->rkey, sg->key);
948         sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
949                         NVME_SGL_FMT_INVALIDATE;
950
951         return 0;
952 }
953
954 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
955                 struct request *rq, struct nvme_command *c)
956 {
957         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
958         struct nvme_rdma_device *dev = queue->device;
959         struct ib_device *ibdev = dev->dev;
960         int count, ret;
961
962         req->num_sge = 1;
963         req->inline_data = false;
964         req->mr->need_inval = false;
965
966         c->common.flags |= NVME_CMD_SGL_METABUF;
967
968         if (!blk_rq_bytes(rq))
969                 return nvme_rdma_set_sg_null(c);
970
971         req->sg_table.sgl = req->first_sgl;
972         ret = sg_alloc_table_chained(&req->sg_table,
973                         blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
974         if (ret)
975                 return -ENOMEM;
976
977         req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
978
979         count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
980                     rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
981         if (unlikely(count <= 0)) {
982                 sg_free_table_chained(&req->sg_table, true);
983                 return -EIO;
984         }
985
986         if (count == 1) {
987                 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
988                     blk_rq_payload_bytes(rq) <=
989                                 nvme_rdma_inline_data_size(queue))
990                         return nvme_rdma_map_sg_inline(queue, req, c);
991
992                 if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)
993                         return nvme_rdma_map_sg_single(queue, req, c);
994         }
995
996         return nvme_rdma_map_sg_fr(queue, req, c, count);
997 }
998
999 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1000 {
1001         if (unlikely(wc->status != IB_WC_SUCCESS))
1002                 nvme_rdma_wr_error(cq, wc, "SEND");
1003 }
1004
1005 /*
1006  * We want to signal completion at least every queue depth/2.  This returns the
1007  * largest power of two that is not above half of (queue size + 1) to optimize
1008  * (avoid divisions).
1009  */
1010 static inline bool nvme_rdma_queue_sig_limit(struct nvme_rdma_queue *queue)
1011 {
1012         int limit = 1 << ilog2((queue->queue_size + 1) / 2);
1013
1014         return (atomic_inc_return(&queue->sig_count) & (limit - 1)) == 0;
1015 }
1016
1017 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1018                 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1019                 struct ib_send_wr *first, bool flush)
1020 {
1021         struct ib_send_wr wr, *bad_wr;
1022         int ret;
1023
1024         sge->addr   = qe->dma;
1025         sge->length = sizeof(struct nvme_command),
1026         sge->lkey   = queue->device->pd->local_dma_lkey;
1027
1028         qe->cqe.done = nvme_rdma_send_done;
1029
1030         wr.next       = NULL;
1031         wr.wr_cqe     = &qe->cqe;
1032         wr.sg_list    = sge;
1033         wr.num_sge    = num_sge;
1034         wr.opcode     = IB_WR_SEND;
1035         wr.send_flags = 0;
1036
1037         /*
1038          * Unsignalled send completions are another giant desaster in the
1039          * IB Verbs spec:  If we don't regularly post signalled sends
1040          * the send queue will fill up and only a QP reset will rescue us.
1041          * Would have been way to obvious to handle this in hardware or
1042          * at least the RDMA stack..
1043          *
1044          * Always signal the flushes. The magic request used for the flush
1045          * sequencer is not allocated in our driver's tagset and it's
1046          * triggered to be freed by blk_cleanup_queue(). So we need to
1047          * always mark it as signaled to ensure that the "wr_cqe", which is
1048          * embedded in request's payload, is not freed when __ib_process_cq()
1049          * calls wr_cqe->done().
1050          */
1051         if (nvme_rdma_queue_sig_limit(queue) || flush)
1052                 wr.send_flags |= IB_SEND_SIGNALED;
1053
1054         if (first)
1055                 first->next = &wr;
1056         else
1057                 first = &wr;
1058
1059         ret = ib_post_send(queue->qp, first, &bad_wr);
1060         if (ret) {
1061                 dev_err(queue->ctrl->ctrl.device,
1062                              "%s failed with error code %d\n", __func__, ret);
1063         }
1064         return ret;
1065 }
1066
1067 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1068                 struct nvme_rdma_qe *qe)
1069 {
1070         struct ib_recv_wr wr, *bad_wr;
1071         struct ib_sge list;
1072         int ret;
1073
1074         list.addr   = qe->dma;
1075         list.length = sizeof(struct nvme_completion);
1076         list.lkey   = queue->device->pd->local_dma_lkey;
1077
1078         qe->cqe.done = nvme_rdma_recv_done;
1079
1080         wr.next     = NULL;
1081         wr.wr_cqe   = &qe->cqe;
1082         wr.sg_list  = &list;
1083         wr.num_sge  = 1;
1084
1085         ret = ib_post_recv(queue->qp, &wr, &bad_wr);
1086         if (ret) {
1087                 dev_err(queue->ctrl->ctrl.device,
1088                         "%s failed with error code %d\n", __func__, ret);
1089         }
1090         return ret;
1091 }
1092
1093 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1094 {
1095         u32 queue_idx = nvme_rdma_queue_idx(queue);
1096
1097         if (queue_idx == 0)
1098                 return queue->ctrl->admin_tag_set.tags[queue_idx];
1099         return queue->ctrl->tag_set.tags[queue_idx - 1];
1100 }
1101
1102 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
1103 {
1104         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1105         struct nvme_rdma_queue *queue = &ctrl->queues[0];
1106         struct ib_device *dev = queue->device->dev;
1107         struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1108         struct nvme_command *cmd = sqe->data;
1109         struct ib_sge sge;
1110         int ret;
1111
1112         if (WARN_ON_ONCE(aer_idx != 0))
1113                 return;
1114
1115         ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1116
1117         memset(cmd, 0, sizeof(*cmd));
1118         cmd->common.opcode = nvme_admin_async_event;
1119         cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH;
1120         cmd->common.flags |= NVME_CMD_SGL_METABUF;
1121         nvme_rdma_set_sg_null(cmd);
1122
1123         ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1124                         DMA_TO_DEVICE);
1125
1126         ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false);
1127         WARN_ON_ONCE(ret);
1128 }
1129
1130 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1131                 struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1132 {
1133         struct request *rq;
1134         struct nvme_rdma_request *req;
1135         int ret = 0;
1136
1137         rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1138         if (!rq) {
1139                 dev_err(queue->ctrl->ctrl.device,
1140                         "tag 0x%x on QP %#x not found\n",
1141                         cqe->command_id, queue->qp->qp_num);
1142                 nvme_rdma_error_recovery(queue->ctrl);
1143                 return ret;
1144         }
1145         req = blk_mq_rq_to_pdu(rq);
1146
1147         if (rq->tag == tag)
1148                 ret = 1;
1149
1150         if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) &&
1151             wc->ex.invalidate_rkey == req->mr->rkey)
1152                 req->mr->need_inval = false;
1153
1154         nvme_end_request(rq, cqe->status, cqe->result);
1155         return ret;
1156 }
1157
1158 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1159 {
1160         struct nvme_rdma_qe *qe =
1161                 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1162         struct nvme_rdma_queue *queue = cq->cq_context;
1163         struct ib_device *ibdev = queue->device->dev;
1164         struct nvme_completion *cqe = qe->data;
1165         const size_t len = sizeof(struct nvme_completion);
1166         int ret = 0;
1167
1168         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1169                 nvme_rdma_wr_error(cq, wc, "RECV");
1170                 return 0;
1171         }
1172
1173         ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1174         /*
1175          * AEN requests are special as they don't time out and can
1176          * survive any kind of queue freeze and often don't respond to
1177          * aborts.  We don't even bother to allocate a struct request
1178          * for them but rather special case them here.
1179          */
1180         if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1181                         cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH))
1182                 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1183                                 &cqe->result);
1184         else
1185                 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1186         ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1187
1188         nvme_rdma_post_recv(queue, qe);
1189         return ret;
1190 }
1191
1192 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1193 {
1194         __nvme_rdma_recv_done(cq, wc, -1);
1195 }
1196
1197 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1198 {
1199         int ret, i;
1200
1201         for (i = 0; i < queue->queue_size; i++) {
1202                 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1203                 if (ret)
1204                         goto out_destroy_queue_ib;
1205         }
1206
1207         return 0;
1208
1209 out_destroy_queue_ib:
1210         nvme_rdma_destroy_queue_ib(queue);
1211         return ret;
1212 }
1213
1214 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1215                 struct rdma_cm_event *ev)
1216 {
1217         struct rdma_cm_id *cm_id = queue->cm_id;
1218         int status = ev->status;
1219         const char *rej_msg;
1220         const struct nvme_rdma_cm_rej *rej_data;
1221         u8 rej_data_len;
1222
1223         rej_msg = rdma_reject_msg(cm_id, status);
1224         rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1225
1226         if (rej_data && rej_data_len >= sizeof(u16)) {
1227                 u16 sts = le16_to_cpu(rej_data->sts);
1228
1229                 dev_err(queue->ctrl->ctrl.device,
1230                       "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1231                       status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1232         } else {
1233                 dev_err(queue->ctrl->ctrl.device,
1234                         "Connect rejected: status %d (%s).\n", status, rej_msg);
1235         }
1236
1237         return -ECONNRESET;
1238 }
1239
1240 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1241 {
1242         int ret;
1243
1244         ret = nvme_rdma_create_queue_ib(queue);
1245         if (ret)
1246                 return ret;
1247
1248         ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1249         if (ret) {
1250                 dev_err(queue->ctrl->ctrl.device,
1251                         "rdma_resolve_route failed (%d).\n",
1252                         queue->cm_error);
1253                 goto out_destroy_queue;
1254         }
1255
1256         return 0;
1257
1258 out_destroy_queue:
1259         nvme_rdma_destroy_queue_ib(queue);
1260         return ret;
1261 }
1262
1263 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1264 {
1265         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1266         struct rdma_conn_param param = { };
1267         struct nvme_rdma_cm_req priv = { };
1268         int ret;
1269
1270         param.qp_num = queue->qp->qp_num;
1271         param.flow_control = 1;
1272
1273         param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1274         /* maximum retry count */
1275         param.retry_count = 7;
1276         param.rnr_retry_count = 7;
1277         param.private_data = &priv;
1278         param.private_data_len = sizeof(priv);
1279
1280         priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1281         priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1282         /*
1283          * set the admin queue depth to the minimum size
1284          * specified by the Fabrics standard.
1285          */
1286         if (priv.qid == 0) {
1287                 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1288                 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1289         } else {
1290                 /*
1291                  * current interpretation of the fabrics spec
1292                  * is at minimum you make hrqsize sqsize+1, or a
1293                  * 1's based representation of sqsize.
1294                  */
1295                 priv.hrqsize = cpu_to_le16(queue->queue_size);
1296                 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1297         }
1298
1299         ret = rdma_connect(queue->cm_id, &param);
1300         if (ret) {
1301                 dev_err(ctrl->ctrl.device,
1302                         "rdma_connect failed (%d).\n", ret);
1303                 goto out_destroy_queue_ib;
1304         }
1305
1306         return 0;
1307
1308 out_destroy_queue_ib:
1309         nvme_rdma_destroy_queue_ib(queue);
1310         return ret;
1311 }
1312
1313 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1314                 struct rdma_cm_event *ev)
1315 {
1316         struct nvme_rdma_queue *queue = cm_id->context;
1317         int cm_error = 0;
1318
1319         dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1320                 rdma_event_msg(ev->event), ev->event,
1321                 ev->status, cm_id);
1322
1323         switch (ev->event) {
1324         case RDMA_CM_EVENT_ADDR_RESOLVED:
1325                 cm_error = nvme_rdma_addr_resolved(queue);
1326                 break;
1327         case RDMA_CM_EVENT_ROUTE_RESOLVED:
1328                 cm_error = nvme_rdma_route_resolved(queue);
1329                 break;
1330         case RDMA_CM_EVENT_ESTABLISHED:
1331                 queue->cm_error = nvme_rdma_conn_established(queue);
1332                 /* complete cm_done regardless of success/failure */
1333                 complete(&queue->cm_done);
1334                 return 0;
1335         case RDMA_CM_EVENT_REJECTED:
1336                 nvme_rdma_destroy_queue_ib(queue);
1337                 cm_error = nvme_rdma_conn_rejected(queue, ev);
1338                 break;
1339         case RDMA_CM_EVENT_ROUTE_ERROR:
1340         case RDMA_CM_EVENT_CONNECT_ERROR:
1341         case RDMA_CM_EVENT_UNREACHABLE:
1342                 nvme_rdma_destroy_queue_ib(queue);
1343         case RDMA_CM_EVENT_ADDR_ERROR:
1344                 dev_dbg(queue->ctrl->ctrl.device,
1345                         "CM error event %d\n", ev->event);
1346                 cm_error = -ECONNRESET;
1347                 break;
1348         case RDMA_CM_EVENT_DISCONNECTED:
1349         case RDMA_CM_EVENT_ADDR_CHANGE:
1350         case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1351                 dev_dbg(queue->ctrl->ctrl.device,
1352                         "disconnect received - connection closed\n");
1353                 nvme_rdma_error_recovery(queue->ctrl);
1354                 break;
1355         case RDMA_CM_EVENT_DEVICE_REMOVAL:
1356                 /* device removal is handled via the ib_client API */
1357                 break;
1358         default:
1359                 dev_err(queue->ctrl->ctrl.device,
1360                         "Unexpected RDMA CM event (%d)\n", ev->event);
1361                 nvme_rdma_error_recovery(queue->ctrl);
1362                 break;
1363         }
1364
1365         if (cm_error) {
1366                 queue->cm_error = cm_error;
1367                 complete(&queue->cm_done);
1368         }
1369
1370         return 0;
1371 }
1372
1373 static enum blk_eh_timer_return
1374 nvme_rdma_timeout(struct request *rq, bool reserved)
1375 {
1376         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1377
1378         /* queue error recovery */
1379         nvme_rdma_error_recovery(req->queue->ctrl);
1380
1381         /* fail with DNR on cmd timeout */
1382         nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1383
1384         return BLK_EH_HANDLED;
1385 }
1386
1387 /*
1388  * We cannot accept any other command until the Connect command has completed.
1389  */
1390 static inline blk_status_t
1391 nvme_rdma_queue_is_ready(struct nvme_rdma_queue *queue, struct request *rq)
1392 {
1393         if (unlikely(!test_bit(NVME_RDMA_Q_LIVE, &queue->flags))) {
1394                 struct nvme_command *cmd = nvme_req(rq)->cmd;
1395
1396                 if (!blk_rq_is_passthrough(rq) ||
1397                     cmd->common.opcode != nvme_fabrics_command ||
1398                     cmd->fabrics.fctype != nvme_fabrics_type_connect) {
1399                         /*
1400                          * reconnecting state means transport disruption, which
1401                          * can take a long time and even might fail permanently,
1402                          * so we can't let incoming I/O be requeued forever.
1403                          * fail it fast to allow upper layers a chance to
1404                          * failover.
1405                          */
1406                         if (queue->ctrl->ctrl.state == NVME_CTRL_RECONNECTING)
1407                                 return BLK_STS_IOERR;
1408                         return BLK_STS_RESOURCE; /* try again later */
1409                 }
1410         }
1411
1412         return 0;
1413 }
1414
1415 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1416                 const struct blk_mq_queue_data *bd)
1417 {
1418         struct nvme_ns *ns = hctx->queue->queuedata;
1419         struct nvme_rdma_queue *queue = hctx->driver_data;
1420         struct request *rq = bd->rq;
1421         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1422         struct nvme_rdma_qe *sqe = &req->sqe;
1423         struct nvme_command *c = sqe->data;
1424         bool flush = false;
1425         struct ib_device *dev;
1426         blk_status_t ret;
1427         int err;
1428
1429         WARN_ON_ONCE(rq->tag < 0);
1430
1431         ret = nvme_rdma_queue_is_ready(queue, rq);
1432         if (unlikely(ret))
1433                 return ret;
1434
1435         dev = queue->device->dev;
1436         ib_dma_sync_single_for_cpu(dev, sqe->dma,
1437                         sizeof(struct nvme_command), DMA_TO_DEVICE);
1438
1439         ret = nvme_setup_cmd(ns, rq, c);
1440         if (ret)
1441                 return ret;
1442
1443         blk_mq_start_request(rq);
1444
1445         err = nvme_rdma_map_data(queue, rq, c);
1446         if (err < 0) {
1447                 dev_err(queue->ctrl->ctrl.device,
1448                              "Failed to map data (%d)\n", err);
1449                 nvme_cleanup_cmd(rq);
1450                 goto err;
1451         }
1452
1453         ib_dma_sync_single_for_device(dev, sqe->dma,
1454                         sizeof(struct nvme_command), DMA_TO_DEVICE);
1455
1456         if (req_op(rq) == REQ_OP_FLUSH)
1457                 flush = true;
1458         err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1459                         req->mr->need_inval ? &req->reg_wr.wr : NULL, flush);
1460         if (err) {
1461                 nvme_rdma_unmap_data(queue, rq);
1462                 goto err;
1463         }
1464
1465         return BLK_STS_OK;
1466 err:
1467         if (err == -ENOMEM || err == -EAGAIN)
1468                 return BLK_STS_RESOURCE;
1469         return BLK_STS_IOERR;
1470 }
1471
1472 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1473 {
1474         struct nvme_rdma_queue *queue = hctx->driver_data;
1475         struct ib_cq *cq = queue->ib_cq;
1476         struct ib_wc wc;
1477         int found = 0;
1478
1479         while (ib_poll_cq(cq, 1, &wc) > 0) {
1480                 struct ib_cqe *cqe = wc.wr_cqe;
1481
1482                 if (cqe) {
1483                         if (cqe->done == nvme_rdma_recv_done)
1484                                 found |= __nvme_rdma_recv_done(cq, &wc, tag);
1485                         else
1486                                 cqe->done(cq, &wc);
1487                 }
1488         }
1489
1490         return found;
1491 }
1492
1493 static void nvme_rdma_complete_rq(struct request *rq)
1494 {
1495         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1496
1497         nvme_rdma_unmap_data(req->queue, rq);
1498         nvme_complete_rq(rq);
1499 }
1500
1501 static const struct blk_mq_ops nvme_rdma_mq_ops = {
1502         .queue_rq       = nvme_rdma_queue_rq,
1503         .complete       = nvme_rdma_complete_rq,
1504         .init_request   = nvme_rdma_init_request,
1505         .exit_request   = nvme_rdma_exit_request,
1506         .reinit_request = nvme_rdma_reinit_request,
1507         .init_hctx      = nvme_rdma_init_hctx,
1508         .poll           = nvme_rdma_poll,
1509         .timeout        = nvme_rdma_timeout,
1510 };
1511
1512 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1513         .queue_rq       = nvme_rdma_queue_rq,
1514         .complete       = nvme_rdma_complete_rq,
1515         .init_request   = nvme_rdma_init_request,
1516         .exit_request   = nvme_rdma_exit_request,
1517         .reinit_request = nvme_rdma_reinit_request,
1518         .init_hctx      = nvme_rdma_init_admin_hctx,
1519         .timeout        = nvme_rdma_timeout,
1520 };
1521
1522 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl)
1523 {
1524         int error;
1525
1526         error = nvme_rdma_init_queue(ctrl, 0, NVME_AQ_DEPTH);
1527         if (error)
1528                 return error;
1529
1530         ctrl->device = ctrl->queues[0].device;
1531
1532         /*
1533          * We need a reference on the device as long as the tag_set is alive,
1534          * as the MRs in the request structures need a valid ib_device.
1535          */
1536         error = -EINVAL;
1537         if (!nvme_rdma_dev_get(ctrl->device))
1538                 goto out_free_queue;
1539
1540         ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS,
1541                 ctrl->device->dev->attrs.max_fast_reg_page_list_len);
1542
1543         memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
1544         ctrl->admin_tag_set.ops = &nvme_rdma_admin_mq_ops;
1545         ctrl->admin_tag_set.queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH;
1546         ctrl->admin_tag_set.reserved_tags = 2; /* connect + keep-alive */
1547         ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
1548         ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
1549                 SG_CHUNK_SIZE * sizeof(struct scatterlist);
1550         ctrl->admin_tag_set.driver_data = ctrl;
1551         ctrl->admin_tag_set.nr_hw_queues = 1;
1552         ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
1553
1554         error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
1555         if (error)
1556                 goto out_put_dev;
1557
1558         ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
1559         if (IS_ERR(ctrl->ctrl.admin_q)) {
1560                 error = PTR_ERR(ctrl->ctrl.admin_q);
1561                 goto out_free_tagset;
1562         }
1563
1564         error = nvmf_connect_admin_queue(&ctrl->ctrl);
1565         if (error)
1566                 goto out_cleanup_queue;
1567
1568         set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags);
1569
1570         error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP,
1571                         &ctrl->ctrl.cap);
1572         if (error) {
1573                 dev_err(ctrl->ctrl.device,
1574                         "prop_get NVME_REG_CAP failed\n");
1575                 goto out_cleanup_queue;
1576         }
1577
1578         ctrl->ctrl.sqsize =
1579                 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
1580
1581         error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
1582         if (error)
1583                 goto out_cleanup_queue;
1584
1585         ctrl->ctrl.max_hw_sectors =
1586                 (ctrl->max_fr_pages - 1) << (PAGE_SHIFT - 9);
1587
1588         error = nvme_init_identify(&ctrl->ctrl);
1589         if (error)
1590                 goto out_cleanup_queue;
1591
1592         error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
1593                         &ctrl->async_event_sqe, sizeof(struct nvme_command),
1594                         DMA_TO_DEVICE);
1595         if (error)
1596                 goto out_cleanup_queue;
1597
1598         return 0;
1599
1600 out_cleanup_queue:
1601         blk_cleanup_queue(ctrl->ctrl.admin_q);
1602 out_free_tagset:
1603         /* disconnect and drain the queue before freeing the tagset */
1604         nvme_rdma_stop_queue(&ctrl->queues[0]);
1605         blk_mq_free_tag_set(&ctrl->admin_tag_set);
1606 out_put_dev:
1607         nvme_rdma_dev_put(ctrl->device);
1608 out_free_queue:
1609         nvme_rdma_free_queue(&ctrl->queues[0]);
1610         return error;
1611 }
1612
1613 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl)
1614 {
1615         cancel_work_sync(&ctrl->err_work);
1616         cancel_delayed_work_sync(&ctrl->reconnect_work);
1617
1618         if (ctrl->ctrl.queue_count > 1) {
1619                 nvme_stop_queues(&ctrl->ctrl);
1620                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
1621                                         nvme_cancel_request, &ctrl->ctrl);
1622                 nvme_rdma_free_io_queues(ctrl);
1623         }
1624
1625         if (test_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags))
1626                 nvme_shutdown_ctrl(&ctrl->ctrl);
1627
1628         blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1629         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
1630                                 nvme_cancel_request, &ctrl->ctrl);
1631         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1632         nvme_rdma_destroy_admin_queue(ctrl);
1633 }
1634
1635 static void __nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1636 {
1637         nvme_stop_ctrl(&ctrl->ctrl);
1638         nvme_remove_namespaces(&ctrl->ctrl);
1639         if (shutdown)
1640                 nvme_rdma_shutdown_ctrl(ctrl);
1641
1642         nvme_uninit_ctrl(&ctrl->ctrl);
1643         if (ctrl->ctrl.tagset) {
1644                 blk_cleanup_queue(ctrl->ctrl.connect_q);
1645                 blk_mq_free_tag_set(&ctrl->tag_set);
1646                 nvme_rdma_dev_put(ctrl->device);
1647         }
1648
1649         nvme_put_ctrl(&ctrl->ctrl);
1650 }
1651
1652 static void nvme_rdma_del_ctrl_work(struct work_struct *work)
1653 {
1654         struct nvme_rdma_ctrl *ctrl = container_of(work,
1655                                 struct nvme_rdma_ctrl, delete_work);
1656
1657         __nvme_rdma_remove_ctrl(ctrl, true);
1658 }
1659
1660 static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl)
1661 {
1662         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
1663                 return -EBUSY;
1664
1665         if (!queue_work(nvme_wq, &ctrl->delete_work))
1666                 return -EBUSY;
1667
1668         return 0;
1669 }
1670
1671 static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl)
1672 {
1673         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1674         int ret = 0;
1675
1676         /*
1677          * Keep a reference until all work is flushed since
1678          * __nvme_rdma_del_ctrl can free the ctrl mem
1679          */
1680         if (!kref_get_unless_zero(&ctrl->ctrl.kref))
1681                 return -EBUSY;
1682         ret = __nvme_rdma_del_ctrl(ctrl);
1683         if (!ret)
1684                 flush_work(&ctrl->delete_work);
1685         nvme_put_ctrl(&ctrl->ctrl);
1686         return ret;
1687 }
1688
1689 static void nvme_rdma_remove_ctrl_work(struct work_struct *work)
1690 {
1691         struct nvme_rdma_ctrl *ctrl = container_of(work,
1692                                 struct nvme_rdma_ctrl, delete_work);
1693
1694         __nvme_rdma_remove_ctrl(ctrl, false);
1695 }
1696
1697 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1698 {
1699         struct nvme_rdma_ctrl *ctrl =
1700                 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1701         int ret;
1702         bool changed;
1703
1704         nvme_stop_ctrl(&ctrl->ctrl);
1705         nvme_rdma_shutdown_ctrl(ctrl);
1706
1707         ret = nvme_rdma_configure_admin_queue(ctrl);
1708         if (ret) {
1709                 /* ctrl is already shutdown, just remove the ctrl */
1710                 INIT_WORK(&ctrl->delete_work, nvme_rdma_remove_ctrl_work);
1711                 goto del_dead_ctrl;
1712         }
1713
1714         if (ctrl->ctrl.queue_count > 1) {
1715                 ret = blk_mq_reinit_tagset(&ctrl->tag_set);
1716                 if (ret)
1717                         goto del_dead_ctrl;
1718
1719                 ret = nvme_rdma_init_io_queues(ctrl);
1720                 if (ret)
1721                         goto del_dead_ctrl;
1722
1723                 ret = nvme_rdma_connect_io_queues(ctrl);
1724                 if (ret)
1725                         goto del_dead_ctrl;
1726
1727                 blk_mq_update_nr_hw_queues(&ctrl->tag_set,
1728                                 ctrl->ctrl.queue_count - 1);
1729         }
1730
1731         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1732         WARN_ON_ONCE(!changed);
1733
1734         nvme_start_ctrl(&ctrl->ctrl);
1735
1736         return;
1737
1738 del_dead_ctrl:
1739         /* Deleting this dead controller... */
1740         dev_warn(ctrl->ctrl.device, "Removing after reset failure\n");
1741         WARN_ON(!queue_work(nvme_wq, &ctrl->delete_work));
1742 }
1743
1744 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1745         .name                   = "rdma",
1746         .module                 = THIS_MODULE,
1747         .flags                  = NVME_F_FABRICS,
1748         .reg_read32             = nvmf_reg_read32,
1749         .reg_read64             = nvmf_reg_read64,
1750         .reg_write32            = nvmf_reg_write32,
1751         .free_ctrl              = nvme_rdma_free_ctrl,
1752         .submit_async_event     = nvme_rdma_submit_async_event,
1753         .delete_ctrl            = nvme_rdma_del_ctrl,
1754         .get_address            = nvmf_get_address,
1755 };
1756
1757 static int nvme_rdma_create_io_queues(struct nvme_rdma_ctrl *ctrl)
1758 {
1759         int ret;
1760
1761         ret = nvme_rdma_init_io_queues(ctrl);
1762         if (ret)
1763                 return ret;
1764
1765         /*
1766          * We need a reference on the device as long as the tag_set is alive,
1767          * as the MRs in the request structures need a valid ib_device.
1768          */
1769         ret = -EINVAL;
1770         if (!nvme_rdma_dev_get(ctrl->device))
1771                 goto out_free_io_queues;
1772
1773         memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
1774         ctrl->tag_set.ops = &nvme_rdma_mq_ops;
1775         ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
1776         ctrl->tag_set.reserved_tags = 1; /* fabric connect */
1777         ctrl->tag_set.numa_node = NUMA_NO_NODE;
1778         ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1779         ctrl->tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
1780                 SG_CHUNK_SIZE * sizeof(struct scatterlist);
1781         ctrl->tag_set.driver_data = ctrl;
1782         ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
1783         ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
1784
1785         ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
1786         if (ret)
1787                 goto out_put_dev;
1788         ctrl->ctrl.tagset = &ctrl->tag_set;
1789
1790         ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
1791         if (IS_ERR(ctrl->ctrl.connect_q)) {
1792                 ret = PTR_ERR(ctrl->ctrl.connect_q);
1793                 goto out_free_tag_set;
1794         }
1795
1796         ret = nvme_rdma_connect_io_queues(ctrl);
1797         if (ret)
1798                 goto out_cleanup_connect_q;
1799
1800         return 0;
1801
1802 out_cleanup_connect_q:
1803         blk_cleanup_queue(ctrl->ctrl.connect_q);
1804 out_free_tag_set:
1805         blk_mq_free_tag_set(&ctrl->tag_set);
1806 out_put_dev:
1807         nvme_rdma_dev_put(ctrl->device);
1808 out_free_io_queues:
1809         nvme_rdma_free_io_queues(ctrl);
1810         return ret;
1811 }
1812
1813 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1814                 struct nvmf_ctrl_options *opts)
1815 {
1816         struct nvme_rdma_ctrl *ctrl;
1817         int ret;
1818         bool changed;
1819         char *port;
1820
1821         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1822         if (!ctrl)
1823                 return ERR_PTR(-ENOMEM);
1824         ctrl->ctrl.opts = opts;
1825         INIT_LIST_HEAD(&ctrl->list);
1826
1827         if (opts->mask & NVMF_OPT_TRSVCID)
1828                 port = opts->trsvcid;
1829         else
1830                 port = __stringify(NVME_RDMA_IP_PORT);
1831
1832         ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1833                         opts->traddr, port, &ctrl->addr);
1834         if (ret) {
1835                 pr_err("malformed address passed: %s:%s\n", opts->traddr, port);
1836                 goto out_free_ctrl;
1837         }
1838
1839         if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1840                 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1841                         opts->host_traddr, NULL, &ctrl->src_addr);
1842                 if (ret) {
1843                         pr_err("malformed src address passed: %s\n",
1844                                opts->host_traddr);
1845                         goto out_free_ctrl;
1846                 }
1847         }
1848
1849         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1850                                 0 /* no quirks, we're perfect! */);
1851         if (ret)
1852                 goto out_free_ctrl;
1853
1854         INIT_DELAYED_WORK(&ctrl->reconnect_work,
1855                         nvme_rdma_reconnect_ctrl_work);
1856         INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1857         INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work);
1858         INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
1859
1860         ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1861         ctrl->ctrl.sqsize = opts->queue_size - 1;
1862         ctrl->ctrl.kato = opts->kato;
1863
1864         ret = -ENOMEM;
1865         ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
1866                                 GFP_KERNEL);
1867         if (!ctrl->queues)
1868                 goto out_uninit_ctrl;
1869
1870         ret = nvme_rdma_configure_admin_queue(ctrl);
1871         if (ret)
1872                 goto out_kfree_queues;
1873
1874         /* sanity check icdoff */
1875         if (ctrl->ctrl.icdoff) {
1876                 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1877                 ret = -EINVAL;
1878                 goto out_remove_admin_queue;
1879         }
1880
1881         /* sanity check keyed sgls */
1882         if (!(ctrl->ctrl.sgls & (1 << 20))) {
1883                 dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n");
1884                 ret = -EINVAL;
1885                 goto out_remove_admin_queue;
1886         }
1887
1888         if (opts->queue_size > ctrl->ctrl.maxcmd) {
1889                 /* warn if maxcmd is lower than queue_size */
1890                 dev_warn(ctrl->ctrl.device,
1891                         "queue_size %zu > ctrl maxcmd %u, clamping down\n",
1892                         opts->queue_size, ctrl->ctrl.maxcmd);
1893                 opts->queue_size = ctrl->ctrl.maxcmd;
1894         }
1895
1896         if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
1897                 /* warn if sqsize is lower than queue_size */
1898                 dev_warn(ctrl->ctrl.device,
1899                         "queue_size %zu > ctrl sqsize %u, clamping down\n",
1900                         opts->queue_size, ctrl->ctrl.sqsize + 1);
1901                 opts->queue_size = ctrl->ctrl.sqsize + 1;
1902         }
1903
1904         if (opts->nr_io_queues) {
1905                 ret = nvme_rdma_create_io_queues(ctrl);
1906                 if (ret)
1907                         goto out_remove_admin_queue;
1908         }
1909
1910         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1911         WARN_ON_ONCE(!changed);
1912
1913         dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
1914                 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1915
1916         kref_get(&ctrl->ctrl.kref);
1917
1918         mutex_lock(&nvme_rdma_ctrl_mutex);
1919         list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
1920         mutex_unlock(&nvme_rdma_ctrl_mutex);
1921
1922         nvme_start_ctrl(&ctrl->ctrl);
1923
1924         return &ctrl->ctrl;
1925
1926 out_remove_admin_queue:
1927         nvme_rdma_destroy_admin_queue(ctrl);
1928 out_kfree_queues:
1929         kfree(ctrl->queues);
1930 out_uninit_ctrl:
1931         nvme_uninit_ctrl(&ctrl->ctrl);
1932         nvme_put_ctrl(&ctrl->ctrl);
1933         if (ret > 0)
1934                 ret = -EIO;
1935         return ERR_PTR(ret);
1936 out_free_ctrl:
1937         kfree(ctrl);
1938         return ERR_PTR(ret);
1939 }
1940
1941 static struct nvmf_transport_ops nvme_rdma_transport = {
1942         .name           = "rdma",
1943         .required_opts  = NVMF_OPT_TRADDR,
1944         .allowed_opts   = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
1945                           NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO,
1946         .create_ctrl    = nvme_rdma_create_ctrl,
1947 };
1948
1949 static void nvme_rdma_add_one(struct ib_device *ib_device)
1950 {
1951 }
1952
1953 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
1954 {
1955         struct nvme_rdma_ctrl *ctrl;
1956
1957         /* Delete all controllers using this device */
1958         mutex_lock(&nvme_rdma_ctrl_mutex);
1959         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1960                 if (ctrl->device->dev != ib_device)
1961                         continue;
1962                 dev_info(ctrl->ctrl.device,
1963                         "Removing ctrl: NQN \"%s\", addr %pISp\n",
1964                         ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1965                 __nvme_rdma_del_ctrl(ctrl);
1966         }
1967         mutex_unlock(&nvme_rdma_ctrl_mutex);
1968
1969         flush_workqueue(nvme_wq);
1970 }
1971
1972 static struct ib_client nvme_rdma_ib_client = {
1973         .name   = "nvme_rdma",
1974         .add = nvme_rdma_add_one,
1975         .remove = nvme_rdma_remove_one
1976 };
1977
1978 static int __init nvme_rdma_init_module(void)
1979 {
1980         int ret;
1981
1982         ret = ib_register_client(&nvme_rdma_ib_client);
1983         if (ret)
1984                 return ret;
1985
1986         ret = nvmf_register_transport(&nvme_rdma_transport);
1987         if (ret)
1988                 goto err_unreg_client;
1989
1990         return 0;
1991
1992 err_unreg_client:
1993         ib_unregister_client(&nvme_rdma_ib_client);
1994         return ret;
1995 }
1996
1997 static void __exit nvme_rdma_cleanup_module(void)
1998 {
1999         nvmf_unregister_transport(&nvme_rdma_transport);
2000         ib_unregister_client(&nvme_rdma_ib_client);
2001 }
2002
2003 module_init(nvme_rdma_init_module);
2004 module_exit(nvme_rdma_cleanup_module);
2005
2006 MODULE_LICENSE("GPL v2");