]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/oprofile/cpu_buffer.c
oprofile: moving cpu_buffer_reset() to cpu_buffer.h
[mv-sheeva.git] / drivers / oprofile / cpu_buffer.c
1 /**
2  * @file cpu_buffer.c
3  *
4  * @remark Copyright 2002 OProfile authors
5  * @remark Read the file COPYING
6  *
7  * @author John Levon <levon@movementarian.org>
8  * @author Barry Kasindorf <barry.kasindorf@amd.com>
9  *
10  * Each CPU has a local buffer that stores PC value/event
11  * pairs. We also log context switches when we notice them.
12  * Eventually each CPU's buffer is processed into the global
13  * event buffer by sync_buffer().
14  *
15  * We use a local buffer for two reasons: an NMI or similar
16  * interrupt cannot synchronise, and high sampling rates
17  * would lead to catastrophic global synchronisation if
18  * a global buffer was used.
19  */
20
21 #include <linux/sched.h>
22 #include <linux/oprofile.h>
23 #include <linux/vmalloc.h>
24 #include <linux/errno.h>
25
26 #include "event_buffer.h"
27 #include "cpu_buffer.h"
28 #include "buffer_sync.h"
29 #include "oprof.h"
30
31 DEFINE_PER_CPU(struct oprofile_cpu_buffer, cpu_buffer);
32
33 static void wq_sync_buffer(struct work_struct *work);
34
35 #define DEFAULT_TIMER_EXPIRE (HZ / 10)
36 static int work_enabled;
37
38 void free_cpu_buffers(void)
39 {
40         int i;
41
42         for_each_possible_cpu(i) {
43                 vfree(per_cpu(cpu_buffer, i).buffer);
44                 per_cpu(cpu_buffer, i).buffer = NULL;
45         }
46 }
47
48 unsigned long oprofile_get_cpu_buffer_size(void)
49 {
50         return fs_cpu_buffer_size;
51 }
52
53 void oprofile_cpu_buffer_inc_smpl_lost(void)
54 {
55         struct oprofile_cpu_buffer *cpu_buf
56                 = &__get_cpu_var(cpu_buffer);
57
58         cpu_buf->sample_lost_overflow++;
59 }
60
61 int alloc_cpu_buffers(void)
62 {
63         int i;
64
65         unsigned long buffer_size = fs_cpu_buffer_size;
66
67         for_each_possible_cpu(i) {
68                 struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i);
69
70                 b->buffer = vmalloc_node(sizeof(struct op_sample) * buffer_size,
71                         cpu_to_node(i));
72                 if (!b->buffer)
73                         goto fail;
74
75                 b->last_task = NULL;
76                 b->last_is_kernel = -1;
77                 b->tracing = 0;
78                 b->buffer_size = buffer_size;
79                 b->tail_pos = 0;
80                 b->head_pos = 0;
81                 b->sample_received = 0;
82                 b->sample_lost_overflow = 0;
83                 b->backtrace_aborted = 0;
84                 b->sample_invalid_eip = 0;
85                 b->cpu = i;
86                 INIT_DELAYED_WORK(&b->work, wq_sync_buffer);
87         }
88         return 0;
89
90 fail:
91         free_cpu_buffers();
92         return -ENOMEM;
93 }
94
95 void start_cpu_work(void)
96 {
97         int i;
98
99         work_enabled = 1;
100
101         for_each_online_cpu(i) {
102                 struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i);
103
104                 /*
105                  * Spread the work by 1 jiffy per cpu so they dont all
106                  * fire at once.
107                  */
108                 schedule_delayed_work_on(i, &b->work, DEFAULT_TIMER_EXPIRE + i);
109         }
110 }
111
112 void end_cpu_work(void)
113 {
114         int i;
115
116         work_enabled = 0;
117
118         for_each_online_cpu(i) {
119                 struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i);
120
121                 cancel_delayed_work(&b->work);
122         }
123
124         flush_scheduled_work();
125 }
126
127 /* compute number of available slots in cpu_buffer queue */
128 static unsigned long nr_available_slots(struct oprofile_cpu_buffer const *b)
129 {
130         unsigned long head = b->head_pos;
131         unsigned long tail = b->tail_pos;
132
133         if (tail > head)
134                 return (tail - head) - 1;
135
136         return tail + (b->buffer_size - head) - 1;
137 }
138
139 static inline void
140 add_sample(struct oprofile_cpu_buffer *cpu_buf,
141            unsigned long pc, unsigned long event)
142 {
143         struct op_sample *entry = cpu_buffer_write_entry(cpu_buf);
144         entry->eip = pc;
145         entry->event = event;
146         cpu_buffer_write_commit(cpu_buf);
147 }
148
149 static inline void
150 add_code(struct oprofile_cpu_buffer *buffer, unsigned long value)
151 {
152         add_sample(buffer, ESCAPE_CODE, value);
153 }
154
155 /* This must be safe from any context. It's safe writing here
156  * because of the head/tail separation of the writer and reader
157  * of the CPU buffer.
158  *
159  * is_kernel is needed because on some architectures you cannot
160  * tell if you are in kernel or user space simply by looking at
161  * pc. We tag this in the buffer by generating kernel enter/exit
162  * events whenever is_kernel changes
163  */
164 static int log_sample(struct oprofile_cpu_buffer *cpu_buf, unsigned long pc,
165                       int is_kernel, unsigned long event)
166 {
167         struct task_struct *task;
168
169         cpu_buf->sample_received++;
170
171         if (pc == ESCAPE_CODE) {
172                 cpu_buf->sample_invalid_eip++;
173                 return 0;
174         }
175
176         if (nr_available_slots(cpu_buf) < 3) {
177                 cpu_buf->sample_lost_overflow++;
178                 return 0;
179         }
180
181         is_kernel = !!is_kernel;
182
183         task = current;
184
185         /* notice a switch from user->kernel or vice versa */
186         if (cpu_buf->last_is_kernel != is_kernel) {
187                 cpu_buf->last_is_kernel = is_kernel;
188                 add_code(cpu_buf, is_kernel);
189         }
190
191         /* notice a task switch */
192         if (cpu_buf->last_task != task) {
193                 cpu_buf->last_task = task;
194                 add_code(cpu_buf, (unsigned long)task);
195         }
196
197         add_sample(cpu_buf, pc, event);
198         return 1;
199 }
200
201 static int oprofile_begin_trace(struct oprofile_cpu_buffer *cpu_buf)
202 {
203         if (nr_available_slots(cpu_buf) < 4) {
204                 cpu_buf->sample_lost_overflow++;
205                 return 0;
206         }
207
208         add_code(cpu_buf, CPU_TRACE_BEGIN);
209         cpu_buf->tracing = 1;
210         return 1;
211 }
212
213 static void oprofile_end_trace(struct oprofile_cpu_buffer *cpu_buf)
214 {
215         cpu_buf->tracing = 0;
216 }
217
218 void oprofile_add_ext_sample(unsigned long pc, struct pt_regs * const regs,
219                                 unsigned long event, int is_kernel)
220 {
221         struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
222
223         if (!backtrace_depth) {
224                 log_sample(cpu_buf, pc, is_kernel, event);
225                 return;
226         }
227
228         if (!oprofile_begin_trace(cpu_buf))
229                 return;
230
231         /*
232          * if log_sample() fail we can't backtrace since we lost the
233          * source of this event
234          */
235         if (log_sample(cpu_buf, pc, is_kernel, event))
236                 oprofile_ops.backtrace(regs, backtrace_depth);
237         oprofile_end_trace(cpu_buf);
238 }
239
240 void oprofile_add_sample(struct pt_regs * const regs, unsigned long event)
241 {
242         int is_kernel = !user_mode(regs);
243         unsigned long pc = profile_pc(regs);
244
245         oprofile_add_ext_sample(pc, regs, event, is_kernel);
246 }
247
248 #ifdef CONFIG_OPROFILE_IBS
249
250 #define MAX_IBS_SAMPLE_SIZE 14
251
252 void oprofile_add_ibs_sample(struct pt_regs * const regs,
253                              unsigned int * const ibs_sample, int ibs_code)
254 {
255         int is_kernel = !user_mode(regs);
256         struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
257         struct task_struct *task;
258
259         cpu_buf->sample_received++;
260
261         if (nr_available_slots(cpu_buf) < MAX_IBS_SAMPLE_SIZE) {
262                 /* we can't backtrace since we lost the source of this event */
263                 cpu_buf->sample_lost_overflow++;
264                 return;
265         }
266
267         /* notice a switch from user->kernel or vice versa */
268         if (cpu_buf->last_is_kernel != is_kernel) {
269                 cpu_buf->last_is_kernel = is_kernel;
270                 add_code(cpu_buf, is_kernel);
271         }
272
273         /* notice a task switch */
274         if (!is_kernel) {
275                 task = current;
276                 if (cpu_buf->last_task != task) {
277                         cpu_buf->last_task = task;
278                         add_code(cpu_buf, (unsigned long)task);
279                 }
280         }
281
282         add_code(cpu_buf, ibs_code);
283         add_sample(cpu_buf, ibs_sample[0], ibs_sample[1]);
284         add_sample(cpu_buf, ibs_sample[2], ibs_sample[3]);
285         add_sample(cpu_buf, ibs_sample[4], ibs_sample[5]);
286
287         if (ibs_code == IBS_OP_BEGIN) {
288                 add_sample(cpu_buf, ibs_sample[6], ibs_sample[7]);
289                 add_sample(cpu_buf, ibs_sample[8], ibs_sample[9]);
290                 add_sample(cpu_buf, ibs_sample[10], ibs_sample[11]);
291         }
292
293         if (backtrace_depth)
294                 oprofile_ops.backtrace(regs, backtrace_depth);
295 }
296
297 #endif
298
299 void oprofile_add_pc(unsigned long pc, int is_kernel, unsigned long event)
300 {
301         struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
302         log_sample(cpu_buf, pc, is_kernel, event);
303 }
304
305 void oprofile_add_trace(unsigned long pc)
306 {
307         struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
308
309         if (!cpu_buf->tracing)
310                 return;
311
312         if (nr_available_slots(cpu_buf) < 1) {
313                 cpu_buf->tracing = 0;
314                 cpu_buf->sample_lost_overflow++;
315                 return;
316         }
317
318         /*
319          * broken frame can give an eip with the same value as an
320          * escape code, abort the trace if we get it
321          */
322         if (pc == ESCAPE_CODE) {
323                 cpu_buf->tracing = 0;
324                 cpu_buf->backtrace_aborted++;
325                 return;
326         }
327
328         add_sample(cpu_buf, pc, 0);
329 }
330
331 /*
332  * This serves to avoid cpu buffer overflow, and makes sure
333  * the task mortuary progresses
334  *
335  * By using schedule_delayed_work_on and then schedule_delayed_work
336  * we guarantee this will stay on the correct cpu
337  */
338 static void wq_sync_buffer(struct work_struct *work)
339 {
340         struct oprofile_cpu_buffer *b =
341                 container_of(work, struct oprofile_cpu_buffer, work.work);
342         if (b->cpu != smp_processor_id()) {
343                 printk(KERN_DEBUG "WQ on CPU%d, prefer CPU%d\n",
344                        smp_processor_id(), b->cpu);
345
346                 if (!cpu_online(b->cpu)) {
347                         cancel_delayed_work(&b->work);
348                         return;
349                 }
350         }
351         sync_buffer(b->cpu);
352
353         /* don't re-add the work if we're shutting down */
354         if (work_enabled)
355                 schedule_delayed_work(&b->work, DEFAULT_TIMER_EXPIRE);
356 }