]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/platform/x86/intel_ips.c
drm/i915, intel_ips: When i915 loads after IPS, make IPS relink to i915.
[karo-tx-linux.git] / drivers / platform / x86 / intel_ips.c
1 /*
2  * Copyright (c) 2009-2010 Intel Corporation
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc.,
15  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
16  *
17  * The full GNU General Public License is included in this distribution in
18  * the file called "COPYING".
19  *
20  * Authors:
21  *      Jesse Barnes <jbarnes@virtuousgeek.org>
22  */
23
24 /*
25  * Some Intel Ibex Peak based platforms support so-called "intelligent
26  * power sharing", which allows the CPU and GPU to cooperate to maximize
27  * performance within a given TDP (thermal design point).  This driver
28  * performs the coordination between the CPU and GPU, monitors thermal and
29  * power statistics in the platform, and initializes power monitoring
30  * hardware.  It also provides a few tunables to control behavior.  Its
31  * primary purpose is to safely allow CPU and GPU turbo modes to be enabled
32  * by tracking power and thermal budget; secondarily it can boost turbo
33  * performance by allocating more power or thermal budget to the CPU or GPU
34  * based on available headroom and activity.
35  *
36  * The basic algorithm is driven by a 5s moving average of tempurature.  If
37  * thermal headroom is available, the CPU and/or GPU power clamps may be
38  * adjusted upwards.  If we hit the thermal ceiling or a thermal trigger,
39  * we scale back the clamp.  Aside from trigger events (when we're critically
40  * close or over our TDP) we don't adjust the clamps more than once every
41  * five seconds.
42  *
43  * The thermal device (device 31, function 6) has a set of registers that
44  * are updated by the ME firmware.  The ME should also take the clamp values
45  * written to those registers and write them to the CPU, but we currently
46  * bypass that functionality and write the CPU MSR directly.
47  *
48  * UNSUPPORTED:
49  *   - dual MCP configs
50  *
51  * TODO:
52  *   - handle CPU hotplug
53  *   - provide turbo enable/disable api
54  *
55  * Related documents:
56  *   - CDI 403777, 403778 - Auburndale EDS vol 1 & 2
57  *   - CDI 401376 - Ibex Peak EDS
58  *   - ref 26037, 26641 - IPS BIOS spec
59  *   - ref 26489 - Nehalem BIOS writer's guide
60  *   - ref 26921 - Ibex Peak BIOS Specification
61  */
62
63 #include <linux/debugfs.h>
64 #include <linux/delay.h>
65 #include <linux/interrupt.h>
66 #include <linux/kernel.h>
67 #include <linux/kthread.h>
68 #include <linux/module.h>
69 #include <linux/pci.h>
70 #include <linux/sched.h>
71 #include <linux/seq_file.h>
72 #include <linux/string.h>
73 #include <linux/tick.h>
74 #include <linux/timer.h>
75 #include <drm/i915_drm.h>
76 #include <asm/msr.h>
77 #include <asm/processor.h>
78 #include "intel_ips.h"
79
80 #define PCI_DEVICE_ID_INTEL_THERMAL_SENSOR 0x3b32
81
82 /*
83  * Package level MSRs for monitor/control
84  */
85 #define PLATFORM_INFO   0xce
86 #define   PLATFORM_TDP          (1<<29)
87 #define   PLATFORM_RATIO        (1<<28)
88
89 #define IA32_MISC_ENABLE        0x1a0
90 #define   IA32_MISC_TURBO_EN    (1ULL<<38)
91
92 #define TURBO_POWER_CURRENT_LIMIT       0x1ac
93 #define   TURBO_TDC_OVR_EN      (1UL<<31)
94 #define   TURBO_TDC_MASK        (0x000000007fff0000UL)
95 #define   TURBO_TDC_SHIFT       (16)
96 #define   TURBO_TDP_OVR_EN      (1UL<<15)
97 #define   TURBO_TDP_MASK        (0x0000000000003fffUL)
98
99 /*
100  * Core/thread MSRs for monitoring
101  */
102 #define IA32_PERF_CTL           0x199
103 #define   IA32_PERF_TURBO_DIS   (1ULL<<32)
104
105 /*
106  * Thermal PCI device regs
107  */
108 #define THM_CFG_TBAR    0x10
109 #define THM_CFG_TBAR_HI 0x14
110
111 #define THM_TSIU        0x00
112 #define THM_TSE         0x01
113 #define   TSE_EN        0xb8
114 #define THM_TSS         0x02
115 #define THM_TSTR        0x03
116 #define THM_TSTTP       0x04
117 #define THM_TSCO        0x08
118 #define THM_TSES        0x0c
119 #define THM_TSGPEN      0x0d
120 #define   TSGPEN_HOT_LOHI       (1<<1)
121 #define   TSGPEN_CRIT_LOHI      (1<<2)
122 #define THM_TSPC        0x0e
123 #define THM_PPEC        0x10
124 #define THM_CTA         0x12
125 #define THM_PTA         0x14
126 #define   PTA_SLOPE_MASK        (0xff00)
127 #define   PTA_SLOPE_SHIFT       8
128 #define   PTA_OFFSET_MASK       (0x00ff)
129 #define THM_MGTA        0x16
130 #define   MGTA_SLOPE_MASK       (0xff00)
131 #define   MGTA_SLOPE_SHIFT      8
132 #define   MGTA_OFFSET_MASK      (0x00ff)
133 #define THM_TRC         0x1a
134 #define   TRC_CORE2_EN  (1<<15)
135 #define   TRC_THM_EN    (1<<12)
136 #define   TRC_C6_WAR    (1<<8)
137 #define   TRC_CORE1_EN  (1<<7)
138 #define   TRC_CORE_PWR  (1<<6)
139 #define   TRC_PCH_EN    (1<<5)
140 #define   TRC_MCH_EN    (1<<4)
141 #define   TRC_DIMM4     (1<<3)
142 #define   TRC_DIMM3     (1<<2)
143 #define   TRC_DIMM2     (1<<1)
144 #define   TRC_DIMM1     (1<<0)
145 #define THM_TES         0x20
146 #define THM_TEN         0x21
147 #define   TEN_UPDATE_EN 1
148 #define THM_PSC         0x24
149 #define   PSC_NTG       (1<<0) /* No GFX turbo support */
150 #define   PSC_NTPC      (1<<1) /* No CPU turbo support */
151 #define   PSC_PP_DEF    (0<<2) /* Perf policy up to driver */
152 #define   PSP_PP_PC     (1<<2) /* BIOS prefers CPU perf */
153 #define   PSP_PP_BAL    (2<<2) /* BIOS wants balanced perf */
154 #define   PSP_PP_GFX    (3<<2) /* BIOS prefers GFX perf */
155 #define   PSP_PBRT      (1<<4) /* BIOS run time support */
156 #define THM_CTV1        0x30
157 #define   CTV_TEMP_ERROR (1<<15)
158 #define   CTV_TEMP_MASK 0x3f
159 #define   CTV_
160 #define THM_CTV2        0x32
161 #define THM_CEC         0x34 /* undocumented power accumulator in joules */
162 #define THM_AE          0x3f
163 #define THM_HTS         0x50 /* 32 bits */
164 #define   HTS_PCPL_MASK (0x7fe00000)
165 #define   HTS_PCPL_SHIFT 21
166 #define   HTS_GPL_MASK  (0x001ff000)
167 #define   HTS_GPL_SHIFT 12
168 #define   HTS_PP_MASK   (0x00000c00)
169 #define   HTS_PP_SHIFT  10
170 #define   HTS_PP_DEF    0
171 #define   HTS_PP_PROC   1
172 #define   HTS_PP_BAL    2
173 #define   HTS_PP_GFX    3
174 #define   HTS_PCTD_DIS  (1<<9)
175 #define   HTS_GTD_DIS   (1<<8)
176 #define   HTS_PTL_MASK  (0x000000fe)
177 #define   HTS_PTL_SHIFT 1
178 #define   HTS_NVV       (1<<0)
179 #define THM_HTSHI       0x54 /* 16 bits */
180 #define   HTS2_PPL_MASK         (0x03ff)
181 #define   HTS2_PRST_MASK        (0x3c00)
182 #define   HTS2_PRST_SHIFT       10
183 #define   HTS2_PRST_UNLOADED    0
184 #define   HTS2_PRST_RUNNING     1
185 #define   HTS2_PRST_TDISOP      2 /* turbo disabled due to power */
186 #define   HTS2_PRST_TDISHT      3 /* turbo disabled due to high temp */
187 #define   HTS2_PRST_TDISUSR     4 /* user disabled turbo */
188 #define   HTS2_PRST_TDISPLAT    5 /* platform disabled turbo */
189 #define   HTS2_PRST_TDISPM      6 /* power management disabled turbo */
190 #define   HTS2_PRST_TDISERR     7 /* some kind of error disabled turbo */
191 #define THM_PTL         0x56
192 #define THM_MGTV        0x58
193 #define   TV_MASK       0x000000000000ff00
194 #define   TV_SHIFT      8
195 #define THM_PTV         0x60
196 #define   PTV_MASK      0x00ff
197 #define THM_MMGPC       0x64
198 #define THM_MPPC        0x66
199 #define THM_MPCPC       0x68
200 #define THM_TSPIEN      0x82
201 #define   TSPIEN_AUX_LOHI       (1<<0)
202 #define   TSPIEN_HOT_LOHI       (1<<1)
203 #define   TSPIEN_CRIT_LOHI      (1<<2)
204 #define   TSPIEN_AUX2_LOHI      (1<<3)
205 #define THM_TSLOCK      0x83
206 #define THM_ATR         0x84
207 #define THM_TOF         0x87
208 #define THM_STS         0x98
209 #define   STS_PCPL_MASK         (0x7fe00000)
210 #define   STS_PCPL_SHIFT        21
211 #define   STS_GPL_MASK          (0x001ff000)
212 #define   STS_GPL_SHIFT         12
213 #define   STS_PP_MASK           (0x00000c00)
214 #define   STS_PP_SHIFT          10
215 #define   STS_PP_DEF            0
216 #define   STS_PP_PROC           1
217 #define   STS_PP_BAL            2
218 #define   STS_PP_GFX            3
219 #define   STS_PCTD_DIS          (1<<9)
220 #define   STS_GTD_DIS           (1<<8)
221 #define   STS_PTL_MASK          (0x000000fe)
222 #define   STS_PTL_SHIFT         1
223 #define   STS_NVV               (1<<0)
224 #define THM_SEC         0x9c
225 #define   SEC_ACK       (1<<0)
226 #define THM_TC3         0xa4
227 #define THM_TC1         0xa8
228 #define   STS_PPL_MASK          (0x0003ff00)
229 #define   STS_PPL_SHIFT         16
230 #define THM_TC2         0xac
231 #define THM_DTV         0xb0
232 #define THM_ITV         0xd8
233 #define   ITV_ME_SEQNO_MASK 0x00ff0000 /* ME should update every ~200ms */
234 #define   ITV_ME_SEQNO_SHIFT (16)
235 #define   ITV_MCH_TEMP_MASK 0x0000ff00
236 #define   ITV_MCH_TEMP_SHIFT (8)
237 #define   ITV_PCH_TEMP_MASK 0x000000ff
238
239 #define thm_readb(off) readb(ips->regmap + (off))
240 #define thm_readw(off) readw(ips->regmap + (off))
241 #define thm_readl(off) readl(ips->regmap + (off))
242 #define thm_readq(off) readq(ips->regmap + (off))
243
244 #define thm_writeb(off, val) writeb((val), ips->regmap + (off))
245 #define thm_writew(off, val) writew((val), ips->regmap + (off))
246 #define thm_writel(off, val) writel((val), ips->regmap + (off))
247
248 static const int IPS_ADJUST_PERIOD = 5000; /* ms */
249 static bool late_i915_load = false;
250
251 /* For initial average collection */
252 static const int IPS_SAMPLE_PERIOD = 200; /* ms */
253 static const int IPS_SAMPLE_WINDOW = 5000; /* 5s moving window of samples */
254 #define IPS_SAMPLE_COUNT (IPS_SAMPLE_WINDOW / IPS_SAMPLE_PERIOD)
255
256 /* Per-SKU limits */
257 struct ips_mcp_limits {
258         int cpu_family;
259         int cpu_model; /* includes extended model... */
260         int mcp_power_limit; /* mW units */
261         int core_power_limit;
262         int mch_power_limit;
263         int core_temp_limit; /* degrees C */
264         int mch_temp_limit;
265 };
266
267 /* Max temps are -10 degrees C to avoid PROCHOT# */
268
269 struct ips_mcp_limits ips_sv_limits = {
270         .mcp_power_limit = 35000,
271         .core_power_limit = 29000,
272         .mch_power_limit = 20000,
273         .core_temp_limit = 95,
274         .mch_temp_limit = 90
275 };
276
277 struct ips_mcp_limits ips_lv_limits = {
278         .mcp_power_limit = 25000,
279         .core_power_limit = 21000,
280         .mch_power_limit = 13000,
281         .core_temp_limit = 95,
282         .mch_temp_limit = 90
283 };
284
285 struct ips_mcp_limits ips_ulv_limits = {
286         .mcp_power_limit = 18000,
287         .core_power_limit = 14000,
288         .mch_power_limit = 11000,
289         .core_temp_limit = 95,
290         .mch_temp_limit = 90
291 };
292
293 struct ips_driver {
294         struct pci_dev *dev;
295         void *regmap;
296         struct task_struct *monitor;
297         struct task_struct *adjust;
298         struct dentry *debug_root;
299
300         /* Average CPU core temps (all averages in .01 degrees C for precision) */
301         u16 ctv1_avg_temp;
302         u16 ctv2_avg_temp;
303         /* GMCH average */
304         u16 mch_avg_temp;
305         /* Average for the CPU (both cores?) */
306         u16 mcp_avg_temp;
307         /* Average power consumption (in mW) */
308         u32 cpu_avg_power;
309         u32 mch_avg_power;
310
311         /* Offset values */
312         u16 cta_val;
313         u16 pta_val;
314         u16 mgta_val;
315
316         /* Maximums & prefs, protected by turbo status lock */
317         spinlock_t turbo_status_lock;
318         u16 mcp_temp_limit;
319         u16 mcp_power_limit;
320         u16 core_power_limit;
321         u16 mch_power_limit;
322         bool cpu_turbo_enabled;
323         bool __cpu_turbo_on;
324         bool gpu_turbo_enabled;
325         bool __gpu_turbo_on;
326         bool gpu_preferred;
327         bool poll_turbo_status;
328         bool second_cpu;
329         bool turbo_toggle_allowed;
330         struct ips_mcp_limits *limits;
331
332         /* Optional MCH interfaces for if i915 is in use */
333         unsigned long (*read_mch_val)(void);
334         bool (*gpu_raise)(void);
335         bool (*gpu_lower)(void);
336         bool (*gpu_busy)(void);
337         bool (*gpu_turbo_disable)(void);
338
339         /* For restoration at unload */
340         u64 orig_turbo_limit;
341         u64 orig_turbo_ratios;
342 };
343
344 static bool
345 ips_gpu_turbo_enabled(struct ips_driver *ips);
346
347 /**
348  * ips_cpu_busy - is CPU busy?
349  * @ips: IPS driver struct
350  *
351  * Check CPU for load to see whether we should increase its thermal budget.
352  *
353  * RETURNS:
354  * True if the CPU could use more power, false otherwise.
355  */
356 static bool ips_cpu_busy(struct ips_driver *ips)
357 {
358         if ((avenrun[0] >> FSHIFT) > 1)
359                 return true;
360
361         return false;
362 }
363
364 /**
365  * ips_cpu_raise - raise CPU power clamp
366  * @ips: IPS driver struct
367  *
368  * Raise the CPU power clamp by %IPS_CPU_STEP, in accordance with TDP for
369  * this platform.
370  *
371  * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR upwards (as
372  * long as we haven't hit the TDP limit for the SKU).
373  */
374 static void ips_cpu_raise(struct ips_driver *ips)
375 {
376         u64 turbo_override;
377         u16 cur_tdp_limit, new_tdp_limit;
378
379         if (!ips->cpu_turbo_enabled)
380                 return;
381
382         rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
383
384         cur_tdp_limit = turbo_override & TURBO_TDP_MASK;
385         new_tdp_limit = cur_tdp_limit + 8; /* 1W increase */
386
387         /* Clamp to SKU TDP limit */
388         if (((new_tdp_limit * 10) / 8) > ips->core_power_limit)
389                 new_tdp_limit = cur_tdp_limit;
390
391         thm_writew(THM_MPCPC, (new_tdp_limit * 10) / 8);
392
393         turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDC_OVR_EN;
394         wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
395
396         turbo_override &= ~TURBO_TDP_MASK;
397         turbo_override |= new_tdp_limit;
398
399         wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
400 }
401
402 /**
403  * ips_cpu_lower - lower CPU power clamp
404  * @ips: IPS driver struct
405  *
406  * Lower CPU power clamp b %IPS_CPU_STEP if possible.
407  *
408  * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR down, going
409  * as low as the platform limits will allow (though we could go lower there
410  * wouldn't be much point).
411  */
412 static void ips_cpu_lower(struct ips_driver *ips)
413 {
414         u64 turbo_override;
415         u16 cur_limit, new_limit;
416
417         rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
418
419         cur_limit = turbo_override & TURBO_TDP_MASK;
420         new_limit = cur_limit - 8; /* 1W decrease */
421
422         /* Clamp to SKU TDP limit */
423         if (new_limit  < (ips->orig_turbo_limit & TURBO_TDP_MASK))
424                 new_limit = ips->orig_turbo_limit & TURBO_TDP_MASK;
425
426         thm_writew(THM_MPCPC, (new_limit * 10) / 8);
427
428         turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDC_OVR_EN;
429         wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
430
431         turbo_override &= ~TURBO_TDP_MASK;
432         turbo_override |= new_limit;
433
434         wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
435 }
436
437 /**
438  * do_enable_cpu_turbo - internal turbo enable function
439  * @data: unused
440  *
441  * Internal function for actually updating MSRs.  When we enable/disable
442  * turbo, we need to do it on each CPU; this function is the one called
443  * by on_each_cpu() when needed.
444  */
445 static void do_enable_cpu_turbo(void *data)
446 {
447         u64 perf_ctl;
448
449         rdmsrl(IA32_PERF_CTL, perf_ctl);
450         if (perf_ctl & IA32_PERF_TURBO_DIS) {
451                 perf_ctl &= ~IA32_PERF_TURBO_DIS;
452                 wrmsrl(IA32_PERF_CTL, perf_ctl);
453         }
454 }
455
456 /**
457  * ips_enable_cpu_turbo - enable turbo mode on all CPUs
458  * @ips: IPS driver struct
459  *
460  * Enable turbo mode by clearing the disable bit in IA32_PERF_CTL on
461  * all logical threads.
462  */
463 static void ips_enable_cpu_turbo(struct ips_driver *ips)
464 {
465         /* Already on, no need to mess with MSRs */
466         if (ips->__cpu_turbo_on)
467                 return;
468
469         if (ips->turbo_toggle_allowed)
470                 on_each_cpu(do_enable_cpu_turbo, ips, 1);
471
472         ips->__cpu_turbo_on = true;
473 }
474
475 /**
476  * do_disable_cpu_turbo - internal turbo disable function
477  * @data: unused
478  *
479  * Internal function for actually updating MSRs.  When we enable/disable
480  * turbo, we need to do it on each CPU; this function is the one called
481  * by on_each_cpu() when needed.
482  */
483 static void do_disable_cpu_turbo(void *data)
484 {
485         u64 perf_ctl;
486
487         rdmsrl(IA32_PERF_CTL, perf_ctl);
488         if (!(perf_ctl & IA32_PERF_TURBO_DIS)) {
489                 perf_ctl |= IA32_PERF_TURBO_DIS;
490                 wrmsrl(IA32_PERF_CTL, perf_ctl);
491         }
492 }
493
494 /**
495  * ips_disable_cpu_turbo - disable turbo mode on all CPUs
496  * @ips: IPS driver struct
497  *
498  * Disable turbo mode by setting the disable bit in IA32_PERF_CTL on
499  * all logical threads.
500  */
501 static void ips_disable_cpu_turbo(struct ips_driver *ips)
502 {
503         /* Already off, leave it */
504         if (!ips->__cpu_turbo_on)
505                 return;
506
507         if (ips->turbo_toggle_allowed)
508                 on_each_cpu(do_disable_cpu_turbo, ips, 1);
509
510         ips->__cpu_turbo_on = false;
511 }
512
513 /**
514  * ips_gpu_busy - is GPU busy?
515  * @ips: IPS driver struct
516  *
517  * Check GPU for load to see whether we should increase its thermal budget.
518  * We need to call into the i915 driver in this case.
519  *
520  * RETURNS:
521  * True if the GPU could use more power, false otherwise.
522  */
523 static bool ips_gpu_busy(struct ips_driver *ips)
524 {
525         if (!ips_gpu_turbo_enabled(ips))
526                 return false;
527
528         return ips->gpu_busy();
529 }
530
531 /**
532  * ips_gpu_raise - raise GPU power clamp
533  * @ips: IPS driver struct
534  *
535  * Raise the GPU frequency/power if possible.  We need to call into the
536  * i915 driver in this case.
537  */
538 static void ips_gpu_raise(struct ips_driver *ips)
539 {
540         if (!ips_gpu_turbo_enabled(ips))
541                 return;
542
543         if (!ips->gpu_raise())
544                 ips->gpu_turbo_enabled = false;
545
546         return;
547 }
548
549 /**
550  * ips_gpu_lower - lower GPU power clamp
551  * @ips: IPS driver struct
552  *
553  * Lower GPU frequency/power if possible.  Need to call i915.
554  */
555 static void ips_gpu_lower(struct ips_driver *ips)
556 {
557         if (!ips_gpu_turbo_enabled(ips))
558                 return;
559
560         if (!ips->gpu_lower())
561                 ips->gpu_turbo_enabled = false;
562
563         return;
564 }
565
566 /**
567  * ips_enable_gpu_turbo - notify the gfx driver turbo is available
568  * @ips: IPS driver struct
569  *
570  * Call into the graphics driver indicating that it can safely use
571  * turbo mode.
572  */
573 static void ips_enable_gpu_turbo(struct ips_driver *ips)
574 {
575         if (ips->__gpu_turbo_on)
576                 return;
577         ips->__gpu_turbo_on = true;
578 }
579
580 /**
581  * ips_disable_gpu_turbo - notify the gfx driver to disable turbo mode
582  * @ips: IPS driver struct
583  *
584  * Request that the graphics driver disable turbo mode.
585  */
586 static void ips_disable_gpu_turbo(struct ips_driver *ips)
587 {
588         /* Avoid calling i915 if turbo is already disabled */
589         if (!ips->__gpu_turbo_on)
590                 return;
591
592         if (!ips->gpu_turbo_disable())
593                 dev_err(&ips->dev->dev, "failed to disable graphis turbo\n");
594         else
595                 ips->__gpu_turbo_on = false;
596 }
597
598 /**
599  * mcp_exceeded - check whether we're outside our thermal & power limits
600  * @ips: IPS driver struct
601  *
602  * Check whether the MCP is over its thermal or power budget.
603  */
604 static bool mcp_exceeded(struct ips_driver *ips)
605 {
606         unsigned long flags;
607         bool ret = false;
608         u32 temp_limit;
609         u32 avg_power;
610         const char *msg = "MCP limit exceeded: ";
611
612         spin_lock_irqsave(&ips->turbo_status_lock, flags);
613
614         temp_limit = ips->mcp_temp_limit * 100;
615         if (ips->mcp_avg_temp > temp_limit) {
616                 dev_info(&ips->dev->dev,
617                         "%sAvg temp %u, limit %u\n", msg, ips->mcp_avg_temp,
618                         temp_limit);
619                 ret = true;
620         }
621
622         avg_power = ips->cpu_avg_power + ips->mch_avg_power;
623         if (avg_power > ips->mcp_power_limit) {
624                 dev_info(&ips->dev->dev,
625                         "%sAvg power %u, limit %u\n", msg, avg_power,
626                         ips->mcp_power_limit);
627                 ret = true;
628         }
629
630         spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
631
632         return ret;
633 }
634
635 /**
636  * cpu_exceeded - check whether a CPU core is outside its limits
637  * @ips: IPS driver struct
638  * @cpu: CPU number to check
639  *
640  * Check a given CPU's average temp or power is over its limit.
641  */
642 static bool cpu_exceeded(struct ips_driver *ips, int cpu)
643 {
644         unsigned long flags;
645         int avg;
646         bool ret = false;
647
648         spin_lock_irqsave(&ips->turbo_status_lock, flags);
649         avg = cpu ? ips->ctv2_avg_temp : ips->ctv1_avg_temp;
650         if (avg > (ips->limits->core_temp_limit * 100))
651                 ret = true;
652         if (ips->cpu_avg_power > ips->core_power_limit * 100)
653                 ret = true;
654         spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
655
656         if (ret)
657                 dev_info(&ips->dev->dev,
658                          "CPU power or thermal limit exceeded\n");
659
660         return ret;
661 }
662
663 /**
664  * mch_exceeded - check whether the GPU is over budget
665  * @ips: IPS driver struct
666  *
667  * Check the MCH temp & power against their maximums.
668  */
669 static bool mch_exceeded(struct ips_driver *ips)
670 {
671         unsigned long flags;
672         bool ret = false;
673
674         spin_lock_irqsave(&ips->turbo_status_lock, flags);
675         if (ips->mch_avg_temp > (ips->limits->mch_temp_limit * 100))
676                 ret = true;
677         if (ips->mch_avg_power > ips->mch_power_limit)
678                 ret = true;
679         spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
680
681         return ret;
682 }
683
684 /**
685  * verify_limits - verify BIOS provided limits
686  * @ips: IPS structure
687  *
688  * BIOS can optionally provide non-default limits for power and temp.  Check
689  * them here and use the defaults if the BIOS values are not provided or
690  * are otherwise unusable.
691  */
692 static void verify_limits(struct ips_driver *ips)
693 {
694         if (ips->mcp_power_limit < ips->limits->mcp_power_limit ||
695             ips->mcp_power_limit > 35000)
696                 ips->mcp_power_limit = ips->limits->mcp_power_limit;
697
698         if (ips->mcp_temp_limit < ips->limits->core_temp_limit ||
699             ips->mcp_temp_limit < ips->limits->mch_temp_limit ||
700             ips->mcp_temp_limit > 150)
701                 ips->mcp_temp_limit = min(ips->limits->core_temp_limit,
702                                           ips->limits->mch_temp_limit);
703 }
704
705 /**
706  * update_turbo_limits - get various limits & settings from regs
707  * @ips: IPS driver struct
708  *
709  * Update the IPS power & temp limits, along with turbo enable flags,
710  * based on latest register contents.
711  *
712  * Used at init time and for runtime BIOS support, which requires polling
713  * the regs for updates (as a result of AC->DC transition for example).
714  *
715  * LOCKING:
716  * Caller must hold turbo_status_lock (outside of init)
717  */
718 static void update_turbo_limits(struct ips_driver *ips)
719 {
720         u32 hts = thm_readl(THM_HTS);
721
722         ips->cpu_turbo_enabled = !(hts & HTS_PCTD_DIS);
723         /* 
724          * Disable turbo for now, until we can figure out why the power figures
725          * are wrong
726          */
727         ips->cpu_turbo_enabled = false;
728
729         if (ips->gpu_busy)
730                 ips->gpu_turbo_enabled = !(hts & HTS_GTD_DIS);
731
732         ips->core_power_limit = thm_readw(THM_MPCPC);
733         ips->mch_power_limit = thm_readw(THM_MMGPC);
734         ips->mcp_temp_limit = thm_readw(THM_PTL);
735         ips->mcp_power_limit = thm_readw(THM_MPPC);
736
737         verify_limits(ips);
738         /* Ignore BIOS CPU vs GPU pref */
739 }
740
741 /**
742  * ips_adjust - adjust power clamp based on thermal state
743  * @data: ips driver structure
744  *
745  * Wake up every 5s or so and check whether we should adjust the power clamp.
746  * Check CPU and GPU load to determine which needs adjustment.  There are
747  * several things to consider here:
748  *   - do we need to adjust up or down?
749  *   - is CPU busy?
750  *   - is GPU busy?
751  *   - is CPU in turbo?
752  *   - is GPU in turbo?
753  *   - is CPU or GPU preferred? (CPU is default)
754  *
755  * So, given the above, we do the following:
756  *   - up (TDP available)
757  *     - CPU not busy, GPU not busy - nothing
758  *     - CPU busy, GPU not busy - adjust CPU up
759  *     - CPU not busy, GPU busy - adjust GPU up
760  *     - CPU busy, GPU busy - adjust preferred unit up, taking headroom from
761  *       non-preferred unit if necessary
762  *   - down (at TDP limit)
763  *     - adjust both CPU and GPU down if possible
764  *
765                 cpu+ gpu+       cpu+gpu-        cpu-gpu+        cpu-gpu-
766 cpu < gpu <     cpu+gpu+        cpu+            gpu+            nothing
767 cpu < gpu >=    cpu+gpu-(mcp<)  cpu+gpu-(mcp<)  gpu-            gpu-
768 cpu >= gpu <    cpu-gpu+(mcp<)  cpu-            cpu-gpu+(mcp<)  cpu-
769 cpu >= gpu >=   cpu-gpu-        cpu-gpu-        cpu-gpu-        cpu-gpu-
770  *
771  */
772 static int ips_adjust(void *data)
773 {
774         struct ips_driver *ips = data;
775         unsigned long flags;
776
777         dev_dbg(&ips->dev->dev, "starting ips-adjust thread\n");
778
779         /*
780          * Adjust CPU and GPU clamps every 5s if needed.  Doing it more
781          * often isn't recommended due to ME interaction.
782          */
783         do {
784                 bool cpu_busy = ips_cpu_busy(ips);
785                 bool gpu_busy = ips_gpu_busy(ips);
786
787                 spin_lock_irqsave(&ips->turbo_status_lock, flags);
788                 if (ips->poll_turbo_status)
789                         update_turbo_limits(ips);
790                 spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
791
792                 /* Update turbo status if necessary */
793                 if (ips->cpu_turbo_enabled)
794                         ips_enable_cpu_turbo(ips);
795                 else
796                         ips_disable_cpu_turbo(ips);
797
798                 if (ips->gpu_turbo_enabled)
799                         ips_enable_gpu_turbo(ips);
800                 else
801                         ips_disable_gpu_turbo(ips);
802
803                 /* We're outside our comfort zone, crank them down */
804                 if (mcp_exceeded(ips)) {
805                         ips_cpu_lower(ips);
806                         ips_gpu_lower(ips);
807                         goto sleep;
808                 }
809
810                 if (!cpu_exceeded(ips, 0) && cpu_busy)
811                         ips_cpu_raise(ips);
812                 else
813                         ips_cpu_lower(ips);
814
815                 if (!mch_exceeded(ips) && gpu_busy)
816                         ips_gpu_raise(ips);
817                 else
818                         ips_gpu_lower(ips);
819
820 sleep:
821                 schedule_timeout_interruptible(msecs_to_jiffies(IPS_ADJUST_PERIOD));
822         } while (!kthread_should_stop());
823
824         dev_dbg(&ips->dev->dev, "ips-adjust thread stopped\n");
825
826         return 0;
827 }
828
829 /*
830  * Helpers for reading out temp/power values and calculating their
831  * averages for the decision making and monitoring functions.
832  */
833
834 static u16 calc_avg_temp(struct ips_driver *ips, u16 *array)
835 {
836         u64 total = 0;
837         int i;
838         u16 avg;
839
840         for (i = 0; i < IPS_SAMPLE_COUNT; i++)
841                 total += (u64)(array[i] * 100);
842
843         do_div(total, IPS_SAMPLE_COUNT);
844
845         avg = (u16)total;
846
847         return avg;
848 }
849
850 static u16 read_mgtv(struct ips_driver *ips)
851 {
852         u16 ret;
853         u64 slope, offset;
854         u64 val;
855
856         val = thm_readq(THM_MGTV);
857         val = (val & TV_MASK) >> TV_SHIFT;
858
859         slope = offset = thm_readw(THM_MGTA);
860         slope = (slope & MGTA_SLOPE_MASK) >> MGTA_SLOPE_SHIFT;
861         offset = offset & MGTA_OFFSET_MASK;
862
863         ret = ((val * slope + 0x40) >> 7) + offset;
864
865         return 0; /* MCH temp reporting buggy */
866 }
867
868 static u16 read_ptv(struct ips_driver *ips)
869 {
870         u16 val, slope, offset;
871
872         slope = (ips->pta_val & PTA_SLOPE_MASK) >> PTA_SLOPE_SHIFT;
873         offset = ips->pta_val & PTA_OFFSET_MASK;
874
875         val = thm_readw(THM_PTV) & PTV_MASK;
876
877         return val;
878 }
879
880 static u16 read_ctv(struct ips_driver *ips, int cpu)
881 {
882         int reg = cpu ? THM_CTV2 : THM_CTV1;
883         u16 val;
884
885         val = thm_readw(reg);
886         if (!(val & CTV_TEMP_ERROR))
887                 val = (val) >> 6; /* discard fractional component */
888         else
889                 val = 0;
890
891         return val;
892 }
893
894 static u32 get_cpu_power(struct ips_driver *ips, u32 *last, int period)
895 {
896         u32 val;
897         u32 ret;
898
899         /*
900          * CEC is in joules/65535.  Take difference over time to
901          * get watts.
902          */
903         val = thm_readl(THM_CEC);
904
905         /* period is in ms and we want mW */
906         ret = (((val - *last) * 1000) / period);
907         ret = (ret * 1000) / 65535;
908         *last = val;
909
910         return 0;
911 }
912
913 static const u16 temp_decay_factor = 2;
914 static u16 update_average_temp(u16 avg, u16 val)
915 {
916         u16 ret;
917
918         /* Multiply by 100 for extra precision */
919         ret = (val * 100 / temp_decay_factor) +
920                 (((temp_decay_factor - 1) * avg) / temp_decay_factor);
921         return ret;
922 }
923
924 static const u16 power_decay_factor = 2;
925 static u16 update_average_power(u32 avg, u32 val)
926 {
927         u32 ret;
928
929         ret = (val / power_decay_factor) +
930                 (((power_decay_factor - 1) * avg) / power_decay_factor);
931
932         return ret;
933 }
934
935 static u32 calc_avg_power(struct ips_driver *ips, u32 *array)
936 {
937         u64 total = 0;
938         u32 avg;
939         int i;
940
941         for (i = 0; i < IPS_SAMPLE_COUNT; i++)
942                 total += array[i];
943
944         do_div(total, IPS_SAMPLE_COUNT);
945         avg = (u32)total;
946
947         return avg;
948 }
949
950 static void monitor_timeout(unsigned long arg)
951 {
952         wake_up_process((struct task_struct *)arg);
953 }
954
955 /**
956  * ips_monitor - temp/power monitoring thread
957  * @data: ips driver structure
958  *
959  * This is the main function for the IPS driver.  It monitors power and
960  * tempurature in the MCP and adjusts CPU and GPU power clams accordingly.
961  *
962  * We keep a 5s moving average of power consumption and tempurature.  Using
963  * that data, along with CPU vs GPU preference, we adjust the power clamps
964  * up or down.
965  */
966 static int ips_monitor(void *data)
967 {
968         struct ips_driver *ips = data;
969         struct timer_list timer;
970         unsigned long seqno_timestamp, expire, last_msecs, last_sample_period;
971         int i;
972         u32 *cpu_samples, *mchp_samples, old_cpu_power;
973         u16 *mcp_samples, *ctv1_samples, *ctv2_samples, *mch_samples;
974         u8 cur_seqno, last_seqno;
975
976         mcp_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
977         ctv1_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
978         ctv2_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
979         mch_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
980         cpu_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL);
981         mchp_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL);
982         if (!mcp_samples || !ctv1_samples || !ctv2_samples || !mch_samples ||
983                         !cpu_samples || !mchp_samples) {
984                 dev_err(&ips->dev->dev,
985                         "failed to allocate sample array, ips disabled\n");
986                 kfree(mcp_samples);
987                 kfree(ctv1_samples);
988                 kfree(ctv2_samples);
989                 kfree(mch_samples);
990                 kfree(cpu_samples);
991                 kfree(mchp_samples);
992                 return -ENOMEM;
993         }
994
995         last_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
996                 ITV_ME_SEQNO_SHIFT;
997         seqno_timestamp = get_jiffies_64();
998
999         old_cpu_power = thm_readl(THM_CEC);
1000         schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1001
1002         /* Collect an initial average */
1003         for (i = 0; i < IPS_SAMPLE_COUNT; i++) {
1004                 u32 mchp, cpu_power;
1005                 u16 val;
1006
1007                 mcp_samples[i] = read_ptv(ips);
1008
1009                 val = read_ctv(ips, 0);
1010                 ctv1_samples[i] = val;
1011
1012                 val = read_ctv(ips, 1);
1013                 ctv2_samples[i] = val;
1014
1015                 val = read_mgtv(ips);
1016                 mch_samples[i] = val;
1017
1018                 cpu_power = get_cpu_power(ips, &old_cpu_power,
1019                                           IPS_SAMPLE_PERIOD);
1020                 cpu_samples[i] = cpu_power;
1021
1022                 if (ips->read_mch_val) {
1023                         mchp = ips->read_mch_val();
1024                         mchp_samples[i] = mchp;
1025                 }
1026
1027                 schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1028                 if (kthread_should_stop())
1029                         break;
1030         }
1031
1032         ips->mcp_avg_temp = calc_avg_temp(ips, mcp_samples);
1033         ips->ctv1_avg_temp = calc_avg_temp(ips, ctv1_samples);
1034         ips->ctv2_avg_temp = calc_avg_temp(ips, ctv2_samples);
1035         ips->mch_avg_temp = calc_avg_temp(ips, mch_samples);
1036         ips->cpu_avg_power = calc_avg_power(ips, cpu_samples);
1037         ips->mch_avg_power = calc_avg_power(ips, mchp_samples);
1038         kfree(mcp_samples);
1039         kfree(ctv1_samples);
1040         kfree(ctv2_samples);
1041         kfree(mch_samples);
1042         kfree(cpu_samples);
1043         kfree(mchp_samples);
1044
1045         /* Start the adjustment thread now that we have data */
1046         wake_up_process(ips->adjust);
1047
1048         /*
1049          * Ok, now we have an initial avg.  From here on out, we track the
1050          * running avg using a decaying average calculation.  This allows
1051          * us to reduce the sample frequency if the CPU and GPU are idle.
1052          */
1053         old_cpu_power = thm_readl(THM_CEC);
1054         schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1055         last_sample_period = IPS_SAMPLE_PERIOD;
1056
1057         setup_deferrable_timer_on_stack(&timer, monitor_timeout,
1058                                         (unsigned long)current);
1059         do {
1060                 u32 cpu_val, mch_val;
1061                 u16 val;
1062
1063                 /* MCP itself */
1064                 val = read_ptv(ips);
1065                 ips->mcp_avg_temp = update_average_temp(ips->mcp_avg_temp, val);
1066
1067                 /* Processor 0 */
1068                 val = read_ctv(ips, 0);
1069                 ips->ctv1_avg_temp =
1070                         update_average_temp(ips->ctv1_avg_temp, val);
1071                 /* Power */
1072                 cpu_val = get_cpu_power(ips, &old_cpu_power,
1073                                         last_sample_period);
1074                 ips->cpu_avg_power =
1075                         update_average_power(ips->cpu_avg_power, cpu_val);
1076
1077                 if (ips->second_cpu) {
1078                         /* Processor 1 */
1079                         val = read_ctv(ips, 1);
1080                         ips->ctv2_avg_temp =
1081                                 update_average_temp(ips->ctv2_avg_temp, val);
1082                 }
1083
1084                 /* MCH */
1085                 val = read_mgtv(ips);
1086                 ips->mch_avg_temp = update_average_temp(ips->mch_avg_temp, val);
1087                 /* Power */
1088                 if (ips->read_mch_val) {
1089                         mch_val = ips->read_mch_val();
1090                         ips->mch_avg_power =
1091                                 update_average_power(ips->mch_avg_power,
1092                                                      mch_val);
1093                 }
1094
1095                 /*
1096                  * Make sure ME is updating thermal regs.
1097                  * Note:
1098                  * If it's been more than a second since the last update,
1099                  * the ME is probably hung.
1100                  */
1101                 cur_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
1102                         ITV_ME_SEQNO_SHIFT;
1103                 if (cur_seqno == last_seqno &&
1104                     time_after(jiffies, seqno_timestamp + HZ)) {
1105                         dev_warn(&ips->dev->dev, "ME failed to update for more than 1s, likely hung\n");
1106                 } else {
1107                         seqno_timestamp = get_jiffies_64();
1108                         last_seqno = cur_seqno;
1109                 }
1110
1111                 last_msecs = jiffies_to_msecs(jiffies);
1112                 expire = jiffies + msecs_to_jiffies(IPS_SAMPLE_PERIOD);
1113
1114                 __set_current_state(TASK_UNINTERRUPTIBLE);
1115                 mod_timer(&timer, expire);
1116                 schedule();
1117
1118                 /* Calculate actual sample period for power averaging */
1119                 last_sample_period = jiffies_to_msecs(jiffies) - last_msecs;
1120                 if (!last_sample_period)
1121                         last_sample_period = 1;
1122         } while (!kthread_should_stop());
1123
1124         del_timer_sync(&timer);
1125         destroy_timer_on_stack(&timer);
1126
1127         dev_dbg(&ips->dev->dev, "ips-monitor thread stopped\n");
1128
1129         return 0;
1130 }
1131
1132 #if 0
1133 #define THM_DUMPW(reg) \
1134         { \
1135         u16 val = thm_readw(reg); \
1136         dev_dbg(&ips->dev->dev, #reg ": 0x%04x\n", val); \
1137         }
1138 #define THM_DUMPL(reg) \
1139         { \
1140         u32 val = thm_readl(reg); \
1141         dev_dbg(&ips->dev->dev, #reg ": 0x%08x\n", val); \
1142         }
1143 #define THM_DUMPQ(reg) \
1144         { \
1145         u64 val = thm_readq(reg); \
1146         dev_dbg(&ips->dev->dev, #reg ": 0x%016x\n", val); \
1147         }
1148
1149 static void dump_thermal_info(struct ips_driver *ips)
1150 {
1151         u16 ptl;
1152
1153         ptl = thm_readw(THM_PTL);
1154         dev_dbg(&ips->dev->dev, "Processor temp limit: %d\n", ptl);
1155
1156         THM_DUMPW(THM_CTA);
1157         THM_DUMPW(THM_TRC);
1158         THM_DUMPW(THM_CTV1);
1159         THM_DUMPL(THM_STS);
1160         THM_DUMPW(THM_PTV);
1161         THM_DUMPQ(THM_MGTV);
1162 }
1163 #endif
1164
1165 /**
1166  * ips_irq_handler - handle temperature triggers and other IPS events
1167  * @irq: irq number
1168  * @arg: unused
1169  *
1170  * Handle temperature limit trigger events, generally by lowering the clamps.
1171  * If we're at a critical limit, we clamp back to the lowest possible value
1172  * to prevent emergency shutdown.
1173  */
1174 static irqreturn_t ips_irq_handler(int irq, void *arg)
1175 {
1176         struct ips_driver *ips = arg;
1177         u8 tses = thm_readb(THM_TSES);
1178         u8 tes = thm_readb(THM_TES);
1179
1180         if (!tses && !tes)
1181                 return IRQ_NONE;
1182
1183         dev_info(&ips->dev->dev, "TSES: 0x%02x\n", tses);
1184         dev_info(&ips->dev->dev, "TES: 0x%02x\n", tes);
1185
1186         /* STS update from EC? */
1187         if (tes & 1) {
1188                 u32 sts, tc1;
1189
1190                 sts = thm_readl(THM_STS);
1191                 tc1 = thm_readl(THM_TC1);
1192
1193                 if (sts & STS_NVV) {
1194                         spin_lock(&ips->turbo_status_lock);
1195                         ips->core_power_limit = (sts & STS_PCPL_MASK) >>
1196                                 STS_PCPL_SHIFT;
1197                         ips->mch_power_limit = (sts & STS_GPL_MASK) >>
1198                                 STS_GPL_SHIFT;
1199                         /* ignore EC CPU vs GPU pref */
1200                         ips->cpu_turbo_enabled = !(sts & STS_PCTD_DIS);
1201                         /* 
1202                          * Disable turbo for now, until we can figure
1203                          * out why the power figures are wrong
1204                          */
1205                         ips->cpu_turbo_enabled = false;
1206                         if (ips->gpu_busy)
1207                                 ips->gpu_turbo_enabled = !(sts & STS_GTD_DIS);
1208                         ips->mcp_temp_limit = (sts & STS_PTL_MASK) >>
1209                                 STS_PTL_SHIFT;
1210                         ips->mcp_power_limit = (tc1 & STS_PPL_MASK) >>
1211                                 STS_PPL_SHIFT;
1212                         verify_limits(ips);
1213                         spin_unlock(&ips->turbo_status_lock);
1214
1215                         thm_writeb(THM_SEC, SEC_ACK);
1216                 }
1217                 thm_writeb(THM_TES, tes);
1218         }
1219
1220         /* Thermal trip */
1221         if (tses) {
1222                 dev_warn(&ips->dev->dev,
1223                          "thermal trip occurred, tses: 0x%04x\n", tses);
1224                 thm_writeb(THM_TSES, tses);
1225         }
1226
1227         return IRQ_HANDLED;
1228 }
1229
1230 #ifndef CONFIG_DEBUG_FS
1231 static void ips_debugfs_init(struct ips_driver *ips) { return; }
1232 static void ips_debugfs_cleanup(struct ips_driver *ips) { return; }
1233 #else
1234
1235 /* Expose current state and limits in debugfs if possible */
1236
1237 struct ips_debugfs_node {
1238         struct ips_driver *ips;
1239         char *name;
1240         int (*show)(struct seq_file *m, void *data);
1241 };
1242
1243 static int show_cpu_temp(struct seq_file *m, void *data)
1244 {
1245         struct ips_driver *ips = m->private;
1246
1247         seq_printf(m, "%d.%02d\n", ips->ctv1_avg_temp / 100,
1248                    ips->ctv1_avg_temp % 100);
1249
1250         return 0;
1251 }
1252
1253 static int show_cpu_power(struct seq_file *m, void *data)
1254 {
1255         struct ips_driver *ips = m->private;
1256
1257         seq_printf(m, "%dmW\n", ips->cpu_avg_power);
1258
1259         return 0;
1260 }
1261
1262 static int show_cpu_clamp(struct seq_file *m, void *data)
1263 {
1264         u64 turbo_override;
1265         int tdp, tdc;
1266
1267         rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1268
1269         tdp = (int)(turbo_override & TURBO_TDP_MASK);
1270         tdc = (int)((turbo_override & TURBO_TDC_MASK) >> TURBO_TDC_SHIFT);
1271
1272         /* Convert to .1W/A units */
1273         tdp = tdp * 10 / 8;
1274         tdc = tdc * 10 / 8;
1275
1276         /* Watts Amperes */
1277         seq_printf(m, "%d.%dW %d.%dA\n", tdp / 10, tdp % 10,
1278                    tdc / 10, tdc % 10);
1279
1280         return 0;
1281 }
1282
1283 static int show_mch_temp(struct seq_file *m, void *data)
1284 {
1285         struct ips_driver *ips = m->private;
1286
1287         seq_printf(m, "%d.%02d\n", ips->mch_avg_temp / 100,
1288                    ips->mch_avg_temp % 100);
1289
1290         return 0;
1291 }
1292
1293 static int show_mch_power(struct seq_file *m, void *data)
1294 {
1295         struct ips_driver *ips = m->private;
1296
1297         seq_printf(m, "%dmW\n", ips->mch_avg_power);
1298
1299         return 0;
1300 }
1301
1302 static struct ips_debugfs_node ips_debug_files[] = {
1303         { NULL, "cpu_temp", show_cpu_temp },
1304         { NULL, "cpu_power", show_cpu_power },
1305         { NULL, "cpu_clamp", show_cpu_clamp },
1306         { NULL, "mch_temp", show_mch_temp },
1307         { NULL, "mch_power", show_mch_power },
1308 };
1309
1310 static int ips_debugfs_open(struct inode *inode, struct file *file)
1311 {
1312         struct ips_debugfs_node *node = inode->i_private;
1313
1314         return single_open(file, node->show, node->ips);
1315 }
1316
1317 static const struct file_operations ips_debugfs_ops = {
1318         .owner = THIS_MODULE,
1319         .open = ips_debugfs_open,
1320         .read = seq_read,
1321         .llseek = seq_lseek,
1322         .release = single_release,
1323 };
1324
1325 static void ips_debugfs_cleanup(struct ips_driver *ips)
1326 {
1327         if (ips->debug_root)
1328                 debugfs_remove_recursive(ips->debug_root);
1329         return;
1330 }
1331
1332 static void ips_debugfs_init(struct ips_driver *ips)
1333 {
1334         int i;
1335
1336         ips->debug_root = debugfs_create_dir("ips", NULL);
1337         if (!ips->debug_root) {
1338                 dev_err(&ips->dev->dev,
1339                         "failed to create debugfs entries: %ld\n",
1340                         PTR_ERR(ips->debug_root));
1341                 return;
1342         }
1343
1344         for (i = 0; i < ARRAY_SIZE(ips_debug_files); i++) {
1345                 struct dentry *ent;
1346                 struct ips_debugfs_node *node = &ips_debug_files[i];
1347
1348                 node->ips = ips;
1349                 ent = debugfs_create_file(node->name, S_IFREG | S_IRUGO,
1350                                           ips->debug_root, node,
1351                                           &ips_debugfs_ops);
1352                 if (!ent) {
1353                         dev_err(&ips->dev->dev,
1354                                 "failed to create debug file: %ld\n",
1355                                 PTR_ERR(ent));
1356                         goto err_cleanup;
1357                 }
1358         }
1359
1360         return;
1361
1362 err_cleanup:
1363         ips_debugfs_cleanup(ips);
1364         return;
1365 }
1366 #endif /* CONFIG_DEBUG_FS */
1367
1368 /**
1369  * ips_detect_cpu - detect whether CPU supports IPS
1370  *
1371  * Walk our list and see if we're on a supported CPU.  If we find one,
1372  * return the limits for it.
1373  */
1374 static struct ips_mcp_limits *ips_detect_cpu(struct ips_driver *ips)
1375 {
1376         u64 turbo_power, misc_en;
1377         struct ips_mcp_limits *limits = NULL;
1378         u16 tdp;
1379
1380         if (!(boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model == 37)) {
1381                 dev_info(&ips->dev->dev, "Non-IPS CPU detected.\n");
1382                 goto out;
1383         }
1384
1385         rdmsrl(IA32_MISC_ENABLE, misc_en);
1386         /*
1387          * If the turbo enable bit isn't set, we shouldn't try to enable/disable
1388          * turbo manually or we'll get an illegal MSR access, even though
1389          * turbo will still be available.
1390          */
1391         if (misc_en & IA32_MISC_TURBO_EN)
1392                 ips->turbo_toggle_allowed = true;
1393         else
1394                 ips->turbo_toggle_allowed = false;
1395
1396         if (strstr(boot_cpu_data.x86_model_id, "CPU       M"))
1397                 limits = &ips_sv_limits;
1398         else if (strstr(boot_cpu_data.x86_model_id, "CPU       L"))
1399                 limits = &ips_lv_limits;
1400         else if (strstr(boot_cpu_data.x86_model_id, "CPU       U"))
1401                 limits = &ips_ulv_limits;
1402         else {
1403                 dev_info(&ips->dev->dev, "No CPUID match found.\n");
1404                 goto out;
1405         }
1406
1407         rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_power);
1408         tdp = turbo_power & TURBO_TDP_MASK;
1409
1410         /* Sanity check TDP against CPU */
1411         if (limits->core_power_limit != (tdp / 8) * 1000) {
1412                 dev_info(&ips->dev->dev, "CPU TDP doesn't match expected value (found %d, expected %d)\n",
1413                          tdp / 8, limits->core_power_limit / 1000);
1414                 limits->core_power_limit = (tdp / 8) * 1000;
1415         }
1416
1417 out:
1418         return limits;
1419 }
1420
1421 /**
1422  * ips_get_i915_syms - try to get GPU control methods from i915 driver
1423  * @ips: IPS driver
1424  *
1425  * The i915 driver exports several interfaces to allow the IPS driver to
1426  * monitor and control graphics turbo mode.  If we can find them, we can
1427  * enable graphics turbo, otherwise we must disable it to avoid exceeding
1428  * thermal and power limits in the MCP.
1429  */
1430 static bool ips_get_i915_syms(struct ips_driver *ips)
1431 {
1432         ips->read_mch_val = symbol_get(i915_read_mch_val);
1433         if (!ips->read_mch_val)
1434                 goto out_err;
1435         ips->gpu_raise = symbol_get(i915_gpu_raise);
1436         if (!ips->gpu_raise)
1437                 goto out_put_mch;
1438         ips->gpu_lower = symbol_get(i915_gpu_lower);
1439         if (!ips->gpu_lower)
1440                 goto out_put_raise;
1441         ips->gpu_busy = symbol_get(i915_gpu_busy);
1442         if (!ips->gpu_busy)
1443                 goto out_put_lower;
1444         ips->gpu_turbo_disable = symbol_get(i915_gpu_turbo_disable);
1445         if (!ips->gpu_turbo_disable)
1446                 goto out_put_busy;
1447
1448         return true;
1449
1450 out_put_busy:
1451         symbol_put(i915_gpu_busy);
1452 out_put_lower:
1453         symbol_put(i915_gpu_lower);
1454 out_put_raise:
1455         symbol_put(i915_gpu_raise);
1456 out_put_mch:
1457         symbol_put(i915_read_mch_val);
1458 out_err:
1459         return false;
1460 }
1461
1462 static bool
1463 ips_gpu_turbo_enabled(struct ips_driver *ips)
1464 {
1465         if (!ips->gpu_busy && late_i915_load) {
1466                 if (ips_get_i915_syms(ips)) {
1467                         dev_info(&ips->dev->dev,
1468                                  "i915 driver attached, reenabling gpu turbo\n");
1469                         ips->gpu_turbo_enabled = !(thm_readl(THM_HTS) & HTS_GTD_DIS);
1470                 }
1471         }
1472
1473         return ips->gpu_turbo_enabled;
1474 }
1475
1476 void
1477 ips_link_to_i915_driver()
1478 {
1479         /* We can't cleanly get at the various ips_driver structs from
1480          * this caller (the i915 driver), so just set a flag saying
1481          * that it's time to try getting the symbols again.
1482          */
1483         late_i915_load = true;
1484 }
1485 EXPORT_SYMBOL_GPL(ips_link_to_i915_driver);
1486
1487 static DEFINE_PCI_DEVICE_TABLE(ips_id_table) = {
1488         { PCI_DEVICE(PCI_VENDOR_ID_INTEL,
1489                      PCI_DEVICE_ID_INTEL_THERMAL_SENSOR), },
1490         { 0, }
1491 };
1492
1493 MODULE_DEVICE_TABLE(pci, ips_id_table);
1494
1495 static int ips_probe(struct pci_dev *dev, const struct pci_device_id *id)
1496 {
1497         u64 platform_info;
1498         struct ips_driver *ips;
1499         u32 hts;
1500         int ret = 0;
1501         u16 htshi, trc, trc_required_mask;
1502         u8 tse;
1503
1504         ips = kzalloc(sizeof(struct ips_driver), GFP_KERNEL);
1505         if (!ips)
1506                 return -ENOMEM;
1507
1508         pci_set_drvdata(dev, ips);
1509         ips->dev = dev;
1510
1511         ips->limits = ips_detect_cpu(ips);
1512         if (!ips->limits) {
1513                 dev_info(&dev->dev, "IPS not supported on this CPU\n");
1514                 ret = -ENXIO;
1515                 goto error_free;
1516         }
1517
1518         spin_lock_init(&ips->turbo_status_lock);
1519
1520         ret = pci_enable_device(dev);
1521         if (ret) {
1522                 dev_err(&dev->dev, "can't enable PCI device, aborting\n");
1523                 goto error_free;
1524         }
1525
1526         if (!pci_resource_start(dev, 0)) {
1527                 dev_err(&dev->dev, "TBAR not assigned, aborting\n");
1528                 ret = -ENXIO;
1529                 goto error_free;
1530         }
1531
1532         ret = pci_request_regions(dev, "ips thermal sensor");
1533         if (ret) {
1534                 dev_err(&dev->dev, "thermal resource busy, aborting\n");
1535                 goto error_free;
1536         }
1537
1538
1539         ips->regmap = ioremap(pci_resource_start(dev, 0),
1540                               pci_resource_len(dev, 0));
1541         if (!ips->regmap) {
1542                 dev_err(&dev->dev, "failed to map thermal regs, aborting\n");
1543                 ret = -EBUSY;
1544                 goto error_release;
1545         }
1546
1547         tse = thm_readb(THM_TSE);
1548         if (tse != TSE_EN) {
1549                 dev_err(&dev->dev, "thermal device not enabled (0x%02x), aborting\n", tse);
1550                 ret = -ENXIO;
1551                 goto error_unmap;
1552         }
1553
1554         trc = thm_readw(THM_TRC);
1555         trc_required_mask = TRC_CORE1_EN | TRC_CORE_PWR | TRC_MCH_EN;
1556         if ((trc & trc_required_mask) != trc_required_mask) {
1557                 dev_err(&dev->dev, "thermal reporting for required devices not enabled, aborting\n");
1558                 ret = -ENXIO;
1559                 goto error_unmap;
1560         }
1561
1562         if (trc & TRC_CORE2_EN)
1563                 ips->second_cpu = true;
1564
1565         update_turbo_limits(ips);
1566         dev_dbg(&dev->dev, "max cpu power clamp: %dW\n",
1567                 ips->mcp_power_limit / 10);
1568         dev_dbg(&dev->dev, "max core power clamp: %dW\n",
1569                 ips->core_power_limit / 10);
1570         /* BIOS may update limits at runtime */
1571         if (thm_readl(THM_PSC) & PSP_PBRT)
1572                 ips->poll_turbo_status = true;
1573
1574         if (!ips_get_i915_syms(ips)) {
1575                 dev_err(&dev->dev, "failed to get i915 symbols, graphics turbo disabled\n");
1576                 ips->gpu_turbo_enabled = false;
1577         } else {
1578                 dev_dbg(&dev->dev, "graphics turbo enabled\n");
1579                 ips->gpu_turbo_enabled = true;
1580         }
1581
1582         /*
1583          * Check PLATFORM_INFO MSR to make sure this chip is
1584          * turbo capable.
1585          */
1586         rdmsrl(PLATFORM_INFO, platform_info);
1587         if (!(platform_info & PLATFORM_TDP)) {
1588                 dev_err(&dev->dev, "platform indicates TDP override unavailable, aborting\n");
1589                 ret = -ENODEV;
1590                 goto error_unmap;
1591         }
1592
1593         /*
1594          * IRQ handler for ME interaction
1595          * Note: don't use MSI here as the PCH has bugs.
1596          */
1597         pci_disable_msi(dev);
1598         ret = request_irq(dev->irq, ips_irq_handler, IRQF_SHARED, "ips",
1599                           ips);
1600         if (ret) {
1601                 dev_err(&dev->dev, "request irq failed, aborting\n");
1602                 goto error_unmap;
1603         }
1604
1605         /* Enable aux, hot & critical interrupts */
1606         thm_writeb(THM_TSPIEN, TSPIEN_AUX2_LOHI | TSPIEN_CRIT_LOHI |
1607                    TSPIEN_HOT_LOHI | TSPIEN_AUX_LOHI);
1608         thm_writeb(THM_TEN, TEN_UPDATE_EN);
1609
1610         /* Collect adjustment values */
1611         ips->cta_val = thm_readw(THM_CTA);
1612         ips->pta_val = thm_readw(THM_PTA);
1613         ips->mgta_val = thm_readw(THM_MGTA);
1614
1615         /* Save turbo limits & ratios */
1616         rdmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1617
1618         ips_disable_cpu_turbo(ips);
1619         ips->cpu_turbo_enabled = false;
1620
1621         /* Create thermal adjust thread */
1622         ips->adjust = kthread_create(ips_adjust, ips, "ips-adjust");
1623         if (IS_ERR(ips->adjust)) {
1624                 dev_err(&dev->dev,
1625                         "failed to create thermal adjust thread, aborting\n");
1626                 ret = -ENOMEM;
1627                 goto error_free_irq;
1628
1629         }
1630
1631         /*
1632          * Set up the work queue and monitor thread. The monitor thread
1633          * will wake up ips_adjust thread.
1634          */
1635         ips->monitor = kthread_run(ips_monitor, ips, "ips-monitor");
1636         if (IS_ERR(ips->monitor)) {
1637                 dev_err(&dev->dev,
1638                         "failed to create thermal monitor thread, aborting\n");
1639                 ret = -ENOMEM;
1640                 goto error_thread_cleanup;
1641         }
1642
1643         hts = (ips->core_power_limit << HTS_PCPL_SHIFT) |
1644                 (ips->mcp_temp_limit << HTS_PTL_SHIFT) | HTS_NVV;
1645         htshi = HTS2_PRST_RUNNING << HTS2_PRST_SHIFT;
1646
1647         thm_writew(THM_HTSHI, htshi);
1648         thm_writel(THM_HTS, hts);
1649
1650         ips_debugfs_init(ips);
1651
1652         dev_info(&dev->dev, "IPS driver initialized, MCP temp limit %d\n",
1653                  ips->mcp_temp_limit);
1654         return ret;
1655
1656 error_thread_cleanup:
1657         kthread_stop(ips->adjust);
1658 error_free_irq:
1659         free_irq(ips->dev->irq, ips);
1660 error_unmap:
1661         iounmap(ips->regmap);
1662 error_release:
1663         pci_release_regions(dev);
1664 error_free:
1665         kfree(ips);
1666         return ret;
1667 }
1668
1669 static void ips_remove(struct pci_dev *dev)
1670 {
1671         struct ips_driver *ips = pci_get_drvdata(dev);
1672         u64 turbo_override;
1673
1674         if (!ips)
1675                 return;
1676
1677         ips_debugfs_cleanup(ips);
1678
1679         /* Release i915 driver */
1680         if (ips->read_mch_val)
1681                 symbol_put(i915_read_mch_val);
1682         if (ips->gpu_raise)
1683                 symbol_put(i915_gpu_raise);
1684         if (ips->gpu_lower)
1685                 symbol_put(i915_gpu_lower);
1686         if (ips->gpu_busy)
1687                 symbol_put(i915_gpu_busy);
1688         if (ips->gpu_turbo_disable)
1689                 symbol_put(i915_gpu_turbo_disable);
1690
1691         rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1692         turbo_override &= ~(TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN);
1693         wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1694         wrmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1695
1696         free_irq(ips->dev->irq, ips);
1697         if (ips->adjust)
1698                 kthread_stop(ips->adjust);
1699         if (ips->monitor)
1700                 kthread_stop(ips->monitor);
1701         iounmap(ips->regmap);
1702         pci_release_regions(dev);
1703         kfree(ips);
1704         dev_dbg(&dev->dev, "IPS driver removed\n");
1705 }
1706
1707 #ifdef CONFIG_PM
1708 static int ips_suspend(struct pci_dev *dev, pm_message_t state)
1709 {
1710         return 0;
1711 }
1712
1713 static int ips_resume(struct pci_dev *dev)
1714 {
1715         return 0;
1716 }
1717 #else
1718 #define ips_suspend NULL
1719 #define ips_resume NULL
1720 #endif /* CONFIG_PM */
1721
1722 static void ips_shutdown(struct pci_dev *dev)
1723 {
1724 }
1725
1726 static struct pci_driver ips_pci_driver = {
1727         .name = "intel ips",
1728         .id_table = ips_id_table,
1729         .probe = ips_probe,
1730         .remove = ips_remove,
1731         .suspend = ips_suspend,
1732         .resume = ips_resume,
1733         .shutdown = ips_shutdown,
1734 };
1735
1736 static int __init ips_init(void)
1737 {
1738         return pci_register_driver(&ips_pci_driver);
1739 }
1740 module_init(ips_init);
1741
1742 static void ips_exit(void)
1743 {
1744         pci_unregister_driver(&ips_pci_driver);
1745         return;
1746 }
1747 module_exit(ips_exit);
1748
1749 MODULE_LICENSE("GPL");
1750 MODULE_AUTHOR("Jesse Barnes <jbarnes@virtuousgeek.org>");
1751 MODULE_DESCRIPTION("Intelligent Power Sharing Driver");