]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/pinctrl/core.c
pinctrl: Initialize pinctrl_dev.node
[karo-tx-linux.git] / drivers / pinctrl / core.c
1 /*
2  * Core driver for the pin control subsystem
3  *
4  * Copyright (C) 2011-2012 ST-Ericsson SA
5  * Written on behalf of Linaro for ST-Ericsson
6  * Based on bits of regulator core, gpio core and clk core
7  *
8  * Author: Linus Walleij <linus.walleij@linaro.org>
9  *
10  * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
11  *
12  * License terms: GNU General Public License (GPL) version 2
13  */
14 #define pr_fmt(fmt) "pinctrl core: " fmt
15
16 #include <linux/kernel.h>
17 #include <linux/kref.h>
18 #include <linux/export.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/slab.h>
22 #include <linux/err.h>
23 #include <linux/list.h>
24 #include <linux/sysfs.h>
25 #include <linux/debugfs.h>
26 #include <linux/seq_file.h>
27 #include <linux/pinctrl/consumer.h>
28 #include <linux/pinctrl/pinctrl.h>
29 #include <linux/pinctrl/machine.h>
30
31 #ifdef CONFIG_GPIOLIB
32 #include <asm-generic/gpio.h>
33 #endif
34
35 #include "core.h"
36 #include "devicetree.h"
37 #include "pinmux.h"
38 #include "pinconf.h"
39
40
41 static bool pinctrl_dummy_state;
42
43 /* Mutex taken to protect pinctrl_list */
44 static DEFINE_MUTEX(pinctrl_list_mutex);
45
46 /* Mutex taken to protect pinctrl_maps */
47 DEFINE_MUTEX(pinctrl_maps_mutex);
48
49 /* Mutex taken to protect pinctrldev_list */
50 static DEFINE_MUTEX(pinctrldev_list_mutex);
51
52 /* Global list of pin control devices (struct pinctrl_dev) */
53 static LIST_HEAD(pinctrldev_list);
54
55 /* List of pin controller handles (struct pinctrl) */
56 static LIST_HEAD(pinctrl_list);
57
58 /* List of pinctrl maps (struct pinctrl_maps) */
59 LIST_HEAD(pinctrl_maps);
60
61
62 /**
63  * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
64  *
65  * Usually this function is called by platforms without pinctrl driver support
66  * but run with some shared drivers using pinctrl APIs.
67  * After calling this function, the pinctrl core will return successfully
68  * with creating a dummy state for the driver to keep going smoothly.
69  */
70 void pinctrl_provide_dummies(void)
71 {
72         pinctrl_dummy_state = true;
73 }
74
75 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
76 {
77         /* We're not allowed to register devices without name */
78         return pctldev->desc->name;
79 }
80 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
81
82 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
83 {
84         return dev_name(pctldev->dev);
85 }
86 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
87
88 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
89 {
90         return pctldev->driver_data;
91 }
92 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
93
94 /**
95  * get_pinctrl_dev_from_devname() - look up pin controller device
96  * @devname: the name of a device instance, as returned by dev_name()
97  *
98  * Looks up a pin control device matching a certain device name or pure device
99  * pointer, the pure device pointer will take precedence.
100  */
101 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
102 {
103         struct pinctrl_dev *pctldev = NULL;
104
105         if (!devname)
106                 return NULL;
107
108         mutex_lock(&pinctrldev_list_mutex);
109
110         list_for_each_entry(pctldev, &pinctrldev_list, node) {
111                 if (!strcmp(dev_name(pctldev->dev), devname)) {
112                         /* Matched on device name */
113                         mutex_unlock(&pinctrldev_list_mutex);
114                         return pctldev;
115                 }
116         }
117
118         mutex_unlock(&pinctrldev_list_mutex);
119
120         return NULL;
121 }
122
123 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
124 {
125         struct pinctrl_dev *pctldev;
126
127         mutex_lock(&pinctrldev_list_mutex);
128
129         list_for_each_entry(pctldev, &pinctrldev_list, node)
130                 if (pctldev->dev->of_node == np) {
131                         mutex_unlock(&pinctrldev_list_mutex);
132                         return pctldev;
133                 }
134
135         mutex_unlock(&pinctrldev_list_mutex);
136
137         return NULL;
138 }
139
140 /**
141  * pin_get_from_name() - look up a pin number from a name
142  * @pctldev: the pin control device to lookup the pin on
143  * @name: the name of the pin to look up
144  */
145 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
146 {
147         unsigned i, pin;
148
149         /* The pin number can be retrived from the pin controller descriptor */
150         for (i = 0; i < pctldev->desc->npins; i++) {
151                 struct pin_desc *desc;
152
153                 pin = pctldev->desc->pins[i].number;
154                 desc = pin_desc_get(pctldev, pin);
155                 /* Pin space may be sparse */
156                 if (desc && !strcmp(name, desc->name))
157                         return pin;
158         }
159
160         return -EINVAL;
161 }
162
163 /**
164  * pin_get_name_from_id() - look up a pin name from a pin id
165  * @pctldev: the pin control device to lookup the pin on
166  * @name: the name of the pin to look up
167  */
168 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
169 {
170         const struct pin_desc *desc;
171
172         desc = pin_desc_get(pctldev, pin);
173         if (desc == NULL) {
174                 dev_err(pctldev->dev, "failed to get pin(%d) name\n",
175                         pin);
176                 return NULL;
177         }
178
179         return desc->name;
180 }
181
182 /**
183  * pin_is_valid() - check if pin exists on controller
184  * @pctldev: the pin control device to check the pin on
185  * @pin: pin to check, use the local pin controller index number
186  *
187  * This tells us whether a certain pin exist on a certain pin controller or
188  * not. Pin lists may be sparse, so some pins may not exist.
189  */
190 bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
191 {
192         struct pin_desc *pindesc;
193
194         if (pin < 0)
195                 return false;
196
197         mutex_lock(&pctldev->mutex);
198         pindesc = pin_desc_get(pctldev, pin);
199         mutex_unlock(&pctldev->mutex);
200
201         return pindesc != NULL;
202 }
203 EXPORT_SYMBOL_GPL(pin_is_valid);
204
205 /* Deletes a range of pin descriptors */
206 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
207                                   const struct pinctrl_pin_desc *pins,
208                                   unsigned num_pins)
209 {
210         int i;
211
212         for (i = 0; i < num_pins; i++) {
213                 struct pin_desc *pindesc;
214
215                 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
216                                             pins[i].number);
217                 if (pindesc != NULL) {
218                         radix_tree_delete(&pctldev->pin_desc_tree,
219                                           pins[i].number);
220                         if (pindesc->dynamic_name)
221                                 kfree(pindesc->name);
222                 }
223                 kfree(pindesc);
224         }
225 }
226
227 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
228                                     const struct pinctrl_pin_desc *pin)
229 {
230         struct pin_desc *pindesc;
231
232         pindesc = pin_desc_get(pctldev, pin->number);
233         if (pindesc != NULL) {
234                 dev_err(pctldev->dev, "pin %d already registered\n",
235                         pin->number);
236                 return -EINVAL;
237         }
238
239         pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
240         if (!pindesc)
241                 return -ENOMEM;
242
243         /* Set owner */
244         pindesc->pctldev = pctldev;
245
246         /* Copy basic pin info */
247         if (pin->name) {
248                 pindesc->name = pin->name;
249         } else {
250                 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
251                 if (pindesc->name == NULL) {
252                         kfree(pindesc);
253                         return -ENOMEM;
254                 }
255                 pindesc->dynamic_name = true;
256         }
257
258         pindesc->drv_data = pin->drv_data;
259
260         radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
261         pr_debug("registered pin %d (%s) on %s\n",
262                  pin->number, pindesc->name, pctldev->desc->name);
263         return 0;
264 }
265
266 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
267                                  struct pinctrl_pin_desc const *pins,
268                                  unsigned num_descs)
269 {
270         unsigned i;
271         int ret = 0;
272
273         for (i = 0; i < num_descs; i++) {
274                 ret = pinctrl_register_one_pin(pctldev, &pins[i]);
275                 if (ret)
276                         return ret;
277         }
278
279         return 0;
280 }
281
282 /**
283  * gpio_to_pin() - GPIO range GPIO number to pin number translation
284  * @range: GPIO range used for the translation
285  * @gpio: gpio pin to translate to a pin number
286  *
287  * Finds the pin number for a given GPIO using the specified GPIO range
288  * as a base for translation. The distinction between linear GPIO ranges
289  * and pin list based GPIO ranges is managed correctly by this function.
290  *
291  * This function assumes the gpio is part of the specified GPIO range, use
292  * only after making sure this is the case (e.g. by calling it on the
293  * result of successful pinctrl_get_device_gpio_range calls)!
294  */
295 static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
296                                 unsigned int gpio)
297 {
298         unsigned int offset = gpio - range->base;
299         if (range->pins)
300                 return range->pins[offset];
301         else
302                 return range->pin_base + offset;
303 }
304
305 /**
306  * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
307  * @pctldev: pin controller device to check
308  * @gpio: gpio pin to check taken from the global GPIO pin space
309  *
310  * Tries to match a GPIO pin number to the ranges handled by a certain pin
311  * controller, return the range or NULL
312  */
313 static struct pinctrl_gpio_range *
314 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
315 {
316         struct pinctrl_gpio_range *range = NULL;
317
318         mutex_lock(&pctldev->mutex);
319         /* Loop over the ranges */
320         list_for_each_entry(range, &pctldev->gpio_ranges, node) {
321                 /* Check if we're in the valid range */
322                 if (gpio >= range->base &&
323                     gpio < range->base + range->npins) {
324                         mutex_unlock(&pctldev->mutex);
325                         return range;
326                 }
327         }
328         mutex_unlock(&pctldev->mutex);
329         return NULL;
330 }
331
332 /**
333  * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
334  * the same GPIO chip are in range
335  * @gpio: gpio pin to check taken from the global GPIO pin space
336  *
337  * This function is complement of pinctrl_match_gpio_range(). If the return
338  * value of pinctrl_match_gpio_range() is NULL, this function could be used
339  * to check whether pinctrl device is ready or not. Maybe some GPIO pins
340  * of the same GPIO chip don't have back-end pinctrl interface.
341  * If the return value is true, it means that pinctrl device is ready & the
342  * certain GPIO pin doesn't have back-end pinctrl device. If the return value
343  * is false, it means that pinctrl device may not be ready.
344  */
345 #ifdef CONFIG_GPIOLIB
346 static bool pinctrl_ready_for_gpio_range(unsigned gpio)
347 {
348         struct pinctrl_dev *pctldev;
349         struct pinctrl_gpio_range *range = NULL;
350         struct gpio_chip *chip = gpio_to_chip(gpio);
351
352         if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
353                 return false;
354
355         mutex_lock(&pinctrldev_list_mutex);
356
357         /* Loop over the pin controllers */
358         list_for_each_entry(pctldev, &pinctrldev_list, node) {
359                 /* Loop over the ranges */
360                 mutex_lock(&pctldev->mutex);
361                 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
362                         /* Check if any gpio range overlapped with gpio chip */
363                         if (range->base + range->npins - 1 < chip->base ||
364                             range->base > chip->base + chip->ngpio - 1)
365                                 continue;
366                         mutex_unlock(&pctldev->mutex);
367                         mutex_unlock(&pinctrldev_list_mutex);
368                         return true;
369                 }
370                 mutex_unlock(&pctldev->mutex);
371         }
372
373         mutex_unlock(&pinctrldev_list_mutex);
374
375         return false;
376 }
377 #else
378 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
379 #endif
380
381 /**
382  * pinctrl_get_device_gpio_range() - find device for GPIO range
383  * @gpio: the pin to locate the pin controller for
384  * @outdev: the pin control device if found
385  * @outrange: the GPIO range if found
386  *
387  * Find the pin controller handling a certain GPIO pin from the pinspace of
388  * the GPIO subsystem, return the device and the matching GPIO range. Returns
389  * -EPROBE_DEFER if the GPIO range could not be found in any device since it
390  * may still have not been registered.
391  */
392 static int pinctrl_get_device_gpio_range(unsigned gpio,
393                                          struct pinctrl_dev **outdev,
394                                          struct pinctrl_gpio_range **outrange)
395 {
396         struct pinctrl_dev *pctldev = NULL;
397
398         mutex_lock(&pinctrldev_list_mutex);
399
400         /* Loop over the pin controllers */
401         list_for_each_entry(pctldev, &pinctrldev_list, node) {
402                 struct pinctrl_gpio_range *range;
403
404                 range = pinctrl_match_gpio_range(pctldev, gpio);
405                 if (range != NULL) {
406                         *outdev = pctldev;
407                         *outrange = range;
408                         mutex_unlock(&pinctrldev_list_mutex);
409                         return 0;
410                 }
411         }
412
413         mutex_unlock(&pinctrldev_list_mutex);
414
415         return -EPROBE_DEFER;
416 }
417
418 /**
419  * pinctrl_add_gpio_range() - register a GPIO range for a controller
420  * @pctldev: pin controller device to add the range to
421  * @range: the GPIO range to add
422  *
423  * This adds a range of GPIOs to be handled by a certain pin controller. Call
424  * this to register handled ranges after registering your pin controller.
425  */
426 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
427                             struct pinctrl_gpio_range *range)
428 {
429         mutex_lock(&pctldev->mutex);
430         list_add_tail(&range->node, &pctldev->gpio_ranges);
431         mutex_unlock(&pctldev->mutex);
432 }
433 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
434
435 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
436                              struct pinctrl_gpio_range *ranges,
437                              unsigned nranges)
438 {
439         int i;
440
441         for (i = 0; i < nranges; i++)
442                 pinctrl_add_gpio_range(pctldev, &ranges[i]);
443 }
444 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
445
446 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
447                 struct pinctrl_gpio_range *range)
448 {
449         struct pinctrl_dev *pctldev;
450
451         pctldev = get_pinctrl_dev_from_devname(devname);
452
453         /*
454          * If we can't find this device, let's assume that is because
455          * it has not probed yet, so the driver trying to register this
456          * range need to defer probing.
457          */
458         if (!pctldev) {
459                 return ERR_PTR(-EPROBE_DEFER);
460         }
461         pinctrl_add_gpio_range(pctldev, range);
462
463         return pctldev;
464 }
465 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
466
467 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
468                                 const unsigned **pins, unsigned *num_pins)
469 {
470         const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
471         int gs;
472
473         if (!pctlops->get_group_pins)
474                 return -EINVAL;
475
476         gs = pinctrl_get_group_selector(pctldev, pin_group);
477         if (gs < 0)
478                 return gs;
479
480         return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
481 }
482 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
483
484 struct pinctrl_gpio_range *
485 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
486                                         unsigned int pin)
487 {
488         struct pinctrl_gpio_range *range;
489
490         /* Loop over the ranges */
491         list_for_each_entry(range, &pctldev->gpio_ranges, node) {
492                 /* Check if we're in the valid range */
493                 if (range->pins) {
494                         int a;
495                         for (a = 0; a < range->npins; a++) {
496                                 if (range->pins[a] == pin)
497                                         return range;
498                         }
499                 } else if (pin >= range->pin_base &&
500                            pin < range->pin_base + range->npins)
501                         return range;
502         }
503
504         return NULL;
505 }
506 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
507
508 /**
509  * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
510  * @pctldev: the pin controller device to look in
511  * @pin: a controller-local number to find the range for
512  */
513 struct pinctrl_gpio_range *
514 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
515                                  unsigned int pin)
516 {
517         struct pinctrl_gpio_range *range;
518
519         mutex_lock(&pctldev->mutex);
520         range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
521         mutex_unlock(&pctldev->mutex);
522
523         return range;
524 }
525 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
526
527 /**
528  * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller
529  * @pctldev: pin controller device to remove the range from
530  * @range: the GPIO range to remove
531  */
532 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
533                                struct pinctrl_gpio_range *range)
534 {
535         mutex_lock(&pctldev->mutex);
536         list_del(&range->node);
537         mutex_unlock(&pctldev->mutex);
538 }
539 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
540
541 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
542
543 /**
544  * pinctrl_generic_get_group_count() - returns the number of pin groups
545  * @pctldev: pin controller device
546  */
547 int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
548 {
549         return pctldev->num_groups;
550 }
551 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
552
553 /**
554  * pinctrl_generic_get_group_name() - returns the name of a pin group
555  * @pctldev: pin controller device
556  * @selector: group number
557  */
558 const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
559                                            unsigned int selector)
560 {
561         struct group_desc *group;
562
563         group = radix_tree_lookup(&pctldev->pin_group_tree,
564                                   selector);
565         if (!group)
566                 return NULL;
567
568         return group->name;
569 }
570 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
571
572 /**
573  * pinctrl_generic_get_group_pins() - gets the pin group pins
574  * @pctldev: pin controller device
575  * @selector: group number
576  * @pins: pins in the group
577  * @num_pins: number of pins in the group
578  */
579 int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
580                                    unsigned int selector,
581                                    const unsigned int **pins,
582                                    unsigned int *num_pins)
583 {
584         struct group_desc *group;
585
586         group = radix_tree_lookup(&pctldev->pin_group_tree,
587                                   selector);
588         if (!group) {
589                 dev_err(pctldev->dev, "%s could not find pingroup%i\n",
590                         __func__, selector);
591                 return -EINVAL;
592         }
593
594         *pins = group->pins;
595         *num_pins = group->num_pins;
596
597         return 0;
598 }
599 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
600
601 /**
602  * pinctrl_generic_get_group() - returns a pin group based on the number
603  * @pctldev: pin controller device
604  * @gselector: group number
605  */
606 struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
607                                              unsigned int selector)
608 {
609         struct group_desc *group;
610
611         group = radix_tree_lookup(&pctldev->pin_group_tree,
612                                   selector);
613         if (!group)
614                 return NULL;
615
616         return group;
617 }
618 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
619
620 /**
621  * pinctrl_generic_add_group() - adds a new pin group
622  * @pctldev: pin controller device
623  * @name: name of the pin group
624  * @pins: pins in the pin group
625  * @num_pins: number of pins in the pin group
626  * @data: pin controller driver specific data
627  *
628  * Note that the caller must take care of locking.
629  */
630 int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
631                               int *pins, int num_pins, void *data)
632 {
633         struct group_desc *group;
634
635         group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
636         if (!group)
637                 return -ENOMEM;
638
639         group->name = name;
640         group->pins = pins;
641         group->num_pins = num_pins;
642         group->data = data;
643
644         radix_tree_insert(&pctldev->pin_group_tree, pctldev->num_groups,
645                           group);
646
647         pctldev->num_groups++;
648
649         return 0;
650 }
651 EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
652
653 /**
654  * pinctrl_generic_remove_group() - removes a numbered pin group
655  * @pctldev: pin controller device
656  * @selector: group number
657  *
658  * Note that the caller must take care of locking.
659  */
660 int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
661                                  unsigned int selector)
662 {
663         struct group_desc *group;
664
665         group = radix_tree_lookup(&pctldev->pin_group_tree,
666                                   selector);
667         if (!group)
668                 return -ENOENT;
669
670         radix_tree_delete(&pctldev->pin_group_tree, selector);
671         devm_kfree(pctldev->dev, group);
672
673         pctldev->num_groups--;
674
675         return 0;
676 }
677 EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
678
679 /**
680  * pinctrl_generic_free_groups() - removes all pin groups
681  * @pctldev: pin controller device
682  *
683  * Note that the caller must take care of locking.
684  */
685 static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
686 {
687         struct radix_tree_iter iter;
688         struct group_desc *group;
689         unsigned long *indices;
690         void **slot;
691         int i = 0;
692
693         indices = devm_kzalloc(pctldev->dev, sizeof(*indices) *
694                                pctldev->num_groups, GFP_KERNEL);
695         if (!indices)
696                 return;
697
698         radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
699                 indices[i++] = iter.index;
700
701         for (i = 0; i < pctldev->num_groups; i++) {
702                 group = radix_tree_lookup(&pctldev->pin_group_tree,
703                                           indices[i]);
704                 radix_tree_delete(&pctldev->pin_group_tree, indices[i]);
705                 devm_kfree(pctldev->dev, group);
706         }
707
708         pctldev->num_groups = 0;
709 }
710
711 #else
712 static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
713 {
714 }
715 #endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
716
717 /**
718  * pinctrl_get_group_selector() - returns the group selector for a group
719  * @pctldev: the pin controller handling the group
720  * @pin_group: the pin group to look up
721  */
722 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
723                                const char *pin_group)
724 {
725         const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
726         unsigned ngroups = pctlops->get_groups_count(pctldev);
727         unsigned group_selector = 0;
728
729         while (group_selector < ngroups) {
730                 const char *gname = pctlops->get_group_name(pctldev,
731                                                             group_selector);
732                 if (!strcmp(gname, pin_group)) {
733                         dev_dbg(pctldev->dev,
734                                 "found group selector %u for %s\n",
735                                 group_selector,
736                                 pin_group);
737                         return group_selector;
738                 }
739
740                 group_selector++;
741         }
742
743         dev_err(pctldev->dev, "does not have pin group %s\n",
744                 pin_group);
745
746         return -EINVAL;
747 }
748
749 /**
750  * pinctrl_request_gpio() - request a single pin to be used as GPIO
751  * @gpio: the GPIO pin number from the GPIO subsystem number space
752  *
753  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
754  * as part of their gpio_request() semantics, platforms and individual drivers
755  * shall *NOT* request GPIO pins to be muxed in.
756  */
757 int pinctrl_request_gpio(unsigned gpio)
758 {
759         struct pinctrl_dev *pctldev;
760         struct pinctrl_gpio_range *range;
761         int ret;
762         int pin;
763
764         ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
765         if (ret) {
766                 if (pinctrl_ready_for_gpio_range(gpio))
767                         ret = 0;
768                 return ret;
769         }
770
771         mutex_lock(&pctldev->mutex);
772
773         /* Convert to the pin controllers number space */
774         pin = gpio_to_pin(range, gpio);
775
776         ret = pinmux_request_gpio(pctldev, range, pin, gpio);
777
778         mutex_unlock(&pctldev->mutex);
779
780         return ret;
781 }
782 EXPORT_SYMBOL_GPL(pinctrl_request_gpio);
783
784 /**
785  * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
786  * @gpio: the GPIO pin number from the GPIO subsystem number space
787  *
788  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
789  * as part of their gpio_free() semantics, platforms and individual drivers
790  * shall *NOT* request GPIO pins to be muxed out.
791  */
792 void pinctrl_free_gpio(unsigned gpio)
793 {
794         struct pinctrl_dev *pctldev;
795         struct pinctrl_gpio_range *range;
796         int ret;
797         int pin;
798
799         ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
800         if (ret) {
801                 return;
802         }
803         mutex_lock(&pctldev->mutex);
804
805         /* Convert to the pin controllers number space */
806         pin = gpio_to_pin(range, gpio);
807
808         pinmux_free_gpio(pctldev, pin, range);
809
810         mutex_unlock(&pctldev->mutex);
811 }
812 EXPORT_SYMBOL_GPL(pinctrl_free_gpio);
813
814 static int pinctrl_gpio_direction(unsigned gpio, bool input)
815 {
816         struct pinctrl_dev *pctldev;
817         struct pinctrl_gpio_range *range;
818         int ret;
819         int pin;
820
821         ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
822         if (ret) {
823                 return ret;
824         }
825
826         mutex_lock(&pctldev->mutex);
827
828         /* Convert to the pin controllers number space */
829         pin = gpio_to_pin(range, gpio);
830         ret = pinmux_gpio_direction(pctldev, range, pin, input);
831
832         mutex_unlock(&pctldev->mutex);
833
834         return ret;
835 }
836
837 /**
838  * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
839  * @gpio: the GPIO pin number from the GPIO subsystem number space
840  *
841  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
842  * as part of their gpio_direction_input() semantics, platforms and individual
843  * drivers shall *NOT* touch pin control GPIO calls.
844  */
845 int pinctrl_gpio_direction_input(unsigned gpio)
846 {
847         return pinctrl_gpio_direction(gpio, true);
848 }
849 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
850
851 /**
852  * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
853  * @gpio: the GPIO pin number from the GPIO subsystem number space
854  *
855  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
856  * as part of their gpio_direction_output() semantics, platforms and individual
857  * drivers shall *NOT* touch pin control GPIO calls.
858  */
859 int pinctrl_gpio_direction_output(unsigned gpio)
860 {
861         return pinctrl_gpio_direction(gpio, false);
862 }
863 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
864
865 static struct pinctrl_state *find_state(struct pinctrl *p,
866                                         const char *name)
867 {
868         struct pinctrl_state *state;
869
870         list_for_each_entry(state, &p->states, node)
871                 if (!strcmp(state->name, name))
872                         return state;
873
874         return NULL;
875 }
876
877 static struct pinctrl_state *create_state(struct pinctrl *p,
878                                           const char *name)
879 {
880         struct pinctrl_state *state;
881
882         state = kzalloc(sizeof(*state), GFP_KERNEL);
883         if (!state)
884                 return ERR_PTR(-ENOMEM);
885
886         state->name = name;
887         INIT_LIST_HEAD(&state->settings);
888
889         list_add_tail(&state->node, &p->states);
890
891         return state;
892 }
893
894 static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
895                        struct pinctrl_map const *map)
896 {
897         struct pinctrl_state *state;
898         struct pinctrl_setting *setting;
899         int ret;
900
901         state = find_state(p, map->name);
902         if (!state)
903                 state = create_state(p, map->name);
904         if (IS_ERR(state))
905                 return PTR_ERR(state);
906
907         if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
908                 return 0;
909
910         setting = kzalloc(sizeof(*setting), GFP_KERNEL);
911         if (!setting)
912                 return -ENOMEM;
913
914         setting->type = map->type;
915
916         if (pctldev)
917                 setting->pctldev = pctldev;
918         else
919                 setting->pctldev =
920                         get_pinctrl_dev_from_devname(map->ctrl_dev_name);
921         if (setting->pctldev == NULL) {
922                 kfree(setting);
923                 /* Do not defer probing of hogs (circular loop) */
924                 if (!strcmp(map->ctrl_dev_name, map->dev_name))
925                         return -ENODEV;
926                 /*
927                  * OK let us guess that the driver is not there yet, and
928                  * let's defer obtaining this pinctrl handle to later...
929                  */
930                 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
931                         map->ctrl_dev_name);
932                 return -EPROBE_DEFER;
933         }
934
935         setting->dev_name = map->dev_name;
936
937         switch (map->type) {
938         case PIN_MAP_TYPE_MUX_GROUP:
939                 ret = pinmux_map_to_setting(map, setting);
940                 break;
941         case PIN_MAP_TYPE_CONFIGS_PIN:
942         case PIN_MAP_TYPE_CONFIGS_GROUP:
943                 ret = pinconf_map_to_setting(map, setting);
944                 break;
945         default:
946                 ret = -EINVAL;
947                 break;
948         }
949         if (ret < 0) {
950                 kfree(setting);
951                 return ret;
952         }
953
954         list_add_tail(&setting->node, &state->settings);
955
956         return 0;
957 }
958
959 static struct pinctrl *find_pinctrl(struct device *dev)
960 {
961         struct pinctrl *p;
962
963         mutex_lock(&pinctrl_list_mutex);
964         list_for_each_entry(p, &pinctrl_list, node)
965                 if (p->dev == dev) {
966                         mutex_unlock(&pinctrl_list_mutex);
967                         return p;
968                 }
969
970         mutex_unlock(&pinctrl_list_mutex);
971         return NULL;
972 }
973
974 static void pinctrl_free(struct pinctrl *p, bool inlist);
975
976 static struct pinctrl *create_pinctrl(struct device *dev,
977                                       struct pinctrl_dev *pctldev)
978 {
979         struct pinctrl *p;
980         const char *devname;
981         struct pinctrl_maps *maps_node;
982         int i;
983         struct pinctrl_map const *map;
984         int ret;
985
986         /*
987          * create the state cookie holder struct pinctrl for each
988          * mapping, this is what consumers will get when requesting
989          * a pin control handle with pinctrl_get()
990          */
991         p = kzalloc(sizeof(*p), GFP_KERNEL);
992         if (!p)
993                 return ERR_PTR(-ENOMEM);
994         p->dev = dev;
995         INIT_LIST_HEAD(&p->states);
996         INIT_LIST_HEAD(&p->dt_maps);
997
998         ret = pinctrl_dt_to_map(p, pctldev);
999         if (ret < 0) {
1000                 kfree(p);
1001                 return ERR_PTR(ret);
1002         }
1003
1004         devname = dev_name(dev);
1005
1006         mutex_lock(&pinctrl_maps_mutex);
1007         /* Iterate over the pin control maps to locate the right ones */
1008         for_each_maps(maps_node, i, map) {
1009                 /* Map must be for this device */
1010                 if (strcmp(map->dev_name, devname))
1011                         continue;
1012
1013                 ret = add_setting(p, pctldev, map);
1014                 /*
1015                  * At this point the adding of a setting may:
1016                  *
1017                  * - Defer, if the pinctrl device is not yet available
1018                  * - Fail, if the pinctrl device is not yet available,
1019                  *   AND the setting is a hog. We cannot defer that, since
1020                  *   the hog will kick in immediately after the device
1021                  *   is registered.
1022                  *
1023                  * If the error returned was not -EPROBE_DEFER then we
1024                  * accumulate the errors to see if we end up with
1025                  * an -EPROBE_DEFER later, as that is the worst case.
1026                  */
1027                 if (ret == -EPROBE_DEFER) {
1028                         pinctrl_free(p, false);
1029                         mutex_unlock(&pinctrl_maps_mutex);
1030                         return ERR_PTR(ret);
1031                 }
1032         }
1033         mutex_unlock(&pinctrl_maps_mutex);
1034
1035         if (ret < 0) {
1036                 /* If some other error than deferral occured, return here */
1037                 pinctrl_free(p, false);
1038                 return ERR_PTR(ret);
1039         }
1040
1041         kref_init(&p->users);
1042
1043         /* Add the pinctrl handle to the global list */
1044         mutex_lock(&pinctrl_list_mutex);
1045         list_add_tail(&p->node, &pinctrl_list);
1046         mutex_unlock(&pinctrl_list_mutex);
1047
1048         return p;
1049 }
1050
1051 /**
1052  * pinctrl_get() - retrieves the pinctrl handle for a device
1053  * @dev: the device to obtain the handle for
1054  */
1055 struct pinctrl *pinctrl_get(struct device *dev)
1056 {
1057         struct pinctrl *p;
1058
1059         if (WARN_ON(!dev))
1060                 return ERR_PTR(-EINVAL);
1061
1062         /*
1063          * See if somebody else (such as the device core) has already
1064          * obtained a handle to the pinctrl for this device. In that case,
1065          * return another pointer to it.
1066          */
1067         p = find_pinctrl(dev);
1068         if (p != NULL) {
1069                 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
1070                 kref_get(&p->users);
1071                 return p;
1072         }
1073
1074         return create_pinctrl(dev, NULL);
1075 }
1076 EXPORT_SYMBOL_GPL(pinctrl_get);
1077
1078 static void pinctrl_free_setting(bool disable_setting,
1079                                  struct pinctrl_setting *setting)
1080 {
1081         switch (setting->type) {
1082         case PIN_MAP_TYPE_MUX_GROUP:
1083                 if (disable_setting)
1084                         pinmux_disable_setting(setting);
1085                 pinmux_free_setting(setting);
1086                 break;
1087         case PIN_MAP_TYPE_CONFIGS_PIN:
1088         case PIN_MAP_TYPE_CONFIGS_GROUP:
1089                 pinconf_free_setting(setting);
1090                 break;
1091         default:
1092                 break;
1093         }
1094 }
1095
1096 static void pinctrl_free(struct pinctrl *p, bool inlist)
1097 {
1098         struct pinctrl_state *state, *n1;
1099         struct pinctrl_setting *setting, *n2;
1100
1101         mutex_lock(&pinctrl_list_mutex);
1102         list_for_each_entry_safe(state, n1, &p->states, node) {
1103                 list_for_each_entry_safe(setting, n2, &state->settings, node) {
1104                         pinctrl_free_setting(state == p->state, setting);
1105                         list_del(&setting->node);
1106                         kfree(setting);
1107                 }
1108                 list_del(&state->node);
1109                 kfree(state);
1110         }
1111
1112         pinctrl_dt_free_maps(p);
1113
1114         if (inlist)
1115                 list_del(&p->node);
1116         kfree(p);
1117         mutex_unlock(&pinctrl_list_mutex);
1118 }
1119
1120 /**
1121  * pinctrl_release() - release the pinctrl handle
1122  * @kref: the kref in the pinctrl being released
1123  */
1124 static void pinctrl_release(struct kref *kref)
1125 {
1126         struct pinctrl *p = container_of(kref, struct pinctrl, users);
1127
1128         pinctrl_free(p, true);
1129 }
1130
1131 /**
1132  * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1133  * @p: the pinctrl handle to release
1134  */
1135 void pinctrl_put(struct pinctrl *p)
1136 {
1137         kref_put(&p->users, pinctrl_release);
1138 }
1139 EXPORT_SYMBOL_GPL(pinctrl_put);
1140
1141 /**
1142  * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
1143  * @p: the pinctrl handle to retrieve the state from
1144  * @name: the state name to retrieve
1145  */
1146 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
1147                                                  const char *name)
1148 {
1149         struct pinctrl_state *state;
1150
1151         state = find_state(p, name);
1152         if (!state) {
1153                 if (pinctrl_dummy_state) {
1154                         /* create dummy state */
1155                         dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
1156                                 name);
1157                         state = create_state(p, name);
1158                 } else
1159                         state = ERR_PTR(-ENODEV);
1160         }
1161
1162         return state;
1163 }
1164 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1165
1166 /**
1167  * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1168  * @p: the pinctrl handle for the device that requests configuration
1169  * @state: the state handle to select/activate/program
1170  */
1171 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1172 {
1173         struct pinctrl_setting *setting, *setting2;
1174         struct pinctrl_state *old_state = p->state;
1175         int ret;
1176
1177         if (p->state == state)
1178                 return 0;
1179
1180         if (p->state) {
1181                 /*
1182                  * For each pinmux setting in the old state, forget SW's record
1183                  * of mux owner for that pingroup. Any pingroups which are
1184                  * still owned by the new state will be re-acquired by the call
1185                  * to pinmux_enable_setting() in the loop below.
1186                  */
1187                 list_for_each_entry(setting, &p->state->settings, node) {
1188                         if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1189                                 continue;
1190                         pinmux_disable_setting(setting);
1191                 }
1192         }
1193
1194         p->state = NULL;
1195
1196         /* Apply all the settings for the new state */
1197         list_for_each_entry(setting, &state->settings, node) {
1198                 switch (setting->type) {
1199                 case PIN_MAP_TYPE_MUX_GROUP:
1200                         ret = pinmux_enable_setting(setting);
1201                         break;
1202                 case PIN_MAP_TYPE_CONFIGS_PIN:
1203                 case PIN_MAP_TYPE_CONFIGS_GROUP:
1204                         ret = pinconf_apply_setting(setting);
1205                         break;
1206                 default:
1207                         ret = -EINVAL;
1208                         break;
1209                 }
1210
1211                 if (ret < 0) {
1212                         goto unapply_new_state;
1213                 }
1214         }
1215
1216         p->state = state;
1217
1218         return 0;
1219
1220 unapply_new_state:
1221         dev_err(p->dev, "Error applying setting, reverse things back\n");
1222
1223         list_for_each_entry(setting2, &state->settings, node) {
1224                 if (&setting2->node == &setting->node)
1225                         break;
1226                 /*
1227                  * All we can do here is pinmux_disable_setting.
1228                  * That means that some pins are muxed differently now
1229                  * than they were before applying the setting (We can't
1230                  * "unmux a pin"!), but it's not a big deal since the pins
1231                  * are free to be muxed by another apply_setting.
1232                  */
1233                 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1234                         pinmux_disable_setting(setting2);
1235         }
1236
1237         /* There's no infinite recursive loop here because p->state is NULL */
1238         if (old_state)
1239                 pinctrl_select_state(p, old_state);
1240
1241         return ret;
1242 }
1243 EXPORT_SYMBOL_GPL(pinctrl_select_state);
1244
1245 static void devm_pinctrl_release(struct device *dev, void *res)
1246 {
1247         pinctrl_put(*(struct pinctrl **)res);
1248 }
1249
1250 /**
1251  * struct devm_pinctrl_get() - Resource managed pinctrl_get()
1252  * @dev: the device to obtain the handle for
1253  *
1254  * If there is a need to explicitly destroy the returned struct pinctrl,
1255  * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1256  */
1257 struct pinctrl *devm_pinctrl_get(struct device *dev)
1258 {
1259         struct pinctrl **ptr, *p;
1260
1261         ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1262         if (!ptr)
1263                 return ERR_PTR(-ENOMEM);
1264
1265         p = pinctrl_get(dev);
1266         if (!IS_ERR(p)) {
1267                 *ptr = p;
1268                 devres_add(dev, ptr);
1269         } else {
1270                 devres_free(ptr);
1271         }
1272
1273         return p;
1274 }
1275 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1276
1277 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1278 {
1279         struct pinctrl **p = res;
1280
1281         return *p == data;
1282 }
1283
1284 /**
1285  * devm_pinctrl_put() - Resource managed pinctrl_put()
1286  * @p: the pinctrl handle to release
1287  *
1288  * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1289  * this function will not need to be called and the resource management
1290  * code will ensure that the resource is freed.
1291  */
1292 void devm_pinctrl_put(struct pinctrl *p)
1293 {
1294         WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1295                                devm_pinctrl_match, p));
1296 }
1297 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1298
1299 int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
1300                          bool dup)
1301 {
1302         int i, ret;
1303         struct pinctrl_maps *maps_node;
1304
1305         pr_debug("add %u pinctrl maps\n", num_maps);
1306
1307         /* First sanity check the new mapping */
1308         for (i = 0; i < num_maps; i++) {
1309                 if (!maps[i].dev_name) {
1310                         pr_err("failed to register map %s (%d): no device given\n",
1311                                maps[i].name, i);
1312                         return -EINVAL;
1313                 }
1314
1315                 if (!maps[i].name) {
1316                         pr_err("failed to register map %d: no map name given\n",
1317                                i);
1318                         return -EINVAL;
1319                 }
1320
1321                 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1322                                 !maps[i].ctrl_dev_name) {
1323                         pr_err("failed to register map %s (%d): no pin control device given\n",
1324                                maps[i].name, i);
1325                         return -EINVAL;
1326                 }
1327
1328                 switch (maps[i].type) {
1329                 case PIN_MAP_TYPE_DUMMY_STATE:
1330                         break;
1331                 case PIN_MAP_TYPE_MUX_GROUP:
1332                         ret = pinmux_validate_map(&maps[i], i);
1333                         if (ret < 0)
1334                                 return ret;
1335                         break;
1336                 case PIN_MAP_TYPE_CONFIGS_PIN:
1337                 case PIN_MAP_TYPE_CONFIGS_GROUP:
1338                         ret = pinconf_validate_map(&maps[i], i);
1339                         if (ret < 0)
1340                                 return ret;
1341                         break;
1342                 default:
1343                         pr_err("failed to register map %s (%d): invalid type given\n",
1344                                maps[i].name, i);
1345                         return -EINVAL;
1346                 }
1347         }
1348
1349         maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1350         if (!maps_node)
1351                 return -ENOMEM;
1352
1353         maps_node->num_maps = num_maps;
1354         if (dup) {
1355                 maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
1356                                           GFP_KERNEL);
1357                 if (!maps_node->maps) {
1358                         pr_err("failed to duplicate mapping table\n");
1359                         kfree(maps_node);
1360                         return -ENOMEM;
1361                 }
1362         } else {
1363                 maps_node->maps = maps;
1364         }
1365
1366         mutex_lock(&pinctrl_maps_mutex);
1367         list_add_tail(&maps_node->node, &pinctrl_maps);
1368         mutex_unlock(&pinctrl_maps_mutex);
1369
1370         return 0;
1371 }
1372
1373 /**
1374  * pinctrl_register_mappings() - register a set of pin controller mappings
1375  * @maps: the pincontrol mappings table to register. This should probably be
1376  *      marked with __initdata so it can be discarded after boot. This
1377  *      function will perform a shallow copy for the mapping entries.
1378  * @num_maps: the number of maps in the mapping table
1379  */
1380 int pinctrl_register_mappings(struct pinctrl_map const *maps,
1381                               unsigned num_maps)
1382 {
1383         return pinctrl_register_map(maps, num_maps, true);
1384 }
1385
1386 void pinctrl_unregister_map(struct pinctrl_map const *map)
1387 {
1388         struct pinctrl_maps *maps_node;
1389
1390         mutex_lock(&pinctrl_maps_mutex);
1391         list_for_each_entry(maps_node, &pinctrl_maps, node) {
1392                 if (maps_node->maps == map) {
1393                         list_del(&maps_node->node);
1394                         kfree(maps_node);
1395                         mutex_unlock(&pinctrl_maps_mutex);
1396                         return;
1397                 }
1398         }
1399         mutex_unlock(&pinctrl_maps_mutex);
1400 }
1401
1402 /**
1403  * pinctrl_force_sleep() - turn a given controller device into sleep state
1404  * @pctldev: pin controller device
1405  */
1406 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1407 {
1408         if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1409                 return pinctrl_select_state(pctldev->p, pctldev->hog_sleep);
1410         return 0;
1411 }
1412 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1413
1414 /**
1415  * pinctrl_force_default() - turn a given controller device into default state
1416  * @pctldev: pin controller device
1417  */
1418 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1419 {
1420         if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1421                 return pinctrl_select_state(pctldev->p, pctldev->hog_default);
1422         return 0;
1423 }
1424 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1425
1426 /**
1427  * pinctrl_init_done() - tell pinctrl probe is done
1428  *
1429  * We'll use this time to switch the pins from "init" to "default" unless the
1430  * driver selected some other state.
1431  *
1432  * @dev: device to that's done probing
1433  */
1434 int pinctrl_init_done(struct device *dev)
1435 {
1436         struct dev_pin_info *pins = dev->pins;
1437         int ret;
1438
1439         if (!pins)
1440                 return 0;
1441
1442         if (IS_ERR(pins->init_state))
1443                 return 0; /* No such state */
1444
1445         if (pins->p->state != pins->init_state)
1446                 return 0; /* Not at init anyway */
1447
1448         if (IS_ERR(pins->default_state))
1449                 return 0; /* No default state */
1450
1451         ret = pinctrl_select_state(pins->p, pins->default_state);
1452         if (ret)
1453                 dev_err(dev, "failed to activate default pinctrl state\n");
1454
1455         return ret;
1456 }
1457
1458 #ifdef CONFIG_PM
1459
1460 /**
1461  * pinctrl_pm_select_state() - select pinctrl state for PM
1462  * @dev: device to select default state for
1463  * @state: state to set
1464  */
1465 static int pinctrl_pm_select_state(struct device *dev,
1466                                    struct pinctrl_state *state)
1467 {
1468         struct dev_pin_info *pins = dev->pins;
1469         int ret;
1470
1471         if (IS_ERR(state))
1472                 return 0; /* No such state */
1473         ret = pinctrl_select_state(pins->p, state);
1474         if (ret)
1475                 dev_err(dev, "failed to activate pinctrl state %s\n",
1476                         state->name);
1477         return ret;
1478 }
1479
1480 /**
1481  * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1482  * @dev: device to select default state for
1483  */
1484 int pinctrl_pm_select_default_state(struct device *dev)
1485 {
1486         if (!dev->pins)
1487                 return 0;
1488
1489         return pinctrl_pm_select_state(dev, dev->pins->default_state);
1490 }
1491 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1492
1493 /**
1494  * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1495  * @dev: device to select sleep state for
1496  */
1497 int pinctrl_pm_select_sleep_state(struct device *dev)
1498 {
1499         if (!dev->pins)
1500                 return 0;
1501
1502         return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
1503 }
1504 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1505
1506 /**
1507  * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1508  * @dev: device to select idle state for
1509  */
1510 int pinctrl_pm_select_idle_state(struct device *dev)
1511 {
1512         if (!dev->pins)
1513                 return 0;
1514
1515         return pinctrl_pm_select_state(dev, dev->pins->idle_state);
1516 }
1517 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1518 #endif
1519
1520 #ifdef CONFIG_DEBUG_FS
1521
1522 static int pinctrl_pins_show(struct seq_file *s, void *what)
1523 {
1524         struct pinctrl_dev *pctldev = s->private;
1525         const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1526         unsigned i, pin;
1527
1528         seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1529
1530         mutex_lock(&pctldev->mutex);
1531
1532         /* The pin number can be retrived from the pin controller descriptor */
1533         for (i = 0; i < pctldev->desc->npins; i++) {
1534                 struct pin_desc *desc;
1535
1536                 pin = pctldev->desc->pins[i].number;
1537                 desc = pin_desc_get(pctldev, pin);
1538                 /* Pin space may be sparse */
1539                 if (desc == NULL)
1540                         continue;
1541
1542                 seq_printf(s, "pin %d (%s) ", pin, desc->name);
1543
1544                 /* Driver-specific info per pin */
1545                 if (ops->pin_dbg_show)
1546                         ops->pin_dbg_show(pctldev, s, pin);
1547
1548                 seq_puts(s, "\n");
1549         }
1550
1551         mutex_unlock(&pctldev->mutex);
1552
1553         return 0;
1554 }
1555
1556 static int pinctrl_groups_show(struct seq_file *s, void *what)
1557 {
1558         struct pinctrl_dev *pctldev = s->private;
1559         const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1560         unsigned ngroups, selector = 0;
1561
1562         mutex_lock(&pctldev->mutex);
1563
1564         ngroups = ops->get_groups_count(pctldev);
1565
1566         seq_puts(s, "registered pin groups:\n");
1567         while (selector < ngroups) {
1568                 const unsigned *pins = NULL;
1569                 unsigned num_pins = 0;
1570                 const char *gname = ops->get_group_name(pctldev, selector);
1571                 const char *pname;
1572                 int ret = 0;
1573                 int i;
1574
1575                 if (ops->get_group_pins)
1576                         ret = ops->get_group_pins(pctldev, selector,
1577                                                   &pins, &num_pins);
1578                 if (ret)
1579                         seq_printf(s, "%s [ERROR GETTING PINS]\n",
1580                                    gname);
1581                 else {
1582                         seq_printf(s, "group: %s\n", gname);
1583                         for (i = 0; i < num_pins; i++) {
1584                                 pname = pin_get_name(pctldev, pins[i]);
1585                                 if (WARN_ON(!pname)) {
1586                                         mutex_unlock(&pctldev->mutex);
1587                                         return -EINVAL;
1588                                 }
1589                                 seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1590                         }
1591                         seq_puts(s, "\n");
1592                 }
1593                 selector++;
1594         }
1595
1596         mutex_unlock(&pctldev->mutex);
1597
1598         return 0;
1599 }
1600
1601 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1602 {
1603         struct pinctrl_dev *pctldev = s->private;
1604         struct pinctrl_gpio_range *range = NULL;
1605
1606         seq_puts(s, "GPIO ranges handled:\n");
1607
1608         mutex_lock(&pctldev->mutex);
1609
1610         /* Loop over the ranges */
1611         list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1612                 if (range->pins) {
1613                         int a;
1614                         seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1615                                 range->id, range->name,
1616                                 range->base, (range->base + range->npins - 1));
1617                         for (a = 0; a < range->npins - 1; a++)
1618                                 seq_printf(s, "%u, ", range->pins[a]);
1619                         seq_printf(s, "%u}\n", range->pins[a]);
1620                 }
1621                 else
1622                         seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1623                                 range->id, range->name,
1624                                 range->base, (range->base + range->npins - 1),
1625                                 range->pin_base,
1626                                 (range->pin_base + range->npins - 1));
1627         }
1628
1629         mutex_unlock(&pctldev->mutex);
1630
1631         return 0;
1632 }
1633
1634 static int pinctrl_devices_show(struct seq_file *s, void *what)
1635 {
1636         struct pinctrl_dev *pctldev;
1637
1638         seq_puts(s, "name [pinmux] [pinconf]\n");
1639
1640         mutex_lock(&pinctrldev_list_mutex);
1641
1642         list_for_each_entry(pctldev, &pinctrldev_list, node) {
1643                 seq_printf(s, "%s ", pctldev->desc->name);
1644                 if (pctldev->desc->pmxops)
1645                         seq_puts(s, "yes ");
1646                 else
1647                         seq_puts(s, "no ");
1648                 if (pctldev->desc->confops)
1649                         seq_puts(s, "yes");
1650                 else
1651                         seq_puts(s, "no");
1652                 seq_puts(s, "\n");
1653         }
1654
1655         mutex_unlock(&pinctrldev_list_mutex);
1656
1657         return 0;
1658 }
1659
1660 static inline const char *map_type(enum pinctrl_map_type type)
1661 {
1662         static const char * const names[] = {
1663                 "INVALID",
1664                 "DUMMY_STATE",
1665                 "MUX_GROUP",
1666                 "CONFIGS_PIN",
1667                 "CONFIGS_GROUP",
1668         };
1669
1670         if (type >= ARRAY_SIZE(names))
1671                 return "UNKNOWN";
1672
1673         return names[type];
1674 }
1675
1676 static int pinctrl_maps_show(struct seq_file *s, void *what)
1677 {
1678         struct pinctrl_maps *maps_node;
1679         int i;
1680         struct pinctrl_map const *map;
1681
1682         seq_puts(s, "Pinctrl maps:\n");
1683
1684         mutex_lock(&pinctrl_maps_mutex);
1685         for_each_maps(maps_node, i, map) {
1686                 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1687                            map->dev_name, map->name, map_type(map->type),
1688                            map->type);
1689
1690                 if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1691                         seq_printf(s, "controlling device %s\n",
1692                                    map->ctrl_dev_name);
1693
1694                 switch (map->type) {
1695                 case PIN_MAP_TYPE_MUX_GROUP:
1696                         pinmux_show_map(s, map);
1697                         break;
1698                 case PIN_MAP_TYPE_CONFIGS_PIN:
1699                 case PIN_MAP_TYPE_CONFIGS_GROUP:
1700                         pinconf_show_map(s, map);
1701                         break;
1702                 default:
1703                         break;
1704                 }
1705
1706                 seq_printf(s, "\n");
1707         }
1708         mutex_unlock(&pinctrl_maps_mutex);
1709
1710         return 0;
1711 }
1712
1713 static int pinctrl_show(struct seq_file *s, void *what)
1714 {
1715         struct pinctrl *p;
1716         struct pinctrl_state *state;
1717         struct pinctrl_setting *setting;
1718
1719         seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1720
1721         mutex_lock(&pinctrl_list_mutex);
1722
1723         list_for_each_entry(p, &pinctrl_list, node) {
1724                 seq_printf(s, "device: %s current state: %s\n",
1725                            dev_name(p->dev),
1726                            p->state ? p->state->name : "none");
1727
1728                 list_for_each_entry(state, &p->states, node) {
1729                         seq_printf(s, "  state: %s\n", state->name);
1730
1731                         list_for_each_entry(setting, &state->settings, node) {
1732                                 struct pinctrl_dev *pctldev = setting->pctldev;
1733
1734                                 seq_printf(s, "    type: %s controller %s ",
1735                                            map_type(setting->type),
1736                                            pinctrl_dev_get_name(pctldev));
1737
1738                                 switch (setting->type) {
1739                                 case PIN_MAP_TYPE_MUX_GROUP:
1740                                         pinmux_show_setting(s, setting);
1741                                         break;
1742                                 case PIN_MAP_TYPE_CONFIGS_PIN:
1743                                 case PIN_MAP_TYPE_CONFIGS_GROUP:
1744                                         pinconf_show_setting(s, setting);
1745                                         break;
1746                                 default:
1747                                         break;
1748                                 }
1749                         }
1750                 }
1751         }
1752
1753         mutex_unlock(&pinctrl_list_mutex);
1754
1755         return 0;
1756 }
1757
1758 static int pinctrl_pins_open(struct inode *inode, struct file *file)
1759 {
1760         return single_open(file, pinctrl_pins_show, inode->i_private);
1761 }
1762
1763 static int pinctrl_groups_open(struct inode *inode, struct file *file)
1764 {
1765         return single_open(file, pinctrl_groups_show, inode->i_private);
1766 }
1767
1768 static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
1769 {
1770         return single_open(file, pinctrl_gpioranges_show, inode->i_private);
1771 }
1772
1773 static int pinctrl_devices_open(struct inode *inode, struct file *file)
1774 {
1775         return single_open(file, pinctrl_devices_show, NULL);
1776 }
1777
1778 static int pinctrl_maps_open(struct inode *inode, struct file *file)
1779 {
1780         return single_open(file, pinctrl_maps_show, NULL);
1781 }
1782
1783 static int pinctrl_open(struct inode *inode, struct file *file)
1784 {
1785         return single_open(file, pinctrl_show, NULL);
1786 }
1787
1788 static const struct file_operations pinctrl_pins_ops = {
1789         .open           = pinctrl_pins_open,
1790         .read           = seq_read,
1791         .llseek         = seq_lseek,
1792         .release        = single_release,
1793 };
1794
1795 static const struct file_operations pinctrl_groups_ops = {
1796         .open           = pinctrl_groups_open,
1797         .read           = seq_read,
1798         .llseek         = seq_lseek,
1799         .release        = single_release,
1800 };
1801
1802 static const struct file_operations pinctrl_gpioranges_ops = {
1803         .open           = pinctrl_gpioranges_open,
1804         .read           = seq_read,
1805         .llseek         = seq_lseek,
1806         .release        = single_release,
1807 };
1808
1809 static const struct file_operations pinctrl_devices_ops = {
1810         .open           = pinctrl_devices_open,
1811         .read           = seq_read,
1812         .llseek         = seq_lseek,
1813         .release        = single_release,
1814 };
1815
1816 static const struct file_operations pinctrl_maps_ops = {
1817         .open           = pinctrl_maps_open,
1818         .read           = seq_read,
1819         .llseek         = seq_lseek,
1820         .release        = single_release,
1821 };
1822
1823 static const struct file_operations pinctrl_ops = {
1824         .open           = pinctrl_open,
1825         .read           = seq_read,
1826         .llseek         = seq_lseek,
1827         .release        = single_release,
1828 };
1829
1830 static struct dentry *debugfs_root;
1831
1832 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1833 {
1834         struct dentry *device_root;
1835
1836         device_root = debugfs_create_dir(dev_name(pctldev->dev),
1837                                          debugfs_root);
1838         pctldev->device_root = device_root;
1839
1840         if (IS_ERR(device_root) || !device_root) {
1841                 pr_warn("failed to create debugfs directory for %s\n",
1842                         dev_name(pctldev->dev));
1843                 return;
1844         }
1845         debugfs_create_file("pins", S_IFREG | S_IRUGO,
1846                             device_root, pctldev, &pinctrl_pins_ops);
1847         debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1848                             device_root, pctldev, &pinctrl_groups_ops);
1849         debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1850                             device_root, pctldev, &pinctrl_gpioranges_ops);
1851         if (pctldev->desc->pmxops)
1852                 pinmux_init_device_debugfs(device_root, pctldev);
1853         if (pctldev->desc->confops)
1854                 pinconf_init_device_debugfs(device_root, pctldev);
1855 }
1856
1857 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1858 {
1859         debugfs_remove_recursive(pctldev->device_root);
1860 }
1861
1862 static void pinctrl_init_debugfs(void)
1863 {
1864         debugfs_root = debugfs_create_dir("pinctrl", NULL);
1865         if (IS_ERR(debugfs_root) || !debugfs_root) {
1866                 pr_warn("failed to create debugfs directory\n");
1867                 debugfs_root = NULL;
1868                 return;
1869         }
1870
1871         debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1872                             debugfs_root, NULL, &pinctrl_devices_ops);
1873         debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1874                             debugfs_root, NULL, &pinctrl_maps_ops);
1875         debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1876                             debugfs_root, NULL, &pinctrl_ops);
1877 }
1878
1879 #else /* CONFIG_DEBUG_FS */
1880
1881 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1882 {
1883 }
1884
1885 static void pinctrl_init_debugfs(void)
1886 {
1887 }
1888
1889 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1890 {
1891 }
1892
1893 #endif
1894
1895 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1896 {
1897         const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1898
1899         if (!ops ||
1900             !ops->get_groups_count ||
1901             !ops->get_group_name)
1902                 return -EINVAL;
1903
1904         return 0;
1905 }
1906
1907 /**
1908  * pinctrl_init_controller() - init a pin controller device
1909  * @pctldesc: descriptor for this pin controller
1910  * @dev: parent device for this pin controller
1911  * @driver_data: private pin controller data for this pin controller
1912  */
1913 struct pinctrl_dev *pinctrl_init_controller(struct pinctrl_desc *pctldesc,
1914                                             struct device *dev,
1915                                             void *driver_data)
1916 {
1917         struct pinctrl_dev *pctldev;
1918         int ret;
1919
1920         if (!pctldesc)
1921                 return ERR_PTR(-EINVAL);
1922         if (!pctldesc->name)
1923                 return ERR_PTR(-EINVAL);
1924
1925         pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1926         if (!pctldev)
1927                 return ERR_PTR(-ENOMEM);
1928
1929         /* Initialize pin control device struct */
1930         pctldev->owner = pctldesc->owner;
1931         pctldev->desc = pctldesc;
1932         pctldev->driver_data = driver_data;
1933         INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1934 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
1935         INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
1936 #endif
1937 #ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
1938         INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
1939 #endif
1940         INIT_LIST_HEAD(&pctldev->gpio_ranges);
1941         INIT_LIST_HEAD(&pctldev->node);
1942         pctldev->dev = dev;
1943         mutex_init(&pctldev->mutex);
1944
1945         /* check core ops for sanity */
1946         ret = pinctrl_check_ops(pctldev);
1947         if (ret) {
1948                 dev_err(dev, "pinctrl ops lacks necessary functions\n");
1949                 goto out_err;
1950         }
1951
1952         /* If we're implementing pinmuxing, check the ops for sanity */
1953         if (pctldesc->pmxops) {
1954                 ret = pinmux_check_ops(pctldev);
1955                 if (ret)
1956                         goto out_err;
1957         }
1958
1959         /* If we're implementing pinconfig, check the ops for sanity */
1960         if (pctldesc->confops) {
1961                 ret = pinconf_check_ops(pctldev);
1962                 if (ret)
1963                         goto out_err;
1964         }
1965
1966         /* Register all the pins */
1967         dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
1968         ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1969         if (ret) {
1970                 dev_err(dev, "error during pin registration\n");
1971                 pinctrl_free_pindescs(pctldev, pctldesc->pins,
1972                                       pctldesc->npins);
1973                 goto out_err;
1974         }
1975
1976         return pctldev;
1977
1978 out_err:
1979         mutex_destroy(&pctldev->mutex);
1980         kfree(pctldev);
1981         return ERR_PTR(ret);
1982 }
1983
1984 static int pinctrl_create_and_start(struct pinctrl_dev *pctldev)
1985 {
1986         pctldev->p = create_pinctrl(pctldev->dev, pctldev);
1987         if (!IS_ERR(pctldev->p)) {
1988                 kref_get(&pctldev->p->users);
1989                 pctldev->hog_default =
1990                         pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
1991                 if (IS_ERR(pctldev->hog_default)) {
1992                         dev_dbg(pctldev->dev,
1993                                 "failed to lookup the default state\n");
1994                 } else {
1995                         if (pinctrl_select_state(pctldev->p,
1996                                                 pctldev->hog_default))
1997                                 dev_err(pctldev->dev,
1998                                         "failed to select default state\n");
1999                 }
2000
2001                 pctldev->hog_sleep =
2002                         pinctrl_lookup_state(pctldev->p,
2003                                                     PINCTRL_STATE_SLEEP);
2004                 if (IS_ERR(pctldev->hog_sleep))
2005                         dev_dbg(pctldev->dev,
2006                                 "failed to lookup the sleep state\n");
2007         }
2008
2009         mutex_lock(&pinctrldev_list_mutex);
2010         list_add_tail(&pctldev->node, &pinctrldev_list);
2011         mutex_unlock(&pinctrldev_list_mutex);
2012
2013         pinctrl_init_device_debugfs(pctldev);
2014
2015         return 0;
2016 }
2017
2018 /**
2019  * pinctrl_register() - register a pin controller device
2020  * @pctldesc: descriptor for this pin controller
2021  * @dev: parent device for this pin controller
2022  * @driver_data: private pin controller data for this pin controller
2023  *
2024  * Note that pinctrl_register() is known to have problems as the pin
2025  * controller driver functions are called before the driver has a
2026  * struct pinctrl_dev handle. To avoid issues later on, please use the
2027  * new pinctrl_register_and_init() below instead.
2028  */
2029 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
2030                                     struct device *dev, void *driver_data)
2031 {
2032         struct pinctrl_dev *pctldev;
2033         int error;
2034
2035         pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
2036         if (IS_ERR(pctldev))
2037                 return pctldev;
2038
2039         error = pinctrl_create_and_start(pctldev);
2040         if (error) {
2041                 mutex_destroy(&pctldev->mutex);
2042                 kfree(pctldev);
2043
2044                 return ERR_PTR(error);
2045         }
2046
2047         return pctldev;
2048
2049 }
2050 EXPORT_SYMBOL_GPL(pinctrl_register);
2051
2052 int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
2053                               struct device *dev, void *driver_data,
2054                               struct pinctrl_dev **pctldev)
2055 {
2056         struct pinctrl_dev *p;
2057         int error;
2058
2059         p = pinctrl_init_controller(pctldesc, dev, driver_data);
2060         if (IS_ERR(p))
2061                 return PTR_ERR(p);
2062
2063         /*
2064          * We have pinctrl_start() call functions in the pin controller
2065          * driver with create_pinctrl() for at least dt_node_to_map(). So
2066          * let's make sure pctldev is properly initialized for the
2067          * pin controller driver before we do anything.
2068          */
2069         *pctldev = p;
2070
2071         error = pinctrl_create_and_start(p);
2072         if (error) {
2073                 mutex_destroy(&p->mutex);
2074                 kfree(p);
2075                 *pctldev = NULL;
2076
2077                 return error;
2078         }
2079
2080         return 0;
2081 }
2082 EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
2083
2084 /**
2085  * pinctrl_unregister() - unregister pinmux
2086  * @pctldev: pin controller to unregister
2087  *
2088  * Called by pinmux drivers to unregister a pinmux.
2089  */
2090 void pinctrl_unregister(struct pinctrl_dev *pctldev)
2091 {
2092         struct pinctrl_gpio_range *range, *n;
2093
2094         if (pctldev == NULL)
2095                 return;
2096
2097         mutex_lock(&pctldev->mutex);
2098         pinctrl_remove_device_debugfs(pctldev);
2099         mutex_unlock(&pctldev->mutex);
2100
2101         if (!IS_ERR_OR_NULL(pctldev->p))
2102                 pinctrl_put(pctldev->p);
2103
2104         mutex_lock(&pinctrldev_list_mutex);
2105         mutex_lock(&pctldev->mutex);
2106         /* TODO: check that no pinmuxes are still active? */
2107         list_del(&pctldev->node);
2108         pinmux_generic_free_functions(pctldev);
2109         pinctrl_generic_free_groups(pctldev);
2110         /* Destroy descriptor tree */
2111         pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2112                               pctldev->desc->npins);
2113         /* remove gpio ranges map */
2114         list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
2115                 list_del(&range->node);
2116
2117         mutex_unlock(&pctldev->mutex);
2118         mutex_destroy(&pctldev->mutex);
2119         kfree(pctldev);
2120         mutex_unlock(&pinctrldev_list_mutex);
2121 }
2122 EXPORT_SYMBOL_GPL(pinctrl_unregister);
2123
2124 static void devm_pinctrl_dev_release(struct device *dev, void *res)
2125 {
2126         struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
2127
2128         pinctrl_unregister(pctldev);
2129 }
2130
2131 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
2132 {
2133         struct pctldev **r = res;
2134
2135         if (WARN_ON(!r || !*r))
2136                 return 0;
2137
2138         return *r == data;
2139 }
2140
2141 /**
2142  * devm_pinctrl_register() - Resource managed version of pinctrl_register().
2143  * @dev: parent device for this pin controller
2144  * @pctldesc: descriptor for this pin controller
2145  * @driver_data: private pin controller data for this pin controller
2146  *
2147  * Returns an error pointer if pincontrol register failed. Otherwise
2148  * it returns valid pinctrl handle.
2149  *
2150  * The pinctrl device will be automatically released when the device is unbound.
2151  */
2152 struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
2153                                           struct pinctrl_desc *pctldesc,
2154                                           void *driver_data)
2155 {
2156         struct pinctrl_dev **ptr, *pctldev;
2157
2158         ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2159         if (!ptr)
2160                 return ERR_PTR(-ENOMEM);
2161
2162         pctldev = pinctrl_register(pctldesc, dev, driver_data);
2163         if (IS_ERR(pctldev)) {
2164                 devres_free(ptr);
2165                 return pctldev;
2166         }
2167
2168         *ptr = pctldev;
2169         devres_add(dev, ptr);
2170
2171         return pctldev;
2172 }
2173 EXPORT_SYMBOL_GPL(devm_pinctrl_register);
2174
2175 /**
2176  * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
2177  * @dev: parent device for this pin controller
2178  * @pctldesc: descriptor for this pin controller
2179  * @driver_data: private pin controller data for this pin controller
2180  *
2181  * Returns an error pointer if pincontrol register failed. Otherwise
2182  * it returns valid pinctrl handle.
2183  *
2184  * The pinctrl device will be automatically released when the device is unbound.
2185  */
2186 int devm_pinctrl_register_and_init(struct device *dev,
2187                                    struct pinctrl_desc *pctldesc,
2188                                    void *driver_data,
2189                                    struct pinctrl_dev **pctldev)
2190 {
2191         struct pinctrl_dev **ptr;
2192         int error;
2193
2194         ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2195         if (!ptr)
2196                 return -ENOMEM;
2197
2198         error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
2199         if (error) {
2200                 devres_free(ptr);
2201                 return error;
2202         }
2203
2204         *ptr = *pctldev;
2205         devres_add(dev, ptr);
2206
2207         return 0;
2208 }
2209 EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
2210
2211 /**
2212  * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
2213  * @dev: device for which which resource was allocated
2214  * @pctldev: the pinctrl device to unregister.
2215  */
2216 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
2217 {
2218         WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
2219                                devm_pinctrl_dev_match, pctldev));
2220 }
2221 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
2222
2223 static int __init pinctrl_init(void)
2224 {
2225         pr_info("initialized pinctrl subsystem\n");
2226         pinctrl_init_debugfs();
2227         return 0;
2228 }
2229
2230 /* init early since many drivers really need to initialized pinmux early */
2231 core_initcall(pinctrl_init);