]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/perf/arm_pmu.c
drivers/perf: arm_pmu: split irq request from enable
[karo-tx-linux.git] / drivers / perf / arm_pmu.c
1 #undef DEBUG
2
3 /*
4  * ARM performance counter support.
5  *
6  * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7  * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
8  *
9  * This code is based on the sparc64 perf event code, which is in turn based
10  * on the x86 code.
11  */
12 #define pr_fmt(fmt) "hw perfevents: " fmt
13
14 #include <linux/bitmap.h>
15 #include <linux/cpumask.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/export.h>
18 #include <linux/kernel.h>
19 #include <linux/of_device.h>
20 #include <linux/perf/arm_pmu.h>
21 #include <linux/platform_device.h>
22 #include <linux/slab.h>
23 #include <linux/sched/clock.h>
24 #include <linux/spinlock.h>
25 #include <linux/irq.h>
26 #include <linux/irqdesc.h>
27
28 #include <asm/cputype.h>
29 #include <asm/irq_regs.h>
30
31 static int
32 armpmu_map_cache_event(const unsigned (*cache_map)
33                                       [PERF_COUNT_HW_CACHE_MAX]
34                                       [PERF_COUNT_HW_CACHE_OP_MAX]
35                                       [PERF_COUNT_HW_CACHE_RESULT_MAX],
36                        u64 config)
37 {
38         unsigned int cache_type, cache_op, cache_result, ret;
39
40         cache_type = (config >>  0) & 0xff;
41         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
42                 return -EINVAL;
43
44         cache_op = (config >>  8) & 0xff;
45         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
46                 return -EINVAL;
47
48         cache_result = (config >> 16) & 0xff;
49         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
50                 return -EINVAL;
51
52         ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
53
54         if (ret == CACHE_OP_UNSUPPORTED)
55                 return -ENOENT;
56
57         return ret;
58 }
59
60 static int
61 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
62 {
63         int mapping;
64
65         if (config >= PERF_COUNT_HW_MAX)
66                 return -EINVAL;
67
68         mapping = (*event_map)[config];
69         return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
70 }
71
72 static int
73 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
74 {
75         return (int)(config & raw_event_mask);
76 }
77
78 int
79 armpmu_map_event(struct perf_event *event,
80                  const unsigned (*event_map)[PERF_COUNT_HW_MAX],
81                  const unsigned (*cache_map)
82                                 [PERF_COUNT_HW_CACHE_MAX]
83                                 [PERF_COUNT_HW_CACHE_OP_MAX]
84                                 [PERF_COUNT_HW_CACHE_RESULT_MAX],
85                  u32 raw_event_mask)
86 {
87         u64 config = event->attr.config;
88         int type = event->attr.type;
89
90         if (type == event->pmu->type)
91                 return armpmu_map_raw_event(raw_event_mask, config);
92
93         switch (type) {
94         case PERF_TYPE_HARDWARE:
95                 return armpmu_map_hw_event(event_map, config);
96         case PERF_TYPE_HW_CACHE:
97                 return armpmu_map_cache_event(cache_map, config);
98         case PERF_TYPE_RAW:
99                 return armpmu_map_raw_event(raw_event_mask, config);
100         }
101
102         return -ENOENT;
103 }
104
105 int armpmu_event_set_period(struct perf_event *event)
106 {
107         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
108         struct hw_perf_event *hwc = &event->hw;
109         s64 left = local64_read(&hwc->period_left);
110         s64 period = hwc->sample_period;
111         int ret = 0;
112
113         if (unlikely(left <= -period)) {
114                 left = period;
115                 local64_set(&hwc->period_left, left);
116                 hwc->last_period = period;
117                 ret = 1;
118         }
119
120         if (unlikely(left <= 0)) {
121                 left += period;
122                 local64_set(&hwc->period_left, left);
123                 hwc->last_period = period;
124                 ret = 1;
125         }
126
127         /*
128          * Limit the maximum period to prevent the counter value
129          * from overtaking the one we are about to program. In
130          * effect we are reducing max_period to account for
131          * interrupt latency (and we are being very conservative).
132          */
133         if (left > (armpmu->max_period >> 1))
134                 left = armpmu->max_period >> 1;
135
136         local64_set(&hwc->prev_count, (u64)-left);
137
138         armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
139
140         perf_event_update_userpage(event);
141
142         return ret;
143 }
144
145 u64 armpmu_event_update(struct perf_event *event)
146 {
147         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
148         struct hw_perf_event *hwc = &event->hw;
149         u64 delta, prev_raw_count, new_raw_count;
150
151 again:
152         prev_raw_count = local64_read(&hwc->prev_count);
153         new_raw_count = armpmu->read_counter(event);
154
155         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
156                              new_raw_count) != prev_raw_count)
157                 goto again;
158
159         delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
160
161         local64_add(delta, &event->count);
162         local64_sub(delta, &hwc->period_left);
163
164         return new_raw_count;
165 }
166
167 static void
168 armpmu_read(struct perf_event *event)
169 {
170         armpmu_event_update(event);
171 }
172
173 static void
174 armpmu_stop(struct perf_event *event, int flags)
175 {
176         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
177         struct hw_perf_event *hwc = &event->hw;
178
179         /*
180          * ARM pmu always has to update the counter, so ignore
181          * PERF_EF_UPDATE, see comments in armpmu_start().
182          */
183         if (!(hwc->state & PERF_HES_STOPPED)) {
184                 armpmu->disable(event);
185                 armpmu_event_update(event);
186                 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
187         }
188 }
189
190 static void armpmu_start(struct perf_event *event, int flags)
191 {
192         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
193         struct hw_perf_event *hwc = &event->hw;
194
195         /*
196          * ARM pmu always has to reprogram the period, so ignore
197          * PERF_EF_RELOAD, see the comment below.
198          */
199         if (flags & PERF_EF_RELOAD)
200                 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
201
202         hwc->state = 0;
203         /*
204          * Set the period again. Some counters can't be stopped, so when we
205          * were stopped we simply disabled the IRQ source and the counter
206          * may have been left counting. If we don't do this step then we may
207          * get an interrupt too soon or *way* too late if the overflow has
208          * happened since disabling.
209          */
210         armpmu_event_set_period(event);
211         armpmu->enable(event);
212 }
213
214 static void
215 armpmu_del(struct perf_event *event, int flags)
216 {
217         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
218         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
219         struct hw_perf_event *hwc = &event->hw;
220         int idx = hwc->idx;
221
222         armpmu_stop(event, PERF_EF_UPDATE);
223         hw_events->events[idx] = NULL;
224         clear_bit(idx, hw_events->used_mask);
225         if (armpmu->clear_event_idx)
226                 armpmu->clear_event_idx(hw_events, event);
227
228         perf_event_update_userpage(event);
229 }
230
231 static int
232 armpmu_add(struct perf_event *event, int flags)
233 {
234         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
235         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
236         struct hw_perf_event *hwc = &event->hw;
237         int idx;
238         int err = 0;
239
240         /* An event following a process won't be stopped earlier */
241         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
242                 return -ENOENT;
243
244         perf_pmu_disable(event->pmu);
245
246         /* If we don't have a space for the counter then finish early. */
247         idx = armpmu->get_event_idx(hw_events, event);
248         if (idx < 0) {
249                 err = idx;
250                 goto out;
251         }
252
253         /*
254          * If there is an event in the counter we are going to use then make
255          * sure it is disabled.
256          */
257         event->hw.idx = idx;
258         armpmu->disable(event);
259         hw_events->events[idx] = event;
260
261         hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
262         if (flags & PERF_EF_START)
263                 armpmu_start(event, PERF_EF_RELOAD);
264
265         /* Propagate our changes to the userspace mapping. */
266         perf_event_update_userpage(event);
267
268 out:
269         perf_pmu_enable(event->pmu);
270         return err;
271 }
272
273 static int
274 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
275                                struct perf_event *event)
276 {
277         struct arm_pmu *armpmu;
278
279         if (is_software_event(event))
280                 return 1;
281
282         /*
283          * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
284          * core perf code won't check that the pmu->ctx == leader->ctx
285          * until after pmu->event_init(event).
286          */
287         if (event->pmu != pmu)
288                 return 0;
289
290         if (event->state < PERF_EVENT_STATE_OFF)
291                 return 1;
292
293         if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
294                 return 1;
295
296         armpmu = to_arm_pmu(event->pmu);
297         return armpmu->get_event_idx(hw_events, event) >= 0;
298 }
299
300 static int
301 validate_group(struct perf_event *event)
302 {
303         struct perf_event *sibling, *leader = event->group_leader;
304         struct pmu_hw_events fake_pmu;
305
306         /*
307          * Initialise the fake PMU. We only need to populate the
308          * used_mask for the purposes of validation.
309          */
310         memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
311
312         if (!validate_event(event->pmu, &fake_pmu, leader))
313                 return -EINVAL;
314
315         list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
316                 if (!validate_event(event->pmu, &fake_pmu, sibling))
317                         return -EINVAL;
318         }
319
320         if (!validate_event(event->pmu, &fake_pmu, event))
321                 return -EINVAL;
322
323         return 0;
324 }
325
326 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
327 {
328         struct arm_pmu *armpmu;
329         struct platform_device *plat_device;
330         struct arm_pmu_platdata *plat;
331         int ret;
332         u64 start_clock, finish_clock;
333
334         /*
335          * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
336          * the handlers expect a struct arm_pmu*. The percpu_irq framework will
337          * do any necessary shifting, we just need to perform the first
338          * dereference.
339          */
340         armpmu = *(void **)dev;
341         plat_device = armpmu->plat_device;
342         plat = dev_get_platdata(&plat_device->dev);
343
344         start_clock = sched_clock();
345         if (plat && plat->handle_irq)
346                 ret = plat->handle_irq(irq, armpmu, armpmu->handle_irq);
347         else
348                 ret = armpmu->handle_irq(irq, armpmu);
349         finish_clock = sched_clock();
350
351         perf_sample_event_took(finish_clock - start_clock);
352         return ret;
353 }
354
355 static int
356 event_requires_mode_exclusion(struct perf_event_attr *attr)
357 {
358         return attr->exclude_idle || attr->exclude_user ||
359                attr->exclude_kernel || attr->exclude_hv;
360 }
361
362 static int
363 __hw_perf_event_init(struct perf_event *event)
364 {
365         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
366         struct hw_perf_event *hwc = &event->hw;
367         int mapping;
368
369         mapping = armpmu->map_event(event);
370
371         if (mapping < 0) {
372                 pr_debug("event %x:%llx not supported\n", event->attr.type,
373                          event->attr.config);
374                 return mapping;
375         }
376
377         /*
378          * We don't assign an index until we actually place the event onto
379          * hardware. Use -1 to signify that we haven't decided where to put it
380          * yet. For SMP systems, each core has it's own PMU so we can't do any
381          * clever allocation or constraints checking at this point.
382          */
383         hwc->idx                = -1;
384         hwc->config_base        = 0;
385         hwc->config             = 0;
386         hwc->event_base         = 0;
387
388         /*
389          * Check whether we need to exclude the counter from certain modes.
390          */
391         if ((!armpmu->set_event_filter ||
392              armpmu->set_event_filter(hwc, &event->attr)) &&
393              event_requires_mode_exclusion(&event->attr)) {
394                 pr_debug("ARM performance counters do not support "
395                          "mode exclusion\n");
396                 return -EOPNOTSUPP;
397         }
398
399         /*
400          * Store the event encoding into the config_base field.
401          */
402         hwc->config_base            |= (unsigned long)mapping;
403
404         if (!is_sampling_event(event)) {
405                 /*
406                  * For non-sampling runs, limit the sample_period to half
407                  * of the counter width. That way, the new counter value
408                  * is far less likely to overtake the previous one unless
409                  * you have some serious IRQ latency issues.
410                  */
411                 hwc->sample_period  = armpmu->max_period >> 1;
412                 hwc->last_period    = hwc->sample_period;
413                 local64_set(&hwc->period_left, hwc->sample_period);
414         }
415
416         if (event->group_leader != event) {
417                 if (validate_group(event) != 0)
418                         return -EINVAL;
419         }
420
421         return 0;
422 }
423
424 static int armpmu_event_init(struct perf_event *event)
425 {
426         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
427
428         /*
429          * Reject CPU-affine events for CPUs that are of a different class to
430          * that which this PMU handles. Process-following events (where
431          * event->cpu == -1) can be migrated between CPUs, and thus we have to
432          * reject them later (in armpmu_add) if they're scheduled on a
433          * different class of CPU.
434          */
435         if (event->cpu != -1 &&
436                 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
437                 return -ENOENT;
438
439         /* does not support taken branch sampling */
440         if (has_branch_stack(event))
441                 return -EOPNOTSUPP;
442
443         if (armpmu->map_event(event) == -ENOENT)
444                 return -ENOENT;
445
446         return __hw_perf_event_init(event);
447 }
448
449 static void armpmu_enable(struct pmu *pmu)
450 {
451         struct arm_pmu *armpmu = to_arm_pmu(pmu);
452         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
453         int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
454
455         /* For task-bound events we may be called on other CPUs */
456         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
457                 return;
458
459         if (enabled)
460                 armpmu->start(armpmu);
461 }
462
463 static void armpmu_disable(struct pmu *pmu)
464 {
465         struct arm_pmu *armpmu = to_arm_pmu(pmu);
466
467         /* For task-bound events we may be called on other CPUs */
468         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
469                 return;
470
471         armpmu->stop(armpmu);
472 }
473
474 /*
475  * In heterogeneous systems, events are specific to a particular
476  * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
477  * the same microarchitecture.
478  */
479 static int armpmu_filter_match(struct perf_event *event)
480 {
481         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
482         unsigned int cpu = smp_processor_id();
483         return cpumask_test_cpu(cpu, &armpmu->supported_cpus);
484 }
485
486 static ssize_t armpmu_cpumask_show(struct device *dev,
487                                    struct device_attribute *attr, char *buf)
488 {
489         struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
490         return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
491 }
492
493 static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL);
494
495 static struct attribute *armpmu_common_attrs[] = {
496         &dev_attr_cpus.attr,
497         NULL,
498 };
499
500 static struct attribute_group armpmu_common_attr_group = {
501         .attrs = armpmu_common_attrs,
502 };
503
504 static void armpmu_init(struct arm_pmu *armpmu)
505 {
506         armpmu->pmu = (struct pmu) {
507                 .pmu_enable     = armpmu_enable,
508                 .pmu_disable    = armpmu_disable,
509                 .event_init     = armpmu_event_init,
510                 .add            = armpmu_add,
511                 .del            = armpmu_del,
512                 .start          = armpmu_start,
513                 .stop           = armpmu_stop,
514                 .read           = armpmu_read,
515                 .filter_match   = armpmu_filter_match,
516                 .attr_groups    = armpmu->attr_groups,
517         };
518         armpmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
519                 &armpmu_common_attr_group;
520 }
521
522 /* Set at runtime when we know what CPU type we are. */
523 static struct arm_pmu *__oprofile_cpu_pmu;
524
525 /*
526  * Despite the names, these two functions are CPU-specific and are used
527  * by the OProfile/perf code.
528  */
529 const char *perf_pmu_name(void)
530 {
531         if (!__oprofile_cpu_pmu)
532                 return NULL;
533
534         return __oprofile_cpu_pmu->name;
535 }
536 EXPORT_SYMBOL_GPL(perf_pmu_name);
537
538 int perf_num_counters(void)
539 {
540         int max_events = 0;
541
542         if (__oprofile_cpu_pmu != NULL)
543                 max_events = __oprofile_cpu_pmu->num_events;
544
545         return max_events;
546 }
547 EXPORT_SYMBOL_GPL(perf_num_counters);
548
549 static void cpu_pmu_free_irqs(struct arm_pmu *cpu_pmu)
550 {
551         int cpu;
552         struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events;
553
554         for_each_cpu(cpu, &cpu_pmu->supported_cpus) {
555                 int irq = per_cpu(hw_events->irq, cpu);
556                 if (!irq)
557                         continue;
558
559                 if (irq_is_percpu(irq)) {
560                         free_percpu_irq(irq, &hw_events->percpu_pmu);
561                         break;
562                 }
563
564                 if (!cpumask_test_and_clear_cpu(cpu, &cpu_pmu->active_irqs))
565                         continue;
566
567                 free_irq(irq, per_cpu_ptr(&hw_events->percpu_pmu, cpu));
568         }
569 }
570
571 static int cpu_pmu_request_irqs(struct arm_pmu *cpu_pmu, irq_handler_t handler)
572 {
573         int cpu, err;
574         struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events;
575
576         for_each_cpu(cpu, &cpu_pmu->supported_cpus) {
577                 int irq = per_cpu(hw_events->irq, cpu);
578                 if (!irq)
579                         continue;
580
581                 if (irq_is_percpu(irq)) {
582                         err = request_percpu_irq(irq, handler, "arm-pmu",
583                                                  &hw_events->percpu_pmu);
584                         if (err) {
585                                 pr_err("unable to request IRQ%d for ARM PMU counters\n",
586                                         irq);
587                         }
588
589                         return err;
590                 }
591
592                 err = request_irq(irq, handler,
593                                   IRQF_NOBALANCING | IRQF_NO_THREAD, "arm-pmu",
594                                   per_cpu_ptr(&hw_events->percpu_pmu, cpu));
595                 if (err) {
596                         pr_err("unable to request IRQ%d for ARM PMU counters\n",
597                                 irq);
598                         return err;
599                 }
600
601                 cpumask_set_cpu(cpu, &cpu_pmu->active_irqs);
602         }
603
604         return 0;
605 }
606
607 static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
608 {
609         struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
610         return per_cpu(hw_events->irq, cpu);
611 }
612
613 /*
614  * PMU hardware loses all context when a CPU goes offline.
615  * When a CPU is hotplugged back in, since some hardware registers are
616  * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
617  * junk values out of them.
618  */
619 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
620 {
621         struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
622         int irq;
623
624         if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
625                 return 0;
626         if (pmu->reset)
627                 pmu->reset(pmu);
628
629         irq = armpmu_get_cpu_irq(pmu, cpu);
630         if (irq) {
631                 if (irq_is_percpu(irq)) {
632                         enable_percpu_irq(irq, IRQ_TYPE_NONE);
633                         return 0;
634                 }
635
636                 if (irq_force_affinity(irq, cpumask_of(cpu)) &&
637                     num_possible_cpus() > 1) {
638                         pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
639                                 irq, cpu);
640                 }
641         }
642
643         return 0;
644 }
645
646 static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
647 {
648         struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
649         int irq;
650
651         if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
652                 return 0;
653
654         irq = armpmu_get_cpu_irq(pmu, cpu);
655         if (irq && irq_is_percpu(irq))
656                 disable_percpu_irq(irq);
657
658         return 0;
659 }
660
661 #ifdef CONFIG_CPU_PM
662 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
663 {
664         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
665         struct perf_event *event;
666         int idx;
667
668         for (idx = 0; idx < armpmu->num_events; idx++) {
669                 /*
670                  * If the counter is not used skip it, there is no
671                  * need of stopping/restarting it.
672                  */
673                 if (!test_bit(idx, hw_events->used_mask))
674                         continue;
675
676                 event = hw_events->events[idx];
677
678                 switch (cmd) {
679                 case CPU_PM_ENTER:
680                         /*
681                          * Stop and update the counter
682                          */
683                         armpmu_stop(event, PERF_EF_UPDATE);
684                         break;
685                 case CPU_PM_EXIT:
686                 case CPU_PM_ENTER_FAILED:
687                          /*
688                           * Restore and enable the counter.
689                           * armpmu_start() indirectly calls
690                           *
691                           * perf_event_update_userpage()
692                           *
693                           * that requires RCU read locking to be functional,
694                           * wrap the call within RCU_NONIDLE to make the
695                           * RCU subsystem aware this cpu is not idle from
696                           * an RCU perspective for the armpmu_start() call
697                           * duration.
698                           */
699                         RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
700                         break;
701                 default:
702                         break;
703                 }
704         }
705 }
706
707 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
708                              void *v)
709 {
710         struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
711         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
712         int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
713
714         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
715                 return NOTIFY_DONE;
716
717         /*
718          * Always reset the PMU registers on power-up even if
719          * there are no events running.
720          */
721         if (cmd == CPU_PM_EXIT && armpmu->reset)
722                 armpmu->reset(armpmu);
723
724         if (!enabled)
725                 return NOTIFY_OK;
726
727         switch (cmd) {
728         case CPU_PM_ENTER:
729                 armpmu->stop(armpmu);
730                 cpu_pm_pmu_setup(armpmu, cmd);
731                 break;
732         case CPU_PM_EXIT:
733                 cpu_pm_pmu_setup(armpmu, cmd);
734         case CPU_PM_ENTER_FAILED:
735                 armpmu->start(armpmu);
736                 break;
737         default:
738                 return NOTIFY_DONE;
739         }
740
741         return NOTIFY_OK;
742 }
743
744 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
745 {
746         cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
747         return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
748 }
749
750 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
751 {
752         cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
753 }
754 #else
755 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
756 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
757 #endif
758
759 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
760 {
761         int err;
762
763         err = cpu_pmu_request_irqs(cpu_pmu, armpmu_dispatch_irq);
764         if (err)
765                 goto out;
766
767         err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
768                                        &cpu_pmu->node);
769         if (err)
770                 goto out;
771
772         err = cpu_pm_pmu_register(cpu_pmu);
773         if (err)
774                 goto out_unregister;
775
776         /*
777          * This is a CPU PMU potentially in a heterogeneous configuration (e.g.
778          * big.LITTLE). This is not an uncore PMU, and we have taken ctx
779          * sharing into account (e.g. with our pmu::filter_match callback and
780          * pmu::event_init group validation).
781          */
782         cpu_pmu->pmu.capabilities |= PERF_PMU_CAP_HETEROGENEOUS_CPUS;
783
784         return 0;
785
786 out_unregister:
787         cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
788                                             &cpu_pmu->node);
789 out:
790         cpu_pmu_free_irqs(cpu_pmu);
791         return err;
792 }
793
794 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
795 {
796         cpu_pm_pmu_unregister(cpu_pmu);
797         cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
798                                             &cpu_pmu->node);
799 }
800
801 /*
802  * CPU PMU identification and probing.
803  */
804 static int probe_current_pmu(struct arm_pmu *pmu,
805                              const struct pmu_probe_info *info)
806 {
807         int cpu = get_cpu();
808         unsigned int cpuid = read_cpuid_id();
809         int ret = -ENODEV;
810
811         pr_info("probing PMU on CPU %d\n", cpu);
812
813         for (; info->init != NULL; info++) {
814                 if ((cpuid & info->mask) != info->cpuid)
815                         continue;
816                 ret = info->init(pmu);
817                 break;
818         }
819
820         put_cpu();
821         return ret;
822 }
823
824 static int pmu_parse_percpu_irq(struct arm_pmu *pmu, int irq)
825 {
826         int cpu, ret;
827         struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
828
829         ret = irq_get_percpu_devid_partition(irq, &pmu->supported_cpus);
830         if (ret)
831                 return ret;
832
833         for_each_cpu(cpu, &pmu->supported_cpus)
834                 per_cpu(hw_events->irq, cpu) = irq;
835
836         return 0;
837 }
838
839 static bool pmu_has_irq_affinity(struct device_node *node)
840 {
841         return !!of_find_property(node, "interrupt-affinity", NULL);
842 }
843
844 static int pmu_parse_irq_affinity(struct device_node *node, int i)
845 {
846         struct device_node *dn;
847         int cpu;
848
849         /*
850          * If we don't have an interrupt-affinity property, we guess irq
851          * affinity matches our logical CPU order, as we used to assume.
852          * This is fragile, so we'll warn in pmu_parse_irqs().
853          */
854         if (!pmu_has_irq_affinity(node))
855                 return i;
856
857         dn = of_parse_phandle(node, "interrupt-affinity", i);
858         if (!dn) {
859                 pr_warn("failed to parse interrupt-affinity[%d] for %s\n",
860                         i, node->name);
861                 return -EINVAL;
862         }
863
864         /* Now look up the logical CPU number */
865         for_each_possible_cpu(cpu) {
866                 struct device_node *cpu_dn;
867
868                 cpu_dn = of_cpu_device_node_get(cpu);
869                 of_node_put(cpu_dn);
870
871                 if (dn == cpu_dn)
872                         break;
873         }
874
875         if (cpu >= nr_cpu_ids) {
876                 pr_warn("failed to find logical CPU for %s\n", dn->name);
877         }
878
879         of_node_put(dn);
880
881         return cpu;
882 }
883
884 static int pmu_parse_irqs(struct arm_pmu *pmu)
885 {
886         int i = 0, irqs;
887         struct platform_device *pdev = pmu->plat_device;
888         struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
889
890         irqs = platform_irq_count(pdev);
891         if (irqs < 0) {
892                 pr_err("unable to count PMU IRQs\n");
893                 return irqs;
894         }
895
896         /*
897          * In this case we have no idea which CPUs are covered by the PMU.
898          * To match our prior behaviour, we assume all CPUs in this case.
899          */
900         if (irqs == 0) {
901                 pr_warn("no irqs for PMU, sampling events not supported\n");
902                 pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
903                 cpumask_setall(&pmu->supported_cpus);
904                 return 0;
905         }
906
907         if (irqs == 1) {
908                 int irq = platform_get_irq(pdev, 0);
909                 if (irq && irq_is_percpu(irq))
910                         return pmu_parse_percpu_irq(pmu, irq);
911         }
912
913         if (!pmu_has_irq_affinity(pdev->dev.of_node)) {
914                 pr_warn("no interrupt-affinity property for %s, guessing.\n",
915                         of_node_full_name(pdev->dev.of_node));
916         }
917
918         /*
919          * Some platforms have all PMU IRQs OR'd into a single IRQ, with a
920          * special platdata function that attempts to demux them.
921          */
922         if (dev_get_platdata(&pdev->dev))
923                 cpumask_setall(&pmu->supported_cpus);
924
925         for (i = 0; i < irqs; i++) {
926                 int cpu, irq;
927
928                 irq = platform_get_irq(pdev, i);
929                 if (WARN_ON(irq <= 0))
930                         continue;
931
932                 if (irq_is_percpu(irq)) {
933                         pr_warn("multiple PPIs or mismatched SPI/PPI detected\n");
934                         return -EINVAL;
935                 }
936
937                 cpu = pmu_parse_irq_affinity(pdev->dev.of_node, i);
938                 if (cpu < 0)
939                         return cpu;
940                 if (cpu >= nr_cpu_ids)
941                         continue;
942
943                 if (per_cpu(hw_events->irq, cpu)) {
944                         pr_warn("multiple PMU IRQs for the same CPU detected\n");
945                         return -EINVAL;
946                 }
947
948                 per_cpu(hw_events->irq, cpu) = irq;
949                 cpumask_set_cpu(cpu, &pmu->supported_cpus);
950         }
951
952         return 0;
953 }
954
955 static struct arm_pmu *armpmu_alloc(void)
956 {
957         struct arm_pmu *pmu;
958         int cpu;
959
960         pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
961         if (!pmu) {
962                 pr_info("failed to allocate PMU device!\n");
963                 goto out;
964         }
965
966         pmu->hw_events = alloc_percpu(struct pmu_hw_events);
967         if (!pmu->hw_events) {
968                 pr_info("failed to allocate per-cpu PMU data.\n");
969                 goto out_free_pmu;
970         }
971
972         for_each_possible_cpu(cpu) {
973                 struct pmu_hw_events *events;
974
975                 events = per_cpu_ptr(pmu->hw_events, cpu);
976                 raw_spin_lock_init(&events->pmu_lock);
977                 events->percpu_pmu = pmu;
978         }
979
980         return pmu;
981
982 out_free_pmu:
983         kfree(pmu);
984 out:
985         return NULL;
986 }
987
988 static void armpmu_free(struct arm_pmu *pmu)
989 {
990         free_percpu(pmu->hw_events);
991         kfree(pmu);
992 }
993
994 int arm_pmu_device_probe(struct platform_device *pdev,
995                          const struct of_device_id *of_table,
996                          const struct pmu_probe_info *probe_table)
997 {
998         const struct of_device_id *of_id;
999         const int (*init_fn)(struct arm_pmu *);
1000         struct device_node *node = pdev->dev.of_node;
1001         struct arm_pmu *pmu;
1002         int ret = -ENODEV;
1003
1004         pmu = armpmu_alloc();
1005         if (!pmu)
1006                 return -ENOMEM;
1007
1008         armpmu_init(pmu);
1009
1010         pmu->plat_device = pdev;
1011
1012         ret = pmu_parse_irqs(pmu);
1013         if (ret)
1014                 goto out_free;
1015
1016         if (node && (of_id = of_match_node(of_table, pdev->dev.of_node))) {
1017                 init_fn = of_id->data;
1018
1019                 pmu->secure_access = of_property_read_bool(pdev->dev.of_node,
1020                                                            "secure-reg-access");
1021
1022                 /* arm64 systems boot only as non-secure */
1023                 if (IS_ENABLED(CONFIG_ARM64) && pmu->secure_access) {
1024                         pr_warn("ignoring \"secure-reg-access\" property for arm64\n");
1025                         pmu->secure_access = false;
1026                 }
1027
1028                 ret = init_fn(pmu);
1029         } else if (probe_table) {
1030                 cpumask_setall(&pmu->supported_cpus);
1031                 ret = probe_current_pmu(pmu, probe_table);
1032         }
1033
1034         if (ret) {
1035                 pr_info("%s: failed to probe PMU!\n", of_node_full_name(node));
1036                 goto out_free;
1037         }
1038
1039
1040         ret = cpu_pmu_init(pmu);
1041         if (ret)
1042                 goto out_free;
1043
1044         ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
1045         if (ret)
1046                 goto out_destroy;
1047
1048         if (!__oprofile_cpu_pmu)
1049                 __oprofile_cpu_pmu = pmu;
1050
1051         pr_info("enabled with %s PMU driver, %d counters available\n",
1052                         pmu->name, pmu->num_events);
1053
1054         return 0;
1055
1056 out_destroy:
1057         cpu_pmu_destroy(pmu);
1058 out_free:
1059         pr_info("%s: failed to register PMU devices!\n",
1060                 of_node_full_name(node));
1061         armpmu_free(pmu);
1062         return ret;
1063 }
1064
1065 static int arm_pmu_hp_init(void)
1066 {
1067         int ret;
1068
1069         ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
1070                                       "perf/arm/pmu:starting",
1071                                       arm_perf_starting_cpu,
1072                                       arm_perf_teardown_cpu);
1073         if (ret)
1074                 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
1075                        ret);
1076         return ret;
1077 }
1078 subsys_initcall(arm_pmu_hp_init);