]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/perf/arm_pmu.c
Merge remote-tracking branches 'asoc/topic/rockchip', 'asoc/topic/rt5514', 'asoc...
[karo-tx-linux.git] / drivers / perf / arm_pmu.c
1 #undef DEBUG
2
3 /*
4  * ARM performance counter support.
5  *
6  * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7  * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
8  *
9  * This code is based on the sparc64 perf event code, which is in turn based
10  * on the x86 code.
11  */
12 #define pr_fmt(fmt) "hw perfevents: " fmt
13
14 #include <linux/bitmap.h>
15 #include <linux/cpumask.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/export.h>
18 #include <linux/kernel.h>
19 #include <linux/of_device.h>
20 #include <linux/perf/arm_pmu.h>
21 #include <linux/platform_device.h>
22 #include <linux/slab.h>
23 #include <linux/sched/clock.h>
24 #include <linux/spinlock.h>
25 #include <linux/irq.h>
26 #include <linux/irqdesc.h>
27
28 #include <asm/cputype.h>
29 #include <asm/irq_regs.h>
30
31 static int
32 armpmu_map_cache_event(const unsigned (*cache_map)
33                                       [PERF_COUNT_HW_CACHE_MAX]
34                                       [PERF_COUNT_HW_CACHE_OP_MAX]
35                                       [PERF_COUNT_HW_CACHE_RESULT_MAX],
36                        u64 config)
37 {
38         unsigned int cache_type, cache_op, cache_result, ret;
39
40         cache_type = (config >>  0) & 0xff;
41         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
42                 return -EINVAL;
43
44         cache_op = (config >>  8) & 0xff;
45         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
46                 return -EINVAL;
47
48         cache_result = (config >> 16) & 0xff;
49         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
50                 return -EINVAL;
51
52         ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
53
54         if (ret == CACHE_OP_UNSUPPORTED)
55                 return -ENOENT;
56
57         return ret;
58 }
59
60 static int
61 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
62 {
63         int mapping;
64
65         if (config >= PERF_COUNT_HW_MAX)
66                 return -EINVAL;
67
68         mapping = (*event_map)[config];
69         return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
70 }
71
72 static int
73 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
74 {
75         return (int)(config & raw_event_mask);
76 }
77
78 int
79 armpmu_map_event(struct perf_event *event,
80                  const unsigned (*event_map)[PERF_COUNT_HW_MAX],
81                  const unsigned (*cache_map)
82                                 [PERF_COUNT_HW_CACHE_MAX]
83                                 [PERF_COUNT_HW_CACHE_OP_MAX]
84                                 [PERF_COUNT_HW_CACHE_RESULT_MAX],
85                  u32 raw_event_mask)
86 {
87         u64 config = event->attr.config;
88         int type = event->attr.type;
89
90         if (type == event->pmu->type)
91                 return armpmu_map_raw_event(raw_event_mask, config);
92
93         switch (type) {
94         case PERF_TYPE_HARDWARE:
95                 return armpmu_map_hw_event(event_map, config);
96         case PERF_TYPE_HW_CACHE:
97                 return armpmu_map_cache_event(cache_map, config);
98         case PERF_TYPE_RAW:
99                 return armpmu_map_raw_event(raw_event_mask, config);
100         }
101
102         return -ENOENT;
103 }
104
105 int armpmu_event_set_period(struct perf_event *event)
106 {
107         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
108         struct hw_perf_event *hwc = &event->hw;
109         s64 left = local64_read(&hwc->period_left);
110         s64 period = hwc->sample_period;
111         int ret = 0;
112
113         if (unlikely(left <= -period)) {
114                 left = period;
115                 local64_set(&hwc->period_left, left);
116                 hwc->last_period = period;
117                 ret = 1;
118         }
119
120         if (unlikely(left <= 0)) {
121                 left += period;
122                 local64_set(&hwc->period_left, left);
123                 hwc->last_period = period;
124                 ret = 1;
125         }
126
127         /*
128          * Limit the maximum period to prevent the counter value
129          * from overtaking the one we are about to program. In
130          * effect we are reducing max_period to account for
131          * interrupt latency (and we are being very conservative).
132          */
133         if (left > (armpmu->max_period >> 1))
134                 left = armpmu->max_period >> 1;
135
136         local64_set(&hwc->prev_count, (u64)-left);
137
138         armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
139
140         perf_event_update_userpage(event);
141
142         return ret;
143 }
144
145 u64 armpmu_event_update(struct perf_event *event)
146 {
147         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
148         struct hw_perf_event *hwc = &event->hw;
149         u64 delta, prev_raw_count, new_raw_count;
150
151 again:
152         prev_raw_count = local64_read(&hwc->prev_count);
153         new_raw_count = armpmu->read_counter(event);
154
155         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
156                              new_raw_count) != prev_raw_count)
157                 goto again;
158
159         delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
160
161         local64_add(delta, &event->count);
162         local64_sub(delta, &hwc->period_left);
163
164         return new_raw_count;
165 }
166
167 static void
168 armpmu_read(struct perf_event *event)
169 {
170         armpmu_event_update(event);
171 }
172
173 static void
174 armpmu_stop(struct perf_event *event, int flags)
175 {
176         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
177         struct hw_perf_event *hwc = &event->hw;
178
179         /*
180          * ARM pmu always has to update the counter, so ignore
181          * PERF_EF_UPDATE, see comments in armpmu_start().
182          */
183         if (!(hwc->state & PERF_HES_STOPPED)) {
184                 armpmu->disable(event);
185                 armpmu_event_update(event);
186                 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
187         }
188 }
189
190 static void armpmu_start(struct perf_event *event, int flags)
191 {
192         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
193         struct hw_perf_event *hwc = &event->hw;
194
195         /*
196          * ARM pmu always has to reprogram the period, so ignore
197          * PERF_EF_RELOAD, see the comment below.
198          */
199         if (flags & PERF_EF_RELOAD)
200                 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
201
202         hwc->state = 0;
203         /*
204          * Set the period again. Some counters can't be stopped, so when we
205          * were stopped we simply disabled the IRQ source and the counter
206          * may have been left counting. If we don't do this step then we may
207          * get an interrupt too soon or *way* too late if the overflow has
208          * happened since disabling.
209          */
210         armpmu_event_set_period(event);
211         armpmu->enable(event);
212 }
213
214 static void
215 armpmu_del(struct perf_event *event, int flags)
216 {
217         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
218         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
219         struct hw_perf_event *hwc = &event->hw;
220         int idx = hwc->idx;
221
222         armpmu_stop(event, PERF_EF_UPDATE);
223         hw_events->events[idx] = NULL;
224         clear_bit(idx, hw_events->used_mask);
225         if (armpmu->clear_event_idx)
226                 armpmu->clear_event_idx(hw_events, event);
227
228         perf_event_update_userpage(event);
229 }
230
231 static int
232 armpmu_add(struct perf_event *event, int flags)
233 {
234         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
235         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
236         struct hw_perf_event *hwc = &event->hw;
237         int idx;
238         int err = 0;
239
240         /* An event following a process won't be stopped earlier */
241         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
242                 return -ENOENT;
243
244         perf_pmu_disable(event->pmu);
245
246         /* If we don't have a space for the counter then finish early. */
247         idx = armpmu->get_event_idx(hw_events, event);
248         if (idx < 0) {
249                 err = idx;
250                 goto out;
251         }
252
253         /*
254          * If there is an event in the counter we are going to use then make
255          * sure it is disabled.
256          */
257         event->hw.idx = idx;
258         armpmu->disable(event);
259         hw_events->events[idx] = event;
260
261         hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
262         if (flags & PERF_EF_START)
263                 armpmu_start(event, PERF_EF_RELOAD);
264
265         /* Propagate our changes to the userspace mapping. */
266         perf_event_update_userpage(event);
267
268 out:
269         perf_pmu_enable(event->pmu);
270         return err;
271 }
272
273 static int
274 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
275                                struct perf_event *event)
276 {
277         struct arm_pmu *armpmu;
278
279         if (is_software_event(event))
280                 return 1;
281
282         /*
283          * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
284          * core perf code won't check that the pmu->ctx == leader->ctx
285          * until after pmu->event_init(event).
286          */
287         if (event->pmu != pmu)
288                 return 0;
289
290         if (event->state < PERF_EVENT_STATE_OFF)
291                 return 1;
292
293         if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
294                 return 1;
295
296         armpmu = to_arm_pmu(event->pmu);
297         return armpmu->get_event_idx(hw_events, event) >= 0;
298 }
299
300 static int
301 validate_group(struct perf_event *event)
302 {
303         struct perf_event *sibling, *leader = event->group_leader;
304         struct pmu_hw_events fake_pmu;
305
306         /*
307          * Initialise the fake PMU. We only need to populate the
308          * used_mask for the purposes of validation.
309          */
310         memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
311
312         if (!validate_event(event->pmu, &fake_pmu, leader))
313                 return -EINVAL;
314
315         list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
316                 if (!validate_event(event->pmu, &fake_pmu, sibling))
317                         return -EINVAL;
318         }
319
320         if (!validate_event(event->pmu, &fake_pmu, event))
321                 return -EINVAL;
322
323         return 0;
324 }
325
326 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
327 {
328         struct arm_pmu *armpmu;
329         struct platform_device *plat_device;
330         struct arm_pmu_platdata *plat;
331         int ret;
332         u64 start_clock, finish_clock;
333
334         /*
335          * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
336          * the handlers expect a struct arm_pmu*. The percpu_irq framework will
337          * do any necessary shifting, we just need to perform the first
338          * dereference.
339          */
340         armpmu = *(void **)dev;
341         plat_device = armpmu->plat_device;
342         plat = dev_get_platdata(&plat_device->dev);
343
344         start_clock = sched_clock();
345         if (plat && plat->handle_irq)
346                 ret = plat->handle_irq(irq, armpmu, armpmu->handle_irq);
347         else
348                 ret = armpmu->handle_irq(irq, armpmu);
349         finish_clock = sched_clock();
350
351         perf_sample_event_took(finish_clock - start_clock);
352         return ret;
353 }
354
355 static void
356 armpmu_release_hardware(struct arm_pmu *armpmu)
357 {
358         armpmu->free_irq(armpmu);
359 }
360
361 static int
362 armpmu_reserve_hardware(struct arm_pmu *armpmu)
363 {
364         int err = armpmu->request_irq(armpmu, armpmu_dispatch_irq);
365         if (err) {
366                 armpmu_release_hardware(armpmu);
367                 return err;
368         }
369
370         return 0;
371 }
372
373 static void
374 hw_perf_event_destroy(struct perf_event *event)
375 {
376         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
377         atomic_t *active_events  = &armpmu->active_events;
378         struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
379
380         if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
381                 armpmu_release_hardware(armpmu);
382                 mutex_unlock(pmu_reserve_mutex);
383         }
384 }
385
386 static int
387 event_requires_mode_exclusion(struct perf_event_attr *attr)
388 {
389         return attr->exclude_idle || attr->exclude_user ||
390                attr->exclude_kernel || attr->exclude_hv;
391 }
392
393 static int
394 __hw_perf_event_init(struct perf_event *event)
395 {
396         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
397         struct hw_perf_event *hwc = &event->hw;
398         int mapping;
399
400         mapping = armpmu->map_event(event);
401
402         if (mapping < 0) {
403                 pr_debug("event %x:%llx not supported\n", event->attr.type,
404                          event->attr.config);
405                 return mapping;
406         }
407
408         /*
409          * We don't assign an index until we actually place the event onto
410          * hardware. Use -1 to signify that we haven't decided where to put it
411          * yet. For SMP systems, each core has it's own PMU so we can't do any
412          * clever allocation or constraints checking at this point.
413          */
414         hwc->idx                = -1;
415         hwc->config_base        = 0;
416         hwc->config             = 0;
417         hwc->event_base         = 0;
418
419         /*
420          * Check whether we need to exclude the counter from certain modes.
421          */
422         if ((!armpmu->set_event_filter ||
423              armpmu->set_event_filter(hwc, &event->attr)) &&
424              event_requires_mode_exclusion(&event->attr)) {
425                 pr_debug("ARM performance counters do not support "
426                          "mode exclusion\n");
427                 return -EOPNOTSUPP;
428         }
429
430         /*
431          * Store the event encoding into the config_base field.
432          */
433         hwc->config_base            |= (unsigned long)mapping;
434
435         if (!is_sampling_event(event)) {
436                 /*
437                  * For non-sampling runs, limit the sample_period to half
438                  * of the counter width. That way, the new counter value
439                  * is far less likely to overtake the previous one unless
440                  * you have some serious IRQ latency issues.
441                  */
442                 hwc->sample_period  = armpmu->max_period >> 1;
443                 hwc->last_period    = hwc->sample_period;
444                 local64_set(&hwc->period_left, hwc->sample_period);
445         }
446
447         if (event->group_leader != event) {
448                 if (validate_group(event) != 0)
449                         return -EINVAL;
450         }
451
452         return 0;
453 }
454
455 static int armpmu_event_init(struct perf_event *event)
456 {
457         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
458         int err = 0;
459         atomic_t *active_events = &armpmu->active_events;
460
461         /*
462          * Reject CPU-affine events for CPUs that are of a different class to
463          * that which this PMU handles. Process-following events (where
464          * event->cpu == -1) can be migrated between CPUs, and thus we have to
465          * reject them later (in armpmu_add) if they're scheduled on a
466          * different class of CPU.
467          */
468         if (event->cpu != -1 &&
469                 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
470                 return -ENOENT;
471
472         /* does not support taken branch sampling */
473         if (has_branch_stack(event))
474                 return -EOPNOTSUPP;
475
476         if (armpmu->map_event(event) == -ENOENT)
477                 return -ENOENT;
478
479         event->destroy = hw_perf_event_destroy;
480
481         if (!atomic_inc_not_zero(active_events)) {
482                 mutex_lock(&armpmu->reserve_mutex);
483                 if (atomic_read(active_events) == 0)
484                         err = armpmu_reserve_hardware(armpmu);
485
486                 if (!err)
487                         atomic_inc(active_events);
488                 mutex_unlock(&armpmu->reserve_mutex);
489         }
490
491         if (err)
492                 return err;
493
494         err = __hw_perf_event_init(event);
495         if (err)
496                 hw_perf_event_destroy(event);
497
498         return err;
499 }
500
501 static void armpmu_enable(struct pmu *pmu)
502 {
503         struct arm_pmu *armpmu = to_arm_pmu(pmu);
504         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
505         int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
506
507         /* For task-bound events we may be called on other CPUs */
508         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
509                 return;
510
511         if (enabled)
512                 armpmu->start(armpmu);
513 }
514
515 static void armpmu_disable(struct pmu *pmu)
516 {
517         struct arm_pmu *armpmu = to_arm_pmu(pmu);
518
519         /* For task-bound events we may be called on other CPUs */
520         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
521                 return;
522
523         armpmu->stop(armpmu);
524 }
525
526 /*
527  * In heterogeneous systems, events are specific to a particular
528  * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
529  * the same microarchitecture.
530  */
531 static int armpmu_filter_match(struct perf_event *event)
532 {
533         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
534         unsigned int cpu = smp_processor_id();
535         return cpumask_test_cpu(cpu, &armpmu->supported_cpus);
536 }
537
538 static ssize_t armpmu_cpumask_show(struct device *dev,
539                                    struct device_attribute *attr, char *buf)
540 {
541         struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
542         return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
543 }
544
545 static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL);
546
547 static struct attribute *armpmu_common_attrs[] = {
548         &dev_attr_cpus.attr,
549         NULL,
550 };
551
552 static struct attribute_group armpmu_common_attr_group = {
553         .attrs = armpmu_common_attrs,
554 };
555
556 static void armpmu_init(struct arm_pmu *armpmu)
557 {
558         atomic_set(&armpmu->active_events, 0);
559         mutex_init(&armpmu->reserve_mutex);
560
561         armpmu->pmu = (struct pmu) {
562                 .pmu_enable     = armpmu_enable,
563                 .pmu_disable    = armpmu_disable,
564                 .event_init     = armpmu_event_init,
565                 .add            = armpmu_add,
566                 .del            = armpmu_del,
567                 .start          = armpmu_start,
568                 .stop           = armpmu_stop,
569                 .read           = armpmu_read,
570                 .filter_match   = armpmu_filter_match,
571                 .attr_groups    = armpmu->attr_groups,
572         };
573         armpmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
574                 &armpmu_common_attr_group;
575 }
576
577 /* Set at runtime when we know what CPU type we are. */
578 static struct arm_pmu *__oprofile_cpu_pmu;
579
580 /*
581  * Despite the names, these two functions are CPU-specific and are used
582  * by the OProfile/perf code.
583  */
584 const char *perf_pmu_name(void)
585 {
586         if (!__oprofile_cpu_pmu)
587                 return NULL;
588
589         return __oprofile_cpu_pmu->name;
590 }
591 EXPORT_SYMBOL_GPL(perf_pmu_name);
592
593 int perf_num_counters(void)
594 {
595         int max_events = 0;
596
597         if (__oprofile_cpu_pmu != NULL)
598                 max_events = __oprofile_cpu_pmu->num_events;
599
600         return max_events;
601 }
602 EXPORT_SYMBOL_GPL(perf_num_counters);
603
604 static void cpu_pmu_enable_percpu_irq(void *data)
605 {
606         int irq = *(int *)data;
607
608         enable_percpu_irq(irq, IRQ_TYPE_NONE);
609 }
610
611 static void cpu_pmu_disable_percpu_irq(void *data)
612 {
613         int irq = *(int *)data;
614
615         disable_percpu_irq(irq);
616 }
617
618 static void cpu_pmu_free_irq(struct arm_pmu *cpu_pmu)
619 {
620         int i, irq, irqs;
621         struct platform_device *pmu_device = cpu_pmu->plat_device;
622         struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events;
623
624         irqs = min(pmu_device->num_resources, num_possible_cpus());
625
626         irq = platform_get_irq(pmu_device, 0);
627         if (irq > 0 && irq_is_percpu(irq)) {
628                 on_each_cpu_mask(&cpu_pmu->supported_cpus,
629                                  cpu_pmu_disable_percpu_irq, &irq, 1);
630                 free_percpu_irq(irq, &hw_events->percpu_pmu);
631         } else {
632                 for (i = 0; i < irqs; ++i) {
633                         int cpu = i;
634
635                         if (cpu_pmu->irq_affinity)
636                                 cpu = cpu_pmu->irq_affinity[i];
637
638                         if (!cpumask_test_and_clear_cpu(cpu, &cpu_pmu->active_irqs))
639                                 continue;
640                         irq = platform_get_irq(pmu_device, i);
641                         if (irq > 0)
642                                 free_irq(irq, per_cpu_ptr(&hw_events->percpu_pmu, cpu));
643                 }
644         }
645 }
646
647 static int cpu_pmu_request_irq(struct arm_pmu *cpu_pmu, irq_handler_t handler)
648 {
649         int i, err, irq, irqs;
650         struct platform_device *pmu_device = cpu_pmu->plat_device;
651         struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events;
652
653         if (!pmu_device)
654                 return -ENODEV;
655
656         irqs = min(pmu_device->num_resources, num_possible_cpus());
657         if (irqs < 1) {
658                 pr_warn_once("perf/ARM: No irqs for PMU defined, sampling events not supported\n");
659                 return 0;
660         }
661
662         irq = platform_get_irq(pmu_device, 0);
663         if (irq > 0 && irq_is_percpu(irq)) {
664                 err = request_percpu_irq(irq, handler, "arm-pmu",
665                                          &hw_events->percpu_pmu);
666                 if (err) {
667                         pr_err("unable to request IRQ%d for ARM PMU counters\n",
668                                 irq);
669                         return err;
670                 }
671
672                 on_each_cpu_mask(&cpu_pmu->supported_cpus,
673                                  cpu_pmu_enable_percpu_irq, &irq, 1);
674         } else {
675                 for (i = 0; i < irqs; ++i) {
676                         int cpu = i;
677
678                         err = 0;
679                         irq = platform_get_irq(pmu_device, i);
680                         if (irq < 0)
681                                 continue;
682
683                         if (cpu_pmu->irq_affinity)
684                                 cpu = cpu_pmu->irq_affinity[i];
685
686                         /*
687                          * If we have a single PMU interrupt that we can't shift,
688                          * assume that we're running on a uniprocessor machine and
689                          * continue. Otherwise, continue without this interrupt.
690                          */
691                         if (irq_set_affinity(irq, cpumask_of(cpu)) && irqs > 1) {
692                                 pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
693                                         irq, cpu);
694                                 continue;
695                         }
696
697                         err = request_irq(irq, handler,
698                                           IRQF_NOBALANCING | IRQF_NO_THREAD, "arm-pmu",
699                                           per_cpu_ptr(&hw_events->percpu_pmu, cpu));
700                         if (err) {
701                                 pr_err("unable to request IRQ%d for ARM PMU counters\n",
702                                         irq);
703                                 return err;
704                         }
705
706                         cpumask_set_cpu(cpu, &cpu_pmu->active_irqs);
707                 }
708         }
709
710         return 0;
711 }
712
713 /*
714  * PMU hardware loses all context when a CPU goes offline.
715  * When a CPU is hotplugged back in, since some hardware registers are
716  * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
717  * junk values out of them.
718  */
719 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
720 {
721         struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
722
723         if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
724                 return 0;
725         if (pmu->reset)
726                 pmu->reset(pmu);
727         return 0;
728 }
729
730 #ifdef CONFIG_CPU_PM
731 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
732 {
733         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
734         struct perf_event *event;
735         int idx;
736
737         for (idx = 0; idx < armpmu->num_events; idx++) {
738                 /*
739                  * If the counter is not used skip it, there is no
740                  * need of stopping/restarting it.
741                  */
742                 if (!test_bit(idx, hw_events->used_mask))
743                         continue;
744
745                 event = hw_events->events[idx];
746
747                 switch (cmd) {
748                 case CPU_PM_ENTER:
749                         /*
750                          * Stop and update the counter
751                          */
752                         armpmu_stop(event, PERF_EF_UPDATE);
753                         break;
754                 case CPU_PM_EXIT:
755                 case CPU_PM_ENTER_FAILED:
756                          /*
757                           * Restore and enable the counter.
758                           * armpmu_start() indirectly calls
759                           *
760                           * perf_event_update_userpage()
761                           *
762                           * that requires RCU read locking to be functional,
763                           * wrap the call within RCU_NONIDLE to make the
764                           * RCU subsystem aware this cpu is not idle from
765                           * an RCU perspective for the armpmu_start() call
766                           * duration.
767                           */
768                         RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
769                         break;
770                 default:
771                         break;
772                 }
773         }
774 }
775
776 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
777                              void *v)
778 {
779         struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
780         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
781         int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
782
783         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
784                 return NOTIFY_DONE;
785
786         /*
787          * Always reset the PMU registers on power-up even if
788          * there are no events running.
789          */
790         if (cmd == CPU_PM_EXIT && armpmu->reset)
791                 armpmu->reset(armpmu);
792
793         if (!enabled)
794                 return NOTIFY_OK;
795
796         switch (cmd) {
797         case CPU_PM_ENTER:
798                 armpmu->stop(armpmu);
799                 cpu_pm_pmu_setup(armpmu, cmd);
800                 break;
801         case CPU_PM_EXIT:
802                 cpu_pm_pmu_setup(armpmu, cmd);
803         case CPU_PM_ENTER_FAILED:
804                 armpmu->start(armpmu);
805                 break;
806         default:
807                 return NOTIFY_DONE;
808         }
809
810         return NOTIFY_OK;
811 }
812
813 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
814 {
815         cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
816         return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
817 }
818
819 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
820 {
821         cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
822 }
823 #else
824 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
825 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
826 #endif
827
828 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
829 {
830         int err;
831         int cpu;
832         struct pmu_hw_events __percpu *cpu_hw_events;
833
834         cpu_hw_events = alloc_percpu(struct pmu_hw_events);
835         if (!cpu_hw_events)
836                 return -ENOMEM;
837
838         err = cpuhp_state_add_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
839                                                &cpu_pmu->node);
840         if (err)
841                 goto out_free;
842
843         err = cpu_pm_pmu_register(cpu_pmu);
844         if (err)
845                 goto out_unregister;
846
847         for_each_possible_cpu(cpu) {
848                 struct pmu_hw_events *events = per_cpu_ptr(cpu_hw_events, cpu);
849                 raw_spin_lock_init(&events->pmu_lock);
850                 events->percpu_pmu = cpu_pmu;
851         }
852
853         cpu_pmu->hw_events      = cpu_hw_events;
854         cpu_pmu->request_irq    = cpu_pmu_request_irq;
855         cpu_pmu->free_irq       = cpu_pmu_free_irq;
856
857         /* Ensure the PMU has sane values out of reset. */
858         if (cpu_pmu->reset)
859                 on_each_cpu_mask(&cpu_pmu->supported_cpus, cpu_pmu->reset,
860                          cpu_pmu, 1);
861
862         /* If no interrupts available, set the corresponding capability flag */
863         if (!platform_get_irq(cpu_pmu->plat_device, 0))
864                 cpu_pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
865
866         /*
867          * This is a CPU PMU potentially in a heterogeneous configuration (e.g.
868          * big.LITTLE). This is not an uncore PMU, and we have taken ctx
869          * sharing into account (e.g. with our pmu::filter_match callback and
870          * pmu::event_init group validation).
871          */
872         cpu_pmu->pmu.capabilities |= PERF_PMU_CAP_HETEROGENEOUS_CPUS;
873
874         return 0;
875
876 out_unregister:
877         cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
878                                             &cpu_pmu->node);
879 out_free:
880         free_percpu(cpu_hw_events);
881         return err;
882 }
883
884 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
885 {
886         cpu_pm_pmu_unregister(cpu_pmu);
887         cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
888                                             &cpu_pmu->node);
889         free_percpu(cpu_pmu->hw_events);
890 }
891
892 /*
893  * CPU PMU identification and probing.
894  */
895 static int probe_current_pmu(struct arm_pmu *pmu,
896                              const struct pmu_probe_info *info)
897 {
898         int cpu = get_cpu();
899         unsigned int cpuid = read_cpuid_id();
900         int ret = -ENODEV;
901
902         pr_info("probing PMU on CPU %d\n", cpu);
903
904         for (; info->init != NULL; info++) {
905                 if ((cpuid & info->mask) != info->cpuid)
906                         continue;
907                 ret = info->init(pmu);
908                 break;
909         }
910
911         put_cpu();
912         return ret;
913 }
914
915 static int of_pmu_irq_cfg(struct arm_pmu *pmu)
916 {
917         int *irqs, i = 0;
918         bool using_spi = false;
919         struct platform_device *pdev = pmu->plat_device;
920
921         irqs = kcalloc(pdev->num_resources, sizeof(*irqs), GFP_KERNEL);
922         if (!irqs)
923                 return -ENOMEM;
924
925         do {
926                 struct device_node *dn;
927                 int cpu, irq;
928
929                 /* See if we have an affinity entry */
930                 dn = of_parse_phandle(pdev->dev.of_node, "interrupt-affinity", i);
931                 if (!dn)
932                         break;
933
934                 /* Check the IRQ type and prohibit a mix of PPIs and SPIs */
935                 irq = platform_get_irq(pdev, i);
936                 if (irq > 0) {
937                         bool spi = !irq_is_percpu(irq);
938
939                         if (i > 0 && spi != using_spi) {
940                                 pr_err("PPI/SPI IRQ type mismatch for %s!\n",
941                                         dn->name);
942                                 of_node_put(dn);
943                                 kfree(irqs);
944                                 return -EINVAL;
945                         }
946
947                         using_spi = spi;
948                 }
949
950                 /* Now look up the logical CPU number */
951                 for_each_possible_cpu(cpu) {
952                         struct device_node *cpu_dn;
953
954                         cpu_dn = of_cpu_device_node_get(cpu);
955                         of_node_put(cpu_dn);
956
957                         if (dn == cpu_dn)
958                                 break;
959                 }
960
961                 if (cpu >= nr_cpu_ids) {
962                         pr_warn("Failed to find logical CPU for %s\n",
963                                 dn->name);
964                         of_node_put(dn);
965                         cpumask_setall(&pmu->supported_cpus);
966                         break;
967                 }
968                 of_node_put(dn);
969
970                 /* For SPIs, we need to track the affinity per IRQ */
971                 if (using_spi) {
972                         if (i >= pdev->num_resources)
973                                 break;
974
975                         irqs[i] = cpu;
976                 }
977
978                 /* Keep track of the CPUs containing this PMU type */
979                 cpumask_set_cpu(cpu, &pmu->supported_cpus);
980                 i++;
981         } while (1);
982
983         /* If we didn't manage to parse anything, try the interrupt affinity */
984         if (cpumask_weight(&pmu->supported_cpus) == 0) {
985                 int irq = platform_get_irq(pdev, 0);
986
987                 if (irq > 0 && irq_is_percpu(irq)) {
988                         /* If using PPIs, check the affinity of the partition */
989                         int ret;
990
991                         ret = irq_get_percpu_devid_partition(irq, &pmu->supported_cpus);
992                         if (ret) {
993                                 kfree(irqs);
994                                 return ret;
995                         }
996                 } else {
997                         /* Otherwise default to all CPUs */
998                         cpumask_setall(&pmu->supported_cpus);
999                 }
1000         }
1001
1002         /* If we matched up the IRQ affinities, use them to route the SPIs */
1003         if (using_spi && i == pdev->num_resources)
1004                 pmu->irq_affinity = irqs;
1005         else
1006                 kfree(irqs);
1007
1008         return 0;
1009 }
1010
1011 int arm_pmu_device_probe(struct platform_device *pdev,
1012                          const struct of_device_id *of_table,
1013                          const struct pmu_probe_info *probe_table)
1014 {
1015         const struct of_device_id *of_id;
1016         const int (*init_fn)(struct arm_pmu *);
1017         struct device_node *node = pdev->dev.of_node;
1018         struct arm_pmu *pmu;
1019         int ret = -ENODEV;
1020
1021         pmu = kzalloc(sizeof(struct arm_pmu), GFP_KERNEL);
1022         if (!pmu) {
1023                 pr_info("failed to allocate PMU device!\n");
1024                 return -ENOMEM;
1025         }
1026
1027         armpmu_init(pmu);
1028
1029         pmu->plat_device = pdev;
1030
1031         if (node && (of_id = of_match_node(of_table, pdev->dev.of_node))) {
1032                 init_fn = of_id->data;
1033
1034                 pmu->secure_access = of_property_read_bool(pdev->dev.of_node,
1035                                                            "secure-reg-access");
1036
1037                 /* arm64 systems boot only as non-secure */
1038                 if (IS_ENABLED(CONFIG_ARM64) && pmu->secure_access) {
1039                         pr_warn("ignoring \"secure-reg-access\" property for arm64\n");
1040                         pmu->secure_access = false;
1041                 }
1042
1043                 ret = of_pmu_irq_cfg(pmu);
1044                 if (!ret)
1045                         ret = init_fn(pmu);
1046         } else if (probe_table) {
1047                 cpumask_setall(&pmu->supported_cpus);
1048                 ret = probe_current_pmu(pmu, probe_table);
1049         }
1050
1051         if (ret) {
1052                 pr_info("%s: failed to probe PMU!\n", of_node_full_name(node));
1053                 goto out_free;
1054         }
1055
1056
1057         ret = cpu_pmu_init(pmu);
1058         if (ret)
1059                 goto out_free;
1060
1061         ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
1062         if (ret)
1063                 goto out_destroy;
1064
1065         if (!__oprofile_cpu_pmu)
1066                 __oprofile_cpu_pmu = pmu;
1067
1068         pr_info("enabled with %s PMU driver, %d counters available\n",
1069                         pmu->name, pmu->num_events);
1070
1071         return 0;
1072
1073 out_destroy:
1074         cpu_pmu_destroy(pmu);
1075 out_free:
1076         pr_info("%s: failed to register PMU devices!\n",
1077                 of_node_full_name(node));
1078         kfree(pmu->irq_affinity);
1079         kfree(pmu);
1080         return ret;
1081 }
1082
1083 static int arm_pmu_hp_init(void)
1084 {
1085         int ret;
1086
1087         ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
1088                                       "perf/arm/pmu:starting",
1089                                       arm_perf_starting_cpu, NULL);
1090         if (ret)
1091                 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
1092                        ret);
1093         return ret;
1094 }
1095 subsys_initcall(arm_pmu_hp_init);