]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/nvme/target/fc.c
nvmet-fc: fix endianess annoations for nvmet_fc_format_rsp_hdr
[karo-tx-linux.git] / drivers / nvme / target / fc.c
1 /*
2  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful.
9  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10  * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11  * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12  * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13  * See the GNU General Public License for more details, a copy of which
14  * can be found in the file COPYING included with this package
15  *
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/blk-mq.h>
21 #include <linux/parser.h>
22 #include <linux/random.h>
23 #include <uapi/scsi/fc/fc_fs.h>
24 #include <uapi/scsi/fc/fc_els.h>
25
26 #include "nvmet.h"
27 #include <linux/nvme-fc-driver.h>
28 #include <linux/nvme-fc.h>
29
30
31 /* *************************** Data Structures/Defines ****************** */
32
33
34 #define NVMET_LS_CTX_COUNT              4
35
36 /* for this implementation, assume small single frame rqst/rsp */
37 #define NVME_FC_MAX_LS_BUFFER_SIZE              2048
38
39 struct nvmet_fc_tgtport;
40 struct nvmet_fc_tgt_assoc;
41
42 struct nvmet_fc_ls_iod {
43         struct nvmefc_tgt_ls_req        *lsreq;
44         struct nvmefc_tgt_fcp_req       *fcpreq;        /* only if RS */
45
46         struct list_head                ls_list;        /* tgtport->ls_list */
47
48         struct nvmet_fc_tgtport         *tgtport;
49         struct nvmet_fc_tgt_assoc       *assoc;
50
51         u8                              *rqstbuf;
52         u8                              *rspbuf;
53         u16                             rqstdatalen;
54         dma_addr_t                      rspdma;
55
56         struct scatterlist              sg[2];
57
58         struct work_struct              work;
59 } __aligned(sizeof(unsigned long long));
60
61 #define NVMET_FC_MAX_KB_PER_XFR         256
62
63 enum nvmet_fcp_datadir {
64         NVMET_FCP_NODATA,
65         NVMET_FCP_WRITE,
66         NVMET_FCP_READ,
67         NVMET_FCP_ABORTED,
68 };
69
70 struct nvmet_fc_fcp_iod {
71         struct nvmefc_tgt_fcp_req       *fcpreq;
72
73         struct nvme_fc_cmd_iu           cmdiubuf;
74         struct nvme_fc_ersp_iu          rspiubuf;
75         dma_addr_t                      rspdma;
76         struct scatterlist              *data_sg;
77         struct scatterlist              *next_sg;
78         int                             data_sg_cnt;
79         u32                             next_sg_offset;
80         u32                             total_length;
81         u32                             offset;
82         enum nvmet_fcp_datadir          io_dir;
83         bool                            active;
84         bool                            abort;
85         bool                            aborted;
86         bool                            writedataactive;
87         spinlock_t                      flock;
88
89         struct nvmet_req                req;
90         struct work_struct              work;
91         struct work_struct              done_work;
92
93         struct nvmet_fc_tgtport         *tgtport;
94         struct nvmet_fc_tgt_queue       *queue;
95
96         struct list_head                fcp_list;       /* tgtport->fcp_list */
97 };
98
99 struct nvmet_fc_tgtport {
100
101         struct nvmet_fc_target_port     fc_target_port;
102
103         struct list_head                tgt_list; /* nvmet_fc_target_list */
104         struct device                   *dev;   /* dev for dma mapping */
105         struct nvmet_fc_target_template *ops;
106
107         struct nvmet_fc_ls_iod          *iod;
108         spinlock_t                      lock;
109         struct list_head                ls_list;
110         struct list_head                ls_busylist;
111         struct list_head                assoc_list;
112         struct ida                      assoc_cnt;
113         struct nvmet_port               *port;
114         struct kref                     ref;
115 };
116
117 struct nvmet_fc_tgt_queue {
118         bool                            ninetypercent;
119         u16                             qid;
120         u16                             sqsize;
121         u16                             ersp_ratio;
122         u16                             sqhd;
123         int                             cpu;
124         atomic_t                        connected;
125         atomic_t                        sqtail;
126         atomic_t                        zrspcnt;
127         atomic_t                        rsn;
128         spinlock_t                      qlock;
129         struct nvmet_port               *port;
130         struct nvmet_cq                 nvme_cq;
131         struct nvmet_sq                 nvme_sq;
132         struct nvmet_fc_tgt_assoc       *assoc;
133         struct nvmet_fc_fcp_iod         *fod;           /* array of fcp_iods */
134         struct list_head                fod_list;
135         struct workqueue_struct         *work_q;
136         struct kref                     ref;
137 } __aligned(sizeof(unsigned long long));
138
139 struct nvmet_fc_tgt_assoc {
140         u64                             association_id;
141         u32                             a_id;
142         struct nvmet_fc_tgtport         *tgtport;
143         struct list_head                a_list;
144         struct nvmet_fc_tgt_queue       *queues[NVMET_NR_QUEUES];
145         struct kref                     ref;
146 };
147
148
149 static inline int
150 nvmet_fc_iodnum(struct nvmet_fc_ls_iod *iodptr)
151 {
152         return (iodptr - iodptr->tgtport->iod);
153 }
154
155 static inline int
156 nvmet_fc_fodnum(struct nvmet_fc_fcp_iod *fodptr)
157 {
158         return (fodptr - fodptr->queue->fod);
159 }
160
161
162 /*
163  * Association and Connection IDs:
164  *
165  * Association ID will have random number in upper 6 bytes and zero
166  *   in lower 2 bytes
167  *
168  * Connection IDs will be Association ID with QID or'd in lower 2 bytes
169  *
170  * note: Association ID = Connection ID for queue 0
171  */
172 #define BYTES_FOR_QID                   sizeof(u16)
173 #define BYTES_FOR_QID_SHIFT             (BYTES_FOR_QID * 8)
174 #define NVMET_FC_QUEUEID_MASK           ((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
175
176 static inline u64
177 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid)
178 {
179         return (assoc->association_id | qid);
180 }
181
182 static inline u64
183 nvmet_fc_getassociationid(u64 connectionid)
184 {
185         return connectionid & ~NVMET_FC_QUEUEID_MASK;
186 }
187
188 static inline u16
189 nvmet_fc_getqueueid(u64 connectionid)
190 {
191         return (u16)(connectionid & NVMET_FC_QUEUEID_MASK);
192 }
193
194 static inline struct nvmet_fc_tgtport *
195 targetport_to_tgtport(struct nvmet_fc_target_port *targetport)
196 {
197         return container_of(targetport, struct nvmet_fc_tgtport,
198                                  fc_target_port);
199 }
200
201 static inline struct nvmet_fc_fcp_iod *
202 nvmet_req_to_fod(struct nvmet_req *nvme_req)
203 {
204         return container_of(nvme_req, struct nvmet_fc_fcp_iod, req);
205 }
206
207
208 /* *************************** Globals **************************** */
209
210
211 static DEFINE_SPINLOCK(nvmet_fc_tgtlock);
212
213 static LIST_HEAD(nvmet_fc_target_list);
214 static DEFINE_IDA(nvmet_fc_tgtport_cnt);
215
216
217 static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
218 static void nvmet_fc_handle_fcp_rqst_work(struct work_struct *work);
219 static void nvmet_fc_fcp_rqst_op_done_work(struct work_struct *work);
220 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
221 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
222 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
223 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue);
224 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport);
225 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport);
226
227
228 /* *********************** FC-NVME DMA Handling **************************** */
229
230 /*
231  * The fcloop device passes in a NULL device pointer. Real LLD's will
232  * pass in a valid device pointer. If NULL is passed to the dma mapping
233  * routines, depending on the platform, it may or may not succeed, and
234  * may crash.
235  *
236  * As such:
237  * Wrapper all the dma routines and check the dev pointer.
238  *
239  * If simple mappings (return just a dma address, we'll noop them,
240  * returning a dma address of 0.
241  *
242  * On more complex mappings (dma_map_sg), a pseudo routine fills
243  * in the scatter list, setting all dma addresses to 0.
244  */
245
246 static inline dma_addr_t
247 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
248                 enum dma_data_direction dir)
249 {
250         return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
251 }
252
253 static inline int
254 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
255 {
256         return dev ? dma_mapping_error(dev, dma_addr) : 0;
257 }
258
259 static inline void
260 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
261         enum dma_data_direction dir)
262 {
263         if (dev)
264                 dma_unmap_single(dev, addr, size, dir);
265 }
266
267 static inline void
268 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
269                 enum dma_data_direction dir)
270 {
271         if (dev)
272                 dma_sync_single_for_cpu(dev, addr, size, dir);
273 }
274
275 static inline void
276 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
277                 enum dma_data_direction dir)
278 {
279         if (dev)
280                 dma_sync_single_for_device(dev, addr, size, dir);
281 }
282
283 /* pseudo dma_map_sg call */
284 static int
285 fc_map_sg(struct scatterlist *sg, int nents)
286 {
287         struct scatterlist *s;
288         int i;
289
290         WARN_ON(nents == 0 || sg[0].length == 0);
291
292         for_each_sg(sg, s, nents, i) {
293                 s->dma_address = 0L;
294 #ifdef CONFIG_NEED_SG_DMA_LENGTH
295                 s->dma_length = s->length;
296 #endif
297         }
298         return nents;
299 }
300
301 static inline int
302 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
303                 enum dma_data_direction dir)
304 {
305         return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
306 }
307
308 static inline void
309 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
310                 enum dma_data_direction dir)
311 {
312         if (dev)
313                 dma_unmap_sg(dev, sg, nents, dir);
314 }
315
316
317 /* *********************** FC-NVME Port Management ************************ */
318
319
320 static int
321 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
322 {
323         struct nvmet_fc_ls_iod *iod;
324         int i;
325
326         iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod),
327                         GFP_KERNEL);
328         if (!iod)
329                 return -ENOMEM;
330
331         tgtport->iod = iod;
332
333         for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
334                 INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work);
335                 iod->tgtport = tgtport;
336                 list_add_tail(&iod->ls_list, &tgtport->ls_list);
337
338                 iod->rqstbuf = kcalloc(2, NVME_FC_MAX_LS_BUFFER_SIZE,
339                         GFP_KERNEL);
340                 if (!iod->rqstbuf)
341                         goto out_fail;
342
343                 iod->rspbuf = iod->rqstbuf + NVME_FC_MAX_LS_BUFFER_SIZE;
344
345                 iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf,
346                                                 NVME_FC_MAX_LS_BUFFER_SIZE,
347                                                 DMA_TO_DEVICE);
348                 if (fc_dma_mapping_error(tgtport->dev, iod->rspdma))
349                         goto out_fail;
350         }
351
352         return 0;
353
354 out_fail:
355         kfree(iod->rqstbuf);
356         list_del(&iod->ls_list);
357         for (iod--, i--; i >= 0; iod--, i--) {
358                 fc_dma_unmap_single(tgtport->dev, iod->rspdma,
359                                 NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
360                 kfree(iod->rqstbuf);
361                 list_del(&iod->ls_list);
362         }
363
364         kfree(iod);
365
366         return -EFAULT;
367 }
368
369 static void
370 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
371 {
372         struct nvmet_fc_ls_iod *iod = tgtport->iod;
373         int i;
374
375         for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
376                 fc_dma_unmap_single(tgtport->dev,
377                                 iod->rspdma, NVME_FC_MAX_LS_BUFFER_SIZE,
378                                 DMA_TO_DEVICE);
379                 kfree(iod->rqstbuf);
380                 list_del(&iod->ls_list);
381         }
382         kfree(tgtport->iod);
383 }
384
385 static struct nvmet_fc_ls_iod *
386 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport)
387 {
388         static struct nvmet_fc_ls_iod *iod;
389         unsigned long flags;
390
391         spin_lock_irqsave(&tgtport->lock, flags);
392         iod = list_first_entry_or_null(&tgtport->ls_list,
393                                         struct nvmet_fc_ls_iod, ls_list);
394         if (iod)
395                 list_move_tail(&iod->ls_list, &tgtport->ls_busylist);
396         spin_unlock_irqrestore(&tgtport->lock, flags);
397         return iod;
398 }
399
400
401 static void
402 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport,
403                         struct nvmet_fc_ls_iod *iod)
404 {
405         unsigned long flags;
406
407         spin_lock_irqsave(&tgtport->lock, flags);
408         list_move(&iod->ls_list, &tgtport->ls_list);
409         spin_unlock_irqrestore(&tgtport->lock, flags);
410 }
411
412 static void
413 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
414                                 struct nvmet_fc_tgt_queue *queue)
415 {
416         struct nvmet_fc_fcp_iod *fod = queue->fod;
417         int i;
418
419         for (i = 0; i < queue->sqsize; fod++, i++) {
420                 INIT_WORK(&fod->work, nvmet_fc_handle_fcp_rqst_work);
421                 INIT_WORK(&fod->done_work, nvmet_fc_fcp_rqst_op_done_work);
422                 fod->tgtport = tgtport;
423                 fod->queue = queue;
424                 fod->active = false;
425                 fod->abort = false;
426                 fod->aborted = false;
427                 fod->fcpreq = NULL;
428                 list_add_tail(&fod->fcp_list, &queue->fod_list);
429                 spin_lock_init(&fod->flock);
430
431                 fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf,
432                                         sizeof(fod->rspiubuf), DMA_TO_DEVICE);
433                 if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) {
434                         list_del(&fod->fcp_list);
435                         for (fod--, i--; i >= 0; fod--, i--) {
436                                 fc_dma_unmap_single(tgtport->dev, fod->rspdma,
437                                                 sizeof(fod->rspiubuf),
438                                                 DMA_TO_DEVICE);
439                                 fod->rspdma = 0L;
440                                 list_del(&fod->fcp_list);
441                         }
442
443                         return;
444                 }
445         }
446 }
447
448 static void
449 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
450                                 struct nvmet_fc_tgt_queue *queue)
451 {
452         struct nvmet_fc_fcp_iod *fod = queue->fod;
453         int i;
454
455         for (i = 0; i < queue->sqsize; fod++, i++) {
456                 if (fod->rspdma)
457                         fc_dma_unmap_single(tgtport->dev, fod->rspdma,
458                                 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
459         }
460 }
461
462 static struct nvmet_fc_fcp_iod *
463 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
464 {
465         static struct nvmet_fc_fcp_iod *fod;
466         unsigned long flags;
467
468         spin_lock_irqsave(&queue->qlock, flags);
469         fod = list_first_entry_or_null(&queue->fod_list,
470                                         struct nvmet_fc_fcp_iod, fcp_list);
471         if (fod) {
472                 list_del(&fod->fcp_list);
473                 fod->active = true;
474                 /*
475                  * no queue reference is taken, as it was taken by the
476                  * queue lookup just prior to the allocation. The iod
477                  * will "inherit" that reference.
478                  */
479         }
480         spin_unlock_irqrestore(&queue->qlock, flags);
481         return fod;
482 }
483
484
485 static void
486 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
487                         struct nvmet_fc_fcp_iod *fod)
488 {
489         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
490         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
491         unsigned long flags;
492
493         fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
494                                 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
495
496         fcpreq->nvmet_fc_private = NULL;
497
498         spin_lock_irqsave(&queue->qlock, flags);
499         list_add_tail(&fod->fcp_list, &fod->queue->fod_list);
500         fod->active = false;
501         fod->abort = false;
502         fod->aborted = false;
503         fod->writedataactive = false;
504         fod->fcpreq = NULL;
505         spin_unlock_irqrestore(&queue->qlock, flags);
506
507         /*
508          * release the reference taken at queue lookup and fod allocation
509          */
510         nvmet_fc_tgt_q_put(queue);
511
512         tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq);
513 }
514
515 static int
516 nvmet_fc_queue_to_cpu(struct nvmet_fc_tgtport *tgtport, int qid)
517 {
518         int cpu, idx, cnt;
519
520         if (!(tgtport->ops->target_features &
521                         NVMET_FCTGTFEAT_NEEDS_CMD_CPUSCHED) ||
522             tgtport->ops->max_hw_queues == 1)
523                 return WORK_CPU_UNBOUND;
524
525         /* Simple cpu selection based on qid modulo active cpu count */
526         idx = !qid ? 0 : (qid - 1) % num_active_cpus();
527
528         /* find the n'th active cpu */
529         for (cpu = 0, cnt = 0; ; ) {
530                 if (cpu_active(cpu)) {
531                         if (cnt == idx)
532                                 break;
533                         cnt++;
534                 }
535                 cpu = (cpu + 1) % num_possible_cpus();
536         }
537
538         return cpu;
539 }
540
541 static struct nvmet_fc_tgt_queue *
542 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc,
543                         u16 qid, u16 sqsize)
544 {
545         struct nvmet_fc_tgt_queue *queue;
546         unsigned long flags;
547         int ret;
548
549         if (qid >= NVMET_NR_QUEUES)
550                 return NULL;
551
552         queue = kzalloc((sizeof(*queue) +
553                                 (sizeof(struct nvmet_fc_fcp_iod) * sqsize)),
554                                 GFP_KERNEL);
555         if (!queue)
556                 return NULL;
557
558         if (!nvmet_fc_tgt_a_get(assoc))
559                 goto out_free_queue;
560
561         queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0,
562                                 assoc->tgtport->fc_target_port.port_num,
563                                 assoc->a_id, qid);
564         if (!queue->work_q)
565                 goto out_a_put;
566
567         queue->fod = (struct nvmet_fc_fcp_iod *)&queue[1];
568         queue->qid = qid;
569         queue->sqsize = sqsize;
570         queue->assoc = assoc;
571         queue->port = assoc->tgtport->port;
572         queue->cpu = nvmet_fc_queue_to_cpu(assoc->tgtport, qid);
573         INIT_LIST_HEAD(&queue->fod_list);
574         atomic_set(&queue->connected, 0);
575         atomic_set(&queue->sqtail, 0);
576         atomic_set(&queue->rsn, 1);
577         atomic_set(&queue->zrspcnt, 0);
578         spin_lock_init(&queue->qlock);
579         kref_init(&queue->ref);
580
581         nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue);
582
583         ret = nvmet_sq_init(&queue->nvme_sq);
584         if (ret)
585                 goto out_fail_iodlist;
586
587         WARN_ON(assoc->queues[qid]);
588         spin_lock_irqsave(&assoc->tgtport->lock, flags);
589         assoc->queues[qid] = queue;
590         spin_unlock_irqrestore(&assoc->tgtport->lock, flags);
591
592         return queue;
593
594 out_fail_iodlist:
595         nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue);
596         destroy_workqueue(queue->work_q);
597 out_a_put:
598         nvmet_fc_tgt_a_put(assoc);
599 out_free_queue:
600         kfree(queue);
601         return NULL;
602 }
603
604
605 static void
606 nvmet_fc_tgt_queue_free(struct kref *ref)
607 {
608         struct nvmet_fc_tgt_queue *queue =
609                 container_of(ref, struct nvmet_fc_tgt_queue, ref);
610         unsigned long flags;
611
612         spin_lock_irqsave(&queue->assoc->tgtport->lock, flags);
613         queue->assoc->queues[queue->qid] = NULL;
614         spin_unlock_irqrestore(&queue->assoc->tgtport->lock, flags);
615
616         nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue);
617
618         nvmet_fc_tgt_a_put(queue->assoc);
619
620         destroy_workqueue(queue->work_q);
621
622         kfree(queue);
623 }
624
625 static void
626 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue)
627 {
628         kref_put(&queue->ref, nvmet_fc_tgt_queue_free);
629 }
630
631 static int
632 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
633 {
634         return kref_get_unless_zero(&queue->ref);
635 }
636
637
638 static void
639 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
640 {
641         struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport;
642         struct nvmet_fc_fcp_iod *fod = queue->fod;
643         unsigned long flags;
644         int i, writedataactive;
645         bool disconnect;
646
647         disconnect = atomic_xchg(&queue->connected, 0);
648
649         spin_lock_irqsave(&queue->qlock, flags);
650         /* about outstanding io's */
651         for (i = 0; i < queue->sqsize; fod++, i++) {
652                 if (fod->active) {
653                         spin_lock(&fod->flock);
654                         fod->abort = true;
655                         writedataactive = fod->writedataactive;
656                         spin_unlock(&fod->flock);
657                         /*
658                          * only call lldd abort routine if waiting for
659                          * writedata. other outstanding ops should finish
660                          * on their own.
661                          */
662                         if (writedataactive) {
663                                 spin_lock(&fod->flock);
664                                 fod->aborted = true;
665                                 spin_unlock(&fod->flock);
666                                 tgtport->ops->fcp_abort(
667                                         &tgtport->fc_target_port, fod->fcpreq);
668                         }
669                 }
670         }
671         spin_unlock_irqrestore(&queue->qlock, flags);
672
673         flush_workqueue(queue->work_q);
674
675         if (disconnect)
676                 nvmet_sq_destroy(&queue->nvme_sq);
677
678         nvmet_fc_tgt_q_put(queue);
679 }
680
681 static struct nvmet_fc_tgt_queue *
682 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport,
683                                 u64 connection_id)
684 {
685         struct nvmet_fc_tgt_assoc *assoc;
686         struct nvmet_fc_tgt_queue *queue;
687         u64 association_id = nvmet_fc_getassociationid(connection_id);
688         u16 qid = nvmet_fc_getqueueid(connection_id);
689         unsigned long flags;
690
691         spin_lock_irqsave(&tgtport->lock, flags);
692         list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
693                 if (association_id == assoc->association_id) {
694                         queue = assoc->queues[qid];
695                         if (queue &&
696                             (!atomic_read(&queue->connected) ||
697                              !nvmet_fc_tgt_q_get(queue)))
698                                 queue = NULL;
699                         spin_unlock_irqrestore(&tgtport->lock, flags);
700                         return queue;
701                 }
702         }
703         spin_unlock_irqrestore(&tgtport->lock, flags);
704         return NULL;
705 }
706
707 static struct nvmet_fc_tgt_assoc *
708 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport)
709 {
710         struct nvmet_fc_tgt_assoc *assoc, *tmpassoc;
711         unsigned long flags;
712         u64 ran;
713         int idx;
714         bool needrandom = true;
715
716         assoc = kzalloc(sizeof(*assoc), GFP_KERNEL);
717         if (!assoc)
718                 return NULL;
719
720         idx = ida_simple_get(&tgtport->assoc_cnt, 0, 0, GFP_KERNEL);
721         if (idx < 0)
722                 goto out_free_assoc;
723
724         if (!nvmet_fc_tgtport_get(tgtport))
725                 goto out_ida_put;
726
727         assoc->tgtport = tgtport;
728         assoc->a_id = idx;
729         INIT_LIST_HEAD(&assoc->a_list);
730         kref_init(&assoc->ref);
731
732         while (needrandom) {
733                 get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID);
734                 ran = ran << BYTES_FOR_QID_SHIFT;
735
736                 spin_lock_irqsave(&tgtport->lock, flags);
737                 needrandom = false;
738                 list_for_each_entry(tmpassoc, &tgtport->assoc_list, a_list)
739                         if (ran == tmpassoc->association_id) {
740                                 needrandom = true;
741                                 break;
742                         }
743                 if (!needrandom) {
744                         assoc->association_id = ran;
745                         list_add_tail(&assoc->a_list, &tgtport->assoc_list);
746                 }
747                 spin_unlock_irqrestore(&tgtport->lock, flags);
748         }
749
750         return assoc;
751
752 out_ida_put:
753         ida_simple_remove(&tgtport->assoc_cnt, idx);
754 out_free_assoc:
755         kfree(assoc);
756         return NULL;
757 }
758
759 static void
760 nvmet_fc_target_assoc_free(struct kref *ref)
761 {
762         struct nvmet_fc_tgt_assoc *assoc =
763                 container_of(ref, struct nvmet_fc_tgt_assoc, ref);
764         struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
765         unsigned long flags;
766
767         spin_lock_irqsave(&tgtport->lock, flags);
768         list_del(&assoc->a_list);
769         spin_unlock_irqrestore(&tgtport->lock, flags);
770         ida_simple_remove(&tgtport->assoc_cnt, assoc->a_id);
771         kfree(assoc);
772         nvmet_fc_tgtport_put(tgtport);
773 }
774
775 static void
776 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc)
777 {
778         kref_put(&assoc->ref, nvmet_fc_target_assoc_free);
779 }
780
781 static int
782 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc)
783 {
784         return kref_get_unless_zero(&assoc->ref);
785 }
786
787 static void
788 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc)
789 {
790         struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
791         struct nvmet_fc_tgt_queue *queue;
792         unsigned long flags;
793         int i;
794
795         spin_lock_irqsave(&tgtport->lock, flags);
796         for (i = NVMET_NR_QUEUES - 1; i >= 0; i--) {
797                 queue = assoc->queues[i];
798                 if (queue) {
799                         if (!nvmet_fc_tgt_q_get(queue))
800                                 continue;
801                         spin_unlock_irqrestore(&tgtport->lock, flags);
802                         nvmet_fc_delete_target_queue(queue);
803                         nvmet_fc_tgt_q_put(queue);
804                         spin_lock_irqsave(&tgtport->lock, flags);
805                 }
806         }
807         spin_unlock_irqrestore(&tgtport->lock, flags);
808
809         nvmet_fc_tgt_a_put(assoc);
810 }
811
812 static struct nvmet_fc_tgt_assoc *
813 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport,
814                                 u64 association_id)
815 {
816         struct nvmet_fc_tgt_assoc *assoc;
817         struct nvmet_fc_tgt_assoc *ret = NULL;
818         unsigned long flags;
819
820         spin_lock_irqsave(&tgtport->lock, flags);
821         list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
822                 if (association_id == assoc->association_id) {
823                         ret = assoc;
824                         nvmet_fc_tgt_a_get(assoc);
825                         break;
826                 }
827         }
828         spin_unlock_irqrestore(&tgtport->lock, flags);
829
830         return ret;
831 }
832
833
834 /**
835  * nvme_fc_register_targetport - transport entry point called by an
836  *                              LLDD to register the existence of a local
837  *                              NVME subystem FC port.
838  * @pinfo:     pointer to information about the port to be registered
839  * @template:  LLDD entrypoints and operational parameters for the port
840  * @dev:       physical hardware device node port corresponds to. Will be
841  *             used for DMA mappings
842  * @portptr:   pointer to a local port pointer. Upon success, the routine
843  *             will allocate a nvme_fc_local_port structure and place its
844  *             address in the local port pointer. Upon failure, local port
845  *             pointer will be set to NULL.
846  *
847  * Returns:
848  * a completion status. Must be 0 upon success; a negative errno
849  * (ex: -ENXIO) upon failure.
850  */
851 int
852 nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
853                         struct nvmet_fc_target_template *template,
854                         struct device *dev,
855                         struct nvmet_fc_target_port **portptr)
856 {
857         struct nvmet_fc_tgtport *newrec;
858         unsigned long flags;
859         int ret, idx;
860
861         if (!template->xmt_ls_rsp || !template->fcp_op ||
862             !template->fcp_abort ||
863             !template->fcp_req_release || !template->targetport_delete ||
864             !template->max_hw_queues || !template->max_sgl_segments ||
865             !template->max_dif_sgl_segments || !template->dma_boundary) {
866                 ret = -EINVAL;
867                 goto out_regtgt_failed;
868         }
869
870         newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz),
871                          GFP_KERNEL);
872         if (!newrec) {
873                 ret = -ENOMEM;
874                 goto out_regtgt_failed;
875         }
876
877         idx = ida_simple_get(&nvmet_fc_tgtport_cnt, 0, 0, GFP_KERNEL);
878         if (idx < 0) {
879                 ret = -ENOSPC;
880                 goto out_fail_kfree;
881         }
882
883         if (!get_device(dev) && dev) {
884                 ret = -ENODEV;
885                 goto out_ida_put;
886         }
887
888         newrec->fc_target_port.node_name = pinfo->node_name;
889         newrec->fc_target_port.port_name = pinfo->port_name;
890         newrec->fc_target_port.private = &newrec[1];
891         newrec->fc_target_port.port_id = pinfo->port_id;
892         newrec->fc_target_port.port_num = idx;
893         INIT_LIST_HEAD(&newrec->tgt_list);
894         newrec->dev = dev;
895         newrec->ops = template;
896         spin_lock_init(&newrec->lock);
897         INIT_LIST_HEAD(&newrec->ls_list);
898         INIT_LIST_HEAD(&newrec->ls_busylist);
899         INIT_LIST_HEAD(&newrec->assoc_list);
900         kref_init(&newrec->ref);
901         ida_init(&newrec->assoc_cnt);
902
903         ret = nvmet_fc_alloc_ls_iodlist(newrec);
904         if (ret) {
905                 ret = -ENOMEM;
906                 goto out_free_newrec;
907         }
908
909         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
910         list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list);
911         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
912
913         *portptr = &newrec->fc_target_port;
914         return 0;
915
916 out_free_newrec:
917         put_device(dev);
918 out_ida_put:
919         ida_simple_remove(&nvmet_fc_tgtport_cnt, idx);
920 out_fail_kfree:
921         kfree(newrec);
922 out_regtgt_failed:
923         *portptr = NULL;
924         return ret;
925 }
926 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport);
927
928
929 static void
930 nvmet_fc_free_tgtport(struct kref *ref)
931 {
932         struct nvmet_fc_tgtport *tgtport =
933                 container_of(ref, struct nvmet_fc_tgtport, ref);
934         struct device *dev = tgtport->dev;
935         unsigned long flags;
936
937         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
938         list_del(&tgtport->tgt_list);
939         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
940
941         nvmet_fc_free_ls_iodlist(tgtport);
942
943         /* let the LLDD know we've finished tearing it down */
944         tgtport->ops->targetport_delete(&tgtport->fc_target_port);
945
946         ida_simple_remove(&nvmet_fc_tgtport_cnt,
947                         tgtport->fc_target_port.port_num);
948
949         ida_destroy(&tgtport->assoc_cnt);
950
951         kfree(tgtport);
952
953         put_device(dev);
954 }
955
956 static void
957 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport)
958 {
959         kref_put(&tgtport->ref, nvmet_fc_free_tgtport);
960 }
961
962 static int
963 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport)
964 {
965         return kref_get_unless_zero(&tgtport->ref);
966 }
967
968 static void
969 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
970 {
971         struct nvmet_fc_tgt_assoc *assoc, *next;
972         unsigned long flags;
973
974         spin_lock_irqsave(&tgtport->lock, flags);
975         list_for_each_entry_safe(assoc, next,
976                                 &tgtport->assoc_list, a_list) {
977                 if (!nvmet_fc_tgt_a_get(assoc))
978                         continue;
979                 spin_unlock_irqrestore(&tgtport->lock, flags);
980                 nvmet_fc_delete_target_assoc(assoc);
981                 nvmet_fc_tgt_a_put(assoc);
982                 spin_lock_irqsave(&tgtport->lock, flags);
983         }
984         spin_unlock_irqrestore(&tgtport->lock, flags);
985 }
986
987 /*
988  * nvmet layer has called to terminate an association
989  */
990 static void
991 nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl)
992 {
993         struct nvmet_fc_tgtport *tgtport, *next;
994         struct nvmet_fc_tgt_assoc *assoc;
995         struct nvmet_fc_tgt_queue *queue;
996         unsigned long flags;
997         bool found_ctrl = false;
998
999         /* this is a bit ugly, but don't want to make locks layered */
1000         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1001         list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list,
1002                         tgt_list) {
1003                 if (!nvmet_fc_tgtport_get(tgtport))
1004                         continue;
1005                 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1006
1007                 spin_lock_irqsave(&tgtport->lock, flags);
1008                 list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
1009                         queue = assoc->queues[0];
1010                         if (queue && queue->nvme_sq.ctrl == ctrl) {
1011                                 if (nvmet_fc_tgt_a_get(assoc))
1012                                         found_ctrl = true;
1013                                 break;
1014                         }
1015                 }
1016                 spin_unlock_irqrestore(&tgtport->lock, flags);
1017
1018                 nvmet_fc_tgtport_put(tgtport);
1019
1020                 if (found_ctrl) {
1021                         nvmet_fc_delete_target_assoc(assoc);
1022                         nvmet_fc_tgt_a_put(assoc);
1023                         return;
1024                 }
1025
1026                 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1027         }
1028         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1029 }
1030
1031 /**
1032  * nvme_fc_unregister_targetport - transport entry point called by an
1033  *                              LLDD to deregister/remove a previously
1034  *                              registered a local NVME subsystem FC port.
1035  * @tgtport: pointer to the (registered) target port that is to be
1036  *           deregistered.
1037  *
1038  * Returns:
1039  * a completion status. Must be 0 upon success; a negative errno
1040  * (ex: -ENXIO) upon failure.
1041  */
1042 int
1043 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port)
1044 {
1045         struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1046
1047         /* terminate any outstanding associations */
1048         __nvmet_fc_free_assocs(tgtport);
1049
1050         nvmet_fc_tgtport_put(tgtport);
1051
1052         return 0;
1053 }
1054 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport);
1055
1056
1057 /* *********************** FC-NVME LS Handling **************************** */
1058
1059
1060 static void
1061 nvmet_fc_format_rsp_hdr(void *buf, u8 ls_cmd, __be32 desc_len, u8 rqst_ls_cmd)
1062 {
1063         struct fcnvme_ls_acc_hdr *acc = buf;
1064
1065         acc->w0.ls_cmd = ls_cmd;
1066         acc->desc_list_len = desc_len;
1067         acc->rqst.desc_tag = cpu_to_be32(FCNVME_LSDESC_RQST);
1068         acc->rqst.desc_len =
1069                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst));
1070         acc->rqst.w0.ls_cmd = rqst_ls_cmd;
1071 }
1072
1073 static int
1074 nvmet_fc_format_rjt(void *buf, u16 buflen, u8 ls_cmd,
1075                         u8 reason, u8 explanation, u8 vendor)
1076 {
1077         struct fcnvme_ls_rjt *rjt = buf;
1078
1079         nvmet_fc_format_rsp_hdr(buf, FCNVME_LSDESC_RQST,
1080                         fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_rjt)),
1081                         ls_cmd);
1082         rjt->rjt.desc_tag = cpu_to_be32(FCNVME_LSDESC_RJT);
1083         rjt->rjt.desc_len = fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rjt));
1084         rjt->rjt.reason_code = reason;
1085         rjt->rjt.reason_explanation = explanation;
1086         rjt->rjt.vendor = vendor;
1087
1088         return sizeof(struct fcnvme_ls_rjt);
1089 }
1090
1091 /* Validation Error indexes into the string table below */
1092 enum {
1093         VERR_NO_ERROR           = 0,
1094         VERR_CR_ASSOC_LEN       = 1,
1095         VERR_CR_ASSOC_RQST_LEN  = 2,
1096         VERR_CR_ASSOC_CMD       = 3,
1097         VERR_CR_ASSOC_CMD_LEN   = 4,
1098         VERR_ERSP_RATIO         = 5,
1099         VERR_ASSOC_ALLOC_FAIL   = 6,
1100         VERR_QUEUE_ALLOC_FAIL   = 7,
1101         VERR_CR_CONN_LEN        = 8,
1102         VERR_CR_CONN_RQST_LEN   = 9,
1103         VERR_ASSOC_ID           = 10,
1104         VERR_ASSOC_ID_LEN       = 11,
1105         VERR_NO_ASSOC           = 12,
1106         VERR_CONN_ID            = 13,
1107         VERR_CONN_ID_LEN        = 14,
1108         VERR_NO_CONN            = 15,
1109         VERR_CR_CONN_CMD        = 16,
1110         VERR_CR_CONN_CMD_LEN    = 17,
1111         VERR_DISCONN_LEN        = 18,
1112         VERR_DISCONN_RQST_LEN   = 19,
1113         VERR_DISCONN_CMD        = 20,
1114         VERR_DISCONN_CMD_LEN    = 21,
1115         VERR_DISCONN_SCOPE      = 22,
1116         VERR_RS_LEN             = 23,
1117         VERR_RS_RQST_LEN        = 24,
1118         VERR_RS_CMD             = 25,
1119         VERR_RS_CMD_LEN         = 26,
1120         VERR_RS_RCTL            = 27,
1121         VERR_RS_RO              = 28,
1122 };
1123
1124 static char *validation_errors[] = {
1125         "OK",
1126         "Bad CR_ASSOC Length",
1127         "Bad CR_ASSOC Rqst Length",
1128         "Not CR_ASSOC Cmd",
1129         "Bad CR_ASSOC Cmd Length",
1130         "Bad Ersp Ratio",
1131         "Association Allocation Failed",
1132         "Queue Allocation Failed",
1133         "Bad CR_CONN Length",
1134         "Bad CR_CONN Rqst Length",
1135         "Not Association ID",
1136         "Bad Association ID Length",
1137         "No Association",
1138         "Not Connection ID",
1139         "Bad Connection ID Length",
1140         "No Connection",
1141         "Not CR_CONN Cmd",
1142         "Bad CR_CONN Cmd Length",
1143         "Bad DISCONN Length",
1144         "Bad DISCONN Rqst Length",
1145         "Not DISCONN Cmd",
1146         "Bad DISCONN Cmd Length",
1147         "Bad Disconnect Scope",
1148         "Bad RS Length",
1149         "Bad RS Rqst Length",
1150         "Not RS Cmd",
1151         "Bad RS Cmd Length",
1152         "Bad RS R_CTL",
1153         "Bad RS Relative Offset",
1154 };
1155
1156 static void
1157 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
1158                         struct nvmet_fc_ls_iod *iod)
1159 {
1160         struct fcnvme_ls_cr_assoc_rqst *rqst =
1161                                 (struct fcnvme_ls_cr_assoc_rqst *)iod->rqstbuf;
1162         struct fcnvme_ls_cr_assoc_acc *acc =
1163                                 (struct fcnvme_ls_cr_assoc_acc *)iod->rspbuf;
1164         struct nvmet_fc_tgt_queue *queue;
1165         int ret = 0;
1166
1167         memset(acc, 0, sizeof(*acc));
1168
1169         if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_assoc_rqst))
1170                 ret = VERR_CR_ASSOC_LEN;
1171         else if (rqst->desc_list_len !=
1172                         fcnvme_lsdesc_len(
1173                                 sizeof(struct fcnvme_ls_cr_assoc_rqst)))
1174                 ret = VERR_CR_ASSOC_RQST_LEN;
1175         else if (rqst->assoc_cmd.desc_tag !=
1176                         cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD))
1177                 ret = VERR_CR_ASSOC_CMD;
1178         else if (rqst->assoc_cmd.desc_len !=
1179                         fcnvme_lsdesc_len(
1180                                 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd)))
1181                 ret = VERR_CR_ASSOC_CMD_LEN;
1182         else if (!rqst->assoc_cmd.ersp_ratio ||
1183                  (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >=
1184                                 be16_to_cpu(rqst->assoc_cmd.sqsize)))
1185                 ret = VERR_ERSP_RATIO;
1186
1187         else {
1188                 /* new association w/ admin queue */
1189                 iod->assoc = nvmet_fc_alloc_target_assoc(tgtport);
1190                 if (!iod->assoc)
1191                         ret = VERR_ASSOC_ALLOC_FAIL;
1192                 else {
1193                         queue = nvmet_fc_alloc_target_queue(iod->assoc, 0,
1194                                         be16_to_cpu(rqst->assoc_cmd.sqsize));
1195                         if (!queue)
1196                                 ret = VERR_QUEUE_ALLOC_FAIL;
1197                 }
1198         }
1199
1200         if (ret) {
1201                 dev_err(tgtport->dev,
1202                         "Create Association LS failed: %s\n",
1203                         validation_errors[ret]);
1204                 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1205                                 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1206                                 FCNVME_RJT_RC_LOGIC,
1207                                 FCNVME_RJT_EXP_NONE, 0);
1208                 return;
1209         }
1210
1211         queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio);
1212         atomic_set(&queue->connected, 1);
1213         queue->sqhd = 0;        /* best place to init value */
1214
1215         /* format a response */
1216
1217         iod->lsreq->rsplen = sizeof(*acc);
1218
1219         nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1220                         fcnvme_lsdesc_len(
1221                                 sizeof(struct fcnvme_ls_cr_assoc_acc)),
1222                         FCNVME_LS_CREATE_ASSOCIATION);
1223         acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1224         acc->associd.desc_len =
1225                         fcnvme_lsdesc_len(
1226                                 sizeof(struct fcnvme_lsdesc_assoc_id));
1227         acc->associd.association_id =
1228                         cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0));
1229         acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1230         acc->connectid.desc_len =
1231                         fcnvme_lsdesc_len(
1232                                 sizeof(struct fcnvme_lsdesc_conn_id));
1233         acc->connectid.connection_id = acc->associd.association_id;
1234 }
1235
1236 static void
1237 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
1238                         struct nvmet_fc_ls_iod *iod)
1239 {
1240         struct fcnvme_ls_cr_conn_rqst *rqst =
1241                                 (struct fcnvme_ls_cr_conn_rqst *)iod->rqstbuf;
1242         struct fcnvme_ls_cr_conn_acc *acc =
1243                                 (struct fcnvme_ls_cr_conn_acc *)iod->rspbuf;
1244         struct nvmet_fc_tgt_queue *queue;
1245         int ret = 0;
1246
1247         memset(acc, 0, sizeof(*acc));
1248
1249         if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst))
1250                 ret = VERR_CR_CONN_LEN;
1251         else if (rqst->desc_list_len !=
1252                         fcnvme_lsdesc_len(
1253                                 sizeof(struct fcnvme_ls_cr_conn_rqst)))
1254                 ret = VERR_CR_CONN_RQST_LEN;
1255         else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1256                 ret = VERR_ASSOC_ID;
1257         else if (rqst->associd.desc_len !=
1258                         fcnvme_lsdesc_len(
1259                                 sizeof(struct fcnvme_lsdesc_assoc_id)))
1260                 ret = VERR_ASSOC_ID_LEN;
1261         else if (rqst->connect_cmd.desc_tag !=
1262                         cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD))
1263                 ret = VERR_CR_CONN_CMD;
1264         else if (rqst->connect_cmd.desc_len !=
1265                         fcnvme_lsdesc_len(
1266                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)))
1267                 ret = VERR_CR_CONN_CMD_LEN;
1268         else if (!rqst->connect_cmd.ersp_ratio ||
1269                  (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >=
1270                                 be16_to_cpu(rqst->connect_cmd.sqsize)))
1271                 ret = VERR_ERSP_RATIO;
1272
1273         else {
1274                 /* new io queue */
1275                 iod->assoc = nvmet_fc_find_target_assoc(tgtport,
1276                                 be64_to_cpu(rqst->associd.association_id));
1277                 if (!iod->assoc)
1278                         ret = VERR_NO_ASSOC;
1279                 else {
1280                         queue = nvmet_fc_alloc_target_queue(iod->assoc,
1281                                         be16_to_cpu(rqst->connect_cmd.qid),
1282                                         be16_to_cpu(rqst->connect_cmd.sqsize));
1283                         if (!queue)
1284                                 ret = VERR_QUEUE_ALLOC_FAIL;
1285
1286                         /* release get taken in nvmet_fc_find_target_assoc */
1287                         nvmet_fc_tgt_a_put(iod->assoc);
1288                 }
1289         }
1290
1291         if (ret) {
1292                 dev_err(tgtport->dev,
1293                         "Create Connection LS failed: %s\n",
1294                         validation_errors[ret]);
1295                 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1296                                 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1297                                 (ret == VERR_NO_ASSOC) ?
1298                                         FCNVME_RJT_RC_INV_ASSOC :
1299                                         FCNVME_RJT_RC_LOGIC,
1300                                 FCNVME_RJT_EXP_NONE, 0);
1301                 return;
1302         }
1303
1304         queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio);
1305         atomic_set(&queue->connected, 1);
1306         queue->sqhd = 0;        /* best place to init value */
1307
1308         /* format a response */
1309
1310         iod->lsreq->rsplen = sizeof(*acc);
1311
1312         nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1313                         fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)),
1314                         FCNVME_LS_CREATE_CONNECTION);
1315         acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1316         acc->connectid.desc_len =
1317                         fcnvme_lsdesc_len(
1318                                 sizeof(struct fcnvme_lsdesc_conn_id));
1319         acc->connectid.connection_id =
1320                         cpu_to_be64(nvmet_fc_makeconnid(iod->assoc,
1321                                 be16_to_cpu(rqst->connect_cmd.qid)));
1322 }
1323
1324 static void
1325 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
1326                         struct nvmet_fc_ls_iod *iod)
1327 {
1328         struct fcnvme_ls_disconnect_rqst *rqst =
1329                         (struct fcnvme_ls_disconnect_rqst *)iod->rqstbuf;
1330         struct fcnvme_ls_disconnect_acc *acc =
1331                         (struct fcnvme_ls_disconnect_acc *)iod->rspbuf;
1332         struct nvmet_fc_tgt_queue *queue = NULL;
1333         struct nvmet_fc_tgt_assoc *assoc;
1334         int ret = 0;
1335         bool del_assoc = false;
1336
1337         memset(acc, 0, sizeof(*acc));
1338
1339         if (iod->rqstdatalen < sizeof(struct fcnvme_ls_disconnect_rqst))
1340                 ret = VERR_DISCONN_LEN;
1341         else if (rqst->desc_list_len !=
1342                         fcnvme_lsdesc_len(
1343                                 sizeof(struct fcnvme_ls_disconnect_rqst)))
1344                 ret = VERR_DISCONN_RQST_LEN;
1345         else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1346                 ret = VERR_ASSOC_ID;
1347         else if (rqst->associd.desc_len !=
1348                         fcnvme_lsdesc_len(
1349                                 sizeof(struct fcnvme_lsdesc_assoc_id)))
1350                 ret = VERR_ASSOC_ID_LEN;
1351         else if (rqst->discon_cmd.desc_tag !=
1352                         cpu_to_be32(FCNVME_LSDESC_DISCONN_CMD))
1353                 ret = VERR_DISCONN_CMD;
1354         else if (rqst->discon_cmd.desc_len !=
1355                         fcnvme_lsdesc_len(
1356                                 sizeof(struct fcnvme_lsdesc_disconn_cmd)))
1357                 ret = VERR_DISCONN_CMD_LEN;
1358         else if ((rqst->discon_cmd.scope != FCNVME_DISCONN_ASSOCIATION) &&
1359                         (rqst->discon_cmd.scope != FCNVME_DISCONN_CONNECTION))
1360                 ret = VERR_DISCONN_SCOPE;
1361         else {
1362                 /* match an active association */
1363                 assoc = nvmet_fc_find_target_assoc(tgtport,
1364                                 be64_to_cpu(rqst->associd.association_id));
1365                 iod->assoc = assoc;
1366                 if (assoc) {
1367                         if (rqst->discon_cmd.scope ==
1368                                         FCNVME_DISCONN_CONNECTION) {
1369                                 queue = nvmet_fc_find_target_queue(tgtport,
1370                                                 be64_to_cpu(
1371                                                         rqst->discon_cmd.id));
1372                                 if (!queue) {
1373                                         nvmet_fc_tgt_a_put(assoc);
1374                                         ret = VERR_NO_CONN;
1375                                 }
1376                         }
1377                 } else
1378                         ret = VERR_NO_ASSOC;
1379         }
1380
1381         if (ret) {
1382                 dev_err(tgtport->dev,
1383                         "Disconnect LS failed: %s\n",
1384                         validation_errors[ret]);
1385                 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1386                                 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1387                                 (ret == VERR_NO_ASSOC) ?
1388                                         FCNVME_RJT_RC_INV_ASSOC :
1389                                         (ret == VERR_NO_CONN) ?
1390                                                 FCNVME_RJT_RC_INV_CONN :
1391                                                 FCNVME_RJT_RC_LOGIC,
1392                                 FCNVME_RJT_EXP_NONE, 0);
1393                 return;
1394         }
1395
1396         /* format a response */
1397
1398         iod->lsreq->rsplen = sizeof(*acc);
1399
1400         nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1401                         fcnvme_lsdesc_len(
1402                                 sizeof(struct fcnvme_ls_disconnect_acc)),
1403                         FCNVME_LS_DISCONNECT);
1404
1405
1406         /* are we to delete a Connection ID (queue) */
1407         if (queue) {
1408                 int qid = queue->qid;
1409
1410                 nvmet_fc_delete_target_queue(queue);
1411
1412                 /* release the get taken by find_target_queue */
1413                 nvmet_fc_tgt_q_put(queue);
1414
1415                 /* tear association down if io queue terminated */
1416                 if (!qid)
1417                         del_assoc = true;
1418         }
1419
1420         /* release get taken in nvmet_fc_find_target_assoc */
1421         nvmet_fc_tgt_a_put(iod->assoc);
1422
1423         if (del_assoc)
1424                 nvmet_fc_delete_target_assoc(iod->assoc);
1425 }
1426
1427
1428 /* *********************** NVME Ctrl Routines **************************** */
1429
1430
1431 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
1432
1433 static struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
1434
1435 static void
1436 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_tgt_ls_req *lsreq)
1437 {
1438         struct nvmet_fc_ls_iod *iod = lsreq->nvmet_fc_private;
1439         struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1440
1441         fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma,
1442                                 NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
1443         nvmet_fc_free_ls_iod(tgtport, iod);
1444         nvmet_fc_tgtport_put(tgtport);
1445 }
1446
1447 static void
1448 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
1449                                 struct nvmet_fc_ls_iod *iod)
1450 {
1451         int ret;
1452
1453         fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma,
1454                                   NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
1455
1456         ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsreq);
1457         if (ret)
1458                 nvmet_fc_xmt_ls_rsp_done(iod->lsreq);
1459 }
1460
1461 /*
1462  * Actual processing routine for received FC-NVME LS Requests from the LLD
1463  */
1464 static void
1465 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
1466                         struct nvmet_fc_ls_iod *iod)
1467 {
1468         struct fcnvme_ls_rqst_w0 *w0 =
1469                         (struct fcnvme_ls_rqst_w0 *)iod->rqstbuf;
1470
1471         iod->lsreq->nvmet_fc_private = iod;
1472         iod->lsreq->rspbuf = iod->rspbuf;
1473         iod->lsreq->rspdma = iod->rspdma;
1474         iod->lsreq->done = nvmet_fc_xmt_ls_rsp_done;
1475         /* Be preventative. handlers will later set to valid length */
1476         iod->lsreq->rsplen = 0;
1477
1478         iod->assoc = NULL;
1479
1480         /*
1481          * handlers:
1482          *   parse request input, execute the request, and format the
1483          *   LS response
1484          */
1485         switch (w0->ls_cmd) {
1486         case FCNVME_LS_CREATE_ASSOCIATION:
1487                 /* Creates Association and initial Admin Queue/Connection */
1488                 nvmet_fc_ls_create_association(tgtport, iod);
1489                 break;
1490         case FCNVME_LS_CREATE_CONNECTION:
1491                 /* Creates an IO Queue/Connection */
1492                 nvmet_fc_ls_create_connection(tgtport, iod);
1493                 break;
1494         case FCNVME_LS_DISCONNECT:
1495                 /* Terminate a Queue/Connection or the Association */
1496                 nvmet_fc_ls_disconnect(tgtport, iod);
1497                 break;
1498         default:
1499                 iod->lsreq->rsplen = nvmet_fc_format_rjt(iod->rspbuf,
1500                                 NVME_FC_MAX_LS_BUFFER_SIZE, w0->ls_cmd,
1501                                 FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1502         }
1503
1504         nvmet_fc_xmt_ls_rsp(tgtport, iod);
1505 }
1506
1507 /*
1508  * Actual processing routine for received FC-NVME LS Requests from the LLD
1509  */
1510 static void
1511 nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
1512 {
1513         struct nvmet_fc_ls_iod *iod =
1514                 container_of(work, struct nvmet_fc_ls_iod, work);
1515         struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1516
1517         nvmet_fc_handle_ls_rqst(tgtport, iod);
1518 }
1519
1520
1521 /**
1522  * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
1523  *                       upon the reception of a NVME LS request.
1524  *
1525  * The nvmet-fc layer will copy payload to an internal structure for
1526  * processing.  As such, upon completion of the routine, the LLDD may
1527  * immediately free/reuse the LS request buffer passed in the call.
1528  *
1529  * If this routine returns error, the LLDD should abort the exchange.
1530  *
1531  * @tgtport:    pointer to the (registered) target port the LS was
1532  *              received on.
1533  * @lsreq:      pointer to a lsreq request structure to be used to reference
1534  *              the exchange corresponding to the LS.
1535  * @lsreqbuf:   pointer to the buffer containing the LS Request
1536  * @lsreqbuf_len: length, in bytes, of the received LS request
1537  */
1538 int
1539 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
1540                         struct nvmefc_tgt_ls_req *lsreq,
1541                         void *lsreqbuf, u32 lsreqbuf_len)
1542 {
1543         struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1544         struct nvmet_fc_ls_iod *iod;
1545
1546         if (lsreqbuf_len > NVME_FC_MAX_LS_BUFFER_SIZE)
1547                 return -E2BIG;
1548
1549         if (!nvmet_fc_tgtport_get(tgtport))
1550                 return -ESHUTDOWN;
1551
1552         iod = nvmet_fc_alloc_ls_iod(tgtport);
1553         if (!iod) {
1554                 nvmet_fc_tgtport_put(tgtport);
1555                 return -ENOENT;
1556         }
1557
1558         iod->lsreq = lsreq;
1559         iod->fcpreq = NULL;
1560         memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
1561         iod->rqstdatalen = lsreqbuf_len;
1562
1563         schedule_work(&iod->work);
1564
1565         return 0;
1566 }
1567 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req);
1568
1569
1570 /*
1571  * **********************
1572  * Start of FCP handling
1573  * **********************
1574  */
1575
1576 static int
1577 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
1578 {
1579         struct scatterlist *sg;
1580         struct page *page;
1581         unsigned int nent;
1582         u32 page_len, length;
1583         int i = 0;
1584
1585         length = fod->total_length;
1586         nent = DIV_ROUND_UP(length, PAGE_SIZE);
1587         sg = kmalloc_array(nent, sizeof(struct scatterlist), GFP_KERNEL);
1588         if (!sg)
1589                 goto out;
1590
1591         sg_init_table(sg, nent);
1592
1593         while (length) {
1594                 page_len = min_t(u32, length, PAGE_SIZE);
1595
1596                 page = alloc_page(GFP_KERNEL);
1597                 if (!page)
1598                         goto out_free_pages;
1599
1600                 sg_set_page(&sg[i], page, page_len, 0);
1601                 length -= page_len;
1602                 i++;
1603         }
1604
1605         fod->data_sg = sg;
1606         fod->data_sg_cnt = nent;
1607         fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent,
1608                                 ((fod->io_dir == NVMET_FCP_WRITE) ?
1609                                         DMA_FROM_DEVICE : DMA_TO_DEVICE));
1610                                 /* note: write from initiator perspective */
1611
1612         return 0;
1613
1614 out_free_pages:
1615         while (i > 0) {
1616                 i--;
1617                 __free_page(sg_page(&sg[i]));
1618         }
1619         kfree(sg);
1620         fod->data_sg = NULL;
1621         fod->data_sg_cnt = 0;
1622 out:
1623         return NVME_SC_INTERNAL;
1624 }
1625
1626 static void
1627 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
1628 {
1629         struct scatterlist *sg;
1630         int count;
1631
1632         if (!fod->data_sg || !fod->data_sg_cnt)
1633                 return;
1634
1635         fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt,
1636                                 ((fod->io_dir == NVMET_FCP_WRITE) ?
1637                                         DMA_FROM_DEVICE : DMA_TO_DEVICE));
1638         for_each_sg(fod->data_sg, sg, fod->data_sg_cnt, count)
1639                 __free_page(sg_page(sg));
1640         kfree(fod->data_sg);
1641         fod->data_sg = NULL;
1642         fod->data_sg_cnt = 0;
1643 }
1644
1645
1646 static bool
1647 queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd)
1648 {
1649         u32 sqtail, used;
1650
1651         /* egad, this is ugly. And sqtail is just a best guess */
1652         sqtail = atomic_read(&q->sqtail) % q->sqsize;
1653
1654         used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd);
1655         return ((used * 10) >= (((u32)(q->sqsize - 1) * 9)));
1656 }
1657
1658 /*
1659  * Prep RSP payload.
1660  * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
1661  */
1662 static void
1663 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
1664                                 struct nvmet_fc_fcp_iod *fod)
1665 {
1666         struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf;
1667         struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
1668         struct nvme_completion *cqe = &ersp->cqe;
1669         u32 *cqewd = (u32 *)cqe;
1670         bool send_ersp = false;
1671         u32 rsn, rspcnt, xfr_length;
1672
1673         if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP)
1674                 xfr_length = fod->total_length;
1675         else
1676                 xfr_length = fod->offset;
1677
1678         /*
1679          * check to see if we can send a 0's rsp.
1680          *   Note: to send a 0's response, the NVME-FC host transport will
1681          *   recreate the CQE. The host transport knows: sq id, SQHD (last
1682          *   seen in an ersp), and command_id. Thus it will create a
1683          *   zero-filled CQE with those known fields filled in. Transport
1684          *   must send an ersp for any condition where the cqe won't match
1685          *   this.
1686          *
1687          * Here are the FC-NVME mandated cases where we must send an ersp:
1688          *  every N responses, where N=ersp_ratio
1689          *  force fabric commands to send ersp's (not in FC-NVME but good
1690          *    practice)
1691          *  normal cmds: any time status is non-zero, or status is zero
1692          *     but words 0 or 1 are non-zero.
1693          *  the SQ is 90% or more full
1694          *  the cmd is a fused command
1695          *  transferred data length not equal to cmd iu length
1696          */
1697         rspcnt = atomic_inc_return(&fod->queue->zrspcnt);
1698         if (!(rspcnt % fod->queue->ersp_ratio) ||
1699             sqe->opcode == nvme_fabrics_command ||
1700             xfr_length != fod->total_length ||
1701             (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] ||
1702             (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) ||
1703             queue_90percent_full(fod->queue, cqe->sq_head))
1704                 send_ersp = true;
1705
1706         /* re-set the fields */
1707         fod->fcpreq->rspaddr = ersp;
1708         fod->fcpreq->rspdma = fod->rspdma;
1709
1710         if (!send_ersp) {
1711                 memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP);
1712                 fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP;
1713         } else {
1714                 ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32));
1715                 rsn = atomic_inc_return(&fod->queue->rsn);
1716                 ersp->rsn = cpu_to_be32(rsn);
1717                 ersp->xfrd_len = cpu_to_be32(xfr_length);
1718                 fod->fcpreq->rsplen = sizeof(*ersp);
1719         }
1720
1721         fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma,
1722                                   sizeof(fod->rspiubuf), DMA_TO_DEVICE);
1723 }
1724
1725 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
1726
1727 static void
1728 nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
1729                                 struct nvmet_fc_fcp_iod *fod)
1730 {
1731         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1732
1733         /* data no longer needed */
1734         nvmet_fc_free_tgt_pgs(fod);
1735
1736         /*
1737          * if an ABTS was received or we issued the fcp_abort early
1738          * don't call abort routine again.
1739          */
1740         /* no need to take lock - lock was taken earlier to get here */
1741         if (!fod->aborted)
1742                 tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq);
1743
1744         nvmet_fc_free_fcp_iod(fod->queue, fod);
1745 }
1746
1747 static void
1748 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
1749                                 struct nvmet_fc_fcp_iod *fod)
1750 {
1751         int ret;
1752
1753         fod->fcpreq->op = NVMET_FCOP_RSP;
1754         fod->fcpreq->timeout = 0;
1755
1756         nvmet_fc_prep_fcp_rsp(tgtport, fod);
1757
1758         ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
1759         if (ret)
1760                 nvmet_fc_abort_op(tgtport, fod);
1761 }
1762
1763 static void
1764 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
1765                                 struct nvmet_fc_fcp_iod *fod, u8 op)
1766 {
1767         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1768         struct scatterlist *sg, *datasg;
1769         unsigned long flags;
1770         u32 tlen, sg_off;
1771         int ret;
1772
1773         fcpreq->op = op;
1774         fcpreq->offset = fod->offset;
1775         fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC;
1776         tlen = min_t(u32, (NVMET_FC_MAX_KB_PER_XFR * 1024),
1777                         (fod->total_length - fod->offset));
1778         tlen = min_t(u32, tlen, NVME_FC_MAX_SEGMENTS * PAGE_SIZE);
1779         tlen = min_t(u32, tlen, fod->tgtport->ops->max_sgl_segments
1780                                         * PAGE_SIZE);
1781         fcpreq->transfer_length = tlen;
1782         fcpreq->transferred_length = 0;
1783         fcpreq->fcp_error = 0;
1784         fcpreq->rsplen = 0;
1785
1786         fcpreq->sg_cnt = 0;
1787
1788         datasg = fod->next_sg;
1789         sg_off = fod->next_sg_offset;
1790
1791         for (sg = fcpreq->sg ; tlen; sg++) {
1792                 *sg = *datasg;
1793                 if (sg_off) {
1794                         sg->offset += sg_off;
1795                         sg->length -= sg_off;
1796                         sg->dma_address += sg_off;
1797                         sg_off = 0;
1798                 }
1799                 if (tlen < sg->length) {
1800                         sg->length = tlen;
1801                         fod->next_sg = datasg;
1802                         fod->next_sg_offset += tlen;
1803                 } else if (tlen == sg->length) {
1804                         fod->next_sg_offset = 0;
1805                         fod->next_sg = sg_next(datasg);
1806                 } else {
1807                         fod->next_sg_offset = 0;
1808                         datasg = sg_next(datasg);
1809                 }
1810                 tlen -= sg->length;
1811                 fcpreq->sg_cnt++;
1812         }
1813
1814         /*
1815          * If the last READDATA request: check if LLDD supports
1816          * combined xfr with response.
1817          */
1818         if ((op == NVMET_FCOP_READDATA) &&
1819             ((fod->offset + fcpreq->transfer_length) == fod->total_length) &&
1820             (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) {
1821                 fcpreq->op = NVMET_FCOP_READDATA_RSP;
1822                 nvmet_fc_prep_fcp_rsp(tgtport, fod);
1823         }
1824
1825         ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
1826         if (ret) {
1827                 /*
1828                  * should be ok to set w/o lock as its in the thread of
1829                  * execution (not an async timer routine) and doesn't
1830                  * contend with any clearing action
1831                  */
1832                 fod->abort = true;
1833
1834                 if (op == NVMET_FCOP_WRITEDATA) {
1835                         spin_lock_irqsave(&fod->flock, flags);
1836                         fod->writedataactive = false;
1837                         spin_unlock_irqrestore(&fod->flock, flags);
1838                         nvmet_req_complete(&fod->req,
1839                                         NVME_SC_FC_TRANSPORT_ERROR);
1840                 } else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
1841                         fcpreq->fcp_error = ret;
1842                         fcpreq->transferred_length = 0;
1843                         nvmet_fc_xmt_fcp_op_done(fod->fcpreq);
1844                 }
1845         }
1846 }
1847
1848 static inline bool
1849 __nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort)
1850 {
1851         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1852         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
1853
1854         /* if in the middle of an io and we need to tear down */
1855         if (abort) {
1856                 if (fcpreq->op == NVMET_FCOP_WRITEDATA) {
1857                         nvmet_req_complete(&fod->req,
1858                                         NVME_SC_FC_TRANSPORT_ERROR);
1859                         return true;
1860                 }
1861
1862                 nvmet_fc_abort_op(tgtport, fod);
1863                 return true;
1864         }
1865
1866         return false;
1867 }
1868
1869 /*
1870  * actual done handler for FCP operations when completed by the lldd
1871  */
1872 static void
1873 nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod)
1874 {
1875         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1876         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
1877         unsigned long flags;
1878         bool abort;
1879
1880         spin_lock_irqsave(&fod->flock, flags);
1881         abort = fod->abort;
1882         fod->writedataactive = false;
1883         spin_unlock_irqrestore(&fod->flock, flags);
1884
1885         switch (fcpreq->op) {
1886
1887         case NVMET_FCOP_WRITEDATA:
1888                 if (__nvmet_fc_fod_op_abort(fod, abort))
1889                         return;
1890                 if (fcpreq->fcp_error ||
1891                     fcpreq->transferred_length != fcpreq->transfer_length) {
1892                         spin_lock(&fod->flock);
1893                         fod->abort = true;
1894                         spin_unlock(&fod->flock);
1895
1896                         nvmet_req_complete(&fod->req,
1897                                         NVME_SC_FC_TRANSPORT_ERROR);
1898                         return;
1899                 }
1900
1901                 fod->offset += fcpreq->transferred_length;
1902                 if (fod->offset != fod->total_length) {
1903                         spin_lock_irqsave(&fod->flock, flags);
1904                         fod->writedataactive = true;
1905                         spin_unlock_irqrestore(&fod->flock, flags);
1906
1907                         /* transfer the next chunk */
1908                         nvmet_fc_transfer_fcp_data(tgtport, fod,
1909                                                 NVMET_FCOP_WRITEDATA);
1910                         return;
1911                 }
1912
1913                 /* data transfer complete, resume with nvmet layer */
1914
1915                 fod->req.execute(&fod->req);
1916
1917                 break;
1918
1919         case NVMET_FCOP_READDATA:
1920         case NVMET_FCOP_READDATA_RSP:
1921                 if (__nvmet_fc_fod_op_abort(fod, abort))
1922                         return;
1923                 if (fcpreq->fcp_error ||
1924                     fcpreq->transferred_length != fcpreq->transfer_length) {
1925                         nvmet_fc_abort_op(tgtport, fod);
1926                         return;
1927                 }
1928
1929                 /* success */
1930
1931                 if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
1932                         /* data no longer needed */
1933                         nvmet_fc_free_tgt_pgs(fod);
1934                         nvmet_fc_free_fcp_iod(fod->queue, fod);
1935                         return;
1936                 }
1937
1938                 fod->offset += fcpreq->transferred_length;
1939                 if (fod->offset != fod->total_length) {
1940                         /* transfer the next chunk */
1941                         nvmet_fc_transfer_fcp_data(tgtport, fod,
1942                                                 NVMET_FCOP_READDATA);
1943                         return;
1944                 }
1945
1946                 /* data transfer complete, send response */
1947
1948                 /* data no longer needed */
1949                 nvmet_fc_free_tgt_pgs(fod);
1950
1951                 nvmet_fc_xmt_fcp_rsp(tgtport, fod);
1952
1953                 break;
1954
1955         case NVMET_FCOP_RSP:
1956                 if (__nvmet_fc_fod_op_abort(fod, abort))
1957                         return;
1958                 nvmet_fc_free_fcp_iod(fod->queue, fod);
1959                 break;
1960
1961         default:
1962                 break;
1963         }
1964 }
1965
1966 static void
1967 nvmet_fc_fcp_rqst_op_done_work(struct work_struct *work)
1968 {
1969         struct nvmet_fc_fcp_iod *fod =
1970                 container_of(work, struct nvmet_fc_fcp_iod, done_work);
1971
1972         nvmet_fc_fod_op_done(fod);
1973 }
1974
1975 static void
1976 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
1977 {
1978         struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
1979         struct nvmet_fc_tgt_queue *queue = fod->queue;
1980
1981         if (fod->tgtport->ops->target_features & NVMET_FCTGTFEAT_OPDONE_IN_ISR)
1982                 /* context switch so completion is not in ISR context */
1983                 queue_work_on(queue->cpu, queue->work_q, &fod->done_work);
1984         else
1985                 nvmet_fc_fod_op_done(fod);
1986 }
1987
1988 /*
1989  * actual completion handler after execution by the nvmet layer
1990  */
1991 static void
1992 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
1993                         struct nvmet_fc_fcp_iod *fod, int status)
1994 {
1995         struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
1996         struct nvme_completion *cqe = &fod->rspiubuf.cqe;
1997         unsigned long flags;
1998         bool abort;
1999
2000         spin_lock_irqsave(&fod->flock, flags);
2001         abort = fod->abort;
2002         spin_unlock_irqrestore(&fod->flock, flags);
2003
2004         /* if we have a CQE, snoop the last sq_head value */
2005         if (!status)
2006                 fod->queue->sqhd = cqe->sq_head;
2007
2008         if (abort) {
2009                 nvmet_fc_abort_op(tgtport, fod);
2010                 return;
2011         }
2012
2013         /* if an error handling the cmd post initial parsing */
2014         if (status) {
2015                 /* fudge up a failed CQE status for our transport error */
2016                 memset(cqe, 0, sizeof(*cqe));
2017                 cqe->sq_head = fod->queue->sqhd;        /* echo last cqe sqhd */
2018                 cqe->sq_id = cpu_to_le16(fod->queue->qid);
2019                 cqe->command_id = sqe->command_id;
2020                 cqe->status = cpu_to_le16(status);
2021         } else {
2022
2023                 /*
2024                  * try to push the data even if the SQE status is non-zero.
2025                  * There may be a status where data still was intended to
2026                  * be moved
2027                  */
2028                 if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) {
2029                         /* push the data over before sending rsp */
2030                         nvmet_fc_transfer_fcp_data(tgtport, fod,
2031                                                 NVMET_FCOP_READDATA);
2032                         return;
2033                 }
2034
2035                 /* writes & no data - fall thru */
2036         }
2037
2038         /* data no longer needed */
2039         nvmet_fc_free_tgt_pgs(fod);
2040
2041         nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2042 }
2043
2044
2045 static void
2046 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req)
2047 {
2048         struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req);
2049         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2050
2051         __nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0);
2052 }
2053
2054
2055 /*
2056  * Actual processing routine for received FC-NVME LS Requests from the LLD
2057  */
2058 static void
2059 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
2060                         struct nvmet_fc_fcp_iod *fod)
2061 {
2062         struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf;
2063         int ret;
2064
2065         /*
2066          * Fused commands are currently not supported in the linux
2067          * implementation.
2068          *
2069          * As such, the implementation of the FC transport does not
2070          * look at the fused commands and order delivery to the upper
2071          * layer until we have both based on csn.
2072          */
2073
2074         fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done;
2075
2076         fod->total_length = be32_to_cpu(cmdiu->data_len);
2077         if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) {
2078                 fod->io_dir = NVMET_FCP_WRITE;
2079                 if (!nvme_is_write(&cmdiu->sqe))
2080                         goto transport_error;
2081         } else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) {
2082                 fod->io_dir = NVMET_FCP_READ;
2083                 if (nvme_is_write(&cmdiu->sqe))
2084                         goto transport_error;
2085         } else {
2086                 fod->io_dir = NVMET_FCP_NODATA;
2087                 if (fod->total_length)
2088                         goto transport_error;
2089         }
2090
2091         fod->req.cmd = &fod->cmdiubuf.sqe;
2092         fod->req.rsp = &fod->rspiubuf.cqe;
2093         fod->req.port = fod->queue->port;
2094
2095         /* ensure nvmet handlers will set cmd handler callback */
2096         fod->req.execute = NULL;
2097
2098         /* clear any response payload */
2099         memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf));
2100
2101         ret = nvmet_req_init(&fod->req,
2102                                 &fod->queue->nvme_cq,
2103                                 &fod->queue->nvme_sq,
2104                                 &nvmet_fc_tgt_fcp_ops);
2105         if (!ret) {     /* bad SQE content or invalid ctrl state */
2106                 nvmet_fc_abort_op(tgtport, fod);
2107                 return;
2108         }
2109
2110         /* keep a running counter of tail position */
2111         atomic_inc(&fod->queue->sqtail);
2112
2113         fod->data_sg = NULL;
2114         fod->data_sg_cnt = 0;
2115         if (fod->total_length) {
2116                 ret = nvmet_fc_alloc_tgt_pgs(fod);
2117                 if (ret) {
2118                         nvmet_req_complete(&fod->req, ret);
2119                         return;
2120                 }
2121         }
2122         fod->req.sg = fod->data_sg;
2123         fod->req.sg_cnt = fod->data_sg_cnt;
2124         fod->offset = 0;
2125         fod->next_sg = fod->data_sg;
2126         fod->next_sg_offset = 0;
2127
2128         if (fod->io_dir == NVMET_FCP_WRITE) {
2129                 /* pull the data over before invoking nvmet layer */
2130                 nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA);
2131                 return;
2132         }
2133
2134         /*
2135          * Reads or no data:
2136          *
2137          * can invoke the nvmet_layer now. If read data, cmd completion will
2138          * push the data
2139          */
2140
2141         fod->req.execute(&fod->req);
2142
2143         return;
2144
2145 transport_error:
2146         nvmet_fc_abort_op(tgtport, fod);
2147 }
2148
2149 /*
2150  * Actual processing routine for received FC-NVME LS Requests from the LLD
2151  */
2152 static void
2153 nvmet_fc_handle_fcp_rqst_work(struct work_struct *work)
2154 {
2155         struct nvmet_fc_fcp_iod *fod =
2156                 container_of(work, struct nvmet_fc_fcp_iod, work);
2157         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2158
2159         nvmet_fc_handle_fcp_rqst(tgtport, fod);
2160 }
2161
2162 /**
2163  * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2164  *                       upon the reception of a NVME FCP CMD IU.
2165  *
2166  * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2167  * layer for processing.
2168  *
2169  * The nvmet-fc layer will copy cmd payload to an internal structure for
2170  * processing.  As such, upon completion of the routine, the LLDD may
2171  * immediately free/reuse the CMD IU buffer passed in the call.
2172  *
2173  * If this routine returns error, the lldd should abort the exchange.
2174  *
2175  * @target_port: pointer to the (registered) target port the FCP CMD IU
2176  *              was received on.
2177  * @fcpreq:     pointer to a fcpreq request structure to be used to reference
2178  *              the exchange corresponding to the FCP Exchange.
2179  * @cmdiubuf:   pointer to the buffer containing the FCP CMD IU
2180  * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2181  */
2182 int
2183 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
2184                         struct nvmefc_tgt_fcp_req *fcpreq,
2185                         void *cmdiubuf, u32 cmdiubuf_len)
2186 {
2187         struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2188         struct nvme_fc_cmd_iu *cmdiu = cmdiubuf;
2189         struct nvmet_fc_tgt_queue *queue;
2190         struct nvmet_fc_fcp_iod *fod;
2191
2192         /* validate iu, so the connection id can be used to find the queue */
2193         if ((cmdiubuf_len != sizeof(*cmdiu)) ||
2194                         (cmdiu->scsi_id != NVME_CMD_SCSI_ID) ||
2195                         (cmdiu->fc_id != NVME_CMD_FC_ID) ||
2196                         (be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
2197                 return -EIO;
2198
2199         queue = nvmet_fc_find_target_queue(tgtport,
2200                                 be64_to_cpu(cmdiu->connection_id));
2201         if (!queue)
2202                 return -ENOTCONN;
2203
2204         /*
2205          * note: reference taken by find_target_queue
2206          * After successful fod allocation, the fod will inherit the
2207          * ownership of that reference and will remove the reference
2208          * when the fod is freed.
2209          */
2210
2211         fod = nvmet_fc_alloc_fcp_iod(queue);
2212         if (!fod) {
2213                 /* release the queue lookup reference */
2214                 nvmet_fc_tgt_q_put(queue);
2215                 return -ENOENT;
2216         }
2217
2218         fcpreq->nvmet_fc_private = fod;
2219         fod->fcpreq = fcpreq;
2220         /*
2221          * put all admin cmds on hw queue id 0. All io commands go to
2222          * the respective hw queue based on a modulo basis
2223          */
2224         fcpreq->hwqid = queue->qid ?
2225                         ((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
2226         memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
2227
2228         if (tgtport->ops->target_features & NVMET_FCTGTFEAT_CMD_IN_ISR)
2229                 queue_work_on(queue->cpu, queue->work_q, &fod->work);
2230         else
2231                 nvmet_fc_handle_fcp_rqst(tgtport, fod);
2232
2233         return 0;
2234 }
2235 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
2236
2237 /**
2238  * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
2239  *                       upon the reception of an ABTS for a FCP command
2240  *
2241  * Notify the transport that an ABTS has been received for a FCP command
2242  * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
2243  * LLDD believes the command is still being worked on
2244  * (template_ops->fcp_req_release() has not been called).
2245  *
2246  * The transport will wait for any outstanding work (an op to the LLDD,
2247  * which the lldd should complete with error due to the ABTS; or the
2248  * completion from the nvmet layer of the nvme command), then will
2249  * stop processing and call the nvmet_fc_rcv_fcp_req() callback to
2250  * return the i/o context to the LLDD.  The LLDD may send the BA_ACC
2251  * to the ABTS either after return from this function (assuming any
2252  * outstanding op work has been terminated) or upon the callback being
2253  * called.
2254  *
2255  * @target_port: pointer to the (registered) target port the FCP CMD IU
2256  *              was received on.
2257  * @fcpreq:     pointer to the fcpreq request structure that corresponds
2258  *              to the exchange that received the ABTS.
2259  */
2260 void
2261 nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port,
2262                         struct nvmefc_tgt_fcp_req *fcpreq)
2263 {
2264         struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2265         struct nvmet_fc_tgt_queue *queue;
2266         unsigned long flags;
2267
2268         if (!fod || fod->fcpreq != fcpreq)
2269                 /* job appears to have already completed, ignore abort */
2270                 return;
2271
2272         queue = fod->queue;
2273
2274         spin_lock_irqsave(&queue->qlock, flags);
2275         if (fod->active) {
2276                 /*
2277                  * mark as abort. The abort handler, invoked upon completion
2278                  * of any work, will detect the aborted status and do the
2279                  * callback.
2280                  */
2281                 spin_lock(&fod->flock);
2282                 fod->abort = true;
2283                 fod->aborted = true;
2284                 spin_unlock(&fod->flock);
2285         }
2286         spin_unlock_irqrestore(&queue->qlock, flags);
2287 }
2288 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort);
2289
2290 enum {
2291         FCT_TRADDR_ERR          = 0,
2292         FCT_TRADDR_WWNN         = 1 << 0,
2293         FCT_TRADDR_WWPN         = 1 << 1,
2294 };
2295
2296 struct nvmet_fc_traddr {
2297         u64     nn;
2298         u64     pn;
2299 };
2300
2301 static const match_table_t traddr_opt_tokens = {
2302         { FCT_TRADDR_WWNN,      "nn-%s"         },
2303         { FCT_TRADDR_WWPN,      "pn-%s"         },
2304         { FCT_TRADDR_ERR,       NULL            }
2305 };
2306
2307 static int
2308 nvmet_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf)
2309 {
2310         substring_t args[MAX_OPT_ARGS];
2311         char *options, *o, *p;
2312         int token, ret = 0;
2313         u64 token64;
2314
2315         options = o = kstrdup(buf, GFP_KERNEL);
2316         if (!options)
2317                 return -ENOMEM;
2318
2319         while ((p = strsep(&o, ":\n")) != NULL) {
2320                 if (!*p)
2321                         continue;
2322
2323                 token = match_token(p, traddr_opt_tokens, args);
2324                 switch (token) {
2325                 case FCT_TRADDR_WWNN:
2326                         if (match_u64(args, &token64)) {
2327                                 ret = -EINVAL;
2328                                 goto out;
2329                         }
2330                         traddr->nn = token64;
2331                         break;
2332                 case FCT_TRADDR_WWPN:
2333                         if (match_u64(args, &token64)) {
2334                                 ret = -EINVAL;
2335                                 goto out;
2336                         }
2337                         traddr->pn = token64;
2338                         break;
2339                 default:
2340                         pr_warn("unknown traddr token or missing value '%s'\n",
2341                                         p);
2342                         ret = -EINVAL;
2343                         goto out;
2344                 }
2345         }
2346
2347 out:
2348         kfree(options);
2349         return ret;
2350 }
2351
2352 static int
2353 nvmet_fc_add_port(struct nvmet_port *port)
2354 {
2355         struct nvmet_fc_tgtport *tgtport;
2356         struct nvmet_fc_traddr traddr = { 0L, 0L };
2357         unsigned long flags;
2358         int ret;
2359
2360         /* validate the address info */
2361         if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) ||
2362             (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC))
2363                 return -EINVAL;
2364
2365         /* map the traddr address info to a target port */
2366
2367         ret = nvmet_fc_parse_traddr(&traddr, port->disc_addr.traddr);
2368         if (ret)
2369                 return ret;
2370
2371         ret = -ENXIO;
2372         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2373         list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) {
2374                 if ((tgtport->fc_target_port.node_name == traddr.nn) &&
2375                     (tgtport->fc_target_port.port_name == traddr.pn)) {
2376                         /* a FC port can only be 1 nvmet port id */
2377                         if (!tgtport->port) {
2378                                 tgtport->port = port;
2379                                 port->priv = tgtport;
2380                                 nvmet_fc_tgtport_get(tgtport);
2381                                 ret = 0;
2382                         } else
2383                                 ret = -EALREADY;
2384                         break;
2385                 }
2386         }
2387         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2388         return ret;
2389 }
2390
2391 static void
2392 nvmet_fc_remove_port(struct nvmet_port *port)
2393 {
2394         struct nvmet_fc_tgtport *tgtport = port->priv;
2395         unsigned long flags;
2396
2397         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2398         if (tgtport->port == port) {
2399                 nvmet_fc_tgtport_put(tgtport);
2400                 tgtport->port = NULL;
2401         }
2402         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2403 }
2404
2405 static struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = {
2406         .owner                  = THIS_MODULE,
2407         .type                   = NVMF_TRTYPE_FC,
2408         .msdbd                  = 1,
2409         .add_port               = nvmet_fc_add_port,
2410         .remove_port            = nvmet_fc_remove_port,
2411         .queue_response         = nvmet_fc_fcp_nvme_cmd_done,
2412         .delete_ctrl            = nvmet_fc_delete_ctrl,
2413 };
2414
2415 static int __init nvmet_fc_init_module(void)
2416 {
2417         return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops);
2418 }
2419
2420 static void __exit nvmet_fc_exit_module(void)
2421 {
2422         /* sanity check - all lports should be removed */
2423         if (!list_empty(&nvmet_fc_target_list))
2424                 pr_warn("%s: targetport list not empty\n", __func__);
2425
2426         nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops);
2427
2428         ida_destroy(&nvmet_fc_tgtport_cnt);
2429 }
2430
2431 module_init(nvmet_fc_init_module);
2432 module_exit(nvmet_fc_exit_module);
2433
2434 MODULE_LICENSE("GPL v2");