2 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/delay.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
16 #include <linux/of_pci.h>
17 #include <linux/pci.h>
19 #include <linux/slab.h>
20 #include <linux/module.h>
21 #include <linux/spinlock.h>
22 #include <linux/string.h>
23 #include <linux/log2.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/pm_wakeup.h>
26 #include <linux/interrupt.h>
27 #include <linux/device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/pci_hotplug.h>
30 #include <linux/vmalloc.h>
31 #include <asm/setup.h>
33 #include <linux/aer.h>
36 const char *pci_power_names[] = {
37 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
39 EXPORT_SYMBOL_GPL(pci_power_names);
41 int isa_dma_bridge_buggy;
42 EXPORT_SYMBOL(isa_dma_bridge_buggy);
45 EXPORT_SYMBOL(pci_pci_problems);
47 unsigned int pci_pm_d3_delay;
49 static void pci_pme_list_scan(struct work_struct *work);
51 static LIST_HEAD(pci_pme_list);
52 static DEFINE_MUTEX(pci_pme_list_mutex);
53 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
55 struct pci_pme_device {
56 struct list_head list;
60 #define PME_TIMEOUT 1000 /* How long between PME checks */
62 static void pci_dev_d3_sleep(struct pci_dev *dev)
64 unsigned int delay = dev->d3_delay;
66 if (delay < pci_pm_d3_delay)
67 delay = pci_pm_d3_delay;
73 #ifdef CONFIG_PCI_DOMAINS
74 int pci_domains_supported = 1;
77 #define DEFAULT_CARDBUS_IO_SIZE (256)
78 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
79 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
80 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
81 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
83 #define DEFAULT_HOTPLUG_IO_SIZE (256)
84 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
85 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
86 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
87 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
89 #define DEFAULT_HOTPLUG_BUS_SIZE 1
90 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
92 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
95 * The default CLS is used if arch didn't set CLS explicitly and not
96 * all pci devices agree on the same value. Arch can override either
97 * the dfl or actual value as it sees fit. Don't forget this is
98 * measured in 32-bit words, not bytes.
100 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
101 u8 pci_cache_line_size;
104 * If we set up a device for bus mastering, we need to check the latency
105 * timer as certain BIOSes forget to set it properly.
107 unsigned int pcibios_max_latency = 255;
109 /* If set, the PCIe ARI capability will not be used. */
110 static bool pcie_ari_disabled;
112 /* Disable bridge_d3 for all PCIe ports */
113 static bool pci_bridge_d3_disable;
114 /* Force bridge_d3 for all PCIe ports */
115 static bool pci_bridge_d3_force;
117 static int __init pcie_port_pm_setup(char *str)
119 if (!strcmp(str, "off"))
120 pci_bridge_d3_disable = true;
121 else if (!strcmp(str, "force"))
122 pci_bridge_d3_force = true;
125 __setup("pcie_port_pm=", pcie_port_pm_setup);
128 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
129 * @bus: pointer to PCI bus structure to search
131 * Given a PCI bus, returns the highest PCI bus number present in the set
132 * including the given PCI bus and its list of child PCI buses.
134 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
137 unsigned char max, n;
139 max = bus->busn_res.end;
140 list_for_each_entry(tmp, &bus->children, node) {
141 n = pci_bus_max_busnr(tmp);
147 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
149 #ifdef CONFIG_HAS_IOMEM
150 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
152 struct resource *res = &pdev->resource[bar];
155 * Make sure the BAR is actually a memory resource, not an IO resource
157 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
158 dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res);
161 return ioremap_nocache(res->start, resource_size(res));
163 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
165 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
168 * Make sure the BAR is actually a memory resource, not an IO resource
170 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
174 return ioremap_wc(pci_resource_start(pdev, bar),
175 pci_resource_len(pdev, bar));
177 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
181 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
182 u8 pos, int cap, int *ttl)
187 pci_bus_read_config_byte(bus, devfn, pos, &pos);
193 pci_bus_read_config_word(bus, devfn, pos, &ent);
205 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
208 int ttl = PCI_FIND_CAP_TTL;
210 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
213 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
215 return __pci_find_next_cap(dev->bus, dev->devfn,
216 pos + PCI_CAP_LIST_NEXT, cap);
218 EXPORT_SYMBOL_GPL(pci_find_next_capability);
220 static int __pci_bus_find_cap_start(struct pci_bus *bus,
221 unsigned int devfn, u8 hdr_type)
225 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
226 if (!(status & PCI_STATUS_CAP_LIST))
230 case PCI_HEADER_TYPE_NORMAL:
231 case PCI_HEADER_TYPE_BRIDGE:
232 return PCI_CAPABILITY_LIST;
233 case PCI_HEADER_TYPE_CARDBUS:
234 return PCI_CB_CAPABILITY_LIST;
241 * pci_find_capability - query for devices' capabilities
242 * @dev: PCI device to query
243 * @cap: capability code
245 * Tell if a device supports a given PCI capability.
246 * Returns the address of the requested capability structure within the
247 * device's PCI configuration space or 0 in case the device does not
248 * support it. Possible values for @cap:
250 * %PCI_CAP_ID_PM Power Management
251 * %PCI_CAP_ID_AGP Accelerated Graphics Port
252 * %PCI_CAP_ID_VPD Vital Product Data
253 * %PCI_CAP_ID_SLOTID Slot Identification
254 * %PCI_CAP_ID_MSI Message Signalled Interrupts
255 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
256 * %PCI_CAP_ID_PCIX PCI-X
257 * %PCI_CAP_ID_EXP PCI Express
259 int pci_find_capability(struct pci_dev *dev, int cap)
263 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
265 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
269 EXPORT_SYMBOL(pci_find_capability);
272 * pci_bus_find_capability - query for devices' capabilities
273 * @bus: the PCI bus to query
274 * @devfn: PCI device to query
275 * @cap: capability code
277 * Like pci_find_capability() but works for pci devices that do not have a
278 * pci_dev structure set up yet.
280 * Returns the address of the requested capability structure within the
281 * device's PCI configuration space or 0 in case the device does not
284 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
289 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
291 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
293 pos = __pci_find_next_cap(bus, devfn, pos, cap);
297 EXPORT_SYMBOL(pci_bus_find_capability);
300 * pci_find_next_ext_capability - Find an extended capability
301 * @dev: PCI device to query
302 * @start: address at which to start looking (0 to start at beginning of list)
303 * @cap: capability code
305 * Returns the address of the next matching extended capability structure
306 * within the device's PCI configuration space or 0 if the device does
307 * not support it. Some capabilities can occur several times, e.g., the
308 * vendor-specific capability, and this provides a way to find them all.
310 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
314 int pos = PCI_CFG_SPACE_SIZE;
316 /* minimum 8 bytes per capability */
317 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
319 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
325 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
329 * If we have no capabilities, this is indicated by cap ID,
330 * cap version and next pointer all being 0.
336 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
339 pos = PCI_EXT_CAP_NEXT(header);
340 if (pos < PCI_CFG_SPACE_SIZE)
343 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
349 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
352 * pci_find_ext_capability - Find an extended capability
353 * @dev: PCI device to query
354 * @cap: capability code
356 * Returns the address of the requested extended capability structure
357 * within the device's PCI configuration space or 0 if the device does
358 * not support it. Possible values for @cap:
360 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
361 * %PCI_EXT_CAP_ID_VC Virtual Channel
362 * %PCI_EXT_CAP_ID_DSN Device Serial Number
363 * %PCI_EXT_CAP_ID_PWR Power Budgeting
365 int pci_find_ext_capability(struct pci_dev *dev, int cap)
367 return pci_find_next_ext_capability(dev, 0, cap);
369 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
371 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
373 int rc, ttl = PCI_FIND_CAP_TTL;
376 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
377 mask = HT_3BIT_CAP_MASK;
379 mask = HT_5BIT_CAP_MASK;
381 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
382 PCI_CAP_ID_HT, &ttl);
384 rc = pci_read_config_byte(dev, pos + 3, &cap);
385 if (rc != PCIBIOS_SUCCESSFUL)
388 if ((cap & mask) == ht_cap)
391 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
392 pos + PCI_CAP_LIST_NEXT,
393 PCI_CAP_ID_HT, &ttl);
399 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
400 * @dev: PCI device to query
401 * @pos: Position from which to continue searching
402 * @ht_cap: Hypertransport capability code
404 * To be used in conjunction with pci_find_ht_capability() to search for
405 * all capabilities matching @ht_cap. @pos should always be a value returned
406 * from pci_find_ht_capability().
408 * NB. To be 100% safe against broken PCI devices, the caller should take
409 * steps to avoid an infinite loop.
411 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
413 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
415 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
418 * pci_find_ht_capability - query a device's Hypertransport capabilities
419 * @dev: PCI device to query
420 * @ht_cap: Hypertransport capability code
422 * Tell if a device supports a given Hypertransport capability.
423 * Returns an address within the device's PCI configuration space
424 * or 0 in case the device does not support the request capability.
425 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
426 * which has a Hypertransport capability matching @ht_cap.
428 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
432 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
434 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
438 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
441 * pci_find_parent_resource - return resource region of parent bus of given region
442 * @dev: PCI device structure contains resources to be searched
443 * @res: child resource record for which parent is sought
445 * For given resource region of given device, return the resource
446 * region of parent bus the given region is contained in.
448 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
449 struct resource *res)
451 const struct pci_bus *bus = dev->bus;
455 pci_bus_for_each_resource(bus, r, i) {
458 if (res->start && resource_contains(r, res)) {
461 * If the window is prefetchable but the BAR is
462 * not, the allocator made a mistake.
464 if (r->flags & IORESOURCE_PREFETCH &&
465 !(res->flags & IORESOURCE_PREFETCH))
469 * If we're below a transparent bridge, there may
470 * be both a positively-decoded aperture and a
471 * subtractively-decoded region that contain the BAR.
472 * We want the positively-decoded one, so this depends
473 * on pci_bus_for_each_resource() giving us those
481 EXPORT_SYMBOL(pci_find_parent_resource);
484 * pci_find_resource - Return matching PCI device resource
485 * @dev: PCI device to query
486 * @res: Resource to look for
488 * Goes over standard PCI resources (BARs) and checks if the given resource
489 * is partially or fully contained in any of them. In that case the
490 * matching resource is returned, %NULL otherwise.
492 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
496 for (i = 0; i < PCI_ROM_RESOURCE; i++) {
497 struct resource *r = &dev->resource[i];
499 if (r->start && resource_contains(r, res))
505 EXPORT_SYMBOL(pci_find_resource);
508 * pci_find_pcie_root_port - return PCIe Root Port
509 * @dev: PCI device to query
511 * Traverse up the parent chain and return the PCIe Root Port PCI Device
512 * for a given PCI Device.
514 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
516 struct pci_dev *bridge, *highest_pcie_bridge = NULL;
518 bridge = pci_upstream_bridge(dev);
519 while (bridge && pci_is_pcie(bridge)) {
520 highest_pcie_bridge = bridge;
521 bridge = pci_upstream_bridge(bridge);
524 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
527 return highest_pcie_bridge;
529 EXPORT_SYMBOL(pci_find_pcie_root_port);
532 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
533 * @dev: the PCI device to operate on
534 * @pos: config space offset of status word
535 * @mask: mask of bit(s) to care about in status word
537 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
539 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
543 /* Wait for Transaction Pending bit clean */
544 for (i = 0; i < 4; i++) {
547 msleep((1 << (i - 1)) * 100);
549 pci_read_config_word(dev, pos, &status);
550 if (!(status & mask))
558 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
559 * @dev: PCI device to have its BARs restored
561 * Restore the BAR values for a given device, so as to make it
562 * accessible by its driver.
564 static void pci_restore_bars(struct pci_dev *dev)
568 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
569 pci_update_resource(dev, i);
572 static const struct pci_platform_pm_ops *pci_platform_pm;
574 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
576 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
577 !ops->choose_state || !ops->sleep_wake || !ops->run_wake ||
580 pci_platform_pm = ops;
584 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
586 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
589 static inline int platform_pci_set_power_state(struct pci_dev *dev,
592 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
595 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
597 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
600 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
602 return pci_platform_pm ?
603 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
606 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
608 return pci_platform_pm ?
609 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
612 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
614 return pci_platform_pm ?
615 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
618 static inline bool platform_pci_need_resume(struct pci_dev *dev)
620 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
624 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
626 * @dev: PCI device to handle.
627 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
630 * -EINVAL if the requested state is invalid.
631 * -EIO if device does not support PCI PM or its PM capabilities register has a
632 * wrong version, or device doesn't support the requested state.
633 * 0 if device already is in the requested state.
634 * 0 if device's power state has been successfully changed.
636 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
639 bool need_restore = false;
641 /* Check if we're already there */
642 if (dev->current_state == state)
648 if (state < PCI_D0 || state > PCI_D3hot)
651 /* Validate current state:
652 * Can enter D0 from any state, but if we can only go deeper
653 * to sleep if we're already in a low power state
655 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
656 && dev->current_state > state) {
657 dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
658 dev->current_state, state);
662 /* check if this device supports the desired state */
663 if ((state == PCI_D1 && !dev->d1_support)
664 || (state == PCI_D2 && !dev->d2_support))
667 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
669 /* If we're (effectively) in D3, force entire word to 0.
670 * This doesn't affect PME_Status, disables PME_En, and
671 * sets PowerState to 0.
673 switch (dev->current_state) {
677 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
682 case PCI_UNKNOWN: /* Boot-up */
683 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
684 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
686 /* Fall-through: force to D0 */
692 /* enter specified state */
693 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
695 /* Mandatory power management transition delays */
696 /* see PCI PM 1.1 5.6.1 table 18 */
697 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
698 pci_dev_d3_sleep(dev);
699 else if (state == PCI_D2 || dev->current_state == PCI_D2)
700 udelay(PCI_PM_D2_DELAY);
702 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
703 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
704 if (dev->current_state != state && printk_ratelimit())
705 dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
709 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
710 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
711 * from D3hot to D0 _may_ perform an internal reset, thereby
712 * going to "D0 Uninitialized" rather than "D0 Initialized".
713 * For example, at least some versions of the 3c905B and the
714 * 3c556B exhibit this behaviour.
716 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
717 * devices in a D3hot state at boot. Consequently, we need to
718 * restore at least the BARs so that the device will be
719 * accessible to its driver.
722 pci_restore_bars(dev);
725 pcie_aspm_pm_state_change(dev->bus->self);
731 * pci_update_current_state - Read power state of given device and cache it
732 * @dev: PCI device to handle.
733 * @state: State to cache in case the device doesn't have the PM capability
735 * The power state is read from the PMCSR register, which however is
736 * inaccessible in D3cold. The platform firmware is therefore queried first
737 * to detect accessibility of the register. In case the platform firmware
738 * reports an incorrect state or the device isn't power manageable by the
739 * platform at all, we try to detect D3cold by testing accessibility of the
740 * vendor ID in config space.
742 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
744 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
745 !pci_device_is_present(dev)) {
746 dev->current_state = PCI_D3cold;
747 } else if (dev->pm_cap) {
750 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
751 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
753 dev->current_state = state;
758 * pci_power_up - Put the given device into D0 forcibly
759 * @dev: PCI device to power up
761 void pci_power_up(struct pci_dev *dev)
763 if (platform_pci_power_manageable(dev))
764 platform_pci_set_power_state(dev, PCI_D0);
766 pci_raw_set_power_state(dev, PCI_D0);
767 pci_update_current_state(dev, PCI_D0);
771 * pci_platform_power_transition - Use platform to change device power state
772 * @dev: PCI device to handle.
773 * @state: State to put the device into.
775 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
779 if (platform_pci_power_manageable(dev)) {
780 error = platform_pci_set_power_state(dev, state);
782 pci_update_current_state(dev, state);
786 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
787 dev->current_state = PCI_D0;
793 * pci_wakeup - Wake up a PCI device
794 * @pci_dev: Device to handle.
795 * @ign: ignored parameter
797 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
799 pci_wakeup_event(pci_dev);
800 pm_request_resume(&pci_dev->dev);
805 * pci_wakeup_bus - Walk given bus and wake up devices on it
806 * @bus: Top bus of the subtree to walk.
808 static void pci_wakeup_bus(struct pci_bus *bus)
811 pci_walk_bus(bus, pci_wakeup, NULL);
815 * __pci_start_power_transition - Start power transition of a PCI device
816 * @dev: PCI device to handle.
817 * @state: State to put the device into.
819 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
821 if (state == PCI_D0) {
822 pci_platform_power_transition(dev, PCI_D0);
824 * Mandatory power management transition delays, see
825 * PCI Express Base Specification Revision 2.0 Section
826 * 6.6.1: Conventional Reset. Do not delay for
827 * devices powered on/off by corresponding bridge,
828 * because have already delayed for the bridge.
830 if (dev->runtime_d3cold) {
831 if (dev->d3cold_delay)
832 msleep(dev->d3cold_delay);
834 * When powering on a bridge from D3cold, the
835 * whole hierarchy may be powered on into
836 * D0uninitialized state, resume them to give
837 * them a chance to suspend again
839 pci_wakeup_bus(dev->subordinate);
845 * __pci_dev_set_current_state - Set current state of a PCI device
846 * @dev: Device to handle
847 * @data: pointer to state to be set
849 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
851 pci_power_t state = *(pci_power_t *)data;
853 dev->current_state = state;
858 * __pci_bus_set_current_state - Walk given bus and set current state of devices
859 * @bus: Top bus of the subtree to walk.
860 * @state: state to be set
862 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
865 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
869 * __pci_complete_power_transition - Complete power transition of a PCI device
870 * @dev: PCI device to handle.
871 * @state: State to put the device into.
873 * This function should not be called directly by device drivers.
875 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
881 ret = pci_platform_power_transition(dev, state);
882 /* Power off the bridge may power off the whole hierarchy */
883 if (!ret && state == PCI_D3cold)
884 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
887 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
890 * pci_set_power_state - Set the power state of a PCI device
891 * @dev: PCI device to handle.
892 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
894 * Transition a device to a new power state, using the platform firmware and/or
895 * the device's PCI PM registers.
898 * -EINVAL if the requested state is invalid.
899 * -EIO if device does not support PCI PM or its PM capabilities register has a
900 * wrong version, or device doesn't support the requested state.
901 * 0 if device already is in the requested state.
902 * 0 if device's power state has been successfully changed.
904 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
908 /* bound the state we're entering */
909 if (state > PCI_D3cold)
911 else if (state < PCI_D0)
913 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
915 * If the device or the parent bridge do not support PCI PM,
916 * ignore the request if we're doing anything other than putting
917 * it into D0 (which would only happen on boot).
921 /* Check if we're already there */
922 if (dev->current_state == state)
925 __pci_start_power_transition(dev, state);
927 /* This device is quirked not to be put into D3, so
928 don't put it in D3 */
929 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
933 * To put device in D3cold, we put device into D3hot in native
934 * way, then put device into D3cold with platform ops
936 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
939 if (!__pci_complete_power_transition(dev, state))
944 EXPORT_SYMBOL(pci_set_power_state);
947 * pci_choose_state - Choose the power state of a PCI device
948 * @dev: PCI device to be suspended
949 * @state: target sleep state for the whole system. This is the value
950 * that is passed to suspend() function.
952 * Returns PCI power state suitable for given device and given system
956 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
963 ret = platform_pci_choose_state(dev);
964 if (ret != PCI_POWER_ERROR)
967 switch (state.event) {
970 case PM_EVENT_FREEZE:
971 case PM_EVENT_PRETHAW:
972 /* REVISIT both freeze and pre-thaw "should" use D0 */
973 case PM_EVENT_SUSPEND:
974 case PM_EVENT_HIBERNATE:
977 dev_info(&dev->dev, "unrecognized suspend event %d\n",
983 EXPORT_SYMBOL(pci_choose_state);
985 #define PCI_EXP_SAVE_REGS 7
987 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
988 u16 cap, bool extended)
990 struct pci_cap_saved_state *tmp;
992 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
993 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
999 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1001 return _pci_find_saved_cap(dev, cap, false);
1004 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1006 return _pci_find_saved_cap(dev, cap, true);
1009 static int pci_save_pcie_state(struct pci_dev *dev)
1012 struct pci_cap_saved_state *save_state;
1015 if (!pci_is_pcie(dev))
1018 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1020 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1024 cap = (u16 *)&save_state->cap.data[0];
1025 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1026 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1027 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1028 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1029 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1030 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1031 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1036 static void pci_restore_pcie_state(struct pci_dev *dev)
1039 struct pci_cap_saved_state *save_state;
1042 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1046 cap = (u16 *)&save_state->cap.data[0];
1047 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1048 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1049 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1050 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1051 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1052 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1053 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1057 static int pci_save_pcix_state(struct pci_dev *dev)
1060 struct pci_cap_saved_state *save_state;
1062 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1066 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1068 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1072 pci_read_config_word(dev, pos + PCI_X_CMD,
1073 (u16 *)save_state->cap.data);
1078 static void pci_restore_pcix_state(struct pci_dev *dev)
1081 struct pci_cap_saved_state *save_state;
1084 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1085 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1086 if (!save_state || !pos)
1088 cap = (u16 *)&save_state->cap.data[0];
1090 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1095 * pci_save_state - save the PCI configuration space of a device before suspending
1096 * @dev: - PCI device that we're dealing with
1098 int pci_save_state(struct pci_dev *dev)
1101 /* XXX: 100% dword access ok here? */
1102 for (i = 0; i < 16; i++)
1103 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1104 dev->state_saved = true;
1106 i = pci_save_pcie_state(dev);
1110 i = pci_save_pcix_state(dev);
1114 return pci_save_vc_state(dev);
1116 EXPORT_SYMBOL(pci_save_state);
1118 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1119 u32 saved_val, int retry)
1123 pci_read_config_dword(pdev, offset, &val);
1124 if (val == saved_val)
1128 dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1129 offset, val, saved_val);
1130 pci_write_config_dword(pdev, offset, saved_val);
1134 pci_read_config_dword(pdev, offset, &val);
1135 if (val == saved_val)
1142 static void pci_restore_config_space_range(struct pci_dev *pdev,
1143 int start, int end, int retry)
1147 for (index = end; index >= start; index--)
1148 pci_restore_config_dword(pdev, 4 * index,
1149 pdev->saved_config_space[index],
1153 static void pci_restore_config_space(struct pci_dev *pdev)
1155 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1156 pci_restore_config_space_range(pdev, 10, 15, 0);
1157 /* Restore BARs before the command register. */
1158 pci_restore_config_space_range(pdev, 4, 9, 10);
1159 pci_restore_config_space_range(pdev, 0, 3, 0);
1161 pci_restore_config_space_range(pdev, 0, 15, 0);
1166 * pci_restore_state - Restore the saved state of a PCI device
1167 * @dev: - PCI device that we're dealing with
1169 void pci_restore_state(struct pci_dev *dev)
1171 if (!dev->state_saved)
1174 /* PCI Express register must be restored first */
1175 pci_restore_pcie_state(dev);
1176 pci_restore_ats_state(dev);
1177 pci_restore_vc_state(dev);
1179 pci_cleanup_aer_error_status_regs(dev);
1181 pci_restore_config_space(dev);
1183 pci_restore_pcix_state(dev);
1184 pci_restore_msi_state(dev);
1186 /* Restore ACS and IOV configuration state */
1187 pci_enable_acs(dev);
1188 pci_restore_iov_state(dev);
1190 dev->state_saved = false;
1192 EXPORT_SYMBOL(pci_restore_state);
1194 struct pci_saved_state {
1195 u32 config_space[16];
1196 struct pci_cap_saved_data cap[0];
1200 * pci_store_saved_state - Allocate and return an opaque struct containing
1201 * the device saved state.
1202 * @dev: PCI device that we're dealing with
1204 * Return NULL if no state or error.
1206 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1208 struct pci_saved_state *state;
1209 struct pci_cap_saved_state *tmp;
1210 struct pci_cap_saved_data *cap;
1213 if (!dev->state_saved)
1216 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1218 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1219 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1221 state = kzalloc(size, GFP_KERNEL);
1225 memcpy(state->config_space, dev->saved_config_space,
1226 sizeof(state->config_space));
1229 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1230 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1231 memcpy(cap, &tmp->cap, len);
1232 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1234 /* Empty cap_save terminates list */
1238 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1241 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1242 * @dev: PCI device that we're dealing with
1243 * @state: Saved state returned from pci_store_saved_state()
1245 int pci_load_saved_state(struct pci_dev *dev,
1246 struct pci_saved_state *state)
1248 struct pci_cap_saved_data *cap;
1250 dev->state_saved = false;
1255 memcpy(dev->saved_config_space, state->config_space,
1256 sizeof(state->config_space));
1260 struct pci_cap_saved_state *tmp;
1262 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1263 if (!tmp || tmp->cap.size != cap->size)
1266 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1267 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1268 sizeof(struct pci_cap_saved_data) + cap->size);
1271 dev->state_saved = true;
1274 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1277 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1278 * and free the memory allocated for it.
1279 * @dev: PCI device that we're dealing with
1280 * @state: Pointer to saved state returned from pci_store_saved_state()
1282 int pci_load_and_free_saved_state(struct pci_dev *dev,
1283 struct pci_saved_state **state)
1285 int ret = pci_load_saved_state(dev, *state);
1290 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1292 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1294 return pci_enable_resources(dev, bars);
1297 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1300 struct pci_dev *bridge;
1304 err = pci_set_power_state(dev, PCI_D0);
1305 if (err < 0 && err != -EIO)
1308 bridge = pci_upstream_bridge(dev);
1310 pcie_aspm_powersave_config_link(bridge);
1312 err = pcibios_enable_device(dev, bars);
1315 pci_fixup_device(pci_fixup_enable, dev);
1317 if (dev->msi_enabled || dev->msix_enabled)
1320 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1322 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1323 if (cmd & PCI_COMMAND_INTX_DISABLE)
1324 pci_write_config_word(dev, PCI_COMMAND,
1325 cmd & ~PCI_COMMAND_INTX_DISABLE);
1332 * pci_reenable_device - Resume abandoned device
1333 * @dev: PCI device to be resumed
1335 * Note this function is a backend of pci_default_resume and is not supposed
1336 * to be called by normal code, write proper resume handler and use it instead.
1338 int pci_reenable_device(struct pci_dev *dev)
1340 if (pci_is_enabled(dev))
1341 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1344 EXPORT_SYMBOL(pci_reenable_device);
1346 static void pci_enable_bridge(struct pci_dev *dev)
1348 struct pci_dev *bridge;
1351 bridge = pci_upstream_bridge(dev);
1353 pci_enable_bridge(bridge);
1355 if (pci_is_enabled(dev)) {
1356 if (!dev->is_busmaster)
1357 pci_set_master(dev);
1361 retval = pci_enable_device(dev);
1363 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1365 pci_set_master(dev);
1368 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1370 struct pci_dev *bridge;
1375 * Power state could be unknown at this point, either due to a fresh
1376 * boot or a device removal call. So get the current power state
1377 * so that things like MSI message writing will behave as expected
1378 * (e.g. if the device really is in D0 at enable time).
1382 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1383 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1386 if (atomic_inc_return(&dev->enable_cnt) > 1)
1387 return 0; /* already enabled */
1389 bridge = pci_upstream_bridge(dev);
1391 pci_enable_bridge(bridge);
1393 /* only skip sriov related */
1394 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1395 if (dev->resource[i].flags & flags)
1397 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1398 if (dev->resource[i].flags & flags)
1401 err = do_pci_enable_device(dev, bars);
1403 atomic_dec(&dev->enable_cnt);
1408 * pci_enable_device_io - Initialize a device for use with IO space
1409 * @dev: PCI device to be initialized
1411 * Initialize device before it's used by a driver. Ask low-level code
1412 * to enable I/O resources. Wake up the device if it was suspended.
1413 * Beware, this function can fail.
1415 int pci_enable_device_io(struct pci_dev *dev)
1417 return pci_enable_device_flags(dev, IORESOURCE_IO);
1419 EXPORT_SYMBOL(pci_enable_device_io);
1422 * pci_enable_device_mem - Initialize a device for use with Memory space
1423 * @dev: PCI device to be initialized
1425 * Initialize device before it's used by a driver. Ask low-level code
1426 * to enable Memory resources. Wake up the device if it was suspended.
1427 * Beware, this function can fail.
1429 int pci_enable_device_mem(struct pci_dev *dev)
1431 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1433 EXPORT_SYMBOL(pci_enable_device_mem);
1436 * pci_enable_device - Initialize device before it's used by a driver.
1437 * @dev: PCI device to be initialized
1439 * Initialize device before it's used by a driver. Ask low-level code
1440 * to enable I/O and memory. Wake up the device if it was suspended.
1441 * Beware, this function can fail.
1443 * Note we don't actually enable the device many times if we call
1444 * this function repeatedly (we just increment the count).
1446 int pci_enable_device(struct pci_dev *dev)
1448 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1450 EXPORT_SYMBOL(pci_enable_device);
1453 * Managed PCI resources. This manages device on/off, intx/msi/msix
1454 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1455 * there's no need to track it separately. pci_devres is initialized
1456 * when a device is enabled using managed PCI device enable interface.
1459 unsigned int enabled:1;
1460 unsigned int pinned:1;
1461 unsigned int orig_intx:1;
1462 unsigned int restore_intx:1;
1466 static void pcim_release(struct device *gendev, void *res)
1468 struct pci_dev *dev = to_pci_dev(gendev);
1469 struct pci_devres *this = res;
1472 if (dev->msi_enabled)
1473 pci_disable_msi(dev);
1474 if (dev->msix_enabled)
1475 pci_disable_msix(dev);
1477 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1478 if (this->region_mask & (1 << i))
1479 pci_release_region(dev, i);
1481 if (this->restore_intx)
1482 pci_intx(dev, this->orig_intx);
1484 if (this->enabled && !this->pinned)
1485 pci_disable_device(dev);
1488 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1490 struct pci_devres *dr, *new_dr;
1492 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1496 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1499 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1502 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1504 if (pci_is_managed(pdev))
1505 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1510 * pcim_enable_device - Managed pci_enable_device()
1511 * @pdev: PCI device to be initialized
1513 * Managed pci_enable_device().
1515 int pcim_enable_device(struct pci_dev *pdev)
1517 struct pci_devres *dr;
1520 dr = get_pci_dr(pdev);
1526 rc = pci_enable_device(pdev);
1528 pdev->is_managed = 1;
1533 EXPORT_SYMBOL(pcim_enable_device);
1536 * pcim_pin_device - Pin managed PCI device
1537 * @pdev: PCI device to pin
1539 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1540 * driver detach. @pdev must have been enabled with
1541 * pcim_enable_device().
1543 void pcim_pin_device(struct pci_dev *pdev)
1545 struct pci_devres *dr;
1547 dr = find_pci_dr(pdev);
1548 WARN_ON(!dr || !dr->enabled);
1552 EXPORT_SYMBOL(pcim_pin_device);
1555 * pcibios_add_device - provide arch specific hooks when adding device dev
1556 * @dev: the PCI device being added
1558 * Permits the platform to provide architecture specific functionality when
1559 * devices are added. This is the default implementation. Architecture
1560 * implementations can override this.
1562 int __weak pcibios_add_device(struct pci_dev *dev)
1568 * pcibios_release_device - provide arch specific hooks when releasing device dev
1569 * @dev: the PCI device being released
1571 * Permits the platform to provide architecture specific functionality when
1572 * devices are released. This is the default implementation. Architecture
1573 * implementations can override this.
1575 void __weak pcibios_release_device(struct pci_dev *dev) {}
1578 * pcibios_disable_device - disable arch specific PCI resources for device dev
1579 * @dev: the PCI device to disable
1581 * Disables architecture specific PCI resources for the device. This
1582 * is the default implementation. Architecture implementations can
1585 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1588 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1589 * @irq: ISA IRQ to penalize
1590 * @active: IRQ active or not
1592 * Permits the platform to provide architecture-specific functionality when
1593 * penalizing ISA IRQs. This is the default implementation. Architecture
1594 * implementations can override this.
1596 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1598 static void do_pci_disable_device(struct pci_dev *dev)
1602 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1603 if (pci_command & PCI_COMMAND_MASTER) {
1604 pci_command &= ~PCI_COMMAND_MASTER;
1605 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1608 pcibios_disable_device(dev);
1612 * pci_disable_enabled_device - Disable device without updating enable_cnt
1613 * @dev: PCI device to disable
1615 * NOTE: This function is a backend of PCI power management routines and is
1616 * not supposed to be called drivers.
1618 void pci_disable_enabled_device(struct pci_dev *dev)
1620 if (pci_is_enabled(dev))
1621 do_pci_disable_device(dev);
1625 * pci_disable_device - Disable PCI device after use
1626 * @dev: PCI device to be disabled
1628 * Signal to the system that the PCI device is not in use by the system
1629 * anymore. This only involves disabling PCI bus-mastering, if active.
1631 * Note we don't actually disable the device until all callers of
1632 * pci_enable_device() have called pci_disable_device().
1634 void pci_disable_device(struct pci_dev *dev)
1636 struct pci_devres *dr;
1638 dr = find_pci_dr(dev);
1642 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1643 "disabling already-disabled device");
1645 if (atomic_dec_return(&dev->enable_cnt) != 0)
1648 do_pci_disable_device(dev);
1650 dev->is_busmaster = 0;
1652 EXPORT_SYMBOL(pci_disable_device);
1655 * pcibios_set_pcie_reset_state - set reset state for device dev
1656 * @dev: the PCIe device reset
1657 * @state: Reset state to enter into
1660 * Sets the PCIe reset state for the device. This is the default
1661 * implementation. Architecture implementations can override this.
1663 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1664 enum pcie_reset_state state)
1670 * pci_set_pcie_reset_state - set reset state for device dev
1671 * @dev: the PCIe device reset
1672 * @state: Reset state to enter into
1675 * Sets the PCI reset state for the device.
1677 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1679 return pcibios_set_pcie_reset_state(dev, state);
1681 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1684 * pci_check_pme_status - Check if given device has generated PME.
1685 * @dev: Device to check.
1687 * Check the PME status of the device and if set, clear it and clear PME enable
1688 * (if set). Return 'true' if PME status and PME enable were both set or
1689 * 'false' otherwise.
1691 bool pci_check_pme_status(struct pci_dev *dev)
1700 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1701 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1702 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1705 /* Clear PME status. */
1706 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1707 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1708 /* Disable PME to avoid interrupt flood. */
1709 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1713 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1719 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1720 * @dev: Device to handle.
1721 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1723 * Check if @dev has generated PME and queue a resume request for it in that
1726 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1728 if (pme_poll_reset && dev->pme_poll)
1729 dev->pme_poll = false;
1731 if (pci_check_pme_status(dev)) {
1732 pci_wakeup_event(dev);
1733 pm_request_resume(&dev->dev);
1739 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1740 * @bus: Top bus of the subtree to walk.
1742 void pci_pme_wakeup_bus(struct pci_bus *bus)
1745 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1750 * pci_pme_capable - check the capability of PCI device to generate PME#
1751 * @dev: PCI device to handle.
1752 * @state: PCI state from which device will issue PME#.
1754 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1759 return !!(dev->pme_support & (1 << state));
1761 EXPORT_SYMBOL(pci_pme_capable);
1763 static void pci_pme_list_scan(struct work_struct *work)
1765 struct pci_pme_device *pme_dev, *n;
1767 mutex_lock(&pci_pme_list_mutex);
1768 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1769 if (pme_dev->dev->pme_poll) {
1770 struct pci_dev *bridge;
1772 bridge = pme_dev->dev->bus->self;
1774 * If bridge is in low power state, the
1775 * configuration space of subordinate devices
1776 * may be not accessible
1778 if (bridge && bridge->current_state != PCI_D0)
1780 pci_pme_wakeup(pme_dev->dev, NULL);
1782 list_del(&pme_dev->list);
1786 if (!list_empty(&pci_pme_list))
1787 queue_delayed_work(system_freezable_wq, &pci_pme_work,
1788 msecs_to_jiffies(PME_TIMEOUT));
1789 mutex_unlock(&pci_pme_list_mutex);
1792 static void __pci_pme_active(struct pci_dev *dev, bool enable)
1796 if (!dev->pme_support)
1799 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1800 /* Clear PME_Status by writing 1 to it and enable PME# */
1801 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1803 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1805 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1809 * pci_pme_active - enable or disable PCI device's PME# function
1810 * @dev: PCI device to handle.
1811 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1813 * The caller must verify that the device is capable of generating PME# before
1814 * calling this function with @enable equal to 'true'.
1816 void pci_pme_active(struct pci_dev *dev, bool enable)
1818 __pci_pme_active(dev, enable);
1821 * PCI (as opposed to PCIe) PME requires that the device have
1822 * its PME# line hooked up correctly. Not all hardware vendors
1823 * do this, so the PME never gets delivered and the device
1824 * remains asleep. The easiest way around this is to
1825 * periodically walk the list of suspended devices and check
1826 * whether any have their PME flag set. The assumption is that
1827 * we'll wake up often enough anyway that this won't be a huge
1828 * hit, and the power savings from the devices will still be a
1831 * Although PCIe uses in-band PME message instead of PME# line
1832 * to report PME, PME does not work for some PCIe devices in
1833 * reality. For example, there are devices that set their PME
1834 * status bits, but don't really bother to send a PME message;
1835 * there are PCI Express Root Ports that don't bother to
1836 * trigger interrupts when they receive PME messages from the
1837 * devices below. So PME poll is used for PCIe devices too.
1840 if (dev->pme_poll) {
1841 struct pci_pme_device *pme_dev;
1843 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1846 dev_warn(&dev->dev, "can't enable PME#\n");
1850 mutex_lock(&pci_pme_list_mutex);
1851 list_add(&pme_dev->list, &pci_pme_list);
1852 if (list_is_singular(&pci_pme_list))
1853 queue_delayed_work(system_freezable_wq,
1855 msecs_to_jiffies(PME_TIMEOUT));
1856 mutex_unlock(&pci_pme_list_mutex);
1858 mutex_lock(&pci_pme_list_mutex);
1859 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1860 if (pme_dev->dev == dev) {
1861 list_del(&pme_dev->list);
1866 mutex_unlock(&pci_pme_list_mutex);
1870 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1872 EXPORT_SYMBOL(pci_pme_active);
1875 * __pci_enable_wake - enable PCI device as wakeup event source
1876 * @dev: PCI device affected
1877 * @state: PCI state from which device will issue wakeup events
1878 * @runtime: True if the events are to be generated at run time
1879 * @enable: True to enable event generation; false to disable
1881 * This enables the device as a wakeup event source, or disables it.
1882 * When such events involves platform-specific hooks, those hooks are
1883 * called automatically by this routine.
1885 * Devices with legacy power management (no standard PCI PM capabilities)
1886 * always require such platform hooks.
1889 * 0 is returned on success
1890 * -EINVAL is returned if device is not supposed to wake up the system
1891 * Error code depending on the platform is returned if both the platform and
1892 * the native mechanism fail to enable the generation of wake-up events
1894 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1895 bool runtime, bool enable)
1899 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1902 /* Don't do the same thing twice in a row for one device. */
1903 if (!!enable == !!dev->wakeup_prepared)
1907 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1908 * Anderson we should be doing PME# wake enable followed by ACPI wake
1909 * enable. To disable wake-up we call the platform first, for symmetry.
1915 if (pci_pme_capable(dev, state))
1916 pci_pme_active(dev, true);
1919 error = runtime ? platform_pci_run_wake(dev, true) :
1920 platform_pci_sleep_wake(dev, true);
1924 dev->wakeup_prepared = true;
1927 platform_pci_run_wake(dev, false);
1929 platform_pci_sleep_wake(dev, false);
1930 pci_pme_active(dev, false);
1931 dev->wakeup_prepared = false;
1936 EXPORT_SYMBOL(__pci_enable_wake);
1939 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1940 * @dev: PCI device to prepare
1941 * @enable: True to enable wake-up event generation; false to disable
1943 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1944 * and this function allows them to set that up cleanly - pci_enable_wake()
1945 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1946 * ordering constraints.
1948 * This function only returns error code if the device is not capable of
1949 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1950 * enable wake-up power for it.
1952 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1954 return pci_pme_capable(dev, PCI_D3cold) ?
1955 pci_enable_wake(dev, PCI_D3cold, enable) :
1956 pci_enable_wake(dev, PCI_D3hot, enable);
1958 EXPORT_SYMBOL(pci_wake_from_d3);
1961 * pci_target_state - find an appropriate low power state for a given PCI dev
1964 * Use underlying platform code to find a supported low power state for @dev.
1965 * If the platform can't manage @dev, return the deepest state from which it
1966 * can generate wake events, based on any available PME info.
1968 static pci_power_t pci_target_state(struct pci_dev *dev)
1970 pci_power_t target_state = PCI_D3hot;
1972 if (platform_pci_power_manageable(dev)) {
1974 * Call the platform to choose the target state of the device
1975 * and enable wake-up from this state if supported.
1977 pci_power_t state = platform_pci_choose_state(dev);
1980 case PCI_POWER_ERROR:
1985 if (pci_no_d1d2(dev))
1988 target_state = state;
1991 return target_state;
1995 target_state = PCI_D0;
1998 * If the device is in D3cold even though it's not power-manageable by
1999 * the platform, it may have been powered down by non-standard means.
2000 * Best to let it slumber.
2002 if (dev->current_state == PCI_D3cold)
2003 target_state = PCI_D3cold;
2005 if (device_may_wakeup(&dev->dev)) {
2007 * Find the deepest state from which the device can generate
2008 * wake-up events, make it the target state and enable device
2011 if (dev->pme_support) {
2013 && !(dev->pme_support & (1 << target_state)))
2018 return target_state;
2022 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2023 * @dev: Device to handle.
2025 * Choose the power state appropriate for the device depending on whether
2026 * it can wake up the system and/or is power manageable by the platform
2027 * (PCI_D3hot is the default) and put the device into that state.
2029 int pci_prepare_to_sleep(struct pci_dev *dev)
2031 pci_power_t target_state = pci_target_state(dev);
2034 if (target_state == PCI_POWER_ERROR)
2037 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
2039 error = pci_set_power_state(dev, target_state);
2042 pci_enable_wake(dev, target_state, false);
2046 EXPORT_SYMBOL(pci_prepare_to_sleep);
2049 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2050 * @dev: Device to handle.
2052 * Disable device's system wake-up capability and put it into D0.
2054 int pci_back_from_sleep(struct pci_dev *dev)
2056 pci_enable_wake(dev, PCI_D0, false);
2057 return pci_set_power_state(dev, PCI_D0);
2059 EXPORT_SYMBOL(pci_back_from_sleep);
2062 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2063 * @dev: PCI device being suspended.
2065 * Prepare @dev to generate wake-up events at run time and put it into a low
2068 int pci_finish_runtime_suspend(struct pci_dev *dev)
2070 pci_power_t target_state = pci_target_state(dev);
2073 if (target_state == PCI_POWER_ERROR)
2076 dev->runtime_d3cold = target_state == PCI_D3cold;
2078 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
2080 error = pci_set_power_state(dev, target_state);
2083 __pci_enable_wake(dev, target_state, true, false);
2084 dev->runtime_d3cold = false;
2091 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2092 * @dev: Device to check.
2094 * Return true if the device itself is capable of generating wake-up events
2095 * (through the platform or using the native PCIe PME) or if the device supports
2096 * PME and one of its upstream bridges can generate wake-up events.
2098 bool pci_dev_run_wake(struct pci_dev *dev)
2100 struct pci_bus *bus = dev->bus;
2102 if (device_run_wake(&dev->dev))
2105 if (!dev->pme_support)
2108 /* PME-capable in principle, but not from the intended sleep state */
2109 if (!pci_pme_capable(dev, pci_target_state(dev)))
2112 while (bus->parent) {
2113 struct pci_dev *bridge = bus->self;
2115 if (device_run_wake(&bridge->dev))
2121 /* We have reached the root bus. */
2123 return device_run_wake(bus->bridge);
2127 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2130 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2131 * @pci_dev: Device to check.
2133 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2134 * reconfigured due to wakeup settings difference between system and runtime
2135 * suspend and the current power state of it is suitable for the upcoming
2136 * (system) transition.
2138 * If the device is not configured for system wakeup, disable PME for it before
2139 * returning 'true' to prevent it from waking up the system unnecessarily.
2141 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2143 struct device *dev = &pci_dev->dev;
2145 if (!pm_runtime_suspended(dev)
2146 || pci_target_state(pci_dev) != pci_dev->current_state
2147 || platform_pci_need_resume(pci_dev)
2148 || (pci_dev->dev_flags & PCI_DEV_FLAGS_NEEDS_RESUME))
2152 * At this point the device is good to go unless it's been configured
2153 * to generate PME at the runtime suspend time, but it is not supposed
2154 * to wake up the system. In that case, simply disable PME for it
2155 * (it will have to be re-enabled on exit from system resume).
2157 * If the device's power state is D3cold and the platform check above
2158 * hasn't triggered, the device's configuration is suitable and we don't
2159 * need to manipulate it at all.
2161 spin_lock_irq(&dev->power.lock);
2163 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2164 !device_may_wakeup(dev))
2165 __pci_pme_active(pci_dev, false);
2167 spin_unlock_irq(&dev->power.lock);
2172 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2173 * @pci_dev: Device to handle.
2175 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2176 * it might have been disabled during the prepare phase of system suspend if
2177 * the device was not configured for system wakeup.
2179 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2181 struct device *dev = &pci_dev->dev;
2183 if (!pci_dev_run_wake(pci_dev))
2186 spin_lock_irq(&dev->power.lock);
2188 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2189 __pci_pme_active(pci_dev, true);
2191 spin_unlock_irq(&dev->power.lock);
2194 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2196 struct device *dev = &pdev->dev;
2197 struct device *parent = dev->parent;
2200 pm_runtime_get_sync(parent);
2201 pm_runtime_get_noresume(dev);
2203 * pdev->current_state is set to PCI_D3cold during suspending,
2204 * so wait until suspending completes
2206 pm_runtime_barrier(dev);
2208 * Only need to resume devices in D3cold, because config
2209 * registers are still accessible for devices suspended but
2212 if (pdev->current_state == PCI_D3cold)
2213 pm_runtime_resume(dev);
2216 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2218 struct device *dev = &pdev->dev;
2219 struct device *parent = dev->parent;
2221 pm_runtime_put(dev);
2223 pm_runtime_put_sync(parent);
2227 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2228 * @bridge: Bridge to check
2230 * This function checks if it is possible to move the bridge to D3.
2231 * Currently we only allow D3 for recent enough PCIe ports.
2233 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2237 if (!pci_is_pcie(bridge))
2240 switch (pci_pcie_type(bridge)) {
2241 case PCI_EXP_TYPE_ROOT_PORT:
2242 case PCI_EXP_TYPE_UPSTREAM:
2243 case PCI_EXP_TYPE_DOWNSTREAM:
2244 if (pci_bridge_d3_disable)
2248 * Hotplug interrupts cannot be delivered if the link is down,
2249 * so parents of a hotplug port must stay awake. In addition,
2250 * hotplug ports handled by firmware in System Management Mode
2251 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2252 * For simplicity, disallow in general for now.
2254 if (bridge->is_hotplug_bridge)
2257 if (pci_bridge_d3_force)
2261 * It should be safe to put PCIe ports from 2015 or newer
2264 if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) &&
2274 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2276 bool *d3cold_ok = data;
2278 if (/* The device needs to be allowed to go D3cold ... */
2279 dev->no_d3cold || !dev->d3cold_allowed ||
2281 /* ... and if it is wakeup capable to do so from D3cold. */
2282 (device_may_wakeup(&dev->dev) &&
2283 !pci_pme_capable(dev, PCI_D3cold)) ||
2285 /* If it is a bridge it must be allowed to go to D3. */
2286 !pci_power_manageable(dev))
2294 * pci_bridge_d3_update - Update bridge D3 capabilities
2295 * @dev: PCI device which is changed
2297 * Update upstream bridge PM capabilities accordingly depending on if the
2298 * device PM configuration was changed or the device is being removed. The
2299 * change is also propagated upstream.
2301 void pci_bridge_d3_update(struct pci_dev *dev)
2303 bool remove = !device_is_registered(&dev->dev);
2304 struct pci_dev *bridge;
2305 bool d3cold_ok = true;
2307 bridge = pci_upstream_bridge(dev);
2308 if (!bridge || !pci_bridge_d3_possible(bridge))
2312 * If D3 is currently allowed for the bridge, removing one of its
2313 * children won't change that.
2315 if (remove && bridge->bridge_d3)
2319 * If D3 is currently allowed for the bridge and a child is added or
2320 * changed, disallowance of D3 can only be caused by that child, so
2321 * we only need to check that single device, not any of its siblings.
2323 * If D3 is currently not allowed for the bridge, checking the device
2324 * first may allow us to skip checking its siblings.
2327 pci_dev_check_d3cold(dev, &d3cold_ok);
2330 * If D3 is currently not allowed for the bridge, this may be caused
2331 * either by the device being changed/removed or any of its siblings,
2332 * so we need to go through all children to find out if one of them
2333 * continues to block D3.
2335 if (d3cold_ok && !bridge->bridge_d3)
2336 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2339 if (bridge->bridge_d3 != d3cold_ok) {
2340 bridge->bridge_d3 = d3cold_ok;
2341 /* Propagate change to upstream bridges */
2342 pci_bridge_d3_update(bridge);
2347 * pci_d3cold_enable - Enable D3cold for device
2348 * @dev: PCI device to handle
2350 * This function can be used in drivers to enable D3cold from the device
2351 * they handle. It also updates upstream PCI bridge PM capabilities
2354 void pci_d3cold_enable(struct pci_dev *dev)
2356 if (dev->no_d3cold) {
2357 dev->no_d3cold = false;
2358 pci_bridge_d3_update(dev);
2361 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2364 * pci_d3cold_disable - Disable D3cold for device
2365 * @dev: PCI device to handle
2367 * This function can be used in drivers to disable D3cold from the device
2368 * they handle. It also updates upstream PCI bridge PM capabilities
2371 void pci_d3cold_disable(struct pci_dev *dev)
2373 if (!dev->no_d3cold) {
2374 dev->no_d3cold = true;
2375 pci_bridge_d3_update(dev);
2378 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2381 * pci_pm_init - Initialize PM functions of given PCI device
2382 * @dev: PCI device to handle.
2384 void pci_pm_init(struct pci_dev *dev)
2389 pm_runtime_forbid(&dev->dev);
2390 pm_runtime_set_active(&dev->dev);
2391 pm_runtime_enable(&dev->dev);
2392 device_enable_async_suspend(&dev->dev);
2393 dev->wakeup_prepared = false;
2396 dev->pme_support = 0;
2398 /* find PCI PM capability in list */
2399 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2402 /* Check device's ability to generate PME# */
2403 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2405 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2406 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2407 pmc & PCI_PM_CAP_VER_MASK);
2412 dev->d3_delay = PCI_PM_D3_WAIT;
2413 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2414 dev->bridge_d3 = pci_bridge_d3_possible(dev);
2415 dev->d3cold_allowed = true;
2417 dev->d1_support = false;
2418 dev->d2_support = false;
2419 if (!pci_no_d1d2(dev)) {
2420 if (pmc & PCI_PM_CAP_D1)
2421 dev->d1_support = true;
2422 if (pmc & PCI_PM_CAP_D2)
2423 dev->d2_support = true;
2425 if (dev->d1_support || dev->d2_support)
2426 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2427 dev->d1_support ? " D1" : "",
2428 dev->d2_support ? " D2" : "");
2431 pmc &= PCI_PM_CAP_PME_MASK;
2433 dev_printk(KERN_DEBUG, &dev->dev,
2434 "PME# supported from%s%s%s%s%s\n",
2435 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2436 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2437 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2438 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2439 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2440 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2441 dev->pme_poll = true;
2443 * Make device's PM flags reflect the wake-up capability, but
2444 * let the user space enable it to wake up the system as needed.
2446 device_set_wakeup_capable(&dev->dev, true);
2447 /* Disable the PME# generation functionality */
2448 pci_pme_active(dev, false);
2452 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2454 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2458 case PCI_EA_P_VF_MEM:
2459 flags |= IORESOURCE_MEM;
2461 case PCI_EA_P_MEM_PREFETCH:
2462 case PCI_EA_P_VF_MEM_PREFETCH:
2463 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2466 flags |= IORESOURCE_IO;
2475 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2478 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2479 return &dev->resource[bei];
2480 #ifdef CONFIG_PCI_IOV
2481 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2482 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2483 return &dev->resource[PCI_IOV_RESOURCES +
2484 bei - PCI_EA_BEI_VF_BAR0];
2486 else if (bei == PCI_EA_BEI_ROM)
2487 return &dev->resource[PCI_ROM_RESOURCE];
2492 /* Read an Enhanced Allocation (EA) entry */
2493 static int pci_ea_read(struct pci_dev *dev, int offset)
2495 struct resource *res;
2496 int ent_size, ent_offset = offset;
2497 resource_size_t start, end;
2498 unsigned long flags;
2499 u32 dw0, bei, base, max_offset;
2501 bool support_64 = (sizeof(resource_size_t) >= 8);
2503 pci_read_config_dword(dev, ent_offset, &dw0);
2506 /* Entry size field indicates DWORDs after 1st */
2507 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2509 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2512 bei = (dw0 & PCI_EA_BEI) >> 4;
2513 prop = (dw0 & PCI_EA_PP) >> 8;
2516 * If the Property is in the reserved range, try the Secondary
2519 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2520 prop = (dw0 & PCI_EA_SP) >> 16;
2521 if (prop > PCI_EA_P_BRIDGE_IO)
2524 res = pci_ea_get_resource(dev, bei, prop);
2526 dev_err(&dev->dev, "Unsupported EA entry BEI: %u\n", bei);
2530 flags = pci_ea_flags(dev, prop);
2532 dev_err(&dev->dev, "Unsupported EA properties: %#x\n", prop);
2537 pci_read_config_dword(dev, ent_offset, &base);
2538 start = (base & PCI_EA_FIELD_MASK);
2541 /* Read MaxOffset */
2542 pci_read_config_dword(dev, ent_offset, &max_offset);
2545 /* Read Base MSBs (if 64-bit entry) */
2546 if (base & PCI_EA_IS_64) {
2549 pci_read_config_dword(dev, ent_offset, &base_upper);
2552 flags |= IORESOURCE_MEM_64;
2554 /* entry starts above 32-bit boundary, can't use */
2555 if (!support_64 && base_upper)
2559 start |= ((u64)base_upper << 32);
2562 end = start + (max_offset | 0x03);
2564 /* Read MaxOffset MSBs (if 64-bit entry) */
2565 if (max_offset & PCI_EA_IS_64) {
2566 u32 max_offset_upper;
2568 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2571 flags |= IORESOURCE_MEM_64;
2573 /* entry too big, can't use */
2574 if (!support_64 && max_offset_upper)
2578 end += ((u64)max_offset_upper << 32);
2582 dev_err(&dev->dev, "EA Entry crosses address boundary\n");
2586 if (ent_size != ent_offset - offset) {
2588 "EA Entry Size (%d) does not match length read (%d)\n",
2589 ent_size, ent_offset - offset);
2593 res->name = pci_name(dev);
2598 if (bei <= PCI_EA_BEI_BAR5)
2599 dev_printk(KERN_DEBUG, &dev->dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2601 else if (bei == PCI_EA_BEI_ROM)
2602 dev_printk(KERN_DEBUG, &dev->dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2604 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2605 dev_printk(KERN_DEBUG, &dev->dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2606 bei - PCI_EA_BEI_VF_BAR0, res, prop);
2608 dev_printk(KERN_DEBUG, &dev->dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2612 return offset + ent_size;
2615 /* Enhanced Allocation Initialization */
2616 void pci_ea_init(struct pci_dev *dev)
2623 /* find PCI EA capability in list */
2624 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2628 /* determine the number of entries */
2629 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2631 num_ent &= PCI_EA_NUM_ENT_MASK;
2633 offset = ea + PCI_EA_FIRST_ENT;
2635 /* Skip DWORD 2 for type 1 functions */
2636 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2639 /* parse each EA entry */
2640 for (i = 0; i < num_ent; ++i)
2641 offset = pci_ea_read(dev, offset);
2644 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2645 struct pci_cap_saved_state *new_cap)
2647 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2651 * _pci_add_cap_save_buffer - allocate buffer for saving given
2652 * capability registers
2653 * @dev: the PCI device
2654 * @cap: the capability to allocate the buffer for
2655 * @extended: Standard or Extended capability ID
2656 * @size: requested size of the buffer
2658 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2659 bool extended, unsigned int size)
2662 struct pci_cap_saved_state *save_state;
2665 pos = pci_find_ext_capability(dev, cap);
2667 pos = pci_find_capability(dev, cap);
2672 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2676 save_state->cap.cap_nr = cap;
2677 save_state->cap.cap_extended = extended;
2678 save_state->cap.size = size;
2679 pci_add_saved_cap(dev, save_state);
2684 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2686 return _pci_add_cap_save_buffer(dev, cap, false, size);
2689 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2691 return _pci_add_cap_save_buffer(dev, cap, true, size);
2695 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2696 * @dev: the PCI device
2698 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2702 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2703 PCI_EXP_SAVE_REGS * sizeof(u16));
2706 "unable to preallocate PCI Express save buffer\n");
2708 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2711 "unable to preallocate PCI-X save buffer\n");
2713 pci_allocate_vc_save_buffers(dev);
2716 void pci_free_cap_save_buffers(struct pci_dev *dev)
2718 struct pci_cap_saved_state *tmp;
2719 struct hlist_node *n;
2721 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2726 * pci_configure_ari - enable or disable ARI forwarding
2727 * @dev: the PCI device
2729 * If @dev and its upstream bridge both support ARI, enable ARI in the
2730 * bridge. Otherwise, disable ARI in the bridge.
2732 void pci_configure_ari(struct pci_dev *dev)
2735 struct pci_dev *bridge;
2737 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2740 bridge = dev->bus->self;
2744 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2745 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2748 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2749 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2750 PCI_EXP_DEVCTL2_ARI);
2751 bridge->ari_enabled = 1;
2753 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2754 PCI_EXP_DEVCTL2_ARI);
2755 bridge->ari_enabled = 0;
2759 static int pci_acs_enable;
2762 * pci_request_acs - ask for ACS to be enabled if supported
2764 void pci_request_acs(void)
2770 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2771 * @dev: the PCI device
2773 static void pci_std_enable_acs(struct pci_dev *dev)
2779 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2783 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2784 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2786 /* Source Validation */
2787 ctrl |= (cap & PCI_ACS_SV);
2789 /* P2P Request Redirect */
2790 ctrl |= (cap & PCI_ACS_RR);
2792 /* P2P Completion Redirect */
2793 ctrl |= (cap & PCI_ACS_CR);
2795 /* Upstream Forwarding */
2796 ctrl |= (cap & PCI_ACS_UF);
2798 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2802 * pci_enable_acs - enable ACS if hardware support it
2803 * @dev: the PCI device
2805 void pci_enable_acs(struct pci_dev *dev)
2807 if (!pci_acs_enable)
2810 if (!pci_dev_specific_enable_acs(dev))
2813 pci_std_enable_acs(dev);
2816 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2821 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2826 * Except for egress control, capabilities are either required
2827 * or only required if controllable. Features missing from the
2828 * capability field can therefore be assumed as hard-wired enabled.
2830 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2831 acs_flags &= (cap | PCI_ACS_EC);
2833 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2834 return (ctrl & acs_flags) == acs_flags;
2838 * pci_acs_enabled - test ACS against required flags for a given device
2839 * @pdev: device to test
2840 * @acs_flags: required PCI ACS flags
2842 * Return true if the device supports the provided flags. Automatically
2843 * filters out flags that are not implemented on multifunction devices.
2845 * Note that this interface checks the effective ACS capabilities of the
2846 * device rather than the actual capabilities. For instance, most single
2847 * function endpoints are not required to support ACS because they have no
2848 * opportunity for peer-to-peer access. We therefore return 'true'
2849 * regardless of whether the device exposes an ACS capability. This makes
2850 * it much easier for callers of this function to ignore the actual type
2851 * or topology of the device when testing ACS support.
2853 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2857 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2862 * Conventional PCI and PCI-X devices never support ACS, either
2863 * effectively or actually. The shared bus topology implies that
2864 * any device on the bus can receive or snoop DMA.
2866 if (!pci_is_pcie(pdev))
2869 switch (pci_pcie_type(pdev)) {
2871 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2872 * but since their primary interface is PCI/X, we conservatively
2873 * handle them as we would a non-PCIe device.
2875 case PCI_EXP_TYPE_PCIE_BRIDGE:
2877 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2878 * applicable... must never implement an ACS Extended Capability...".
2879 * This seems arbitrary, but we take a conservative interpretation
2880 * of this statement.
2882 case PCI_EXP_TYPE_PCI_BRIDGE:
2883 case PCI_EXP_TYPE_RC_EC:
2886 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2887 * implement ACS in order to indicate their peer-to-peer capabilities,
2888 * regardless of whether they are single- or multi-function devices.
2890 case PCI_EXP_TYPE_DOWNSTREAM:
2891 case PCI_EXP_TYPE_ROOT_PORT:
2892 return pci_acs_flags_enabled(pdev, acs_flags);
2894 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2895 * implemented by the remaining PCIe types to indicate peer-to-peer
2896 * capabilities, but only when they are part of a multifunction
2897 * device. The footnote for section 6.12 indicates the specific
2898 * PCIe types included here.
2900 case PCI_EXP_TYPE_ENDPOINT:
2901 case PCI_EXP_TYPE_UPSTREAM:
2902 case PCI_EXP_TYPE_LEG_END:
2903 case PCI_EXP_TYPE_RC_END:
2904 if (!pdev->multifunction)
2907 return pci_acs_flags_enabled(pdev, acs_flags);
2911 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2912 * to single function devices with the exception of downstream ports.
2918 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2919 * @start: starting downstream device
2920 * @end: ending upstream device or NULL to search to the root bus
2921 * @acs_flags: required flags
2923 * Walk up a device tree from start to end testing PCI ACS support. If
2924 * any step along the way does not support the required flags, return false.
2926 bool pci_acs_path_enabled(struct pci_dev *start,
2927 struct pci_dev *end, u16 acs_flags)
2929 struct pci_dev *pdev, *parent = start;
2934 if (!pci_acs_enabled(pdev, acs_flags))
2937 if (pci_is_root_bus(pdev->bus))
2938 return (end == NULL);
2940 parent = pdev->bus->self;
2941 } while (pdev != end);
2947 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2948 * @dev: the PCI device
2949 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2951 * Perform INTx swizzling for a device behind one level of bridge. This is
2952 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2953 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2954 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2955 * the PCI Express Base Specification, Revision 2.1)
2957 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2961 if (pci_ari_enabled(dev->bus))
2964 slot = PCI_SLOT(dev->devfn);
2966 return (((pin - 1) + slot) % 4) + 1;
2969 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2977 while (!pci_is_root_bus(dev->bus)) {
2978 pin = pci_swizzle_interrupt_pin(dev, pin);
2979 dev = dev->bus->self;
2986 * pci_common_swizzle - swizzle INTx all the way to root bridge
2987 * @dev: the PCI device
2988 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2990 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2991 * bridges all the way up to a PCI root bus.
2993 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2997 while (!pci_is_root_bus(dev->bus)) {
2998 pin = pci_swizzle_interrupt_pin(dev, pin);
2999 dev = dev->bus->self;
3002 return PCI_SLOT(dev->devfn);
3004 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3007 * pci_release_region - Release a PCI bar
3008 * @pdev: PCI device whose resources were previously reserved by pci_request_region
3009 * @bar: BAR to release
3011 * Releases the PCI I/O and memory resources previously reserved by a
3012 * successful call to pci_request_region. Call this function only
3013 * after all use of the PCI regions has ceased.
3015 void pci_release_region(struct pci_dev *pdev, int bar)
3017 struct pci_devres *dr;
3019 if (pci_resource_len(pdev, bar) == 0)
3021 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3022 release_region(pci_resource_start(pdev, bar),
3023 pci_resource_len(pdev, bar));
3024 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3025 release_mem_region(pci_resource_start(pdev, bar),
3026 pci_resource_len(pdev, bar));
3028 dr = find_pci_dr(pdev);
3030 dr->region_mask &= ~(1 << bar);
3032 EXPORT_SYMBOL(pci_release_region);
3035 * __pci_request_region - Reserved PCI I/O and memory resource
3036 * @pdev: PCI device whose resources are to be reserved
3037 * @bar: BAR to be reserved
3038 * @res_name: Name to be associated with resource.
3039 * @exclusive: whether the region access is exclusive or not
3041 * Mark the PCI region associated with PCI device @pdev BR @bar as
3042 * being reserved by owner @res_name. Do not access any
3043 * address inside the PCI regions unless this call returns
3046 * If @exclusive is set, then the region is marked so that userspace
3047 * is explicitly not allowed to map the resource via /dev/mem or
3048 * sysfs MMIO access.
3050 * Returns 0 on success, or %EBUSY on error. A warning
3051 * message is also printed on failure.
3053 static int __pci_request_region(struct pci_dev *pdev, int bar,
3054 const char *res_name, int exclusive)
3056 struct pci_devres *dr;
3058 if (pci_resource_len(pdev, bar) == 0)
3061 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3062 if (!request_region(pci_resource_start(pdev, bar),
3063 pci_resource_len(pdev, bar), res_name))
3065 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3066 if (!__request_mem_region(pci_resource_start(pdev, bar),
3067 pci_resource_len(pdev, bar), res_name,
3072 dr = find_pci_dr(pdev);
3074 dr->region_mask |= 1 << bar;
3079 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
3080 &pdev->resource[bar]);
3085 * pci_request_region - Reserve PCI I/O and memory resource
3086 * @pdev: PCI device whose resources are to be reserved
3087 * @bar: BAR to be reserved
3088 * @res_name: Name to be associated with resource
3090 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3091 * being reserved by owner @res_name. Do not access any
3092 * address inside the PCI regions unless this call returns
3095 * Returns 0 on success, or %EBUSY on error. A warning
3096 * message is also printed on failure.
3098 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3100 return __pci_request_region(pdev, bar, res_name, 0);
3102 EXPORT_SYMBOL(pci_request_region);
3105 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
3106 * @pdev: PCI device whose resources are to be reserved
3107 * @bar: BAR to be reserved
3108 * @res_name: Name to be associated with resource.
3110 * Mark the PCI region associated with PCI device @pdev BR @bar as
3111 * being reserved by owner @res_name. Do not access any
3112 * address inside the PCI regions unless this call returns
3115 * Returns 0 on success, or %EBUSY on error. A warning
3116 * message is also printed on failure.
3118 * The key difference that _exclusive makes it that userspace is
3119 * explicitly not allowed to map the resource via /dev/mem or
3122 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3123 const char *res_name)
3125 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3127 EXPORT_SYMBOL(pci_request_region_exclusive);
3130 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3131 * @pdev: PCI device whose resources were previously reserved
3132 * @bars: Bitmask of BARs to be released
3134 * Release selected PCI I/O and memory resources previously reserved.
3135 * Call this function only after all use of the PCI regions has ceased.
3137 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3141 for (i = 0; i < 6; i++)
3142 if (bars & (1 << i))
3143 pci_release_region(pdev, i);
3145 EXPORT_SYMBOL(pci_release_selected_regions);
3147 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3148 const char *res_name, int excl)
3152 for (i = 0; i < 6; i++)
3153 if (bars & (1 << i))
3154 if (__pci_request_region(pdev, i, res_name, excl))
3160 if (bars & (1 << i))
3161 pci_release_region(pdev, i);
3168 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3169 * @pdev: PCI device whose resources are to be reserved
3170 * @bars: Bitmask of BARs to be requested
3171 * @res_name: Name to be associated with resource
3173 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3174 const char *res_name)
3176 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3178 EXPORT_SYMBOL(pci_request_selected_regions);
3180 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3181 const char *res_name)
3183 return __pci_request_selected_regions(pdev, bars, res_name,
3184 IORESOURCE_EXCLUSIVE);
3186 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3189 * pci_release_regions - Release reserved PCI I/O and memory resources
3190 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
3192 * Releases all PCI I/O and memory resources previously reserved by a
3193 * successful call to pci_request_regions. Call this function only
3194 * after all use of the PCI regions has ceased.
3197 void pci_release_regions(struct pci_dev *pdev)
3199 pci_release_selected_regions(pdev, (1 << 6) - 1);
3201 EXPORT_SYMBOL(pci_release_regions);
3204 * pci_request_regions - Reserved PCI I/O and memory resources
3205 * @pdev: PCI device whose resources are to be reserved
3206 * @res_name: Name to be associated with resource.
3208 * Mark all PCI regions associated with PCI device @pdev as
3209 * being reserved by owner @res_name. Do not access any
3210 * address inside the PCI regions unless this call returns
3213 * Returns 0 on success, or %EBUSY on error. A warning
3214 * message is also printed on failure.
3216 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3218 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3220 EXPORT_SYMBOL(pci_request_regions);
3223 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3224 * @pdev: PCI device whose resources are to be reserved
3225 * @res_name: Name to be associated with resource.
3227 * Mark all PCI regions associated with PCI device @pdev as
3228 * being reserved by owner @res_name. Do not access any
3229 * address inside the PCI regions unless this call returns
3232 * pci_request_regions_exclusive() will mark the region so that
3233 * /dev/mem and the sysfs MMIO access will not be allowed.
3235 * Returns 0 on success, or %EBUSY on error. A warning
3236 * message is also printed on failure.
3238 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3240 return pci_request_selected_regions_exclusive(pdev,
3241 ((1 << 6) - 1), res_name);
3243 EXPORT_SYMBOL(pci_request_regions_exclusive);
3247 struct list_head list;
3249 resource_size_t size;
3252 static LIST_HEAD(io_range_list);
3253 static DEFINE_SPINLOCK(io_range_lock);
3257 * Record the PCI IO range (expressed as CPU physical address + size).
3258 * Return a negative value if an error has occured, zero otherwise
3260 int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size)
3265 struct io_range *range;
3266 resource_size_t allocated_size = 0;
3268 /* check if the range hasn't been previously recorded */
3269 spin_lock(&io_range_lock);
3270 list_for_each_entry(range, &io_range_list, list) {
3271 if (addr >= range->start && addr + size <= range->start + size) {
3272 /* range already registered, bail out */
3275 allocated_size += range->size;
3278 /* range not registed yet, check for available space */
3279 if (allocated_size + size - 1 > IO_SPACE_LIMIT) {
3280 /* if it's too big check if 64K space can be reserved */
3281 if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) {
3287 pr_warn("Requested IO range too big, new size set to 64K\n");
3290 /* add the range to the list */
3291 range = kzalloc(sizeof(*range), GFP_ATOMIC);
3297 range->start = addr;
3300 list_add_tail(&range->list, &io_range_list);
3303 spin_unlock(&io_range_lock);
3309 phys_addr_t pci_pio_to_address(unsigned long pio)
3311 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3314 struct io_range *range;
3315 resource_size_t allocated_size = 0;
3317 if (pio > IO_SPACE_LIMIT)
3320 spin_lock(&io_range_lock);
3321 list_for_each_entry(range, &io_range_list, list) {
3322 if (pio >= allocated_size && pio < allocated_size + range->size) {
3323 address = range->start + pio - allocated_size;
3326 allocated_size += range->size;
3328 spin_unlock(&io_range_lock);
3334 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3337 struct io_range *res;
3338 resource_size_t offset = 0;
3339 unsigned long addr = -1;
3341 spin_lock(&io_range_lock);
3342 list_for_each_entry(res, &io_range_list, list) {
3343 if (address >= res->start && address < res->start + res->size) {
3344 addr = address - res->start + offset;
3347 offset += res->size;
3349 spin_unlock(&io_range_lock);
3353 if (address > IO_SPACE_LIMIT)
3354 return (unsigned long)-1;
3356 return (unsigned long) address;
3361 * pci_remap_iospace - Remap the memory mapped I/O space
3362 * @res: Resource describing the I/O space
3363 * @phys_addr: physical address of range to be mapped
3365 * Remap the memory mapped I/O space described by the @res
3366 * and the CPU physical address @phys_addr into virtual address space.
3367 * Only architectures that have memory mapped IO functions defined
3368 * (and the PCI_IOBASE value defined) should call this function.
3370 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3372 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3373 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3375 if (!(res->flags & IORESOURCE_IO))
3378 if (res->end > IO_SPACE_LIMIT)
3381 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3382 pgprot_device(PAGE_KERNEL));
3384 /* this architecture does not have memory mapped I/O space,
3385 so this function should never be called */
3386 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3390 EXPORT_SYMBOL(pci_remap_iospace);
3393 * pci_unmap_iospace - Unmap the memory mapped I/O space
3394 * @res: resource to be unmapped
3396 * Unmap the CPU virtual address @res from virtual address space.
3397 * Only architectures that have memory mapped IO functions defined
3398 * (and the PCI_IOBASE value defined) should call this function.
3400 void pci_unmap_iospace(struct resource *res)
3402 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3403 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3405 unmap_kernel_range(vaddr, resource_size(res));
3408 EXPORT_SYMBOL(pci_unmap_iospace);
3411 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
3412 * @dev: Generic device to remap IO address for
3413 * @offset: Resource address to map
3414 * @size: Size of map
3416 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
3419 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
3420 resource_size_t offset,
3421 resource_size_t size)
3423 void __iomem **ptr, *addr;
3425 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
3429 addr = pci_remap_cfgspace(offset, size);
3432 devres_add(dev, ptr);
3438 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
3441 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
3442 * @dev: generic device to handle the resource for
3443 * @res: configuration space resource to be handled
3445 * Checks that a resource is a valid memory region, requests the memory
3446 * region and ioremaps with pci_remap_cfgspace() API that ensures the
3447 * proper PCI configuration space memory attributes are guaranteed.
3449 * All operations are managed and will be undone on driver detach.
3451 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
3452 * on failure. Usage example:
3454 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3455 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
3457 * return PTR_ERR(base);
3459 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
3460 struct resource *res)
3462 resource_size_t size;
3464 void __iomem *dest_ptr;
3468 if (!res || resource_type(res) != IORESOURCE_MEM) {
3469 dev_err(dev, "invalid resource\n");
3470 return IOMEM_ERR_PTR(-EINVAL);
3473 size = resource_size(res);
3474 name = res->name ?: dev_name(dev);
3476 if (!devm_request_mem_region(dev, res->start, size, name)) {
3477 dev_err(dev, "can't request region for resource %pR\n", res);
3478 return IOMEM_ERR_PTR(-EBUSY);
3481 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
3483 dev_err(dev, "ioremap failed for resource %pR\n", res);
3484 devm_release_mem_region(dev, res->start, size);
3485 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
3490 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
3492 static void __pci_set_master(struct pci_dev *dev, bool enable)
3496 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3498 cmd = old_cmd | PCI_COMMAND_MASTER;
3500 cmd = old_cmd & ~PCI_COMMAND_MASTER;
3501 if (cmd != old_cmd) {
3502 dev_dbg(&dev->dev, "%s bus mastering\n",
3503 enable ? "enabling" : "disabling");
3504 pci_write_config_word(dev, PCI_COMMAND, cmd);
3506 dev->is_busmaster = enable;
3510 * pcibios_setup - process "pci=" kernel boot arguments
3511 * @str: string used to pass in "pci=" kernel boot arguments
3513 * Process kernel boot arguments. This is the default implementation.
3514 * Architecture specific implementations can override this as necessary.
3516 char * __weak __init pcibios_setup(char *str)
3522 * pcibios_set_master - enable PCI bus-mastering for device dev
3523 * @dev: the PCI device to enable
3525 * Enables PCI bus-mastering for the device. This is the default
3526 * implementation. Architecture specific implementations can override
3527 * this if necessary.
3529 void __weak pcibios_set_master(struct pci_dev *dev)
3533 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3534 if (pci_is_pcie(dev))
3537 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3539 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3540 else if (lat > pcibios_max_latency)
3541 lat = pcibios_max_latency;
3545 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3549 * pci_set_master - enables bus-mastering for device dev
3550 * @dev: the PCI device to enable
3552 * Enables bus-mastering on the device and calls pcibios_set_master()
3553 * to do the needed arch specific settings.
3555 void pci_set_master(struct pci_dev *dev)
3557 __pci_set_master(dev, true);
3558 pcibios_set_master(dev);
3560 EXPORT_SYMBOL(pci_set_master);
3563 * pci_clear_master - disables bus-mastering for device dev
3564 * @dev: the PCI device to disable
3566 void pci_clear_master(struct pci_dev *dev)
3568 __pci_set_master(dev, false);
3570 EXPORT_SYMBOL(pci_clear_master);
3573 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3574 * @dev: the PCI device for which MWI is to be enabled
3576 * Helper function for pci_set_mwi.
3577 * Originally copied from drivers/net/acenic.c.
3578 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3580 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3582 int pci_set_cacheline_size(struct pci_dev *dev)
3586 if (!pci_cache_line_size)
3589 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3590 equal to or multiple of the right value. */
3591 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3592 if (cacheline_size >= pci_cache_line_size &&
3593 (cacheline_size % pci_cache_line_size) == 0)
3596 /* Write the correct value. */
3597 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3599 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3600 if (cacheline_size == pci_cache_line_size)
3603 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
3604 pci_cache_line_size << 2);
3608 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3611 * pci_set_mwi - enables memory-write-invalidate PCI transaction
3612 * @dev: the PCI device for which MWI is enabled
3614 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3616 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3618 int pci_set_mwi(struct pci_dev *dev)
3620 #ifdef PCI_DISABLE_MWI
3626 rc = pci_set_cacheline_size(dev);
3630 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3631 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
3632 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
3633 cmd |= PCI_COMMAND_INVALIDATE;
3634 pci_write_config_word(dev, PCI_COMMAND, cmd);
3639 EXPORT_SYMBOL(pci_set_mwi);
3642 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3643 * @dev: the PCI device for which MWI is enabled
3645 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3646 * Callers are not required to check the return value.
3648 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3650 int pci_try_set_mwi(struct pci_dev *dev)
3652 #ifdef PCI_DISABLE_MWI
3655 return pci_set_mwi(dev);
3658 EXPORT_SYMBOL(pci_try_set_mwi);
3661 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3662 * @dev: the PCI device to disable
3664 * Disables PCI Memory-Write-Invalidate transaction on the device
3666 void pci_clear_mwi(struct pci_dev *dev)
3668 #ifndef PCI_DISABLE_MWI
3671 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3672 if (cmd & PCI_COMMAND_INVALIDATE) {
3673 cmd &= ~PCI_COMMAND_INVALIDATE;
3674 pci_write_config_word(dev, PCI_COMMAND, cmd);
3678 EXPORT_SYMBOL(pci_clear_mwi);
3681 * pci_intx - enables/disables PCI INTx for device dev
3682 * @pdev: the PCI device to operate on
3683 * @enable: boolean: whether to enable or disable PCI INTx
3685 * Enables/disables PCI INTx for device dev
3687 void pci_intx(struct pci_dev *pdev, int enable)
3689 u16 pci_command, new;
3691 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3694 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3696 new = pci_command | PCI_COMMAND_INTX_DISABLE;
3698 if (new != pci_command) {
3699 struct pci_devres *dr;
3701 pci_write_config_word(pdev, PCI_COMMAND, new);
3703 dr = find_pci_dr(pdev);
3704 if (dr && !dr->restore_intx) {
3705 dr->restore_intx = 1;
3706 dr->orig_intx = !enable;
3710 EXPORT_SYMBOL_GPL(pci_intx);
3713 * pci_intx_mask_supported - probe for INTx masking support
3714 * @dev: the PCI device to operate on
3716 * Check if the device dev support INTx masking via the config space
3719 bool pci_intx_mask_supported(struct pci_dev *dev)
3721 bool mask_supported = false;
3724 if (dev->broken_intx_masking)
3727 pci_cfg_access_lock(dev);
3729 pci_read_config_word(dev, PCI_COMMAND, &orig);
3730 pci_write_config_word(dev, PCI_COMMAND,
3731 orig ^ PCI_COMMAND_INTX_DISABLE);
3732 pci_read_config_word(dev, PCI_COMMAND, &new);
3735 * There's no way to protect against hardware bugs or detect them
3736 * reliably, but as long as we know what the value should be, let's
3737 * go ahead and check it.
3739 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
3740 dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
3742 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
3743 mask_supported = true;
3744 pci_write_config_word(dev, PCI_COMMAND, orig);
3747 pci_cfg_access_unlock(dev);
3748 return mask_supported;
3750 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
3752 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3754 struct pci_bus *bus = dev->bus;
3755 bool mask_updated = true;
3756 u32 cmd_status_dword;
3757 u16 origcmd, newcmd;
3758 unsigned long flags;
3762 * We do a single dword read to retrieve both command and status.
3763 * Document assumptions that make this possible.
3765 BUILD_BUG_ON(PCI_COMMAND % 4);
3766 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3768 raw_spin_lock_irqsave(&pci_lock, flags);
3770 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3772 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3775 * Check interrupt status register to see whether our device
3776 * triggered the interrupt (when masking) or the next IRQ is
3777 * already pending (when unmasking).
3779 if (mask != irq_pending) {
3780 mask_updated = false;
3784 origcmd = cmd_status_dword;
3785 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3787 newcmd |= PCI_COMMAND_INTX_DISABLE;
3788 if (newcmd != origcmd)
3789 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3792 raw_spin_unlock_irqrestore(&pci_lock, flags);
3794 return mask_updated;
3798 * pci_check_and_mask_intx - mask INTx on pending interrupt
3799 * @dev: the PCI device to operate on
3801 * Check if the device dev has its INTx line asserted, mask it and
3802 * return true in that case. False is returned if not interrupt was
3805 bool pci_check_and_mask_intx(struct pci_dev *dev)
3807 return pci_check_and_set_intx_mask(dev, true);
3809 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3812 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3813 * @dev: the PCI device to operate on
3815 * Check if the device dev has its INTx line asserted, unmask it if not
3816 * and return true. False is returned and the mask remains active if
3817 * there was still an interrupt pending.
3819 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3821 return pci_check_and_set_intx_mask(dev, false);
3823 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3826 * pci_wait_for_pending_transaction - waits for pending transaction
3827 * @dev: the PCI device to operate on
3829 * Return 0 if transaction is pending 1 otherwise.
3831 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3833 if (!pci_is_pcie(dev))
3836 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3837 PCI_EXP_DEVSTA_TRPND);
3839 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3842 * We should only need to wait 100ms after FLR, but some devices take longer.
3843 * Wait for up to 1000ms for config space to return something other than -1.
3844 * Intel IGD requires this when an LCD panel is attached. We read the 2nd
3845 * dword because VFs don't implement the 1st dword.
3847 static void pci_flr_wait(struct pci_dev *dev)
3854 pci_read_config_dword(dev, PCI_COMMAND, &id);
3855 } while (i++ < 10 && id == ~0);
3858 dev_warn(&dev->dev, "Failed to return from FLR\n");
3860 dev_info(&dev->dev, "Required additional %dms to return from FLR\n",
3865 * pcie_has_flr - check if a device supports function level resets
3866 * @dev: device to check
3868 * Returns true if the device advertises support for PCIe function level
3871 static bool pcie_has_flr(struct pci_dev *dev)
3875 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
3878 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3879 return cap & PCI_EXP_DEVCAP_FLR;
3883 * pcie_flr - initiate a PCIe function level reset
3884 * @dev: device to reset
3886 * Initiate a function level reset on @dev. The caller should ensure the
3887 * device supports FLR before calling this function, e.g. by using the
3888 * pcie_has_flr() helper.
3890 void pcie_flr(struct pci_dev *dev)
3892 if (!pci_wait_for_pending_transaction(dev))
3893 dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
3895 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3898 EXPORT_SYMBOL_GPL(pcie_flr);
3900 static int pci_af_flr(struct pci_dev *dev, int probe)
3905 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3909 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
3912 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3913 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3920 * Wait for Transaction Pending bit to clear. A word-aligned test
3921 * is used, so we use the conrol offset rather than status and shift
3922 * the test bit to match.
3924 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
3925 PCI_AF_STATUS_TP << 8))
3926 dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
3928 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3934 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3935 * @dev: Device to reset.
3936 * @probe: If set, only check if the device can be reset this way.
3938 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3939 * unset, it will be reinitialized internally when going from PCI_D3hot to
3940 * PCI_D0. If that's the case and the device is not in a low-power state
3941 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3943 * NOTE: This causes the caller to sleep for twice the device power transition
3944 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3945 * by default (i.e. unless the @dev's d3_delay field has a different value).
3946 * Moreover, only devices in D0 can be reset by this function.
3948 static int pci_pm_reset(struct pci_dev *dev, int probe)
3952 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
3955 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3956 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3962 if (dev->current_state != PCI_D0)
3965 csr &= ~PCI_PM_CTRL_STATE_MASK;
3967 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3968 pci_dev_d3_sleep(dev);
3970 csr &= ~PCI_PM_CTRL_STATE_MASK;
3972 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3973 pci_dev_d3_sleep(dev);
3978 void pci_reset_secondary_bus(struct pci_dev *dev)
3982 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3983 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3984 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3986 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
3987 * this to 2ms to ensure that we meet the minimum requirement.
3991 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3992 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3995 * Trhfa for conventional PCI is 2^25 clock cycles.
3996 * Assuming a minimum 33MHz clock this results in a 1s
3997 * delay before we can consider subordinate devices to
3998 * be re-initialized. PCIe has some ways to shorten this,
3999 * but we don't make use of them yet.
4004 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4006 pci_reset_secondary_bus(dev);
4010 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
4011 * @dev: Bridge device
4013 * Use the bridge control register to assert reset on the secondary bus.
4014 * Devices on the secondary bus are left in power-on state.
4016 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
4018 pcibios_reset_secondary_bus(dev);
4020 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
4022 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4024 struct pci_dev *pdev;
4026 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4027 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4030 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4037 pci_reset_bridge_secondary_bus(dev->bus->self);
4042 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4046 if (!hotplug || !try_module_get(hotplug->ops->owner))
4049 if (hotplug->ops->reset_slot)
4050 rc = hotplug->ops->reset_slot(hotplug, probe);
4052 module_put(hotplug->ops->owner);
4057 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4059 struct pci_dev *pdev;
4061 if (dev->subordinate || !dev->slot ||
4062 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4065 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4066 if (pdev != dev && pdev->slot == dev->slot)
4069 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4072 static int __pci_dev_reset(struct pci_dev *dev, int probe)
4078 rc = pci_dev_specific_reset(dev, probe);
4082 if (pcie_has_flr(dev)) {
4089 rc = pci_af_flr(dev, probe);
4093 rc = pci_pm_reset(dev, probe);
4097 rc = pci_dev_reset_slot_function(dev, probe);
4101 rc = pci_parent_bus_reset(dev, probe);
4106 static void pci_dev_lock(struct pci_dev *dev)
4108 pci_cfg_access_lock(dev);
4109 /* block PM suspend, driver probe, etc. */
4110 device_lock(&dev->dev);
4113 /* Return 1 on successful lock, 0 on contention */
4114 static int pci_dev_trylock(struct pci_dev *dev)
4116 if (pci_cfg_access_trylock(dev)) {
4117 if (device_trylock(&dev->dev))
4119 pci_cfg_access_unlock(dev);
4125 static void pci_dev_unlock(struct pci_dev *dev)
4127 device_unlock(&dev->dev);
4128 pci_cfg_access_unlock(dev);
4132 * pci_reset_notify - notify device driver of reset
4133 * @dev: device to be notified of reset
4134 * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
4137 * Must be called prior to device access being disabled and after device
4138 * access is restored.
4140 static void pci_reset_notify(struct pci_dev *dev, bool prepare)
4142 const struct pci_error_handlers *err_handler =
4143 dev->driver ? dev->driver->err_handler : NULL;
4144 if (err_handler && err_handler->reset_notify)
4145 err_handler->reset_notify(dev, prepare);
4148 static void pci_dev_save_and_disable(struct pci_dev *dev)
4150 pci_reset_notify(dev, true);
4153 * Wake-up device prior to save. PM registers default to D0 after
4154 * reset and a simple register restore doesn't reliably return
4155 * to a non-D0 state anyway.
4157 pci_set_power_state(dev, PCI_D0);
4159 pci_save_state(dev);
4161 * Disable the device by clearing the Command register, except for
4162 * INTx-disable which is set. This not only disables MMIO and I/O port
4163 * BARs, but also prevents the device from being Bus Master, preventing
4164 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4165 * compliant devices, INTx-disable prevents legacy interrupts.
4167 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4170 static void pci_dev_restore(struct pci_dev *dev)
4172 pci_restore_state(dev);
4173 pci_reset_notify(dev, false);
4176 static int pci_dev_reset(struct pci_dev *dev, int probe)
4183 rc = __pci_dev_reset(dev, probe);
4186 pci_dev_unlock(dev);
4192 * __pci_reset_function - reset a PCI device function
4193 * @dev: PCI device to reset
4195 * Some devices allow an individual function to be reset without affecting
4196 * other functions in the same device. The PCI device must be responsive
4197 * to PCI config space in order to use this function.
4199 * The device function is presumed to be unused when this function is called.
4200 * Resetting the device will make the contents of PCI configuration space
4201 * random, so any caller of this must be prepared to reinitialise the
4202 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4205 * Returns 0 if the device function was successfully reset or negative if the
4206 * device doesn't support resetting a single function.
4208 int __pci_reset_function(struct pci_dev *dev)
4210 return pci_dev_reset(dev, 0);
4212 EXPORT_SYMBOL_GPL(__pci_reset_function);
4215 * __pci_reset_function_locked - reset a PCI device function while holding
4216 * the @dev mutex lock.
4217 * @dev: PCI device to reset
4219 * Some devices allow an individual function to be reset without affecting
4220 * other functions in the same device. The PCI device must be responsive
4221 * to PCI config space in order to use this function.
4223 * The device function is presumed to be unused and the caller is holding
4224 * the device mutex lock when this function is called.
4225 * Resetting the device will make the contents of PCI configuration space
4226 * random, so any caller of this must be prepared to reinitialise the
4227 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4230 * Returns 0 if the device function was successfully reset or negative if the
4231 * device doesn't support resetting a single function.
4233 int __pci_reset_function_locked(struct pci_dev *dev)
4235 return __pci_dev_reset(dev, 0);
4237 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4240 * pci_probe_reset_function - check whether the device can be safely reset
4241 * @dev: PCI device to reset
4243 * Some devices allow an individual function to be reset without affecting
4244 * other functions in the same device. The PCI device must be responsive
4245 * to PCI config space in order to use this function.
4247 * Returns 0 if the device function can be reset or negative if the
4248 * device doesn't support resetting a single function.
4250 int pci_probe_reset_function(struct pci_dev *dev)
4252 return pci_dev_reset(dev, 1);
4256 * pci_reset_function - quiesce and reset a PCI device function
4257 * @dev: PCI device to reset
4259 * Some devices allow an individual function to be reset without affecting
4260 * other functions in the same device. The PCI device must be responsive
4261 * to PCI config space in order to use this function.
4263 * This function does not just reset the PCI portion of a device, but
4264 * clears all the state associated with the device. This function differs
4265 * from __pci_reset_function in that it saves and restores device state
4268 * Returns 0 if the device function was successfully reset or negative if the
4269 * device doesn't support resetting a single function.
4271 int pci_reset_function(struct pci_dev *dev)
4275 rc = pci_dev_reset(dev, 1);
4279 pci_dev_save_and_disable(dev);
4281 rc = pci_dev_reset(dev, 0);
4283 pci_dev_restore(dev);
4287 EXPORT_SYMBOL_GPL(pci_reset_function);
4290 * pci_try_reset_function - quiesce and reset a PCI device function
4291 * @dev: PCI device to reset
4293 * Same as above, except return -EAGAIN if unable to lock device.
4295 int pci_try_reset_function(struct pci_dev *dev)
4299 rc = pci_dev_reset(dev, 1);
4303 pci_dev_save_and_disable(dev);
4305 if (pci_dev_trylock(dev)) {
4306 rc = __pci_dev_reset(dev, 0);
4307 pci_dev_unlock(dev);
4311 pci_dev_restore(dev);
4315 EXPORT_SYMBOL_GPL(pci_try_reset_function);
4317 /* Do any devices on or below this bus prevent a bus reset? */
4318 static bool pci_bus_resetable(struct pci_bus *bus)
4320 struct pci_dev *dev;
4322 list_for_each_entry(dev, &bus->devices, bus_list) {
4323 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4324 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4331 /* Lock devices from the top of the tree down */
4332 static void pci_bus_lock(struct pci_bus *bus)
4334 struct pci_dev *dev;
4336 list_for_each_entry(dev, &bus->devices, bus_list) {
4338 if (dev->subordinate)
4339 pci_bus_lock(dev->subordinate);
4343 /* Unlock devices from the bottom of the tree up */
4344 static void pci_bus_unlock(struct pci_bus *bus)
4346 struct pci_dev *dev;
4348 list_for_each_entry(dev, &bus->devices, bus_list) {
4349 if (dev->subordinate)
4350 pci_bus_unlock(dev->subordinate);
4351 pci_dev_unlock(dev);
4355 /* Return 1 on successful lock, 0 on contention */
4356 static int pci_bus_trylock(struct pci_bus *bus)
4358 struct pci_dev *dev;
4360 list_for_each_entry(dev, &bus->devices, bus_list) {
4361 if (!pci_dev_trylock(dev))
4363 if (dev->subordinate) {
4364 if (!pci_bus_trylock(dev->subordinate)) {
4365 pci_dev_unlock(dev);
4373 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
4374 if (dev->subordinate)
4375 pci_bus_unlock(dev->subordinate);
4376 pci_dev_unlock(dev);
4381 /* Do any devices on or below this slot prevent a bus reset? */
4382 static bool pci_slot_resetable(struct pci_slot *slot)
4384 struct pci_dev *dev;
4386 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4387 if (!dev->slot || dev->slot != slot)
4389 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4390 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4397 /* Lock devices from the top of the tree down */
4398 static void pci_slot_lock(struct pci_slot *slot)
4400 struct pci_dev *dev;
4402 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4403 if (!dev->slot || dev->slot != slot)
4406 if (dev->subordinate)
4407 pci_bus_lock(dev->subordinate);
4411 /* Unlock devices from the bottom of the tree up */
4412 static void pci_slot_unlock(struct pci_slot *slot)
4414 struct pci_dev *dev;
4416 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4417 if (!dev->slot || dev->slot != slot)
4419 if (dev->subordinate)
4420 pci_bus_unlock(dev->subordinate);
4421 pci_dev_unlock(dev);
4425 /* Return 1 on successful lock, 0 on contention */
4426 static int pci_slot_trylock(struct pci_slot *slot)
4428 struct pci_dev *dev;
4430 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4431 if (!dev->slot || dev->slot != slot)
4433 if (!pci_dev_trylock(dev))
4435 if (dev->subordinate) {
4436 if (!pci_bus_trylock(dev->subordinate)) {
4437 pci_dev_unlock(dev);
4445 list_for_each_entry_continue_reverse(dev,
4446 &slot->bus->devices, bus_list) {
4447 if (!dev->slot || dev->slot != slot)
4449 if (dev->subordinate)
4450 pci_bus_unlock(dev->subordinate);
4451 pci_dev_unlock(dev);
4456 /* Save and disable devices from the top of the tree down */
4457 static void pci_bus_save_and_disable(struct pci_bus *bus)
4459 struct pci_dev *dev;
4461 list_for_each_entry(dev, &bus->devices, bus_list) {
4462 pci_dev_save_and_disable(dev);
4463 if (dev->subordinate)
4464 pci_bus_save_and_disable(dev->subordinate);
4469 * Restore devices from top of the tree down - parent bridges need to be
4470 * restored before we can get to subordinate devices.
4472 static void pci_bus_restore(struct pci_bus *bus)
4474 struct pci_dev *dev;
4476 list_for_each_entry(dev, &bus->devices, bus_list) {
4477 pci_dev_restore(dev);
4478 if (dev->subordinate)
4479 pci_bus_restore(dev->subordinate);
4483 /* Save and disable devices from the top of the tree down */
4484 static void pci_slot_save_and_disable(struct pci_slot *slot)
4486 struct pci_dev *dev;
4488 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4489 if (!dev->slot || dev->slot != slot)
4491 pci_dev_save_and_disable(dev);
4492 if (dev->subordinate)
4493 pci_bus_save_and_disable(dev->subordinate);
4498 * Restore devices from top of the tree down - parent bridges need to be
4499 * restored before we can get to subordinate devices.
4501 static void pci_slot_restore(struct pci_slot *slot)
4503 struct pci_dev *dev;
4505 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4506 if (!dev->slot || dev->slot != slot)
4508 pci_dev_restore(dev);
4509 if (dev->subordinate)
4510 pci_bus_restore(dev->subordinate);
4514 static int pci_slot_reset(struct pci_slot *slot, int probe)
4518 if (!slot || !pci_slot_resetable(slot))
4522 pci_slot_lock(slot);
4526 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4529 pci_slot_unlock(slot);
4535 * pci_probe_reset_slot - probe whether a PCI slot can be reset
4536 * @slot: PCI slot to probe
4538 * Return 0 if slot can be reset, negative if a slot reset is not supported.
4540 int pci_probe_reset_slot(struct pci_slot *slot)
4542 return pci_slot_reset(slot, 1);
4544 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4547 * pci_reset_slot - reset a PCI slot
4548 * @slot: PCI slot to reset
4550 * A PCI bus may host multiple slots, each slot may support a reset mechanism
4551 * independent of other slots. For instance, some slots may support slot power
4552 * control. In the case of a 1:1 bus to slot architecture, this function may
4553 * wrap the bus reset to avoid spurious slot related events such as hotplug.
4554 * Generally a slot reset should be attempted before a bus reset. All of the
4555 * function of the slot and any subordinate buses behind the slot are reset
4556 * through this function. PCI config space of all devices in the slot and
4557 * behind the slot is saved before and restored after reset.
4559 * Return 0 on success, non-zero on error.
4561 int pci_reset_slot(struct pci_slot *slot)
4565 rc = pci_slot_reset(slot, 1);
4569 pci_slot_save_and_disable(slot);
4571 rc = pci_slot_reset(slot, 0);
4573 pci_slot_restore(slot);
4577 EXPORT_SYMBOL_GPL(pci_reset_slot);
4580 * pci_try_reset_slot - Try to reset a PCI slot
4581 * @slot: PCI slot to reset
4583 * Same as above except return -EAGAIN if the slot cannot be locked
4585 int pci_try_reset_slot(struct pci_slot *slot)
4589 rc = pci_slot_reset(slot, 1);
4593 pci_slot_save_and_disable(slot);
4595 if (pci_slot_trylock(slot)) {
4597 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
4598 pci_slot_unlock(slot);
4602 pci_slot_restore(slot);
4606 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4608 static int pci_bus_reset(struct pci_bus *bus, int probe)
4610 if (!bus->self || !pci_bus_resetable(bus))
4620 pci_reset_bridge_secondary_bus(bus->self);
4622 pci_bus_unlock(bus);
4628 * pci_probe_reset_bus - probe whether a PCI bus can be reset
4629 * @bus: PCI bus to probe
4631 * Return 0 if bus can be reset, negative if a bus reset is not supported.
4633 int pci_probe_reset_bus(struct pci_bus *bus)
4635 return pci_bus_reset(bus, 1);
4637 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4640 * pci_reset_bus - reset a PCI bus
4641 * @bus: top level PCI bus to reset
4643 * Do a bus reset on the given bus and any subordinate buses, saving
4644 * and restoring state of all devices.
4646 * Return 0 on success, non-zero on error.
4648 int pci_reset_bus(struct pci_bus *bus)
4652 rc = pci_bus_reset(bus, 1);
4656 pci_bus_save_and_disable(bus);
4658 rc = pci_bus_reset(bus, 0);
4660 pci_bus_restore(bus);
4664 EXPORT_SYMBOL_GPL(pci_reset_bus);
4667 * pci_try_reset_bus - Try to reset a PCI bus
4668 * @bus: top level PCI bus to reset
4670 * Same as above except return -EAGAIN if the bus cannot be locked
4672 int pci_try_reset_bus(struct pci_bus *bus)
4676 rc = pci_bus_reset(bus, 1);
4680 pci_bus_save_and_disable(bus);
4682 if (pci_bus_trylock(bus)) {
4684 pci_reset_bridge_secondary_bus(bus->self);
4685 pci_bus_unlock(bus);
4689 pci_bus_restore(bus);
4693 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4696 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4697 * @dev: PCI device to query
4699 * Returns mmrbc: maximum designed memory read count in bytes
4700 * or appropriate error value.
4702 int pcix_get_max_mmrbc(struct pci_dev *dev)
4707 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4711 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4714 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
4716 EXPORT_SYMBOL(pcix_get_max_mmrbc);
4719 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4720 * @dev: PCI device to query
4722 * Returns mmrbc: maximum memory read count in bytes
4723 * or appropriate error value.
4725 int pcix_get_mmrbc(struct pci_dev *dev)
4730 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4734 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4737 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4739 EXPORT_SYMBOL(pcix_get_mmrbc);
4742 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4743 * @dev: PCI device to query
4744 * @mmrbc: maximum memory read count in bytes
4745 * valid values are 512, 1024, 2048, 4096
4747 * If possible sets maximum memory read byte count, some bridges have erratas
4748 * that prevent this.
4750 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4756 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4759 v = ffs(mmrbc) - 10;
4761 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4765 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4768 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4771 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4774 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4776 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4779 cmd &= ~PCI_X_CMD_MAX_READ;
4781 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4786 EXPORT_SYMBOL(pcix_set_mmrbc);
4789 * pcie_get_readrq - get PCI Express read request size
4790 * @dev: PCI device to query
4792 * Returns maximum memory read request in bytes
4793 * or appropriate error value.
4795 int pcie_get_readrq(struct pci_dev *dev)
4799 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4801 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4803 EXPORT_SYMBOL(pcie_get_readrq);
4806 * pcie_set_readrq - set PCI Express maximum memory read request
4807 * @dev: PCI device to query
4808 * @rq: maximum memory read count in bytes
4809 * valid values are 128, 256, 512, 1024, 2048, 4096
4811 * If possible sets maximum memory read request in bytes
4813 int pcie_set_readrq(struct pci_dev *dev, int rq)
4817 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
4821 * If using the "performance" PCIe config, we clamp the
4822 * read rq size to the max packet size to prevent the
4823 * host bridge generating requests larger than we can
4826 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4827 int mps = pcie_get_mps(dev);
4833 v = (ffs(rq) - 8) << 12;
4835 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4836 PCI_EXP_DEVCTL_READRQ, v);
4838 EXPORT_SYMBOL(pcie_set_readrq);
4841 * pcie_get_mps - get PCI Express maximum payload size
4842 * @dev: PCI device to query
4844 * Returns maximum payload size in bytes
4846 int pcie_get_mps(struct pci_dev *dev)
4850 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4852 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4854 EXPORT_SYMBOL(pcie_get_mps);
4857 * pcie_set_mps - set PCI Express maximum payload size
4858 * @dev: PCI device to query
4859 * @mps: maximum payload size in bytes
4860 * valid values are 128, 256, 512, 1024, 2048, 4096
4862 * If possible sets maximum payload size
4864 int pcie_set_mps(struct pci_dev *dev, int mps)
4868 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4872 if (v > dev->pcie_mpss)
4876 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4877 PCI_EXP_DEVCTL_PAYLOAD, v);
4879 EXPORT_SYMBOL(pcie_set_mps);
4882 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4883 * @dev: PCI device to query
4884 * @speed: storage for minimum speed
4885 * @width: storage for minimum width
4887 * This function will walk up the PCI device chain and determine the minimum
4888 * link width and speed of the device.
4890 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4891 enum pcie_link_width *width)
4895 *speed = PCI_SPEED_UNKNOWN;
4896 *width = PCIE_LNK_WIDTH_UNKNOWN;
4900 enum pci_bus_speed next_speed;
4901 enum pcie_link_width next_width;
4903 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4907 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4908 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4909 PCI_EXP_LNKSTA_NLW_SHIFT;
4911 if (next_speed < *speed)
4912 *speed = next_speed;
4914 if (next_width < *width)
4915 *width = next_width;
4917 dev = dev->bus->self;
4922 EXPORT_SYMBOL(pcie_get_minimum_link);
4925 * pci_select_bars - Make BAR mask from the type of resource
4926 * @dev: the PCI device for which BAR mask is made
4927 * @flags: resource type mask to be selected
4929 * This helper routine makes bar mask from the type of resource.
4931 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4934 for (i = 0; i < PCI_NUM_RESOURCES; i++)
4935 if (pci_resource_flags(dev, i) & flags)
4939 EXPORT_SYMBOL(pci_select_bars);
4941 /* Some architectures require additional programming to enable VGA */
4942 static arch_set_vga_state_t arch_set_vga_state;
4944 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4946 arch_set_vga_state = func; /* NULL disables */
4949 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4950 unsigned int command_bits, u32 flags)
4952 if (arch_set_vga_state)
4953 return arch_set_vga_state(dev, decode, command_bits,
4959 * pci_set_vga_state - set VGA decode state on device and parents if requested
4960 * @dev: the PCI device
4961 * @decode: true = enable decoding, false = disable decoding
4962 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4963 * @flags: traverse ancestors and change bridges
4964 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4966 int pci_set_vga_state(struct pci_dev *dev, bool decode,
4967 unsigned int command_bits, u32 flags)
4969 struct pci_bus *bus;
4970 struct pci_dev *bridge;
4974 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4976 /* ARCH specific VGA enables */
4977 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4981 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4982 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4984 cmd |= command_bits;
4986 cmd &= ~command_bits;
4987 pci_write_config_word(dev, PCI_COMMAND, cmd);
4990 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4997 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5000 cmd |= PCI_BRIDGE_CTL_VGA;
5002 cmd &= ~PCI_BRIDGE_CTL_VGA;
5003 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5012 * pci_add_dma_alias - Add a DMA devfn alias for a device
5013 * @dev: the PCI device for which alias is added
5014 * @devfn: alias slot and function
5016 * This helper encodes 8-bit devfn as bit number in dma_alias_mask.
5017 * It should be called early, preferably as PCI fixup header quirk.
5019 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
5021 if (!dev->dma_alias_mask)
5022 dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX),
5023 sizeof(long), GFP_KERNEL);
5024 if (!dev->dma_alias_mask) {
5025 dev_warn(&dev->dev, "Unable to allocate DMA alias mask\n");
5029 set_bit(devfn, dev->dma_alias_mask);
5030 dev_info(&dev->dev, "Enabling fixed DMA alias to %02x.%d\n",
5031 PCI_SLOT(devfn), PCI_FUNC(devfn));
5034 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5036 return (dev1->dma_alias_mask &&
5037 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5038 (dev2->dma_alias_mask &&
5039 test_bit(dev1->devfn, dev2->dma_alias_mask));
5042 bool pci_device_is_present(struct pci_dev *pdev)
5046 if (pci_dev_is_disconnected(pdev))
5048 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5050 EXPORT_SYMBOL_GPL(pci_device_is_present);
5052 void pci_ignore_hotplug(struct pci_dev *dev)
5054 struct pci_dev *bridge = dev->bus->self;
5056 dev->ignore_hotplug = 1;
5057 /* Propagate the "ignore hotplug" setting to the parent bridge. */
5059 bridge->ignore_hotplug = 1;
5061 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5063 resource_size_t __weak pcibios_default_alignment(void)
5068 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
5069 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
5070 static DEFINE_SPINLOCK(resource_alignment_lock);
5073 * pci_specified_resource_alignment - get resource alignment specified by user.
5074 * @dev: the PCI device to get
5075 * @resize: whether or not to change resources' size when reassigning alignment
5077 * RETURNS: Resource alignment if it is specified.
5078 * Zero if it is not specified.
5080 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
5083 int seg, bus, slot, func, align_order, count;
5084 unsigned short vendor, device, subsystem_vendor, subsystem_device;
5085 resource_size_t align = pcibios_default_alignment();
5088 spin_lock(&resource_alignment_lock);
5089 p = resource_alignment_param;
5092 if (pci_has_flag(PCI_PROBE_ONLY)) {
5094 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5100 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5106 if (strncmp(p, "pci:", 4) == 0) {
5107 /* PCI vendor/device (subvendor/subdevice) ids are specified */
5109 if (sscanf(p, "%hx:%hx:%hx:%hx%n",
5110 &vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) {
5111 if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) {
5112 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n",
5116 subsystem_vendor = subsystem_device = 0;
5119 if ((!vendor || (vendor == dev->vendor)) &&
5120 (!device || (device == dev->device)) &&
5121 (!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) &&
5122 (!subsystem_device || (subsystem_device == dev->subsystem_device))) {
5124 if (align_order == -1)
5127 align = 1 << align_order;
5133 if (sscanf(p, "%x:%x:%x.%x%n",
5134 &seg, &bus, &slot, &func, &count) != 4) {
5136 if (sscanf(p, "%x:%x.%x%n",
5137 &bus, &slot, &func, &count) != 3) {
5138 /* Invalid format */
5139 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
5145 if (seg == pci_domain_nr(dev->bus) &&
5146 bus == dev->bus->number &&
5147 slot == PCI_SLOT(dev->devfn) &&
5148 func == PCI_FUNC(dev->devfn)) {
5150 if (align_order == -1)
5153 align = 1 << align_order;
5158 if (*p != ';' && *p != ',') {
5159 /* End of param or invalid format */
5165 spin_unlock(&resource_alignment_lock);
5169 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
5170 resource_size_t align, bool resize)
5172 struct resource *r = &dev->resource[bar];
5173 resource_size_t size;
5175 if (!(r->flags & IORESOURCE_MEM))
5178 if (r->flags & IORESOURCE_PCI_FIXED) {
5179 dev_info(&dev->dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
5180 bar, r, (unsigned long long)align);
5184 size = resource_size(r);
5189 * Increase the alignment of the resource. There are two ways we
5192 * 1) Increase the size of the resource. BARs are aligned on their
5193 * size, so when we reallocate space for this resource, we'll
5194 * allocate it with the larger alignment. This also prevents
5195 * assignment of any other BARs inside the alignment region, so
5196 * if we're requesting page alignment, this means no other BARs
5197 * will share the page.
5199 * The disadvantage is that this makes the resource larger than
5200 * the hardware BAR, which may break drivers that compute things
5201 * based on the resource size, e.g., to find registers at a
5202 * fixed offset before the end of the BAR.
5204 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
5205 * set r->start to the desired alignment. By itself this
5206 * doesn't prevent other BARs being put inside the alignment
5207 * region, but if we realign *every* resource of every device in
5208 * the system, none of them will share an alignment region.
5210 * When the user has requested alignment for only some devices via
5211 * the "pci=resource_alignment" argument, "resize" is true and we
5212 * use the first method. Otherwise we assume we're aligning all
5213 * devices and we use the second.
5216 dev_info(&dev->dev, "BAR%d %pR: requesting alignment to %#llx\n",
5217 bar, r, (unsigned long long)align);
5223 r->flags &= ~IORESOURCE_SIZEALIGN;
5224 r->flags |= IORESOURCE_STARTALIGN;
5226 r->end = r->start + size - 1;
5228 r->flags |= IORESOURCE_UNSET;
5232 * This function disables memory decoding and releases memory resources
5233 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5234 * It also rounds up size to specified alignment.
5235 * Later on, the kernel will assign page-aligned memory resource back
5238 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
5242 resource_size_t align;
5244 bool resize = false;
5247 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
5248 * 3.4.1.11. Their resources are allocated from the space
5249 * described by the VF BARx register in the PF's SR-IOV capability.
5250 * We can't influence their alignment here.
5255 /* check if specified PCI is target device to reassign */
5256 align = pci_specified_resource_alignment(dev, &resize);
5260 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
5261 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
5263 "Can't reassign resources to host bridge.\n");
5268 "Disabling memory decoding and releasing memory resources.\n");
5269 pci_read_config_word(dev, PCI_COMMAND, &command);
5270 command &= ~PCI_COMMAND_MEMORY;
5271 pci_write_config_word(dev, PCI_COMMAND, command);
5273 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
5274 pci_request_resource_alignment(dev, i, align, resize);
5277 * Need to disable bridge's resource window,
5278 * to enable the kernel to reassign new resource
5281 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
5282 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
5283 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
5284 r = &dev->resource[i];
5285 if (!(r->flags & IORESOURCE_MEM))
5287 r->flags |= IORESOURCE_UNSET;
5288 r->end = resource_size(r) - 1;
5291 pci_disable_bridge_window(dev);
5295 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
5297 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
5298 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
5299 spin_lock(&resource_alignment_lock);
5300 strncpy(resource_alignment_param, buf, count);
5301 resource_alignment_param[count] = '\0';
5302 spin_unlock(&resource_alignment_lock);
5306 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
5309 spin_lock(&resource_alignment_lock);
5310 count = snprintf(buf, size, "%s", resource_alignment_param);
5311 spin_unlock(&resource_alignment_lock);
5315 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
5317 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
5320 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
5321 const char *buf, size_t count)
5323 return pci_set_resource_alignment_param(buf, count);
5326 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
5327 pci_resource_alignment_store);
5329 static int __init pci_resource_alignment_sysfs_init(void)
5331 return bus_create_file(&pci_bus_type,
5332 &bus_attr_resource_alignment);
5334 late_initcall(pci_resource_alignment_sysfs_init);
5336 static void pci_no_domains(void)
5338 #ifdef CONFIG_PCI_DOMAINS
5339 pci_domains_supported = 0;
5343 #ifdef CONFIG_PCI_DOMAINS
5344 static atomic_t __domain_nr = ATOMIC_INIT(-1);
5346 int pci_get_new_domain_nr(void)
5348 return atomic_inc_return(&__domain_nr);
5351 #ifdef CONFIG_PCI_DOMAINS_GENERIC
5352 static int of_pci_bus_find_domain_nr(struct device *parent)
5354 static int use_dt_domains = -1;
5358 domain = of_get_pci_domain_nr(parent->of_node);
5360 * Check DT domain and use_dt_domains values.
5362 * If DT domain property is valid (domain >= 0) and
5363 * use_dt_domains != 0, the DT assignment is valid since this means
5364 * we have not previously allocated a domain number by using
5365 * pci_get_new_domain_nr(); we should also update use_dt_domains to
5366 * 1, to indicate that we have just assigned a domain number from
5369 * If DT domain property value is not valid (ie domain < 0), and we
5370 * have not previously assigned a domain number from DT
5371 * (use_dt_domains != 1) we should assign a domain number by
5374 * pci_get_new_domain_nr()
5376 * API and update the use_dt_domains value to keep track of method we
5377 * are using to assign domain numbers (use_dt_domains = 0).
5379 * All other combinations imply we have a platform that is trying
5380 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
5381 * which is a recipe for domain mishandling and it is prevented by
5382 * invalidating the domain value (domain = -1) and printing a
5383 * corresponding error.
5385 if (domain >= 0 && use_dt_domains) {
5387 } else if (domain < 0 && use_dt_domains != 1) {
5389 domain = pci_get_new_domain_nr();
5391 dev_err(parent, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n",
5392 parent->of_node->full_name);
5399 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
5401 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
5402 acpi_pci_bus_find_domain_nr(bus);
5408 * pci_ext_cfg_avail - can we access extended PCI config space?
5410 * Returns 1 if we can access PCI extended config space (offsets
5411 * greater than 0xff). This is the default implementation. Architecture
5412 * implementations can override this.
5414 int __weak pci_ext_cfg_avail(void)
5419 void __weak pci_fixup_cardbus(struct pci_bus *bus)
5422 EXPORT_SYMBOL(pci_fixup_cardbus);
5424 static int __init pci_setup(char *str)
5427 char *k = strchr(str, ',');
5430 if (*str && (str = pcibios_setup(str)) && *str) {
5431 if (!strcmp(str, "nomsi")) {
5433 } else if (!strcmp(str, "noaer")) {
5435 } else if (!strncmp(str, "realloc=", 8)) {
5436 pci_realloc_get_opt(str + 8);
5437 } else if (!strncmp(str, "realloc", 7)) {
5438 pci_realloc_get_opt("on");
5439 } else if (!strcmp(str, "nodomains")) {
5441 } else if (!strncmp(str, "noari", 5)) {
5442 pcie_ari_disabled = true;
5443 } else if (!strncmp(str, "cbiosize=", 9)) {
5444 pci_cardbus_io_size = memparse(str + 9, &str);
5445 } else if (!strncmp(str, "cbmemsize=", 10)) {
5446 pci_cardbus_mem_size = memparse(str + 10, &str);
5447 } else if (!strncmp(str, "resource_alignment=", 19)) {
5448 pci_set_resource_alignment_param(str + 19,
5450 } else if (!strncmp(str, "ecrc=", 5)) {
5451 pcie_ecrc_get_policy(str + 5);
5452 } else if (!strncmp(str, "hpiosize=", 9)) {
5453 pci_hotplug_io_size = memparse(str + 9, &str);
5454 } else if (!strncmp(str, "hpmemsize=", 10)) {
5455 pci_hotplug_mem_size = memparse(str + 10, &str);
5456 } else if (!strncmp(str, "hpbussize=", 10)) {
5457 pci_hotplug_bus_size =
5458 simple_strtoul(str + 10, &str, 0);
5459 if (pci_hotplug_bus_size > 0xff)
5460 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
5461 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
5462 pcie_bus_config = PCIE_BUS_TUNE_OFF;
5463 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
5464 pcie_bus_config = PCIE_BUS_SAFE;
5465 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
5466 pcie_bus_config = PCIE_BUS_PERFORMANCE;
5467 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
5468 pcie_bus_config = PCIE_BUS_PEER2PEER;
5469 } else if (!strncmp(str, "pcie_scan_all", 13)) {
5470 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
5472 printk(KERN_ERR "PCI: Unknown option `%s'\n",
5480 early_param("pci", pci_setup);