]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/perf/arm_pmu.c
drivers/perf: arm_pmu: fold init into alloc
[karo-tx-linux.git] / drivers / perf / arm_pmu.c
1 #undef DEBUG
2
3 /*
4  * ARM performance counter support.
5  *
6  * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7  * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
8  *
9  * This code is based on the sparc64 perf event code, which is in turn based
10  * on the x86 code.
11  */
12 #define pr_fmt(fmt) "hw perfevents: " fmt
13
14 #include <linux/bitmap.h>
15 #include <linux/cpumask.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/export.h>
18 #include <linux/kernel.h>
19 #include <linux/of_device.h>
20 #include <linux/perf/arm_pmu.h>
21 #include <linux/platform_device.h>
22 #include <linux/slab.h>
23 #include <linux/sched/clock.h>
24 #include <linux/spinlock.h>
25 #include <linux/irq.h>
26 #include <linux/irqdesc.h>
27
28 #include <asm/cputype.h>
29 #include <asm/irq_regs.h>
30
31 static int
32 armpmu_map_cache_event(const unsigned (*cache_map)
33                                       [PERF_COUNT_HW_CACHE_MAX]
34                                       [PERF_COUNT_HW_CACHE_OP_MAX]
35                                       [PERF_COUNT_HW_CACHE_RESULT_MAX],
36                        u64 config)
37 {
38         unsigned int cache_type, cache_op, cache_result, ret;
39
40         cache_type = (config >>  0) & 0xff;
41         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
42                 return -EINVAL;
43
44         cache_op = (config >>  8) & 0xff;
45         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
46                 return -EINVAL;
47
48         cache_result = (config >> 16) & 0xff;
49         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
50                 return -EINVAL;
51
52         ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
53
54         if (ret == CACHE_OP_UNSUPPORTED)
55                 return -ENOENT;
56
57         return ret;
58 }
59
60 static int
61 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
62 {
63         int mapping;
64
65         if (config >= PERF_COUNT_HW_MAX)
66                 return -EINVAL;
67
68         mapping = (*event_map)[config];
69         return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
70 }
71
72 static int
73 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
74 {
75         return (int)(config & raw_event_mask);
76 }
77
78 int
79 armpmu_map_event(struct perf_event *event,
80                  const unsigned (*event_map)[PERF_COUNT_HW_MAX],
81                  const unsigned (*cache_map)
82                                 [PERF_COUNT_HW_CACHE_MAX]
83                                 [PERF_COUNT_HW_CACHE_OP_MAX]
84                                 [PERF_COUNT_HW_CACHE_RESULT_MAX],
85                  u32 raw_event_mask)
86 {
87         u64 config = event->attr.config;
88         int type = event->attr.type;
89
90         if (type == event->pmu->type)
91                 return armpmu_map_raw_event(raw_event_mask, config);
92
93         switch (type) {
94         case PERF_TYPE_HARDWARE:
95                 return armpmu_map_hw_event(event_map, config);
96         case PERF_TYPE_HW_CACHE:
97                 return armpmu_map_cache_event(cache_map, config);
98         case PERF_TYPE_RAW:
99                 return armpmu_map_raw_event(raw_event_mask, config);
100         }
101
102         return -ENOENT;
103 }
104
105 int armpmu_event_set_period(struct perf_event *event)
106 {
107         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
108         struct hw_perf_event *hwc = &event->hw;
109         s64 left = local64_read(&hwc->period_left);
110         s64 period = hwc->sample_period;
111         int ret = 0;
112
113         if (unlikely(left <= -period)) {
114                 left = period;
115                 local64_set(&hwc->period_left, left);
116                 hwc->last_period = period;
117                 ret = 1;
118         }
119
120         if (unlikely(left <= 0)) {
121                 left += period;
122                 local64_set(&hwc->period_left, left);
123                 hwc->last_period = period;
124                 ret = 1;
125         }
126
127         /*
128          * Limit the maximum period to prevent the counter value
129          * from overtaking the one we are about to program. In
130          * effect we are reducing max_period to account for
131          * interrupt latency (and we are being very conservative).
132          */
133         if (left > (armpmu->max_period >> 1))
134                 left = armpmu->max_period >> 1;
135
136         local64_set(&hwc->prev_count, (u64)-left);
137
138         armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
139
140         perf_event_update_userpage(event);
141
142         return ret;
143 }
144
145 u64 armpmu_event_update(struct perf_event *event)
146 {
147         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
148         struct hw_perf_event *hwc = &event->hw;
149         u64 delta, prev_raw_count, new_raw_count;
150
151 again:
152         prev_raw_count = local64_read(&hwc->prev_count);
153         new_raw_count = armpmu->read_counter(event);
154
155         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
156                              new_raw_count) != prev_raw_count)
157                 goto again;
158
159         delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
160
161         local64_add(delta, &event->count);
162         local64_sub(delta, &hwc->period_left);
163
164         return new_raw_count;
165 }
166
167 static void
168 armpmu_read(struct perf_event *event)
169 {
170         armpmu_event_update(event);
171 }
172
173 static void
174 armpmu_stop(struct perf_event *event, int flags)
175 {
176         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
177         struct hw_perf_event *hwc = &event->hw;
178
179         /*
180          * ARM pmu always has to update the counter, so ignore
181          * PERF_EF_UPDATE, see comments in armpmu_start().
182          */
183         if (!(hwc->state & PERF_HES_STOPPED)) {
184                 armpmu->disable(event);
185                 armpmu_event_update(event);
186                 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
187         }
188 }
189
190 static void armpmu_start(struct perf_event *event, int flags)
191 {
192         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
193         struct hw_perf_event *hwc = &event->hw;
194
195         /*
196          * ARM pmu always has to reprogram the period, so ignore
197          * PERF_EF_RELOAD, see the comment below.
198          */
199         if (flags & PERF_EF_RELOAD)
200                 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
201
202         hwc->state = 0;
203         /*
204          * Set the period again. Some counters can't be stopped, so when we
205          * were stopped we simply disabled the IRQ source and the counter
206          * may have been left counting. If we don't do this step then we may
207          * get an interrupt too soon or *way* too late if the overflow has
208          * happened since disabling.
209          */
210         armpmu_event_set_period(event);
211         armpmu->enable(event);
212 }
213
214 static void
215 armpmu_del(struct perf_event *event, int flags)
216 {
217         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
218         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
219         struct hw_perf_event *hwc = &event->hw;
220         int idx = hwc->idx;
221
222         armpmu_stop(event, PERF_EF_UPDATE);
223         hw_events->events[idx] = NULL;
224         clear_bit(idx, hw_events->used_mask);
225         if (armpmu->clear_event_idx)
226                 armpmu->clear_event_idx(hw_events, event);
227
228         perf_event_update_userpage(event);
229 }
230
231 static int
232 armpmu_add(struct perf_event *event, int flags)
233 {
234         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
235         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
236         struct hw_perf_event *hwc = &event->hw;
237         int idx;
238
239         /* An event following a process won't be stopped earlier */
240         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
241                 return -ENOENT;
242
243         /* If we don't have a space for the counter then finish early. */
244         idx = armpmu->get_event_idx(hw_events, event);
245         if (idx < 0)
246                 return idx;
247
248         /*
249          * If there is an event in the counter we are going to use then make
250          * sure it is disabled.
251          */
252         event->hw.idx = idx;
253         armpmu->disable(event);
254         hw_events->events[idx] = event;
255
256         hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
257         if (flags & PERF_EF_START)
258                 armpmu_start(event, PERF_EF_RELOAD);
259
260         /* Propagate our changes to the userspace mapping. */
261         perf_event_update_userpage(event);
262
263         return 0;
264 }
265
266 static int
267 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
268                                struct perf_event *event)
269 {
270         struct arm_pmu *armpmu;
271
272         if (is_software_event(event))
273                 return 1;
274
275         /*
276          * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
277          * core perf code won't check that the pmu->ctx == leader->ctx
278          * until after pmu->event_init(event).
279          */
280         if (event->pmu != pmu)
281                 return 0;
282
283         if (event->state < PERF_EVENT_STATE_OFF)
284                 return 1;
285
286         if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
287                 return 1;
288
289         armpmu = to_arm_pmu(event->pmu);
290         return armpmu->get_event_idx(hw_events, event) >= 0;
291 }
292
293 static int
294 validate_group(struct perf_event *event)
295 {
296         struct perf_event *sibling, *leader = event->group_leader;
297         struct pmu_hw_events fake_pmu;
298
299         /*
300          * Initialise the fake PMU. We only need to populate the
301          * used_mask for the purposes of validation.
302          */
303         memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
304
305         if (!validate_event(event->pmu, &fake_pmu, leader))
306                 return -EINVAL;
307
308         list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
309                 if (!validate_event(event->pmu, &fake_pmu, sibling))
310                         return -EINVAL;
311         }
312
313         if (!validate_event(event->pmu, &fake_pmu, event))
314                 return -EINVAL;
315
316         return 0;
317 }
318
319 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
320 {
321         struct arm_pmu *armpmu;
322         struct platform_device *plat_device;
323         struct arm_pmu_platdata *plat;
324         int ret;
325         u64 start_clock, finish_clock;
326
327         /*
328          * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
329          * the handlers expect a struct arm_pmu*. The percpu_irq framework will
330          * do any necessary shifting, we just need to perform the first
331          * dereference.
332          */
333         armpmu = *(void **)dev;
334         plat_device = armpmu->plat_device;
335         plat = dev_get_platdata(&plat_device->dev);
336
337         start_clock = sched_clock();
338         if (plat && plat->handle_irq)
339                 ret = plat->handle_irq(irq, armpmu, armpmu->handle_irq);
340         else
341                 ret = armpmu->handle_irq(irq, armpmu);
342         finish_clock = sched_clock();
343
344         perf_sample_event_took(finish_clock - start_clock);
345         return ret;
346 }
347
348 static int
349 event_requires_mode_exclusion(struct perf_event_attr *attr)
350 {
351         return attr->exclude_idle || attr->exclude_user ||
352                attr->exclude_kernel || attr->exclude_hv;
353 }
354
355 static int
356 __hw_perf_event_init(struct perf_event *event)
357 {
358         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
359         struct hw_perf_event *hwc = &event->hw;
360         int mapping;
361
362         mapping = armpmu->map_event(event);
363
364         if (mapping < 0) {
365                 pr_debug("event %x:%llx not supported\n", event->attr.type,
366                          event->attr.config);
367                 return mapping;
368         }
369
370         /*
371          * We don't assign an index until we actually place the event onto
372          * hardware. Use -1 to signify that we haven't decided where to put it
373          * yet. For SMP systems, each core has it's own PMU so we can't do any
374          * clever allocation or constraints checking at this point.
375          */
376         hwc->idx                = -1;
377         hwc->config_base        = 0;
378         hwc->config             = 0;
379         hwc->event_base         = 0;
380
381         /*
382          * Check whether we need to exclude the counter from certain modes.
383          */
384         if ((!armpmu->set_event_filter ||
385              armpmu->set_event_filter(hwc, &event->attr)) &&
386              event_requires_mode_exclusion(&event->attr)) {
387                 pr_debug("ARM performance counters do not support "
388                          "mode exclusion\n");
389                 return -EOPNOTSUPP;
390         }
391
392         /*
393          * Store the event encoding into the config_base field.
394          */
395         hwc->config_base            |= (unsigned long)mapping;
396
397         if (!is_sampling_event(event)) {
398                 /*
399                  * For non-sampling runs, limit the sample_period to half
400                  * of the counter width. That way, the new counter value
401                  * is far less likely to overtake the previous one unless
402                  * you have some serious IRQ latency issues.
403                  */
404                 hwc->sample_period  = armpmu->max_period >> 1;
405                 hwc->last_period    = hwc->sample_period;
406                 local64_set(&hwc->period_left, hwc->sample_period);
407         }
408
409         if (event->group_leader != event) {
410                 if (validate_group(event) != 0)
411                         return -EINVAL;
412         }
413
414         return 0;
415 }
416
417 static int armpmu_event_init(struct perf_event *event)
418 {
419         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
420
421         /*
422          * Reject CPU-affine events for CPUs that are of a different class to
423          * that which this PMU handles. Process-following events (where
424          * event->cpu == -1) can be migrated between CPUs, and thus we have to
425          * reject them later (in armpmu_add) if they're scheduled on a
426          * different class of CPU.
427          */
428         if (event->cpu != -1 &&
429                 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
430                 return -ENOENT;
431
432         /* does not support taken branch sampling */
433         if (has_branch_stack(event))
434                 return -EOPNOTSUPP;
435
436         if (armpmu->map_event(event) == -ENOENT)
437                 return -ENOENT;
438
439         return __hw_perf_event_init(event);
440 }
441
442 static void armpmu_enable(struct pmu *pmu)
443 {
444         struct arm_pmu *armpmu = to_arm_pmu(pmu);
445         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
446         int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
447
448         /* For task-bound events we may be called on other CPUs */
449         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
450                 return;
451
452         if (enabled)
453                 armpmu->start(armpmu);
454 }
455
456 static void armpmu_disable(struct pmu *pmu)
457 {
458         struct arm_pmu *armpmu = to_arm_pmu(pmu);
459
460         /* For task-bound events we may be called on other CPUs */
461         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
462                 return;
463
464         armpmu->stop(armpmu);
465 }
466
467 /*
468  * In heterogeneous systems, events are specific to a particular
469  * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
470  * the same microarchitecture.
471  */
472 static int armpmu_filter_match(struct perf_event *event)
473 {
474         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
475         unsigned int cpu = smp_processor_id();
476         return cpumask_test_cpu(cpu, &armpmu->supported_cpus);
477 }
478
479 static ssize_t armpmu_cpumask_show(struct device *dev,
480                                    struct device_attribute *attr, char *buf)
481 {
482         struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
483         return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
484 }
485
486 static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL);
487
488 static struct attribute *armpmu_common_attrs[] = {
489         &dev_attr_cpus.attr,
490         NULL,
491 };
492
493 static struct attribute_group armpmu_common_attr_group = {
494         .attrs = armpmu_common_attrs,
495 };
496
497 /* Set at runtime when we know what CPU type we are. */
498 static struct arm_pmu *__oprofile_cpu_pmu;
499
500 /*
501  * Despite the names, these two functions are CPU-specific and are used
502  * by the OProfile/perf code.
503  */
504 const char *perf_pmu_name(void)
505 {
506         if (!__oprofile_cpu_pmu)
507                 return NULL;
508
509         return __oprofile_cpu_pmu->name;
510 }
511 EXPORT_SYMBOL_GPL(perf_pmu_name);
512
513 int perf_num_counters(void)
514 {
515         int max_events = 0;
516
517         if (__oprofile_cpu_pmu != NULL)
518                 max_events = __oprofile_cpu_pmu->num_events;
519
520         return max_events;
521 }
522 EXPORT_SYMBOL_GPL(perf_num_counters);
523
524 static void cpu_pmu_free_irqs(struct arm_pmu *cpu_pmu)
525 {
526         int cpu;
527         struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events;
528
529         for_each_cpu(cpu, &cpu_pmu->supported_cpus) {
530                 int irq = per_cpu(hw_events->irq, cpu);
531                 if (!irq)
532                         continue;
533
534                 if (irq_is_percpu(irq)) {
535                         free_percpu_irq(irq, &hw_events->percpu_pmu);
536                         break;
537                 }
538
539                 if (!cpumask_test_and_clear_cpu(cpu, &cpu_pmu->active_irqs))
540                         continue;
541
542                 free_irq(irq, per_cpu_ptr(&hw_events->percpu_pmu, cpu));
543         }
544 }
545
546 static int cpu_pmu_request_irqs(struct arm_pmu *cpu_pmu, irq_handler_t handler)
547 {
548         int cpu, err;
549         struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events;
550
551         for_each_cpu(cpu, &cpu_pmu->supported_cpus) {
552                 int irq = per_cpu(hw_events->irq, cpu);
553                 if (!irq)
554                         continue;
555
556                 if (irq_is_percpu(irq)) {
557                         err = request_percpu_irq(irq, handler, "arm-pmu",
558                                                  &hw_events->percpu_pmu);
559                         if (err) {
560                                 pr_err("unable to request IRQ%d for ARM PMU counters\n",
561                                         irq);
562                         }
563
564                         return err;
565                 }
566
567                 err = request_irq(irq, handler,
568                                   IRQF_NOBALANCING | IRQF_NO_THREAD, "arm-pmu",
569                                   per_cpu_ptr(&hw_events->percpu_pmu, cpu));
570                 if (err) {
571                         pr_err("unable to request IRQ%d for ARM PMU counters\n",
572                                 irq);
573                         return err;
574                 }
575
576                 cpumask_set_cpu(cpu, &cpu_pmu->active_irqs);
577         }
578
579         return 0;
580 }
581
582 static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
583 {
584         struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
585         return per_cpu(hw_events->irq, cpu);
586 }
587
588 /*
589  * PMU hardware loses all context when a CPU goes offline.
590  * When a CPU is hotplugged back in, since some hardware registers are
591  * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
592  * junk values out of them.
593  */
594 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
595 {
596         struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
597         int irq;
598
599         if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
600                 return 0;
601         if (pmu->reset)
602                 pmu->reset(pmu);
603
604         irq = armpmu_get_cpu_irq(pmu, cpu);
605         if (irq) {
606                 if (irq_is_percpu(irq)) {
607                         enable_percpu_irq(irq, IRQ_TYPE_NONE);
608                         return 0;
609                 }
610
611                 if (irq_force_affinity(irq, cpumask_of(cpu)) &&
612                     num_possible_cpus() > 1) {
613                         pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
614                                 irq, cpu);
615                 }
616         }
617
618         return 0;
619 }
620
621 static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
622 {
623         struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
624         int irq;
625
626         if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
627                 return 0;
628
629         irq = armpmu_get_cpu_irq(pmu, cpu);
630         if (irq && irq_is_percpu(irq))
631                 disable_percpu_irq(irq);
632
633         return 0;
634 }
635
636 #ifdef CONFIG_CPU_PM
637 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
638 {
639         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
640         struct perf_event *event;
641         int idx;
642
643         for (idx = 0; idx < armpmu->num_events; idx++) {
644                 /*
645                  * If the counter is not used skip it, there is no
646                  * need of stopping/restarting it.
647                  */
648                 if (!test_bit(idx, hw_events->used_mask))
649                         continue;
650
651                 event = hw_events->events[idx];
652
653                 switch (cmd) {
654                 case CPU_PM_ENTER:
655                         /*
656                          * Stop and update the counter
657                          */
658                         armpmu_stop(event, PERF_EF_UPDATE);
659                         break;
660                 case CPU_PM_EXIT:
661                 case CPU_PM_ENTER_FAILED:
662                          /*
663                           * Restore and enable the counter.
664                           * armpmu_start() indirectly calls
665                           *
666                           * perf_event_update_userpage()
667                           *
668                           * that requires RCU read locking to be functional,
669                           * wrap the call within RCU_NONIDLE to make the
670                           * RCU subsystem aware this cpu is not idle from
671                           * an RCU perspective for the armpmu_start() call
672                           * duration.
673                           */
674                         RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
675                         break;
676                 default:
677                         break;
678                 }
679         }
680 }
681
682 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
683                              void *v)
684 {
685         struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
686         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
687         int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
688
689         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
690                 return NOTIFY_DONE;
691
692         /*
693          * Always reset the PMU registers on power-up even if
694          * there are no events running.
695          */
696         if (cmd == CPU_PM_EXIT && armpmu->reset)
697                 armpmu->reset(armpmu);
698
699         if (!enabled)
700                 return NOTIFY_OK;
701
702         switch (cmd) {
703         case CPU_PM_ENTER:
704                 armpmu->stop(armpmu);
705                 cpu_pm_pmu_setup(armpmu, cmd);
706                 break;
707         case CPU_PM_EXIT:
708                 cpu_pm_pmu_setup(armpmu, cmd);
709         case CPU_PM_ENTER_FAILED:
710                 armpmu->start(armpmu);
711                 break;
712         default:
713                 return NOTIFY_DONE;
714         }
715
716         return NOTIFY_OK;
717 }
718
719 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
720 {
721         cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
722         return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
723 }
724
725 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
726 {
727         cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
728 }
729 #else
730 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
731 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
732 #endif
733
734 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
735 {
736         int err;
737
738         err = cpu_pmu_request_irqs(cpu_pmu, armpmu_dispatch_irq);
739         if (err)
740                 goto out;
741
742         err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
743                                        &cpu_pmu->node);
744         if (err)
745                 goto out;
746
747         err = cpu_pm_pmu_register(cpu_pmu);
748         if (err)
749                 goto out_unregister;
750
751         return 0;
752
753 out_unregister:
754         cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
755                                             &cpu_pmu->node);
756 out:
757         cpu_pmu_free_irqs(cpu_pmu);
758         return err;
759 }
760
761 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
762 {
763         cpu_pm_pmu_unregister(cpu_pmu);
764         cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
765                                             &cpu_pmu->node);
766 }
767
768 /*
769  * CPU PMU identification and probing.
770  */
771 static int probe_current_pmu(struct arm_pmu *pmu,
772                              const struct pmu_probe_info *info)
773 {
774         int cpu = get_cpu();
775         unsigned int cpuid = read_cpuid_id();
776         int ret = -ENODEV;
777
778         pr_info("probing PMU on CPU %d\n", cpu);
779
780         for (; info->init != NULL; info++) {
781                 if ((cpuid & info->mask) != info->cpuid)
782                         continue;
783                 ret = info->init(pmu);
784                 break;
785         }
786
787         put_cpu();
788         return ret;
789 }
790
791 static int pmu_parse_percpu_irq(struct arm_pmu *pmu, int irq)
792 {
793         int cpu, ret;
794         struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
795
796         ret = irq_get_percpu_devid_partition(irq, &pmu->supported_cpus);
797         if (ret)
798                 return ret;
799
800         for_each_cpu(cpu, &pmu->supported_cpus)
801                 per_cpu(hw_events->irq, cpu) = irq;
802
803         return 0;
804 }
805
806 static bool pmu_has_irq_affinity(struct device_node *node)
807 {
808         return !!of_find_property(node, "interrupt-affinity", NULL);
809 }
810
811 static int pmu_parse_irq_affinity(struct device_node *node, int i)
812 {
813         struct device_node *dn;
814         int cpu;
815
816         /*
817          * If we don't have an interrupt-affinity property, we guess irq
818          * affinity matches our logical CPU order, as we used to assume.
819          * This is fragile, so we'll warn in pmu_parse_irqs().
820          */
821         if (!pmu_has_irq_affinity(node))
822                 return i;
823
824         dn = of_parse_phandle(node, "interrupt-affinity", i);
825         if (!dn) {
826                 pr_warn("failed to parse interrupt-affinity[%d] for %s\n",
827                         i, node->name);
828                 return -EINVAL;
829         }
830
831         /* Now look up the logical CPU number */
832         for_each_possible_cpu(cpu) {
833                 struct device_node *cpu_dn;
834
835                 cpu_dn = of_cpu_device_node_get(cpu);
836                 of_node_put(cpu_dn);
837
838                 if (dn == cpu_dn)
839                         break;
840         }
841
842         if (cpu >= nr_cpu_ids) {
843                 pr_warn("failed to find logical CPU for %s\n", dn->name);
844         }
845
846         of_node_put(dn);
847
848         return cpu;
849 }
850
851 static int pmu_parse_irqs(struct arm_pmu *pmu)
852 {
853         int i = 0, irqs;
854         struct platform_device *pdev = pmu->plat_device;
855         struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
856
857         irqs = platform_irq_count(pdev);
858         if (irqs < 0) {
859                 pr_err("unable to count PMU IRQs\n");
860                 return irqs;
861         }
862
863         /*
864          * In this case we have no idea which CPUs are covered by the PMU.
865          * To match our prior behaviour, we assume all CPUs in this case.
866          */
867         if (irqs == 0) {
868                 pr_warn("no irqs for PMU, sampling events not supported\n");
869                 pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
870                 cpumask_setall(&pmu->supported_cpus);
871                 return 0;
872         }
873
874         if (irqs == 1) {
875                 int irq = platform_get_irq(pdev, 0);
876                 if (irq && irq_is_percpu(irq))
877                         return pmu_parse_percpu_irq(pmu, irq);
878         }
879
880         if (!pmu_has_irq_affinity(pdev->dev.of_node)) {
881                 pr_warn("no interrupt-affinity property for %s, guessing.\n",
882                         of_node_full_name(pdev->dev.of_node));
883         }
884
885         /*
886          * Some platforms have all PMU IRQs OR'd into a single IRQ, with a
887          * special platdata function that attempts to demux them.
888          */
889         if (dev_get_platdata(&pdev->dev))
890                 cpumask_setall(&pmu->supported_cpus);
891
892         for (i = 0; i < irqs; i++) {
893                 int cpu, irq;
894
895                 irq = platform_get_irq(pdev, i);
896                 if (WARN_ON(irq <= 0))
897                         continue;
898
899                 if (irq_is_percpu(irq)) {
900                         pr_warn("multiple PPIs or mismatched SPI/PPI detected\n");
901                         return -EINVAL;
902                 }
903
904                 cpu = pmu_parse_irq_affinity(pdev->dev.of_node, i);
905                 if (cpu < 0)
906                         return cpu;
907                 if (cpu >= nr_cpu_ids)
908                         continue;
909
910                 if (per_cpu(hw_events->irq, cpu)) {
911                         pr_warn("multiple PMU IRQs for the same CPU detected\n");
912                         return -EINVAL;
913                 }
914
915                 per_cpu(hw_events->irq, cpu) = irq;
916                 cpumask_set_cpu(cpu, &pmu->supported_cpus);
917         }
918
919         return 0;
920 }
921
922 static struct arm_pmu *armpmu_alloc(void)
923 {
924         struct arm_pmu *pmu;
925         int cpu;
926
927         pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
928         if (!pmu) {
929                 pr_info("failed to allocate PMU device!\n");
930                 goto out;
931         }
932
933         pmu->hw_events = alloc_percpu(struct pmu_hw_events);
934         if (!pmu->hw_events) {
935                 pr_info("failed to allocate per-cpu PMU data.\n");
936                 goto out_free_pmu;
937         }
938
939         pmu->pmu = (struct pmu) {
940                 .pmu_enable     = armpmu_enable,
941                 .pmu_disable    = armpmu_disable,
942                 .event_init     = armpmu_event_init,
943                 .add            = armpmu_add,
944                 .del            = armpmu_del,
945                 .start          = armpmu_start,
946                 .stop           = armpmu_stop,
947                 .read           = armpmu_read,
948                 .filter_match   = armpmu_filter_match,
949                 .attr_groups    = pmu->attr_groups,
950                 /*
951                  * This is a CPU PMU potentially in a heterogeneous
952                  * configuration (e.g. big.LITTLE). This is not an uncore PMU,
953                  * and we have taken ctx sharing into account (e.g. with our
954                  * pmu::filter_match callback and pmu::event_init group
955                  * validation).
956                  */
957                 .capabilities   = PERF_PMU_CAP_HETEROGENEOUS_CPUS,
958         };
959
960         pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
961                 &armpmu_common_attr_group;
962
963         for_each_possible_cpu(cpu) {
964                 struct pmu_hw_events *events;
965
966                 events = per_cpu_ptr(pmu->hw_events, cpu);
967                 raw_spin_lock_init(&events->pmu_lock);
968                 events->percpu_pmu = pmu;
969         }
970
971         return pmu;
972
973 out_free_pmu:
974         kfree(pmu);
975 out:
976         return NULL;
977 }
978
979 static void armpmu_free(struct arm_pmu *pmu)
980 {
981         free_percpu(pmu->hw_events);
982         kfree(pmu);
983 }
984
985 int arm_pmu_device_probe(struct platform_device *pdev,
986                          const struct of_device_id *of_table,
987                          const struct pmu_probe_info *probe_table)
988 {
989         const struct of_device_id *of_id;
990         armpmu_init_fn init_fn;
991         struct device_node *node = pdev->dev.of_node;
992         struct arm_pmu *pmu;
993         int ret = -ENODEV;
994
995         pmu = armpmu_alloc();
996         if (!pmu)
997                 return -ENOMEM;
998
999         pmu->plat_device = pdev;
1000
1001         ret = pmu_parse_irqs(pmu);
1002         if (ret)
1003                 goto out_free;
1004
1005         if (node && (of_id = of_match_node(of_table, pdev->dev.of_node))) {
1006                 init_fn = of_id->data;
1007
1008                 pmu->secure_access = of_property_read_bool(pdev->dev.of_node,
1009                                                            "secure-reg-access");
1010
1011                 /* arm64 systems boot only as non-secure */
1012                 if (IS_ENABLED(CONFIG_ARM64) && pmu->secure_access) {
1013                         pr_warn("ignoring \"secure-reg-access\" property for arm64\n");
1014                         pmu->secure_access = false;
1015                 }
1016
1017                 ret = init_fn(pmu);
1018         } else if (probe_table) {
1019                 cpumask_setall(&pmu->supported_cpus);
1020                 ret = probe_current_pmu(pmu, probe_table);
1021         }
1022
1023         if (ret) {
1024                 pr_info("%s: failed to probe PMU!\n", of_node_full_name(node));
1025                 goto out_free;
1026         }
1027
1028
1029         ret = cpu_pmu_init(pmu);
1030         if (ret)
1031                 goto out_free;
1032
1033         ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
1034         if (ret)
1035                 goto out_destroy;
1036
1037         if (!__oprofile_cpu_pmu)
1038                 __oprofile_cpu_pmu = pmu;
1039
1040         pr_info("enabled with %s PMU driver, %d counters available\n",
1041                         pmu->name, pmu->num_events);
1042
1043         return 0;
1044
1045 out_destroy:
1046         cpu_pmu_destroy(pmu);
1047 out_free:
1048         pr_info("%s: failed to register PMU devices!\n",
1049                 of_node_full_name(node));
1050         armpmu_free(pmu);
1051         return ret;
1052 }
1053
1054 static int arm_pmu_hp_init(void)
1055 {
1056         int ret;
1057
1058         ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
1059                                       "perf/arm/pmu:starting",
1060                                       arm_perf_starting_cpu,
1061                                       arm_perf_teardown_cpu);
1062         if (ret)
1063                 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
1064                        ret);
1065         return ret;
1066 }
1067 subsys_initcall(arm_pmu_hp_init);