]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/regulator/core.c
04baac9a165bbb56da292a51d0a56055947861e0
[karo-tx-linux.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...)                                       \
43         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)                                        \
45         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)                                       \
47         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)                                       \
49         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)                                        \
51         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58
59 static struct dentry *debugfs_root;
60
61 static struct class regulator_class;
62
63 /*
64  * struct regulator_map
65  *
66  * Used to provide symbolic supply names to devices.
67  */
68 struct regulator_map {
69         struct list_head list;
70         const char *dev_name;   /* The dev_name() for the consumer */
71         const char *supply;
72         struct regulator_dev *regulator;
73 };
74
75 /*
76  * struct regulator_enable_gpio
77  *
78  * Management for shared enable GPIO pin
79  */
80 struct regulator_enable_gpio {
81         struct list_head list;
82         struct gpio_desc *gpiod;
83         u32 enable_count;       /* a number of enabled shared GPIO */
84         u32 request_count;      /* a number of requested shared GPIO */
85         unsigned int ena_gpio_invert:1;
86 };
87
88 /*
89  * struct regulator_supply_alias
90  *
91  * Used to map lookups for a supply onto an alternative device.
92  */
93 struct regulator_supply_alias {
94         struct list_head list;
95         struct device *src_dev;
96         const char *src_supply;
97         struct device *alias_dev;
98         const char *alias_supply;
99 };
100
101 static int _regulator_is_enabled(struct regulator_dev *rdev);
102 static int _regulator_disable(struct regulator_dev *rdev);
103 static int _regulator_get_voltage(struct regulator_dev *rdev);
104 static int _regulator_get_current_limit(struct regulator_dev *rdev);
105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106 static int _notifier_call_chain(struct regulator_dev *rdev,
107                                   unsigned long event, void *data);
108 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
109                                      int min_uV, int max_uV);
110 static struct regulator *create_regulator(struct regulator_dev *rdev,
111                                           struct device *dev,
112                                           const char *supply_name);
113 static void _regulator_put(struct regulator *regulator);
114
115 static struct regulator_dev *dev_to_rdev(struct device *dev)
116 {
117         return container_of(dev, struct regulator_dev, dev);
118 }
119
120 static const char *rdev_get_name(struct regulator_dev *rdev)
121 {
122         if (rdev->constraints && rdev->constraints->name)
123                 return rdev->constraints->name;
124         else if (rdev->desc->name)
125                 return rdev->desc->name;
126         else
127                 return "";
128 }
129
130 static bool have_full_constraints(void)
131 {
132         return has_full_constraints || of_have_populated_dt();
133 }
134
135 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
136 {
137         if (!rdev->constraints) {
138                 rdev_err(rdev, "no constraints\n");
139                 return false;
140         }
141
142         if (rdev->constraints->valid_ops_mask & ops)
143                 return true;
144
145         return false;
146 }
147
148 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
149 {
150         if (rdev && rdev->supply)
151                 return rdev->supply->rdev;
152
153         return NULL;
154 }
155
156 /**
157  * regulator_lock_supply - lock a regulator and its supplies
158  * @rdev:         regulator source
159  */
160 static void regulator_lock_supply(struct regulator_dev *rdev)
161 {
162         int i;
163
164         for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
165                 mutex_lock_nested(&rdev->mutex, i);
166 }
167
168 /**
169  * regulator_unlock_supply - unlock a regulator and its supplies
170  * @rdev:         regulator source
171  */
172 static void regulator_unlock_supply(struct regulator_dev *rdev)
173 {
174         struct regulator *supply;
175
176         while (1) {
177                 mutex_unlock(&rdev->mutex);
178                 supply = rdev->supply;
179
180                 if (!rdev->supply)
181                         return;
182
183                 rdev = supply->rdev;
184         }
185 }
186
187 /**
188  * of_get_regulator - get a regulator device node based on supply name
189  * @dev: Device pointer for the consumer (of regulator) device
190  * @supply: regulator supply name
191  *
192  * Extract the regulator device node corresponding to the supply name.
193  * returns the device node corresponding to the regulator if found, else
194  * returns NULL.
195  */
196 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
197 {
198         struct device_node *regnode = NULL;
199         char prop_name[32]; /* 32 is max size of property name */
200
201         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
202
203         snprintf(prop_name, 32, "%s-supply", supply);
204         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
205
206         if (!regnode) {
207                 dev_dbg(dev, "Looking up %s property in node %s failed\n",
208                                 prop_name, dev->of_node->full_name);
209                 return NULL;
210         }
211         return regnode;
212 }
213
214 /* Platform voltage constraint check */
215 static int regulator_check_voltage(struct regulator_dev *rdev,
216                                    int *min_uV, int *max_uV)
217 {
218         BUG_ON(*min_uV > *max_uV);
219
220         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
221                 rdev_err(rdev, "voltage operation not allowed\n");
222                 return -EPERM;
223         }
224
225         if (*max_uV > rdev->constraints->max_uV)
226                 *max_uV = rdev->constraints->max_uV;
227         if (*min_uV < rdev->constraints->min_uV)
228                 *min_uV = rdev->constraints->min_uV;
229
230         if (*min_uV > *max_uV) {
231                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
232                          *min_uV, *max_uV);
233                 return -EINVAL;
234         }
235
236         return 0;
237 }
238
239 /* Make sure we select a voltage that suits the needs of all
240  * regulator consumers
241  */
242 static int regulator_check_consumers(struct regulator_dev *rdev,
243                                      int *min_uV, int *max_uV)
244 {
245         struct regulator *regulator;
246
247         list_for_each_entry(regulator, &rdev->consumer_list, list) {
248                 /*
249                  * Assume consumers that didn't say anything are OK
250                  * with anything in the constraint range.
251                  */
252                 if (!regulator->min_uV && !regulator->max_uV)
253                         continue;
254
255                 if (*max_uV > regulator->max_uV)
256                         *max_uV = regulator->max_uV;
257                 if (*min_uV < regulator->min_uV)
258                         *min_uV = regulator->min_uV;
259         }
260
261         if (*min_uV > *max_uV) {
262                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
263                         *min_uV, *max_uV);
264                 return -EINVAL;
265         }
266
267         return 0;
268 }
269
270 /* current constraint check */
271 static int regulator_check_current_limit(struct regulator_dev *rdev,
272                                         int *min_uA, int *max_uA)
273 {
274         BUG_ON(*min_uA > *max_uA);
275
276         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
277                 rdev_err(rdev, "current operation not allowed\n");
278                 return -EPERM;
279         }
280
281         if (*max_uA > rdev->constraints->max_uA)
282                 *max_uA = rdev->constraints->max_uA;
283         if (*min_uA < rdev->constraints->min_uA)
284                 *min_uA = rdev->constraints->min_uA;
285
286         if (*min_uA > *max_uA) {
287                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
288                          *min_uA, *max_uA);
289                 return -EINVAL;
290         }
291
292         return 0;
293 }
294
295 /* operating mode constraint check */
296 static int regulator_mode_constrain(struct regulator_dev *rdev,
297                                     unsigned int *mode)
298 {
299         switch (*mode) {
300         case REGULATOR_MODE_FAST:
301         case REGULATOR_MODE_NORMAL:
302         case REGULATOR_MODE_IDLE:
303         case REGULATOR_MODE_STANDBY:
304                 break;
305         default:
306                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
307                 return -EINVAL;
308         }
309
310         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
311                 rdev_err(rdev, "mode operation not allowed\n");
312                 return -EPERM;
313         }
314
315         /* The modes are bitmasks, the most power hungry modes having
316          * the lowest values. If the requested mode isn't supported
317          * try higher modes. */
318         while (*mode) {
319                 if (rdev->constraints->valid_modes_mask & *mode)
320                         return 0;
321                 *mode /= 2;
322         }
323
324         return -EINVAL;
325 }
326
327 static ssize_t regulator_uV_show(struct device *dev,
328                                 struct device_attribute *attr, char *buf)
329 {
330         struct regulator_dev *rdev = dev_get_drvdata(dev);
331         ssize_t ret;
332
333         mutex_lock(&rdev->mutex);
334         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
335         mutex_unlock(&rdev->mutex);
336
337         return ret;
338 }
339 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
340
341 static ssize_t regulator_uA_show(struct device *dev,
342                                 struct device_attribute *attr, char *buf)
343 {
344         struct regulator_dev *rdev = dev_get_drvdata(dev);
345
346         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
347 }
348 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
349
350 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
351                          char *buf)
352 {
353         struct regulator_dev *rdev = dev_get_drvdata(dev);
354
355         return sprintf(buf, "%s\n", rdev_get_name(rdev));
356 }
357 static DEVICE_ATTR_RO(name);
358
359 static ssize_t regulator_print_opmode(char *buf, int mode)
360 {
361         switch (mode) {
362         case REGULATOR_MODE_FAST:
363                 return sprintf(buf, "fast\n");
364         case REGULATOR_MODE_NORMAL:
365                 return sprintf(buf, "normal\n");
366         case REGULATOR_MODE_IDLE:
367                 return sprintf(buf, "idle\n");
368         case REGULATOR_MODE_STANDBY:
369                 return sprintf(buf, "standby\n");
370         }
371         return sprintf(buf, "unknown\n");
372 }
373
374 static ssize_t regulator_opmode_show(struct device *dev,
375                                     struct device_attribute *attr, char *buf)
376 {
377         struct regulator_dev *rdev = dev_get_drvdata(dev);
378
379         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
380 }
381 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
382
383 static ssize_t regulator_print_state(char *buf, int state)
384 {
385         if (state > 0)
386                 return sprintf(buf, "enabled\n");
387         else if (state == 0)
388                 return sprintf(buf, "disabled\n");
389         else
390                 return sprintf(buf, "unknown\n");
391 }
392
393 static ssize_t regulator_state_show(struct device *dev,
394                                    struct device_attribute *attr, char *buf)
395 {
396         struct regulator_dev *rdev = dev_get_drvdata(dev);
397         ssize_t ret;
398
399         mutex_lock(&rdev->mutex);
400         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
401         mutex_unlock(&rdev->mutex);
402
403         return ret;
404 }
405 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
406
407 static ssize_t regulator_status_show(struct device *dev,
408                                    struct device_attribute *attr, char *buf)
409 {
410         struct regulator_dev *rdev = dev_get_drvdata(dev);
411         int status;
412         char *label;
413
414         status = rdev->desc->ops->get_status(rdev);
415         if (status < 0)
416                 return status;
417
418         switch (status) {
419         case REGULATOR_STATUS_OFF:
420                 label = "off";
421                 break;
422         case REGULATOR_STATUS_ON:
423                 label = "on";
424                 break;
425         case REGULATOR_STATUS_ERROR:
426                 label = "error";
427                 break;
428         case REGULATOR_STATUS_FAST:
429                 label = "fast";
430                 break;
431         case REGULATOR_STATUS_NORMAL:
432                 label = "normal";
433                 break;
434         case REGULATOR_STATUS_IDLE:
435                 label = "idle";
436                 break;
437         case REGULATOR_STATUS_STANDBY:
438                 label = "standby";
439                 break;
440         case REGULATOR_STATUS_BYPASS:
441                 label = "bypass";
442                 break;
443         case REGULATOR_STATUS_UNDEFINED:
444                 label = "undefined";
445                 break;
446         default:
447                 return -ERANGE;
448         }
449
450         return sprintf(buf, "%s\n", label);
451 }
452 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
453
454 static ssize_t regulator_min_uA_show(struct device *dev,
455                                     struct device_attribute *attr, char *buf)
456 {
457         struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459         if (!rdev->constraints)
460                 return sprintf(buf, "constraint not defined\n");
461
462         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
463 }
464 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
465
466 static ssize_t regulator_max_uA_show(struct device *dev,
467                                     struct device_attribute *attr, char *buf)
468 {
469         struct regulator_dev *rdev = dev_get_drvdata(dev);
470
471         if (!rdev->constraints)
472                 return sprintf(buf, "constraint not defined\n");
473
474         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
475 }
476 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
477
478 static ssize_t regulator_min_uV_show(struct device *dev,
479                                     struct device_attribute *attr, char *buf)
480 {
481         struct regulator_dev *rdev = dev_get_drvdata(dev);
482
483         if (!rdev->constraints)
484                 return sprintf(buf, "constraint not defined\n");
485
486         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
487 }
488 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
489
490 static ssize_t regulator_max_uV_show(struct device *dev,
491                                     struct device_attribute *attr, char *buf)
492 {
493         struct regulator_dev *rdev = dev_get_drvdata(dev);
494
495         if (!rdev->constraints)
496                 return sprintf(buf, "constraint not defined\n");
497
498         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
499 }
500 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
501
502 static ssize_t regulator_total_uA_show(struct device *dev,
503                                       struct device_attribute *attr, char *buf)
504 {
505         struct regulator_dev *rdev = dev_get_drvdata(dev);
506         struct regulator *regulator;
507         int uA = 0;
508
509         mutex_lock(&rdev->mutex);
510         list_for_each_entry(regulator, &rdev->consumer_list, list)
511                 uA += regulator->uA_load;
512         mutex_unlock(&rdev->mutex);
513         return sprintf(buf, "%d\n", uA);
514 }
515 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
516
517 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
518                               char *buf)
519 {
520         struct regulator_dev *rdev = dev_get_drvdata(dev);
521         return sprintf(buf, "%d\n", rdev->use_count);
522 }
523 static DEVICE_ATTR_RO(num_users);
524
525 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
526                          char *buf)
527 {
528         struct regulator_dev *rdev = dev_get_drvdata(dev);
529
530         switch (rdev->desc->type) {
531         case REGULATOR_VOLTAGE:
532                 return sprintf(buf, "voltage\n");
533         case REGULATOR_CURRENT:
534                 return sprintf(buf, "current\n");
535         }
536         return sprintf(buf, "unknown\n");
537 }
538 static DEVICE_ATTR_RO(type);
539
540 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
541                                 struct device_attribute *attr, char *buf)
542 {
543         struct regulator_dev *rdev = dev_get_drvdata(dev);
544
545         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
546 }
547 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
548                 regulator_suspend_mem_uV_show, NULL);
549
550 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
551                                 struct device_attribute *attr, char *buf)
552 {
553         struct regulator_dev *rdev = dev_get_drvdata(dev);
554
555         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
556 }
557 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
558                 regulator_suspend_disk_uV_show, NULL);
559
560 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
561                                 struct device_attribute *attr, char *buf)
562 {
563         struct regulator_dev *rdev = dev_get_drvdata(dev);
564
565         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
566 }
567 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
568                 regulator_suspend_standby_uV_show, NULL);
569
570 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
571                                 struct device_attribute *attr, char *buf)
572 {
573         struct regulator_dev *rdev = dev_get_drvdata(dev);
574
575         return regulator_print_opmode(buf,
576                 rdev->constraints->state_mem.mode);
577 }
578 static DEVICE_ATTR(suspend_mem_mode, 0444,
579                 regulator_suspend_mem_mode_show, NULL);
580
581 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
582                                 struct device_attribute *attr, char *buf)
583 {
584         struct regulator_dev *rdev = dev_get_drvdata(dev);
585
586         return regulator_print_opmode(buf,
587                 rdev->constraints->state_disk.mode);
588 }
589 static DEVICE_ATTR(suspend_disk_mode, 0444,
590                 regulator_suspend_disk_mode_show, NULL);
591
592 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
593                                 struct device_attribute *attr, char *buf)
594 {
595         struct regulator_dev *rdev = dev_get_drvdata(dev);
596
597         return regulator_print_opmode(buf,
598                 rdev->constraints->state_standby.mode);
599 }
600 static DEVICE_ATTR(suspend_standby_mode, 0444,
601                 regulator_suspend_standby_mode_show, NULL);
602
603 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
604                                    struct device_attribute *attr, char *buf)
605 {
606         struct regulator_dev *rdev = dev_get_drvdata(dev);
607
608         return regulator_print_state(buf,
609                         rdev->constraints->state_mem.enabled);
610 }
611 static DEVICE_ATTR(suspend_mem_state, 0444,
612                 regulator_suspend_mem_state_show, NULL);
613
614 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
615                                    struct device_attribute *attr, char *buf)
616 {
617         struct regulator_dev *rdev = dev_get_drvdata(dev);
618
619         return regulator_print_state(buf,
620                         rdev->constraints->state_disk.enabled);
621 }
622 static DEVICE_ATTR(suspend_disk_state, 0444,
623                 regulator_suspend_disk_state_show, NULL);
624
625 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
626                                    struct device_attribute *attr, char *buf)
627 {
628         struct regulator_dev *rdev = dev_get_drvdata(dev);
629
630         return regulator_print_state(buf,
631                         rdev->constraints->state_standby.enabled);
632 }
633 static DEVICE_ATTR(suspend_standby_state, 0444,
634                 regulator_suspend_standby_state_show, NULL);
635
636 static ssize_t regulator_bypass_show(struct device *dev,
637                                      struct device_attribute *attr, char *buf)
638 {
639         struct regulator_dev *rdev = dev_get_drvdata(dev);
640         const char *report;
641         bool bypass;
642         int ret;
643
644         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
645
646         if (ret != 0)
647                 report = "unknown";
648         else if (bypass)
649                 report = "enabled";
650         else
651                 report = "disabled";
652
653         return sprintf(buf, "%s\n", report);
654 }
655 static DEVICE_ATTR(bypass, 0444,
656                    regulator_bypass_show, NULL);
657
658 /* Calculate the new optimum regulator operating mode based on the new total
659  * consumer load. All locks held by caller */
660 static int drms_uA_update(struct regulator_dev *rdev)
661 {
662         struct regulator *sibling;
663         int current_uA = 0, output_uV, input_uV, err;
664         unsigned int mode;
665
666         lockdep_assert_held_once(&rdev->mutex);
667
668         /*
669          * first check to see if we can set modes at all, otherwise just
670          * tell the consumer everything is OK.
671          */
672         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
673                 return 0;
674
675         if (!rdev->desc->ops->get_optimum_mode &&
676             !rdev->desc->ops->set_load)
677                 return 0;
678
679         if (!rdev->desc->ops->set_mode &&
680             !rdev->desc->ops->set_load)
681                 return -EINVAL;
682
683         /* calc total requested load */
684         list_for_each_entry(sibling, &rdev->consumer_list, list)
685                 current_uA += sibling->uA_load;
686
687         current_uA += rdev->constraints->system_load;
688
689         if (rdev->desc->ops->set_load) {
690                 /* set the optimum mode for our new total regulator load */
691                 err = rdev->desc->ops->set_load(rdev, current_uA);
692                 if (err < 0)
693                         rdev_err(rdev, "failed to set load %d\n", current_uA);
694         } else {
695                 /* get output voltage */
696                 output_uV = _regulator_get_voltage(rdev);
697                 if (output_uV <= 0) {
698                         rdev_err(rdev, "invalid output voltage found\n");
699                         return -EINVAL;
700                 }
701
702                 /* get input voltage */
703                 input_uV = 0;
704                 if (rdev->supply)
705                         input_uV = regulator_get_voltage(rdev->supply);
706                 if (input_uV <= 0)
707                         input_uV = rdev->constraints->input_uV;
708                 if (input_uV <= 0) {
709                         rdev_err(rdev, "invalid input voltage found\n");
710                         return -EINVAL;
711                 }
712
713                 /* now get the optimum mode for our new total regulator load */
714                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
715                                                          output_uV, current_uA);
716
717                 /* check the new mode is allowed */
718                 err = regulator_mode_constrain(rdev, &mode);
719                 if (err < 0) {
720                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
721                                  current_uA, input_uV, output_uV);
722                         return err;
723                 }
724
725                 err = rdev->desc->ops->set_mode(rdev, mode);
726                 if (err < 0)
727                         rdev_err(rdev, "failed to set optimum mode %x\n", mode);
728         }
729
730         return err;
731 }
732
733 static int suspend_set_state(struct regulator_dev *rdev,
734         struct regulator_state *rstate)
735 {
736         int ret = 0;
737
738         /* If we have no suspend mode configration don't set anything;
739          * only warn if the driver implements set_suspend_voltage or
740          * set_suspend_mode callback.
741          */
742         if (!rstate->enabled && !rstate->disabled) {
743                 if (rdev->desc->ops->set_suspend_voltage ||
744                     rdev->desc->ops->set_suspend_mode)
745                         rdev_warn(rdev, "No configuration\n");
746                 return 0;
747         }
748
749         if (rstate->enabled && rstate->disabled) {
750                 rdev_err(rdev, "invalid configuration\n");
751                 return -EINVAL;
752         }
753
754         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
755                 ret = rdev->desc->ops->set_suspend_enable(rdev);
756         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
757                 ret = rdev->desc->ops->set_suspend_disable(rdev);
758         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
759                 ret = 0;
760
761         if (ret < 0) {
762                 rdev_err(rdev, "failed to enabled/disable\n");
763                 return ret;
764         }
765
766         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
767                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
768                 if (ret < 0) {
769                         rdev_err(rdev, "failed to set voltage\n");
770                         return ret;
771                 }
772         }
773
774         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
775                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
776                 if (ret < 0) {
777                         rdev_err(rdev, "failed to set mode\n");
778                         return ret;
779                 }
780         }
781         return ret;
782 }
783
784 /* locks held by caller */
785 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
786 {
787         if (!rdev->constraints)
788                 return -EINVAL;
789
790         switch (state) {
791         case PM_SUSPEND_STANDBY:
792                 return suspend_set_state(rdev,
793                         &rdev->constraints->state_standby);
794         case PM_SUSPEND_MEM:
795                 return suspend_set_state(rdev,
796                         &rdev->constraints->state_mem);
797         case PM_SUSPEND_MAX:
798                 return suspend_set_state(rdev,
799                         &rdev->constraints->state_disk);
800         default:
801                 return -EINVAL;
802         }
803 }
804
805 static void print_constraints(struct regulator_dev *rdev)
806 {
807         struct regulation_constraints *constraints = rdev->constraints;
808         char buf[160] = "";
809         size_t len = sizeof(buf) - 1;
810         int count = 0;
811         int ret;
812
813         if (constraints->min_uV && constraints->max_uV) {
814                 if (constraints->min_uV == constraints->max_uV)
815                         count += scnprintf(buf + count, len - count, "%d mV ",
816                                            constraints->min_uV / 1000);
817                 else
818                         count += scnprintf(buf + count, len - count,
819                                            "%d <--> %d mV ",
820                                            constraints->min_uV / 1000,
821                                            constraints->max_uV / 1000);
822         }
823
824         if (!constraints->min_uV ||
825             constraints->min_uV != constraints->max_uV) {
826                 ret = _regulator_get_voltage(rdev);
827                 if (ret > 0)
828                         count += scnprintf(buf + count, len - count,
829                                            "at %d mV ", ret / 1000);
830         }
831
832         if (constraints->uV_offset)
833                 count += scnprintf(buf + count, len - count, "%dmV offset ",
834                                    constraints->uV_offset / 1000);
835
836         if (constraints->min_uA && constraints->max_uA) {
837                 if (constraints->min_uA == constraints->max_uA)
838                         count += scnprintf(buf + count, len - count, "%d mA ",
839                                            constraints->min_uA / 1000);
840                 else
841                         count += scnprintf(buf + count, len - count,
842                                            "%d <--> %d mA ",
843                                            constraints->min_uA / 1000,
844                                            constraints->max_uA / 1000);
845         }
846
847         if (!constraints->min_uA ||
848             constraints->min_uA != constraints->max_uA) {
849                 ret = _regulator_get_current_limit(rdev);
850                 if (ret > 0)
851                         count += scnprintf(buf + count, len - count,
852                                            "at %d mA ", ret / 1000);
853         }
854
855         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
856                 count += scnprintf(buf + count, len - count, "fast ");
857         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
858                 count += scnprintf(buf + count, len - count, "normal ");
859         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
860                 count += scnprintf(buf + count, len - count, "idle ");
861         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
862                 count += scnprintf(buf + count, len - count, "standby");
863
864         if (!count)
865                 scnprintf(buf, len, "no parameters");
866
867         rdev_dbg(rdev, "%s\n", buf);
868
869         if ((constraints->min_uV != constraints->max_uV) &&
870             !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
871                 rdev_warn(rdev,
872                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
873 }
874
875 static int machine_constraints_voltage(struct regulator_dev *rdev,
876         struct regulation_constraints *constraints)
877 {
878         const struct regulator_ops *ops = rdev->desc->ops;
879         int ret;
880
881         /* do we need to apply the constraint voltage */
882         if (rdev->constraints->apply_uV &&
883             rdev->constraints->min_uV && rdev->constraints->max_uV) {
884                 int target_min, target_max;
885                 int current_uV = _regulator_get_voltage(rdev);
886                 if (current_uV < 0) {
887                         rdev_err(rdev,
888                                  "failed to get the current voltage(%d)\n",
889                                  current_uV);
890                         return current_uV;
891                 }
892
893                 /*
894                  * If we're below the minimum voltage move up to the
895                  * minimum voltage, if we're above the maximum voltage
896                  * then move down to the maximum.
897                  */
898                 target_min = current_uV;
899                 target_max = current_uV;
900
901                 if (current_uV < rdev->constraints->min_uV) {
902                         target_min = rdev->constraints->min_uV;
903                         target_max = rdev->constraints->min_uV;
904                 }
905
906                 if (current_uV > rdev->constraints->max_uV) {
907                         target_min = rdev->constraints->max_uV;
908                         target_max = rdev->constraints->max_uV;
909                 }
910
911                 if (target_min != current_uV || target_max != current_uV) {
912                         rdev_info(rdev, "Bringing %duV into %d-%duV\n",
913                                   current_uV, target_min, target_max);
914                         ret = _regulator_do_set_voltage(
915                                 rdev, target_min, target_max);
916                         if (ret < 0) {
917                                 rdev_err(rdev,
918                                         "failed to apply %d-%duV constraint(%d)\n",
919                                         target_min, target_max, ret);
920                                 return ret;
921                         }
922                 }
923         }
924
925         /* constrain machine-level voltage specs to fit
926          * the actual range supported by this regulator.
927          */
928         if (ops->list_voltage && rdev->desc->n_voltages) {
929                 int     count = rdev->desc->n_voltages;
930                 int     i;
931                 int     min_uV = INT_MAX;
932                 int     max_uV = INT_MIN;
933                 int     cmin = constraints->min_uV;
934                 int     cmax = constraints->max_uV;
935
936                 /* it's safe to autoconfigure fixed-voltage supplies
937                    and the constraints are used by list_voltage. */
938                 if (count == 1 && !cmin) {
939                         cmin = 1;
940                         cmax = INT_MAX;
941                         constraints->min_uV = cmin;
942                         constraints->max_uV = cmax;
943                 }
944
945                 /* voltage constraints are optional */
946                 if ((cmin == 0) && (cmax == 0))
947                         return 0;
948
949                 /* else require explicit machine-level constraints */
950                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
951                         rdev_err(rdev, "invalid voltage constraints\n");
952                         return -EINVAL;
953                 }
954
955                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
956                 for (i = 0; i < count; i++) {
957                         int     value;
958
959                         value = ops->list_voltage(rdev, i);
960                         if (value <= 0)
961                                 continue;
962
963                         /* maybe adjust [min_uV..max_uV] */
964                         if (value >= cmin && value < min_uV)
965                                 min_uV = value;
966                         if (value <= cmax && value > max_uV)
967                                 max_uV = value;
968                 }
969
970                 /* final: [min_uV..max_uV] valid iff constraints valid */
971                 if (max_uV < min_uV) {
972                         rdev_err(rdev,
973                                  "unsupportable voltage constraints %u-%uuV\n",
974                                  min_uV, max_uV);
975                         return -EINVAL;
976                 }
977
978                 /* use regulator's subset of machine constraints */
979                 if (constraints->min_uV < min_uV) {
980                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
981                                  constraints->min_uV, min_uV);
982                         constraints->min_uV = min_uV;
983                 }
984                 if (constraints->max_uV > max_uV) {
985                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
986                                  constraints->max_uV, max_uV);
987                         constraints->max_uV = max_uV;
988                 }
989         }
990
991         return 0;
992 }
993
994 static int machine_constraints_current(struct regulator_dev *rdev,
995         struct regulation_constraints *constraints)
996 {
997         const struct regulator_ops *ops = rdev->desc->ops;
998         int ret;
999
1000         if (!constraints->min_uA && !constraints->max_uA)
1001                 return 0;
1002
1003         if (constraints->min_uA > constraints->max_uA) {
1004                 rdev_err(rdev, "Invalid current constraints\n");
1005                 return -EINVAL;
1006         }
1007
1008         if (!ops->set_current_limit || !ops->get_current_limit) {
1009                 rdev_warn(rdev, "Operation of current configuration missing\n");
1010                 return 0;
1011         }
1012
1013         /* Set regulator current in constraints range */
1014         ret = ops->set_current_limit(rdev, constraints->min_uA,
1015                         constraints->max_uA);
1016         if (ret < 0) {
1017                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1018                 return ret;
1019         }
1020
1021         return 0;
1022 }
1023
1024 static int _regulator_do_enable(struct regulator_dev *rdev);
1025
1026 /**
1027  * set_machine_constraints - sets regulator constraints
1028  * @rdev: regulator source
1029  * @constraints: constraints to apply
1030  *
1031  * Allows platform initialisation code to define and constrain
1032  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1033  * Constraints *must* be set by platform code in order for some
1034  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1035  * set_mode.
1036  */
1037 static int set_machine_constraints(struct regulator_dev *rdev,
1038         const struct regulation_constraints *constraints)
1039 {
1040         int ret = 0;
1041         const struct regulator_ops *ops = rdev->desc->ops;
1042
1043         if (constraints)
1044                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1045                                             GFP_KERNEL);
1046         else
1047                 rdev->constraints = kzalloc(sizeof(*constraints),
1048                                             GFP_KERNEL);
1049         if (!rdev->constraints)
1050                 return -ENOMEM;
1051
1052         ret = machine_constraints_voltage(rdev, rdev->constraints);
1053         if (ret != 0)
1054                 return ret;
1055
1056         ret = machine_constraints_current(rdev, rdev->constraints);
1057         if (ret != 0)
1058                 return ret;
1059
1060         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1061                 ret = ops->set_input_current_limit(rdev,
1062                                                    rdev->constraints->ilim_uA);
1063                 if (ret < 0) {
1064                         rdev_err(rdev, "failed to set input limit\n");
1065                         return ret;
1066                 }
1067         }
1068
1069         /* do we need to setup our suspend state */
1070         if (rdev->constraints->initial_state) {
1071                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1072                 if (ret < 0) {
1073                         rdev_err(rdev, "failed to set suspend state\n");
1074                         return ret;
1075                 }
1076         }
1077
1078         if (rdev->constraints->initial_mode) {
1079                 if (!ops->set_mode) {
1080                         rdev_err(rdev, "no set_mode operation\n");
1081                         return -EINVAL;
1082                 }
1083
1084                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1085                 if (ret < 0) {
1086                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1087                         return ret;
1088                 }
1089         }
1090
1091         /* If the constraints say the regulator should be on at this point
1092          * and we have control then make sure it is enabled.
1093          */
1094         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1095                 ret = _regulator_do_enable(rdev);
1096                 if (ret < 0 && ret != -EINVAL) {
1097                         rdev_err(rdev, "failed to enable\n");
1098                         return ret;
1099                 }
1100         }
1101
1102         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1103                 && ops->set_ramp_delay) {
1104                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1105                 if (ret < 0) {
1106                         rdev_err(rdev, "failed to set ramp_delay\n");
1107                         return ret;
1108                 }
1109         }
1110
1111         if (rdev->constraints->pull_down && ops->set_pull_down) {
1112                 ret = ops->set_pull_down(rdev);
1113                 if (ret < 0) {
1114                         rdev_err(rdev, "failed to set pull down\n");
1115                         return ret;
1116                 }
1117         }
1118
1119         if (rdev->constraints->soft_start && ops->set_soft_start) {
1120                 ret = ops->set_soft_start(rdev);
1121                 if (ret < 0) {
1122                         rdev_err(rdev, "failed to set soft start\n");
1123                         return ret;
1124                 }
1125         }
1126
1127         if (rdev->constraints->over_current_protection
1128                 && ops->set_over_current_protection) {
1129                 ret = ops->set_over_current_protection(rdev);
1130                 if (ret < 0) {
1131                         rdev_err(rdev, "failed to set over current protection\n");
1132                         return ret;
1133                 }
1134         }
1135
1136         if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1137                 bool ad_state = (rdev->constraints->active_discharge ==
1138                               REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1139
1140                 ret = ops->set_active_discharge(rdev, ad_state);
1141                 if (ret < 0) {
1142                         rdev_err(rdev, "failed to set active discharge\n");
1143                         return ret;
1144                 }
1145         }
1146
1147         print_constraints(rdev);
1148         return 0;
1149 }
1150
1151 /**
1152  * set_supply - set regulator supply regulator
1153  * @rdev: regulator name
1154  * @supply_rdev: supply regulator name
1155  *
1156  * Called by platform initialisation code to set the supply regulator for this
1157  * regulator. This ensures that a regulators supply will also be enabled by the
1158  * core if it's child is enabled.
1159  */
1160 static int set_supply(struct regulator_dev *rdev,
1161                       struct regulator_dev *supply_rdev)
1162 {
1163         int err;
1164
1165         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1166
1167         if (!try_module_get(supply_rdev->owner))
1168                 return -ENODEV;
1169
1170         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1171         if (rdev->supply == NULL) {
1172                 err = -ENOMEM;
1173                 return err;
1174         }
1175         supply_rdev->open_count++;
1176
1177         return 0;
1178 }
1179
1180 /**
1181  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1182  * @rdev:         regulator source
1183  * @consumer_dev_name: dev_name() string for device supply applies to
1184  * @supply:       symbolic name for supply
1185  *
1186  * Allows platform initialisation code to map physical regulator
1187  * sources to symbolic names for supplies for use by devices.  Devices
1188  * should use these symbolic names to request regulators, avoiding the
1189  * need to provide board-specific regulator names as platform data.
1190  */
1191 static int set_consumer_device_supply(struct regulator_dev *rdev,
1192                                       const char *consumer_dev_name,
1193                                       const char *supply)
1194 {
1195         struct regulator_map *node;
1196         int has_dev;
1197
1198         if (supply == NULL)
1199                 return -EINVAL;
1200
1201         if (consumer_dev_name != NULL)
1202                 has_dev = 1;
1203         else
1204                 has_dev = 0;
1205
1206         list_for_each_entry(node, &regulator_map_list, list) {
1207                 if (node->dev_name && consumer_dev_name) {
1208                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1209                                 continue;
1210                 } else if (node->dev_name || consumer_dev_name) {
1211                         continue;
1212                 }
1213
1214                 if (strcmp(node->supply, supply) != 0)
1215                         continue;
1216
1217                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1218                          consumer_dev_name,
1219                          dev_name(&node->regulator->dev),
1220                          node->regulator->desc->name,
1221                          supply,
1222                          dev_name(&rdev->dev), rdev_get_name(rdev));
1223                 return -EBUSY;
1224         }
1225
1226         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1227         if (node == NULL)
1228                 return -ENOMEM;
1229
1230         node->regulator = rdev;
1231         node->supply = supply;
1232
1233         if (has_dev) {
1234                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1235                 if (node->dev_name == NULL) {
1236                         kfree(node);
1237                         return -ENOMEM;
1238                 }
1239         }
1240
1241         list_add(&node->list, &regulator_map_list);
1242         return 0;
1243 }
1244
1245 static void unset_regulator_supplies(struct regulator_dev *rdev)
1246 {
1247         struct regulator_map *node, *n;
1248
1249         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1250                 if (rdev == node->regulator) {
1251                         list_del(&node->list);
1252                         kfree(node->dev_name);
1253                         kfree(node);
1254                 }
1255         }
1256 }
1257
1258 #ifdef CONFIG_DEBUG_FS
1259 static ssize_t constraint_flags_read_file(struct file *file,
1260                                           char __user *user_buf,
1261                                           size_t count, loff_t *ppos)
1262 {
1263         const struct regulator *regulator = file->private_data;
1264         const struct regulation_constraints *c = regulator->rdev->constraints;
1265         char *buf;
1266         ssize_t ret;
1267
1268         if (!c)
1269                 return 0;
1270
1271         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1272         if (!buf)
1273                 return -ENOMEM;
1274
1275         ret = snprintf(buf, PAGE_SIZE,
1276                         "always_on: %u\n"
1277                         "boot_on: %u\n"
1278                         "apply_uV: %u\n"
1279                         "ramp_disable: %u\n"
1280                         "soft_start: %u\n"
1281                         "pull_down: %u\n"
1282                         "over_current_protection: %u\n",
1283                         c->always_on,
1284                         c->boot_on,
1285                         c->apply_uV,
1286                         c->ramp_disable,
1287                         c->soft_start,
1288                         c->pull_down,
1289                         c->over_current_protection);
1290
1291         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1292         kfree(buf);
1293
1294         return ret;
1295 }
1296
1297 #endif
1298
1299 static const struct file_operations constraint_flags_fops = {
1300 #ifdef CONFIG_DEBUG_FS
1301         .open = simple_open,
1302         .read = constraint_flags_read_file,
1303         .llseek = default_llseek,
1304 #endif
1305 };
1306
1307 #define REG_STR_SIZE    64
1308
1309 static struct regulator *create_regulator(struct regulator_dev *rdev,
1310                                           struct device *dev,
1311                                           const char *supply_name)
1312 {
1313         struct regulator *regulator;
1314         char buf[REG_STR_SIZE];
1315         int err, size;
1316
1317         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1318         if (regulator == NULL)
1319                 return NULL;
1320
1321         mutex_lock(&rdev->mutex);
1322         regulator->rdev = rdev;
1323         list_add(&regulator->list, &rdev->consumer_list);
1324
1325         if (dev) {
1326                 regulator->dev = dev;
1327
1328                 /* Add a link to the device sysfs entry */
1329                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1330                                  dev->kobj.name, supply_name);
1331                 if (size >= REG_STR_SIZE)
1332                         goto overflow_err;
1333
1334                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1335                 if (regulator->supply_name == NULL)
1336                         goto overflow_err;
1337
1338                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1339                                         buf);
1340                 if (err) {
1341                         rdev_dbg(rdev, "could not add device link %s err %d\n",
1342                                   dev->kobj.name, err);
1343                         /* non-fatal */
1344                 }
1345         } else {
1346                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1347                 if (regulator->supply_name == NULL)
1348                         goto overflow_err;
1349         }
1350
1351         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1352                                                 rdev->debugfs);
1353         if (!regulator->debugfs) {
1354                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1355         } else {
1356                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1357                                    &regulator->uA_load);
1358                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1359                                    &regulator->min_uV);
1360                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1361                                    &regulator->max_uV);
1362                 debugfs_create_file("constraint_flags", 0444,
1363                                     regulator->debugfs, regulator,
1364                                     &constraint_flags_fops);
1365         }
1366
1367         /*
1368          * Check now if the regulator is an always on regulator - if
1369          * it is then we don't need to do nearly so much work for
1370          * enable/disable calls.
1371          */
1372         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1373             _regulator_is_enabled(rdev))
1374                 regulator->always_on = true;
1375
1376         mutex_unlock(&rdev->mutex);
1377         return regulator;
1378 overflow_err:
1379         list_del(&regulator->list);
1380         kfree(regulator);
1381         mutex_unlock(&rdev->mutex);
1382         return NULL;
1383 }
1384
1385 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1386 {
1387         if (rdev->constraints && rdev->constraints->enable_time)
1388                 return rdev->constraints->enable_time;
1389         if (!rdev->desc->ops->enable_time)
1390                 return rdev->desc->enable_time;
1391         return rdev->desc->ops->enable_time(rdev);
1392 }
1393
1394 static struct regulator_supply_alias *regulator_find_supply_alias(
1395                 struct device *dev, const char *supply)
1396 {
1397         struct regulator_supply_alias *map;
1398
1399         list_for_each_entry(map, &regulator_supply_alias_list, list)
1400                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1401                         return map;
1402
1403         return NULL;
1404 }
1405
1406 static void regulator_supply_alias(struct device **dev, const char **supply)
1407 {
1408         struct regulator_supply_alias *map;
1409
1410         map = regulator_find_supply_alias(*dev, *supply);
1411         if (map) {
1412                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1413                                 *supply, map->alias_supply,
1414                                 dev_name(map->alias_dev));
1415                 *dev = map->alias_dev;
1416                 *supply = map->alias_supply;
1417         }
1418 }
1419
1420 static int of_node_match(struct device *dev, const void *data)
1421 {
1422         return dev->of_node == data;
1423 }
1424
1425 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1426 {
1427         struct device *dev;
1428
1429         dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1430
1431         return dev ? dev_to_rdev(dev) : NULL;
1432 }
1433
1434 static int regulator_match(struct device *dev, const void *data)
1435 {
1436         struct regulator_dev *r = dev_to_rdev(dev);
1437
1438         return strcmp(rdev_get_name(r), data) == 0;
1439 }
1440
1441 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1442 {
1443         struct device *dev;
1444
1445         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1446
1447         return dev ? dev_to_rdev(dev) : NULL;
1448 }
1449
1450 /**
1451  * regulator_dev_lookup - lookup a regulator device.
1452  * @dev: device for regulator "consumer".
1453  * @supply: Supply name or regulator ID.
1454  * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1455  * lookup could succeed in the future.
1456  *
1457  * If successful, returns a struct regulator_dev that corresponds to the name
1458  * @supply and with the embedded struct device refcount incremented by one,
1459  * or NULL on failure. The refcount must be dropped by calling put_device().
1460  */
1461 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1462                                                   const char *supply,
1463                                                   int *ret)
1464 {
1465         struct regulator_dev *r;
1466         struct device_node *node;
1467         struct regulator_map *map;
1468         const char *devname = NULL;
1469
1470         regulator_supply_alias(&dev, &supply);
1471
1472         /* first do a dt based lookup */
1473         if (dev && dev->of_node) {
1474                 node = of_get_regulator(dev, supply);
1475                 if (node) {
1476                         r = of_find_regulator_by_node(node);
1477                         if (r)
1478                                 return r;
1479                         *ret = -EPROBE_DEFER;
1480                         return NULL;
1481                 } else {
1482                         /*
1483                          * If we couldn't even get the node then it's
1484                          * not just that the device didn't register
1485                          * yet, there's no node and we'll never
1486                          * succeed.
1487                          */
1488                         *ret = -ENODEV;
1489                 }
1490         }
1491
1492         /* if not found, try doing it non-dt way */
1493         if (dev)
1494                 devname = dev_name(dev);
1495
1496         r = regulator_lookup_by_name(supply);
1497         if (r)
1498                 return r;
1499
1500         mutex_lock(&regulator_list_mutex);
1501         list_for_each_entry(map, &regulator_map_list, list) {
1502                 /* If the mapping has a device set up it must match */
1503                 if (map->dev_name &&
1504                     (!devname || strcmp(map->dev_name, devname)))
1505                         continue;
1506
1507                 if (strcmp(map->supply, supply) == 0 &&
1508                     get_device(&map->regulator->dev)) {
1509                         mutex_unlock(&regulator_list_mutex);
1510                         return map->regulator;
1511                 }
1512         }
1513         mutex_unlock(&regulator_list_mutex);
1514
1515         return NULL;
1516 }
1517
1518 static int regulator_resolve_supply(struct regulator_dev *rdev)
1519 {
1520         struct regulator_dev *r;
1521         struct device *dev = rdev->dev.parent;
1522         int ret;
1523
1524         /* No supply to resovle? */
1525         if (!rdev->supply_name)
1526                 return 0;
1527
1528         /* Supply already resolved? */
1529         if (rdev->supply)
1530                 return 0;
1531
1532         r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1533         if (!r) {
1534                 if (ret == -ENODEV) {
1535                         /*
1536                          * No supply was specified for this regulator and
1537                          * there will never be one.
1538                          */
1539                         return 0;
1540                 }
1541
1542                 /* Did the lookup explicitly defer for us? */
1543                 if (ret == -EPROBE_DEFER)
1544                         return ret;
1545
1546                 if (have_full_constraints()) {
1547                         r = dummy_regulator_rdev;
1548                         get_device(&r->dev);
1549                 } else {
1550                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1551                                 rdev->supply_name, rdev->desc->name);
1552                         return -EPROBE_DEFER;
1553                 }
1554         }
1555
1556         /* Recursively resolve the supply of the supply */
1557         ret = regulator_resolve_supply(r);
1558         if (ret < 0) {
1559                 put_device(&r->dev);
1560                 return ret;
1561         }
1562
1563         ret = set_supply(rdev, r);
1564         if (ret < 0) {
1565                 put_device(&r->dev);
1566                 return ret;
1567         }
1568
1569         /* Cascade always-on state to supply */
1570         if (_regulator_is_enabled(rdev)) {
1571                 ret = regulator_enable(rdev->supply);
1572                 if (ret < 0) {
1573                         _regulator_put(rdev->supply);
1574                         rdev->supply = NULL;
1575                         return ret;
1576                 }
1577         }
1578
1579         return 0;
1580 }
1581
1582 /* Internal regulator request function */
1583 static struct regulator *_regulator_get(struct device *dev, const char *id,
1584                                         bool exclusive, bool allow_dummy)
1585 {
1586         struct regulator_dev *rdev;
1587         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1588         const char *devname = NULL;
1589         int ret;
1590
1591         if (id == NULL) {
1592                 pr_err("get() with no identifier\n");
1593                 return ERR_PTR(-EINVAL);
1594         }
1595
1596         if (dev)
1597                 devname = dev_name(dev);
1598
1599         if (have_full_constraints())
1600                 ret = -ENODEV;
1601         else
1602                 ret = -EPROBE_DEFER;
1603
1604         rdev = regulator_dev_lookup(dev, id, &ret);
1605         if (rdev)
1606                 goto found;
1607
1608         regulator = ERR_PTR(ret);
1609
1610         /*
1611          * If we have return value from dev_lookup fail, we do not expect to
1612          * succeed, so, quit with appropriate error value
1613          */
1614         if (ret && ret != -ENODEV)
1615                 return regulator;
1616
1617         if (!devname)
1618                 devname = "deviceless";
1619
1620         /*
1621          * Assume that a regulator is physically present and enabled
1622          * even if it isn't hooked up and just provide a dummy.
1623          */
1624         if (have_full_constraints() && allow_dummy) {
1625                 pr_warn("%s supply %s not found, using dummy regulator\n",
1626                         devname, id);
1627
1628                 rdev = dummy_regulator_rdev;
1629                 get_device(&rdev->dev);
1630                 goto found;
1631         /* Don't log an error when called from regulator_get_optional() */
1632         } else if (!have_full_constraints() || exclusive) {
1633                 dev_warn(dev, "dummy supplies not allowed\n");
1634         }
1635
1636         return regulator;
1637
1638 found:
1639         if (rdev->exclusive) {
1640                 regulator = ERR_PTR(-EPERM);
1641                 put_device(&rdev->dev);
1642                 return regulator;
1643         }
1644
1645         if (exclusive && rdev->open_count) {
1646                 regulator = ERR_PTR(-EBUSY);
1647                 put_device(&rdev->dev);
1648                 return regulator;
1649         }
1650
1651         ret = regulator_resolve_supply(rdev);
1652         if (ret < 0) {
1653                 regulator = ERR_PTR(ret);
1654                 put_device(&rdev->dev);
1655                 return regulator;
1656         }
1657
1658         if (!try_module_get(rdev->owner)) {
1659                 put_device(&rdev->dev);
1660                 return regulator;
1661         }
1662
1663         regulator = create_regulator(rdev, dev, id);
1664         if (regulator == NULL) {
1665                 regulator = ERR_PTR(-ENOMEM);
1666                 put_device(&rdev->dev);
1667                 module_put(rdev->owner);
1668                 return regulator;
1669         }
1670
1671         rdev->open_count++;
1672         if (exclusive) {
1673                 rdev->exclusive = 1;
1674
1675                 ret = _regulator_is_enabled(rdev);
1676                 if (ret > 0)
1677                         rdev->use_count = 1;
1678                 else
1679                         rdev->use_count = 0;
1680         }
1681
1682         return regulator;
1683 }
1684
1685 /**
1686  * regulator_get - lookup and obtain a reference to a regulator.
1687  * @dev: device for regulator "consumer"
1688  * @id: Supply name or regulator ID.
1689  *
1690  * Returns a struct regulator corresponding to the regulator producer,
1691  * or IS_ERR() condition containing errno.
1692  *
1693  * Use of supply names configured via regulator_set_device_supply() is
1694  * strongly encouraged.  It is recommended that the supply name used
1695  * should match the name used for the supply and/or the relevant
1696  * device pins in the datasheet.
1697  */
1698 struct regulator *regulator_get(struct device *dev, const char *id)
1699 {
1700         return _regulator_get(dev, id, false, true);
1701 }
1702 EXPORT_SYMBOL_GPL(regulator_get);
1703
1704 /**
1705  * regulator_get_exclusive - obtain exclusive access to a regulator.
1706  * @dev: device for regulator "consumer"
1707  * @id: Supply name or regulator ID.
1708  *
1709  * Returns a struct regulator corresponding to the regulator producer,
1710  * or IS_ERR() condition containing errno.  Other consumers will be
1711  * unable to obtain this regulator while this reference is held and the
1712  * use count for the regulator will be initialised to reflect the current
1713  * state of the regulator.
1714  *
1715  * This is intended for use by consumers which cannot tolerate shared
1716  * use of the regulator such as those which need to force the
1717  * regulator off for correct operation of the hardware they are
1718  * controlling.
1719  *
1720  * Use of supply names configured via regulator_set_device_supply() is
1721  * strongly encouraged.  It is recommended that the supply name used
1722  * should match the name used for the supply and/or the relevant
1723  * device pins in the datasheet.
1724  */
1725 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1726 {
1727         return _regulator_get(dev, id, true, false);
1728 }
1729 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1730
1731 /**
1732  * regulator_get_optional - obtain optional access to a regulator.
1733  * @dev: device for regulator "consumer"
1734  * @id: Supply name or regulator ID.
1735  *
1736  * Returns a struct regulator corresponding to the regulator producer,
1737  * or IS_ERR() condition containing errno.
1738  *
1739  * This is intended for use by consumers for devices which can have
1740  * some supplies unconnected in normal use, such as some MMC devices.
1741  * It can allow the regulator core to provide stub supplies for other
1742  * supplies requested using normal regulator_get() calls without
1743  * disrupting the operation of drivers that can handle absent
1744  * supplies.
1745  *
1746  * Use of supply names configured via regulator_set_device_supply() is
1747  * strongly encouraged.  It is recommended that the supply name used
1748  * should match the name used for the supply and/or the relevant
1749  * device pins in the datasheet.
1750  */
1751 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1752 {
1753         return _regulator_get(dev, id, false, false);
1754 }
1755 EXPORT_SYMBOL_GPL(regulator_get_optional);
1756
1757 /* regulator_list_mutex lock held by regulator_put() */
1758 static void _regulator_put(struct regulator *regulator)
1759 {
1760         struct regulator_dev *rdev;
1761
1762         if (IS_ERR_OR_NULL(regulator))
1763                 return;
1764
1765         lockdep_assert_held_once(&regulator_list_mutex);
1766
1767         rdev = regulator->rdev;
1768
1769         debugfs_remove_recursive(regulator->debugfs);
1770
1771         /* remove any sysfs entries */
1772         if (regulator->dev)
1773                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1774         mutex_lock(&rdev->mutex);
1775         list_del(&regulator->list);
1776
1777         rdev->open_count--;
1778         rdev->exclusive = 0;
1779         put_device(&rdev->dev);
1780         mutex_unlock(&rdev->mutex);
1781
1782         kfree(regulator->supply_name);
1783         kfree(regulator);
1784
1785         module_put(rdev->owner);
1786 }
1787
1788 /**
1789  * regulator_put - "free" the regulator source
1790  * @regulator: regulator source
1791  *
1792  * Note: drivers must ensure that all regulator_enable calls made on this
1793  * regulator source are balanced by regulator_disable calls prior to calling
1794  * this function.
1795  */
1796 void regulator_put(struct regulator *regulator)
1797 {
1798         mutex_lock(&regulator_list_mutex);
1799         _regulator_put(regulator);
1800         mutex_unlock(&regulator_list_mutex);
1801 }
1802 EXPORT_SYMBOL_GPL(regulator_put);
1803
1804 /**
1805  * regulator_register_supply_alias - Provide device alias for supply lookup
1806  *
1807  * @dev: device that will be given as the regulator "consumer"
1808  * @id: Supply name or regulator ID
1809  * @alias_dev: device that should be used to lookup the supply
1810  * @alias_id: Supply name or regulator ID that should be used to lookup the
1811  * supply
1812  *
1813  * All lookups for id on dev will instead be conducted for alias_id on
1814  * alias_dev.
1815  */
1816 int regulator_register_supply_alias(struct device *dev, const char *id,
1817                                     struct device *alias_dev,
1818                                     const char *alias_id)
1819 {
1820         struct regulator_supply_alias *map;
1821
1822         map = regulator_find_supply_alias(dev, id);
1823         if (map)
1824                 return -EEXIST;
1825
1826         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1827         if (!map)
1828                 return -ENOMEM;
1829
1830         map->src_dev = dev;
1831         map->src_supply = id;
1832         map->alias_dev = alias_dev;
1833         map->alias_supply = alias_id;
1834
1835         list_add(&map->list, &regulator_supply_alias_list);
1836
1837         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1838                 id, dev_name(dev), alias_id, dev_name(alias_dev));
1839
1840         return 0;
1841 }
1842 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1843
1844 /**
1845  * regulator_unregister_supply_alias - Remove device alias
1846  *
1847  * @dev: device that will be given as the regulator "consumer"
1848  * @id: Supply name or regulator ID
1849  *
1850  * Remove a lookup alias if one exists for id on dev.
1851  */
1852 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1853 {
1854         struct regulator_supply_alias *map;
1855
1856         map = regulator_find_supply_alias(dev, id);
1857         if (map) {
1858                 list_del(&map->list);
1859                 kfree(map);
1860         }
1861 }
1862 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1863
1864 /**
1865  * regulator_bulk_register_supply_alias - register multiple aliases
1866  *
1867  * @dev: device that will be given as the regulator "consumer"
1868  * @id: List of supply names or regulator IDs
1869  * @alias_dev: device that should be used to lookup the supply
1870  * @alias_id: List of supply names or regulator IDs that should be used to
1871  * lookup the supply
1872  * @num_id: Number of aliases to register
1873  *
1874  * @return 0 on success, an errno on failure.
1875  *
1876  * This helper function allows drivers to register several supply
1877  * aliases in one operation.  If any of the aliases cannot be
1878  * registered any aliases that were registered will be removed
1879  * before returning to the caller.
1880  */
1881 int regulator_bulk_register_supply_alias(struct device *dev,
1882                                          const char *const *id,
1883                                          struct device *alias_dev,
1884                                          const char *const *alias_id,
1885                                          int num_id)
1886 {
1887         int i;
1888         int ret;
1889
1890         for (i = 0; i < num_id; ++i) {
1891                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1892                                                       alias_id[i]);
1893                 if (ret < 0)
1894                         goto err;
1895         }
1896
1897         return 0;
1898
1899 err:
1900         dev_err(dev,
1901                 "Failed to create supply alias %s,%s -> %s,%s\n",
1902                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1903
1904         while (--i >= 0)
1905                 regulator_unregister_supply_alias(dev, id[i]);
1906
1907         return ret;
1908 }
1909 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1910
1911 /**
1912  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1913  *
1914  * @dev: device that will be given as the regulator "consumer"
1915  * @id: List of supply names or regulator IDs
1916  * @num_id: Number of aliases to unregister
1917  *
1918  * This helper function allows drivers to unregister several supply
1919  * aliases in one operation.
1920  */
1921 void regulator_bulk_unregister_supply_alias(struct device *dev,
1922                                             const char *const *id,
1923                                             int num_id)
1924 {
1925         int i;
1926
1927         for (i = 0; i < num_id; ++i)
1928                 regulator_unregister_supply_alias(dev, id[i]);
1929 }
1930 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1931
1932
1933 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1934 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1935                                 const struct regulator_config *config)
1936 {
1937         struct regulator_enable_gpio *pin;
1938         struct gpio_desc *gpiod;
1939         int ret;
1940
1941         gpiod = gpio_to_desc(config->ena_gpio);
1942
1943         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1944                 if (pin->gpiod == gpiod) {
1945                         rdev_dbg(rdev, "GPIO %d is already used\n",
1946                                 config->ena_gpio);
1947                         goto update_ena_gpio_to_rdev;
1948                 }
1949         }
1950
1951         ret = gpio_request_one(config->ena_gpio,
1952                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1953                                 rdev_get_name(rdev));
1954         if (ret)
1955                 return ret;
1956
1957         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1958         if (pin == NULL) {
1959                 gpio_free(config->ena_gpio);
1960                 return -ENOMEM;
1961         }
1962
1963         pin->gpiod = gpiod;
1964         pin->ena_gpio_invert = config->ena_gpio_invert;
1965         list_add(&pin->list, &regulator_ena_gpio_list);
1966
1967 update_ena_gpio_to_rdev:
1968         pin->request_count++;
1969         rdev->ena_pin = pin;
1970         return 0;
1971 }
1972
1973 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1974 {
1975         struct regulator_enable_gpio *pin, *n;
1976
1977         if (!rdev->ena_pin)
1978                 return;
1979
1980         /* Free the GPIO only in case of no use */
1981         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1982                 if (pin->gpiod == rdev->ena_pin->gpiod) {
1983                         if (pin->request_count <= 1) {
1984                                 pin->request_count = 0;
1985                                 gpiod_put(pin->gpiod);
1986                                 list_del(&pin->list);
1987                                 kfree(pin);
1988                                 rdev->ena_pin = NULL;
1989                                 return;
1990                         } else {
1991                                 pin->request_count--;
1992                         }
1993                 }
1994         }
1995 }
1996
1997 /**
1998  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1999  * @rdev: regulator_dev structure
2000  * @enable: enable GPIO at initial use?
2001  *
2002  * GPIO is enabled in case of initial use. (enable_count is 0)
2003  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2004  */
2005 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2006 {
2007         struct regulator_enable_gpio *pin = rdev->ena_pin;
2008
2009         if (!pin)
2010                 return -EINVAL;
2011
2012         if (enable) {
2013                 /* Enable GPIO at initial use */
2014                 if (pin->enable_count == 0)
2015                         gpiod_set_value_cansleep(pin->gpiod,
2016                                                  !pin->ena_gpio_invert);
2017
2018                 pin->enable_count++;
2019         } else {
2020                 if (pin->enable_count > 1) {
2021                         pin->enable_count--;
2022                         return 0;
2023                 }
2024
2025                 /* Disable GPIO if not used */
2026                 if (pin->enable_count <= 1) {
2027                         gpiod_set_value_cansleep(pin->gpiod,
2028                                                  pin->ena_gpio_invert);
2029                         pin->enable_count = 0;
2030                 }
2031         }
2032
2033         return 0;
2034 }
2035
2036 /**
2037  * _regulator_enable_delay - a delay helper function
2038  * @delay: time to delay in microseconds
2039  *
2040  * Delay for the requested amount of time as per the guidelines in:
2041  *
2042  *     Documentation/timers/timers-howto.txt
2043  *
2044  * The assumption here is that regulators will never be enabled in
2045  * atomic context and therefore sleeping functions can be used.
2046  */
2047 static void _regulator_enable_delay(unsigned int delay)
2048 {
2049         unsigned int ms = delay / 1000;
2050         unsigned int us = delay % 1000;
2051
2052         if (ms > 0) {
2053                 /*
2054                  * For small enough values, handle super-millisecond
2055                  * delays in the usleep_range() call below.
2056                  */
2057                 if (ms < 20)
2058                         us += ms * 1000;
2059                 else
2060                         msleep(ms);
2061         }
2062
2063         /*
2064          * Give the scheduler some room to coalesce with any other
2065          * wakeup sources. For delays shorter than 10 us, don't even
2066          * bother setting up high-resolution timers and just busy-
2067          * loop.
2068          */
2069         if (us >= 10)
2070                 usleep_range(us, us + 100);
2071         else
2072                 udelay(us);
2073 }
2074
2075 static int _regulator_do_enable(struct regulator_dev *rdev)
2076 {
2077         int ret, delay;
2078
2079         /* Query before enabling in case configuration dependent.  */
2080         ret = _regulator_get_enable_time(rdev);
2081         if (ret >= 0) {
2082                 delay = ret;
2083         } else {
2084                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2085                 delay = 0;
2086         }
2087
2088         trace_regulator_enable(rdev_get_name(rdev));
2089
2090         if (rdev->desc->off_on_delay) {
2091                 /* if needed, keep a distance of off_on_delay from last time
2092                  * this regulator was disabled.
2093                  */
2094                 unsigned long start_jiffy = jiffies;
2095                 unsigned long intended, max_delay, remaining;
2096
2097                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2098                 intended = rdev->last_off_jiffy + max_delay;
2099
2100                 if (time_before(start_jiffy, intended)) {
2101                         /* calc remaining jiffies to deal with one-time
2102                          * timer wrapping.
2103                          * in case of multiple timer wrapping, either it can be
2104                          * detected by out-of-range remaining, or it cannot be
2105                          * detected and we gets a panelty of
2106                          * _regulator_enable_delay().
2107                          */
2108                         remaining = intended - start_jiffy;
2109                         if (remaining <= max_delay)
2110                                 _regulator_enable_delay(
2111                                                 jiffies_to_usecs(remaining));
2112                 }
2113         }
2114
2115         if (rdev->ena_pin) {
2116                 if (!rdev->ena_gpio_state) {
2117                         ret = regulator_ena_gpio_ctrl(rdev, true);
2118                         if (ret < 0)
2119                                 return ret;
2120                         rdev->ena_gpio_state = 1;
2121                 }
2122         } else if (rdev->desc->ops->enable) {
2123                 ret = rdev->desc->ops->enable(rdev);
2124                 if (ret < 0)
2125                         return ret;
2126         } else {
2127                 return -EINVAL;
2128         }
2129
2130         /* Allow the regulator to ramp; it would be useful to extend
2131          * this for bulk operations so that the regulators can ramp
2132          * together.  */
2133         trace_regulator_enable_delay(rdev_get_name(rdev));
2134
2135         _regulator_enable_delay(delay);
2136
2137         trace_regulator_enable_complete(rdev_get_name(rdev));
2138
2139         return 0;
2140 }
2141
2142 /* locks held by regulator_enable() */
2143 static int _regulator_enable(struct regulator_dev *rdev)
2144 {
2145         int ret;
2146
2147         lockdep_assert_held_once(&rdev->mutex);
2148
2149         /* check voltage and requested load before enabling */
2150         if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2151                 drms_uA_update(rdev);
2152
2153         if (rdev->use_count == 0) {
2154                 /* The regulator may on if it's not switchable or left on */
2155                 ret = _regulator_is_enabled(rdev);
2156                 if (ret == -EINVAL || ret == 0) {
2157                         if (!regulator_ops_is_valid(rdev,
2158                                         REGULATOR_CHANGE_STATUS))
2159                                 return -EPERM;
2160
2161                         ret = _regulator_do_enable(rdev);
2162                         if (ret < 0)
2163                                 return ret;
2164
2165                 } else if (ret < 0) {
2166                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2167                         return ret;
2168                 }
2169                 /* Fallthrough on positive return values - already enabled */
2170         }
2171
2172         rdev->use_count++;
2173
2174         return 0;
2175 }
2176
2177 /**
2178  * regulator_enable - enable regulator output
2179  * @regulator: regulator source
2180  *
2181  * Request that the regulator be enabled with the regulator output at
2182  * the predefined voltage or current value.  Calls to regulator_enable()
2183  * must be balanced with calls to regulator_disable().
2184  *
2185  * NOTE: the output value can be set by other drivers, boot loader or may be
2186  * hardwired in the regulator.
2187  */
2188 int regulator_enable(struct regulator *regulator)
2189 {
2190         struct regulator_dev *rdev = regulator->rdev;
2191         int ret = 0;
2192
2193         if (regulator->always_on)
2194                 return 0;
2195
2196         if (rdev->supply) {
2197                 ret = regulator_enable(rdev->supply);
2198                 if (ret != 0)
2199                         return ret;
2200         }
2201
2202         mutex_lock(&rdev->mutex);
2203         ret = _regulator_enable(rdev);
2204         mutex_unlock(&rdev->mutex);
2205
2206         if (ret != 0 && rdev->supply)
2207                 regulator_disable(rdev->supply);
2208
2209         return ret;
2210 }
2211 EXPORT_SYMBOL_GPL(regulator_enable);
2212
2213 static int _regulator_do_disable(struct regulator_dev *rdev)
2214 {
2215         int ret;
2216
2217         trace_regulator_disable(rdev_get_name(rdev));
2218
2219         if (rdev->ena_pin) {
2220                 if (rdev->ena_gpio_state) {
2221                         ret = regulator_ena_gpio_ctrl(rdev, false);
2222                         if (ret < 0)
2223                                 return ret;
2224                         rdev->ena_gpio_state = 0;
2225                 }
2226
2227         } else if (rdev->desc->ops->disable) {
2228                 ret = rdev->desc->ops->disable(rdev);
2229                 if (ret != 0)
2230                         return ret;
2231         }
2232
2233         /* cares about last_off_jiffy only if off_on_delay is required by
2234          * device.
2235          */
2236         if (rdev->desc->off_on_delay)
2237                 rdev->last_off_jiffy = jiffies;
2238
2239         trace_regulator_disable_complete(rdev_get_name(rdev));
2240
2241         return 0;
2242 }
2243
2244 /* locks held by regulator_disable() */
2245 static int _regulator_disable(struct regulator_dev *rdev)
2246 {
2247         int ret = 0;
2248
2249         lockdep_assert_held_once(&rdev->mutex);
2250
2251         if (WARN(rdev->use_count <= 0,
2252                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2253                 return -EIO;
2254
2255         /* are we the last user and permitted to disable ? */
2256         if (rdev->use_count == 1 &&
2257             (rdev->constraints && !rdev->constraints->always_on)) {
2258
2259                 /* we are last user */
2260                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2261                         ret = _notifier_call_chain(rdev,
2262                                                    REGULATOR_EVENT_PRE_DISABLE,
2263                                                    NULL);
2264                         if (ret & NOTIFY_STOP_MASK)
2265                                 return -EINVAL;
2266
2267                         ret = _regulator_do_disable(rdev);
2268                         if (ret < 0) {
2269                                 rdev_err(rdev, "failed to disable\n");
2270                                 _notifier_call_chain(rdev,
2271                                                 REGULATOR_EVENT_ABORT_DISABLE,
2272                                                 NULL);
2273                                 return ret;
2274                         }
2275                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2276                                         NULL);
2277                 }
2278
2279                 rdev->use_count = 0;
2280         } else if (rdev->use_count > 1) {
2281                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2282                         drms_uA_update(rdev);
2283
2284                 rdev->use_count--;
2285         }
2286
2287         return ret;
2288 }
2289
2290 /**
2291  * regulator_disable - disable regulator output
2292  * @regulator: regulator source
2293  *
2294  * Disable the regulator output voltage or current.  Calls to
2295  * regulator_enable() must be balanced with calls to
2296  * regulator_disable().
2297  *
2298  * NOTE: this will only disable the regulator output if no other consumer
2299  * devices have it enabled, the regulator device supports disabling and
2300  * machine constraints permit this operation.
2301  */
2302 int regulator_disable(struct regulator *regulator)
2303 {
2304         struct regulator_dev *rdev = regulator->rdev;
2305         int ret = 0;
2306
2307         if (regulator->always_on)
2308                 return 0;
2309
2310         mutex_lock(&rdev->mutex);
2311         ret = _regulator_disable(rdev);
2312         mutex_unlock(&rdev->mutex);
2313
2314         if (ret == 0 && rdev->supply)
2315                 regulator_disable(rdev->supply);
2316
2317         return ret;
2318 }
2319 EXPORT_SYMBOL_GPL(regulator_disable);
2320
2321 /* locks held by regulator_force_disable() */
2322 static int _regulator_force_disable(struct regulator_dev *rdev)
2323 {
2324         int ret = 0;
2325
2326         lockdep_assert_held_once(&rdev->mutex);
2327
2328         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2329                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2330         if (ret & NOTIFY_STOP_MASK)
2331                 return -EINVAL;
2332
2333         ret = _regulator_do_disable(rdev);
2334         if (ret < 0) {
2335                 rdev_err(rdev, "failed to force disable\n");
2336                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2337                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2338                 return ret;
2339         }
2340
2341         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2342                         REGULATOR_EVENT_DISABLE, NULL);
2343
2344         return 0;
2345 }
2346
2347 /**
2348  * regulator_force_disable - force disable regulator output
2349  * @regulator: regulator source
2350  *
2351  * Forcibly disable the regulator output voltage or current.
2352  * NOTE: this *will* disable the regulator output even if other consumer
2353  * devices have it enabled. This should be used for situations when device
2354  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2355  */
2356 int regulator_force_disable(struct regulator *regulator)
2357 {
2358         struct regulator_dev *rdev = regulator->rdev;
2359         int ret;
2360
2361         mutex_lock(&rdev->mutex);
2362         regulator->uA_load = 0;
2363         ret = _regulator_force_disable(regulator->rdev);
2364         mutex_unlock(&rdev->mutex);
2365
2366         if (rdev->supply)
2367                 while (rdev->open_count--)
2368                         regulator_disable(rdev->supply);
2369
2370         return ret;
2371 }
2372 EXPORT_SYMBOL_GPL(regulator_force_disable);
2373
2374 static void regulator_disable_work(struct work_struct *work)
2375 {
2376         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2377                                                   disable_work.work);
2378         int count, i, ret;
2379
2380         mutex_lock(&rdev->mutex);
2381
2382         BUG_ON(!rdev->deferred_disables);
2383
2384         count = rdev->deferred_disables;
2385         rdev->deferred_disables = 0;
2386
2387         for (i = 0; i < count; i++) {
2388                 ret = _regulator_disable(rdev);
2389                 if (ret != 0)
2390                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2391         }
2392
2393         mutex_unlock(&rdev->mutex);
2394
2395         if (rdev->supply) {
2396                 for (i = 0; i < count; i++) {
2397                         ret = regulator_disable(rdev->supply);
2398                         if (ret != 0) {
2399                                 rdev_err(rdev,
2400                                          "Supply disable failed: %d\n", ret);
2401                         }
2402                 }
2403         }
2404 }
2405
2406 /**
2407  * regulator_disable_deferred - disable regulator output with delay
2408  * @regulator: regulator source
2409  * @ms: miliseconds until the regulator is disabled
2410  *
2411  * Execute regulator_disable() on the regulator after a delay.  This
2412  * is intended for use with devices that require some time to quiesce.
2413  *
2414  * NOTE: this will only disable the regulator output if no other consumer
2415  * devices have it enabled, the regulator device supports disabling and
2416  * machine constraints permit this operation.
2417  */
2418 int regulator_disable_deferred(struct regulator *regulator, int ms)
2419 {
2420         struct regulator_dev *rdev = regulator->rdev;
2421
2422         if (regulator->always_on)
2423                 return 0;
2424
2425         if (!ms)
2426                 return regulator_disable(regulator);
2427
2428         mutex_lock(&rdev->mutex);
2429         rdev->deferred_disables++;
2430         mutex_unlock(&rdev->mutex);
2431
2432         queue_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2433                            msecs_to_jiffies(ms));
2434         return 0;
2435 }
2436 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2437
2438 static int _regulator_is_enabled(struct regulator_dev *rdev)
2439 {
2440         /* A GPIO control always takes precedence */
2441         if (rdev->ena_pin)
2442                 return rdev->ena_gpio_state;
2443
2444         /* If we don't know then assume that the regulator is always on */
2445         if (!rdev->desc->ops->is_enabled)
2446                 return 1;
2447
2448         return rdev->desc->ops->is_enabled(rdev);
2449 }
2450
2451 static int _regulator_list_voltage(struct regulator *regulator,
2452                                     unsigned selector, int lock)
2453 {
2454         struct regulator_dev *rdev = regulator->rdev;
2455         const struct regulator_ops *ops = rdev->desc->ops;
2456         int ret;
2457
2458         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2459                 return rdev->desc->fixed_uV;
2460
2461         if (ops->list_voltage) {
2462                 if (selector >= rdev->desc->n_voltages)
2463                         return -EINVAL;
2464                 if (lock)
2465                         mutex_lock(&rdev->mutex);
2466                 ret = ops->list_voltage(rdev, selector);
2467                 if (lock)
2468                         mutex_unlock(&rdev->mutex);
2469         } else if (rdev->supply) {
2470                 ret = _regulator_list_voltage(rdev->supply, selector, lock);
2471         } else {
2472                 return -EINVAL;
2473         }
2474
2475         if (ret > 0) {
2476                 if (ret < rdev->constraints->min_uV)
2477                         ret = 0;
2478                 else if (ret > rdev->constraints->max_uV)
2479                         ret = 0;
2480         }
2481
2482         return ret;
2483 }
2484
2485 /**
2486  * regulator_is_enabled - is the regulator output enabled
2487  * @regulator: regulator source
2488  *
2489  * Returns positive if the regulator driver backing the source/client
2490  * has requested that the device be enabled, zero if it hasn't, else a
2491  * negative errno code.
2492  *
2493  * Note that the device backing this regulator handle can have multiple
2494  * users, so it might be enabled even if regulator_enable() was never
2495  * called for this particular source.
2496  */
2497 int regulator_is_enabled(struct regulator *regulator)
2498 {
2499         int ret;
2500
2501         if (regulator->always_on)
2502                 return 1;
2503
2504         mutex_lock(&regulator->rdev->mutex);
2505         ret = _regulator_is_enabled(regulator->rdev);
2506         mutex_unlock(&regulator->rdev->mutex);
2507
2508         return ret;
2509 }
2510 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2511
2512 /**
2513  * regulator_count_voltages - count regulator_list_voltage() selectors
2514  * @regulator: regulator source
2515  *
2516  * Returns number of selectors, or negative errno.  Selectors are
2517  * numbered starting at zero, and typically correspond to bitfields
2518  * in hardware registers.
2519  */
2520 int regulator_count_voltages(struct regulator *regulator)
2521 {
2522         struct regulator_dev    *rdev = regulator->rdev;
2523
2524         if (rdev->desc->n_voltages)
2525                 return rdev->desc->n_voltages;
2526
2527         if (!rdev->supply)
2528                 return -EINVAL;
2529
2530         return regulator_count_voltages(rdev->supply);
2531 }
2532 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2533
2534 /**
2535  * regulator_list_voltage - enumerate supported voltages
2536  * @regulator: regulator source
2537  * @selector: identify voltage to list
2538  * Context: can sleep
2539  *
2540  * Returns a voltage that can be passed to @regulator_set_voltage(),
2541  * zero if this selector code can't be used on this system, or a
2542  * negative errno.
2543  */
2544 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2545 {
2546         return _regulator_list_voltage(regulator, selector, 1);
2547 }
2548 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2549
2550 /**
2551  * regulator_get_regmap - get the regulator's register map
2552  * @regulator: regulator source
2553  *
2554  * Returns the register map for the given regulator, or an ERR_PTR value
2555  * if the regulator doesn't use regmap.
2556  */
2557 struct regmap *regulator_get_regmap(struct regulator *regulator)
2558 {
2559         struct regmap *map = regulator->rdev->regmap;
2560
2561         return map ? map : ERR_PTR(-EOPNOTSUPP);
2562 }
2563
2564 /**
2565  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2566  * @regulator: regulator source
2567  * @vsel_reg: voltage selector register, output parameter
2568  * @vsel_mask: mask for voltage selector bitfield, output parameter
2569  *
2570  * Returns the hardware register offset and bitmask used for setting the
2571  * regulator voltage. This might be useful when configuring voltage-scaling
2572  * hardware or firmware that can make I2C requests behind the kernel's back,
2573  * for example.
2574  *
2575  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2576  * and 0 is returned, otherwise a negative errno is returned.
2577  */
2578 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2579                                          unsigned *vsel_reg,
2580                                          unsigned *vsel_mask)
2581 {
2582         struct regulator_dev *rdev = regulator->rdev;
2583         const struct regulator_ops *ops = rdev->desc->ops;
2584
2585         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2586                 return -EOPNOTSUPP;
2587
2588          *vsel_reg = rdev->desc->vsel_reg;
2589          *vsel_mask = rdev->desc->vsel_mask;
2590
2591          return 0;
2592 }
2593 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2594
2595 /**
2596  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2597  * @regulator: regulator source
2598  * @selector: identify voltage to list
2599  *
2600  * Converts the selector to a hardware-specific voltage selector that can be
2601  * directly written to the regulator registers. The address of the voltage
2602  * register can be determined by calling @regulator_get_hardware_vsel_register.
2603  *
2604  * On error a negative errno is returned.
2605  */
2606 int regulator_list_hardware_vsel(struct regulator *regulator,
2607                                  unsigned selector)
2608 {
2609         struct regulator_dev *rdev = regulator->rdev;
2610         const struct regulator_ops *ops = rdev->desc->ops;
2611
2612         if (selector >= rdev->desc->n_voltages)
2613                 return -EINVAL;
2614         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2615                 return -EOPNOTSUPP;
2616
2617         return selector;
2618 }
2619 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2620
2621 /**
2622  * regulator_get_linear_step - return the voltage step size between VSEL values
2623  * @regulator: regulator source
2624  *
2625  * Returns the voltage step size between VSEL values for linear
2626  * regulators, or return 0 if the regulator isn't a linear regulator.
2627  */
2628 unsigned int regulator_get_linear_step(struct regulator *regulator)
2629 {
2630         struct regulator_dev *rdev = regulator->rdev;
2631
2632         return rdev->desc->uV_step;
2633 }
2634 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2635
2636 /**
2637  * regulator_is_supported_voltage - check if a voltage range can be supported
2638  *
2639  * @regulator: Regulator to check.
2640  * @min_uV: Minimum required voltage in uV.
2641  * @max_uV: Maximum required voltage in uV.
2642  *
2643  * Returns a boolean or a negative error code.
2644  */
2645 int regulator_is_supported_voltage(struct regulator *regulator,
2646                                    int min_uV, int max_uV)
2647 {
2648         struct regulator_dev *rdev = regulator->rdev;
2649         int i, voltages, ret;
2650
2651         /* If we can't change voltage check the current voltage */
2652         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2653                 ret = regulator_get_voltage(regulator);
2654                 if (ret >= 0)
2655                         return min_uV <= ret && ret <= max_uV;
2656                 else
2657                         return ret;
2658         }
2659
2660         /* Any voltage within constrains range is fine? */
2661         if (rdev->desc->continuous_voltage_range)
2662                 return min_uV >= rdev->constraints->min_uV &&
2663                                 max_uV <= rdev->constraints->max_uV;
2664
2665         ret = regulator_count_voltages(regulator);
2666         if (ret < 0)
2667                 return ret;
2668         voltages = ret;
2669
2670         for (i = 0; i < voltages; i++) {
2671                 ret = regulator_list_voltage(regulator, i);
2672
2673                 if (ret >= min_uV && ret <= max_uV)
2674                         return 1;
2675         }
2676
2677         return 0;
2678 }
2679 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2680
2681 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2682                                  int max_uV)
2683 {
2684         const struct regulator_desc *desc = rdev->desc;
2685
2686         if (desc->ops->map_voltage)
2687                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
2688
2689         if (desc->ops->list_voltage == regulator_list_voltage_linear)
2690                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2691
2692         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2693                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2694
2695         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2696 }
2697
2698 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2699                                        int min_uV, int max_uV,
2700                                        unsigned *selector)
2701 {
2702         struct pre_voltage_change_data data;
2703         int ret;
2704
2705         data.old_uV = _regulator_get_voltage(rdev);
2706         data.min_uV = min_uV;
2707         data.max_uV = max_uV;
2708         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2709                                    &data);
2710         if (ret & NOTIFY_STOP_MASK)
2711                 return -EINVAL;
2712
2713         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2714         if (ret >= 0)
2715                 return ret;
2716
2717         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2718                              (void *)data.old_uV);
2719
2720         return ret;
2721 }
2722
2723 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2724                                            int uV, unsigned selector)
2725 {
2726         struct pre_voltage_change_data data;
2727         int ret;
2728
2729         data.old_uV = _regulator_get_voltage(rdev);
2730         data.min_uV = uV;
2731         data.max_uV = uV;
2732         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2733                                    &data);
2734         if (ret & NOTIFY_STOP_MASK)
2735                 return -EINVAL;
2736
2737         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2738         if (ret >= 0)
2739                 return ret;
2740
2741         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2742                              (void *)data.old_uV);
2743
2744         return ret;
2745 }
2746
2747 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
2748                                        int old_uV, int new_uV)
2749 {
2750         unsigned int ramp_delay = 0;
2751
2752         if (rdev->constraints->ramp_delay)
2753                 ramp_delay = rdev->constraints->ramp_delay;
2754         else if (rdev->desc->ramp_delay)
2755                 ramp_delay = rdev->desc->ramp_delay;
2756
2757         if (ramp_delay == 0) {
2758                 rdev_dbg(rdev, "ramp_delay not set\n");
2759                 return 0;
2760         }
2761
2762         return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
2763 }
2764
2765 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2766                                      int min_uV, int max_uV)
2767 {
2768         int ret;
2769         int delay = 0;
2770         int best_val = 0;
2771         unsigned int selector;
2772         int old_selector = -1;
2773         const struct regulator_ops *ops = rdev->desc->ops;
2774         int old_uV = _regulator_get_voltage(rdev);
2775
2776         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2777
2778         min_uV += rdev->constraints->uV_offset;
2779         max_uV += rdev->constraints->uV_offset;
2780
2781         /*
2782          * If we can't obtain the old selector there is not enough
2783          * info to call set_voltage_time_sel().
2784          */
2785         if (_regulator_is_enabled(rdev) &&
2786             ops->set_voltage_time_sel && ops->get_voltage_sel) {
2787                 old_selector = ops->get_voltage_sel(rdev);
2788                 if (old_selector < 0)
2789                         return old_selector;
2790         }
2791
2792         if (ops->set_voltage) {
2793                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2794                                                   &selector);
2795
2796                 if (ret >= 0) {
2797                         if (ops->list_voltage)
2798                                 best_val = ops->list_voltage(rdev,
2799                                                              selector);
2800                         else
2801                                 best_val = _regulator_get_voltage(rdev);
2802                 }
2803
2804         } else if (ops->set_voltage_sel) {
2805                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
2806                 if (ret >= 0) {
2807                         best_val = ops->list_voltage(rdev, ret);
2808                         if (min_uV <= best_val && max_uV >= best_val) {
2809                                 selector = ret;
2810                                 if (old_selector == selector)
2811                                         ret = 0;
2812                                 else
2813                                         ret = _regulator_call_set_voltage_sel(
2814                                                 rdev, best_val, selector);
2815                         } else {
2816                                 ret = -EINVAL;
2817                         }
2818                 }
2819         } else {
2820                 ret = -EINVAL;
2821         }
2822
2823         if (ret)
2824                 goto out;
2825
2826         if (ops->set_voltage_time_sel) {
2827                 /*
2828                  * Call set_voltage_time_sel if successfully obtained
2829                  * old_selector
2830                  */
2831                 if (old_selector >= 0 && old_selector != selector)
2832                         delay = ops->set_voltage_time_sel(rdev, old_selector,
2833                                                           selector);
2834         } else {
2835                 if (old_uV != best_val) {
2836                         if (ops->set_voltage_time)
2837                                 delay = ops->set_voltage_time(rdev, old_uV,
2838                                                               best_val);
2839                         else
2840                                 delay = _regulator_set_voltage_time(rdev,
2841                                                                     old_uV,
2842                                                                     best_val);
2843                 }
2844         }
2845
2846         if (delay < 0) {
2847                 rdev_warn(rdev, "failed to get delay: %d\n", delay);
2848                 delay = 0;
2849         }
2850
2851         /* Insert any necessary delays */
2852         if (delay >= 1000) {
2853                 mdelay(delay / 1000);
2854                 udelay(delay % 1000);
2855         } else if (delay) {
2856                 udelay(delay);
2857         }
2858
2859         if (best_val >= 0) {
2860                 unsigned long data = best_val;
2861
2862                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2863                                      (void *)data);
2864         }
2865
2866 out:
2867         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2868
2869         return ret;
2870 }
2871
2872 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2873                                           int min_uV, int max_uV)
2874 {
2875         struct regulator_dev *rdev = regulator->rdev;
2876         int ret = 0;
2877         int old_min_uV, old_max_uV;
2878         int current_uV;
2879         int best_supply_uV = 0;
2880         int supply_change_uV = 0;
2881
2882         /* If we're setting the same range as last time the change
2883          * should be a noop (some cpufreq implementations use the same
2884          * voltage for multiple frequencies, for example).
2885          */
2886         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2887                 goto out;
2888
2889         /* If we're trying to set a range that overlaps the current voltage,
2890          * return successfully even though the regulator does not support
2891          * changing the voltage.
2892          */
2893         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2894                 current_uV = _regulator_get_voltage(rdev);
2895                 if (min_uV <= current_uV && current_uV <= max_uV) {
2896                         regulator->min_uV = min_uV;
2897                         regulator->max_uV = max_uV;
2898                         goto out;
2899                 }
2900         }
2901
2902         /* sanity check */
2903         if (!rdev->desc->ops->set_voltage &&
2904             !rdev->desc->ops->set_voltage_sel) {
2905                 ret = -EINVAL;
2906                 goto out;
2907         }
2908
2909         /* constraints check */
2910         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2911         if (ret < 0)
2912                 goto out;
2913
2914         /* restore original values in case of error */
2915         old_min_uV = regulator->min_uV;
2916         old_max_uV = regulator->max_uV;
2917         regulator->min_uV = min_uV;
2918         regulator->max_uV = max_uV;
2919
2920         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2921         if (ret < 0)
2922                 goto out2;
2923
2924         if (rdev->supply && (rdev->desc->min_dropout_uV ||
2925                                 !rdev->desc->ops->get_voltage)) {
2926                 int current_supply_uV;
2927                 int selector;
2928
2929                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
2930                 if (selector < 0) {
2931                         ret = selector;
2932                         goto out2;
2933                 }
2934
2935                 best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2936                 if (best_supply_uV < 0) {
2937                         ret = best_supply_uV;
2938                         goto out2;
2939                 }
2940
2941                 best_supply_uV += rdev->desc->min_dropout_uV;
2942
2943                 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2944                 if (current_supply_uV < 0) {
2945                         ret = current_supply_uV;
2946                         goto out2;
2947                 }
2948
2949                 supply_change_uV = best_supply_uV - current_supply_uV;
2950         }
2951
2952         if (supply_change_uV > 0) {
2953                 ret = regulator_set_voltage_unlocked(rdev->supply,
2954                                 best_supply_uV, INT_MAX);
2955                 if (ret) {
2956                         dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2957                                         ret);
2958                         goto out2;
2959                 }
2960         }
2961
2962         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2963         if (ret < 0)
2964                 goto out2;
2965
2966         if (supply_change_uV < 0) {
2967                 ret = regulator_set_voltage_unlocked(rdev->supply,
2968                                 best_supply_uV, INT_MAX);
2969                 if (ret)
2970                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2971                                         ret);
2972                 /* No need to fail here */
2973                 ret = 0;
2974         }
2975
2976 out:
2977         return ret;
2978 out2:
2979         regulator->min_uV = old_min_uV;
2980         regulator->max_uV = old_max_uV;
2981
2982         return ret;
2983 }
2984
2985 /**
2986  * regulator_set_voltage - set regulator output voltage
2987  * @regulator: regulator source
2988  * @min_uV: Minimum required voltage in uV
2989  * @max_uV: Maximum acceptable voltage in uV
2990  *
2991  * Sets a voltage regulator to the desired output voltage. This can be set
2992  * during any regulator state. IOW, regulator can be disabled or enabled.
2993  *
2994  * If the regulator is enabled then the voltage will change to the new value
2995  * immediately otherwise if the regulator is disabled the regulator will
2996  * output at the new voltage when enabled.
2997  *
2998  * NOTE: If the regulator is shared between several devices then the lowest
2999  * request voltage that meets the system constraints will be used.
3000  * Regulator system constraints must be set for this regulator before
3001  * calling this function otherwise this call will fail.
3002  */
3003 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3004 {
3005         int ret = 0;
3006
3007         regulator_lock_supply(regulator->rdev);
3008
3009         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
3010
3011         regulator_unlock_supply(regulator->rdev);
3012
3013         return ret;
3014 }
3015 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3016
3017 /**
3018  * regulator_set_voltage_time - get raise/fall time
3019  * @regulator: regulator source
3020  * @old_uV: starting voltage in microvolts
3021  * @new_uV: target voltage in microvolts
3022  *
3023  * Provided with the starting and ending voltage, this function attempts to
3024  * calculate the time in microseconds required to rise or fall to this new
3025  * voltage.
3026  */
3027 int regulator_set_voltage_time(struct regulator *regulator,
3028                                int old_uV, int new_uV)
3029 {
3030         struct regulator_dev *rdev = regulator->rdev;
3031         const struct regulator_ops *ops = rdev->desc->ops;
3032         int old_sel = -1;
3033         int new_sel = -1;
3034         int voltage;
3035         int i;
3036
3037         if (ops->set_voltage_time)
3038                 return ops->set_voltage_time(rdev, old_uV, new_uV);
3039         else if (!ops->set_voltage_time_sel)
3040                 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3041
3042         /* Currently requires operations to do this */
3043         if (!ops->list_voltage || !rdev->desc->n_voltages)
3044                 return -EINVAL;
3045
3046         for (i = 0; i < rdev->desc->n_voltages; i++) {
3047                 /* We only look for exact voltage matches here */
3048                 voltage = regulator_list_voltage(regulator, i);
3049                 if (voltage < 0)
3050                         return -EINVAL;
3051                 if (voltage == 0)
3052                         continue;
3053                 if (voltage == old_uV)
3054                         old_sel = i;
3055                 if (voltage == new_uV)
3056                         new_sel = i;
3057         }
3058
3059         if (old_sel < 0 || new_sel < 0)
3060                 return -EINVAL;
3061
3062         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3063 }
3064 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3065
3066 /**
3067  * regulator_set_voltage_time_sel - get raise/fall time
3068  * @rdev: regulator source device
3069  * @old_selector: selector for starting voltage
3070  * @new_selector: selector for target voltage
3071  *
3072  * Provided with the starting and target voltage selectors, this function
3073  * returns time in microseconds required to rise or fall to this new voltage
3074  *
3075  * Drivers providing ramp_delay in regulation_constraints can use this as their
3076  * set_voltage_time_sel() operation.
3077  */
3078 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3079                                    unsigned int old_selector,
3080                                    unsigned int new_selector)
3081 {
3082         int old_volt, new_volt;
3083
3084         /* sanity check */
3085         if (!rdev->desc->ops->list_voltage)
3086                 return -EINVAL;
3087
3088         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3089         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3090
3091         if (rdev->desc->ops->set_voltage_time)
3092                 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3093                                                          new_volt);
3094         else
3095                 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3096 }
3097 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3098
3099 /**
3100  * regulator_sync_voltage - re-apply last regulator output voltage
3101  * @regulator: regulator source
3102  *
3103  * Re-apply the last configured voltage.  This is intended to be used
3104  * where some external control source the consumer is cooperating with
3105  * has caused the configured voltage to change.
3106  */
3107 int regulator_sync_voltage(struct regulator *regulator)
3108 {
3109         struct regulator_dev *rdev = regulator->rdev;
3110         int ret, min_uV, max_uV;
3111
3112         mutex_lock(&rdev->mutex);
3113
3114         if (!rdev->desc->ops->set_voltage &&
3115             !rdev->desc->ops->set_voltage_sel) {
3116                 ret = -EINVAL;
3117                 goto out;
3118         }
3119
3120         /* This is only going to work if we've had a voltage configured. */
3121         if (!regulator->min_uV && !regulator->max_uV) {
3122                 ret = -EINVAL;
3123                 goto out;
3124         }
3125
3126         min_uV = regulator->min_uV;
3127         max_uV = regulator->max_uV;
3128
3129         /* This should be a paranoia check... */
3130         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3131         if (ret < 0)
3132                 goto out;
3133
3134         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3135         if (ret < 0)
3136                 goto out;
3137
3138         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3139
3140 out:
3141         mutex_unlock(&rdev->mutex);
3142         return ret;
3143 }
3144 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3145
3146 static int _regulator_get_voltage(struct regulator_dev *rdev)
3147 {
3148         int sel, ret;
3149         bool bypassed;
3150
3151         if (rdev->desc->ops->get_bypass) {
3152                 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3153                 if (ret < 0)
3154                         return ret;
3155                 if (bypassed) {
3156                         /* if bypassed the regulator must have a supply */
3157                         if (!rdev->supply) {
3158                                 rdev_err(rdev,
3159                                          "bypassed regulator has no supply!\n");
3160                                 return -EPROBE_DEFER;
3161                         }
3162
3163                         return _regulator_get_voltage(rdev->supply->rdev);
3164                 }
3165         }
3166
3167         if (rdev->desc->ops->get_voltage_sel) {
3168                 sel = rdev->desc->ops->get_voltage_sel(rdev);
3169                 if (sel < 0)
3170                         return sel;
3171                 ret = rdev->desc->ops->list_voltage(rdev, sel);
3172         } else if (rdev->desc->ops->get_voltage) {
3173                 ret = rdev->desc->ops->get_voltage(rdev);
3174         } else if (rdev->desc->ops->list_voltage) {
3175                 ret = rdev->desc->ops->list_voltage(rdev, 0);
3176         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3177                 ret = rdev->desc->fixed_uV;
3178         } else if (rdev->supply) {
3179                 ret = _regulator_get_voltage(rdev->supply->rdev);
3180         } else {
3181                 return -EINVAL;
3182         }
3183
3184         if (ret < 0)
3185                 return ret;
3186         return ret - rdev->constraints->uV_offset;
3187 }
3188
3189 /**
3190  * regulator_get_voltage - get regulator output voltage
3191  * @regulator: regulator source
3192  *
3193  * This returns the current regulator voltage in uV.
3194  *
3195  * NOTE: If the regulator is disabled it will return the voltage value. This
3196  * function should not be used to determine regulator state.
3197  */
3198 int regulator_get_voltage(struct regulator *regulator)
3199 {
3200         int ret;
3201
3202         regulator_lock_supply(regulator->rdev);
3203
3204         ret = _regulator_get_voltage(regulator->rdev);
3205
3206         regulator_unlock_supply(regulator->rdev);
3207
3208         return ret;
3209 }
3210 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3211
3212 /**
3213  * regulator_set_current_limit - set regulator output current limit
3214  * @regulator: regulator source
3215  * @min_uA: Minimum supported current in uA
3216  * @max_uA: Maximum supported current in uA
3217  *
3218  * Sets current sink to the desired output current. This can be set during
3219  * any regulator state. IOW, regulator can be disabled or enabled.
3220  *
3221  * If the regulator is enabled then the current will change to the new value
3222  * immediately otherwise if the regulator is disabled the regulator will
3223  * output at the new current when enabled.
3224  *
3225  * NOTE: Regulator system constraints must be set for this regulator before
3226  * calling this function otherwise this call will fail.
3227  */
3228 int regulator_set_current_limit(struct regulator *regulator,
3229                                int min_uA, int max_uA)
3230 {
3231         struct regulator_dev *rdev = regulator->rdev;
3232         int ret;
3233
3234         mutex_lock(&rdev->mutex);
3235
3236         /* sanity check */
3237         if (!rdev->desc->ops->set_current_limit) {
3238                 ret = -EINVAL;
3239                 goto out;
3240         }
3241
3242         /* constraints check */
3243         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3244         if (ret < 0)
3245                 goto out;
3246
3247         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3248 out:
3249         mutex_unlock(&rdev->mutex);
3250         return ret;
3251 }
3252 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3253
3254 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3255 {
3256         int ret;
3257
3258         mutex_lock(&rdev->mutex);
3259
3260         /* sanity check */
3261         if (!rdev->desc->ops->get_current_limit) {
3262                 ret = -EINVAL;
3263                 goto out;
3264         }
3265
3266         ret = rdev->desc->ops->get_current_limit(rdev);
3267 out:
3268         mutex_unlock(&rdev->mutex);
3269         return ret;
3270 }
3271
3272 /**
3273  * regulator_get_current_limit - get regulator output current
3274  * @regulator: regulator source
3275  *
3276  * This returns the current supplied by the specified current sink in uA.
3277  *
3278  * NOTE: If the regulator is disabled it will return the current value. This
3279  * function should not be used to determine regulator state.
3280  */
3281 int regulator_get_current_limit(struct regulator *regulator)
3282 {
3283         return _regulator_get_current_limit(regulator->rdev);
3284 }
3285 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3286
3287 /**
3288  * regulator_set_mode - set regulator operating mode
3289  * @regulator: regulator source
3290  * @mode: operating mode - one of the REGULATOR_MODE constants
3291  *
3292  * Set regulator operating mode to increase regulator efficiency or improve
3293  * regulation performance.
3294  *
3295  * NOTE: Regulator system constraints must be set for this regulator before
3296  * calling this function otherwise this call will fail.
3297  */
3298 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3299 {
3300         struct regulator_dev *rdev = regulator->rdev;
3301         int ret;
3302         int regulator_curr_mode;
3303
3304         mutex_lock(&rdev->mutex);
3305
3306         /* sanity check */
3307         if (!rdev->desc->ops->set_mode) {
3308                 ret = -EINVAL;
3309                 goto out;
3310         }
3311
3312         /* return if the same mode is requested */
3313         if (rdev->desc->ops->get_mode) {
3314                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3315                 if (regulator_curr_mode == mode) {
3316                         ret = 0;
3317                         goto out;
3318                 }
3319         }
3320
3321         /* constraints check */
3322         ret = regulator_mode_constrain(rdev, &mode);
3323         if (ret < 0)
3324                 goto out;
3325
3326         ret = rdev->desc->ops->set_mode(rdev, mode);
3327 out:
3328         mutex_unlock(&rdev->mutex);
3329         return ret;
3330 }
3331 EXPORT_SYMBOL_GPL(regulator_set_mode);
3332
3333 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3334 {
3335         int ret;
3336
3337         mutex_lock(&rdev->mutex);
3338
3339         /* sanity check */
3340         if (!rdev->desc->ops->get_mode) {
3341                 ret = -EINVAL;
3342                 goto out;
3343         }
3344
3345         ret = rdev->desc->ops->get_mode(rdev);
3346 out:
3347         mutex_unlock(&rdev->mutex);
3348         return ret;
3349 }
3350
3351 /**
3352  * regulator_get_mode - get regulator operating mode
3353  * @regulator: regulator source
3354  *
3355  * Get the current regulator operating mode.
3356  */
3357 unsigned int regulator_get_mode(struct regulator *regulator)
3358 {
3359         return _regulator_get_mode(regulator->rdev);
3360 }
3361 EXPORT_SYMBOL_GPL(regulator_get_mode);
3362
3363 static int _regulator_get_error_flags(struct regulator_dev *rdev,
3364                                         unsigned int *flags)
3365 {
3366         int ret;
3367
3368         mutex_lock(&rdev->mutex);
3369
3370         /* sanity check */
3371         if (!rdev->desc->ops->get_error_flags) {
3372                 ret = -EINVAL;
3373                 goto out;
3374         }
3375
3376         ret = rdev->desc->ops->get_error_flags(rdev, flags);
3377 out:
3378         mutex_unlock(&rdev->mutex);
3379         return ret;
3380 }
3381
3382 /**
3383  * regulator_get_error_flags - get regulator error information
3384  * @regulator: regulator source
3385  * @flags: pointer to store error flags
3386  *
3387  * Get the current regulator error information.
3388  */
3389 int regulator_get_error_flags(struct regulator *regulator,
3390                                 unsigned int *flags)
3391 {
3392         return _regulator_get_error_flags(regulator->rdev, flags);
3393 }
3394 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
3395
3396 /**
3397  * regulator_set_load - set regulator load
3398  * @regulator: regulator source
3399  * @uA_load: load current
3400  *
3401  * Notifies the regulator core of a new device load. This is then used by
3402  * DRMS (if enabled by constraints) to set the most efficient regulator
3403  * operating mode for the new regulator loading.
3404  *
3405  * Consumer devices notify their supply regulator of the maximum power
3406  * they will require (can be taken from device datasheet in the power
3407  * consumption tables) when they change operational status and hence power
3408  * state. Examples of operational state changes that can affect power
3409  * consumption are :-
3410  *
3411  *    o Device is opened / closed.
3412  *    o Device I/O is about to begin or has just finished.
3413  *    o Device is idling in between work.
3414  *
3415  * This information is also exported via sysfs to userspace.
3416  *
3417  * DRMS will sum the total requested load on the regulator and change
3418  * to the most efficient operating mode if platform constraints allow.
3419  *
3420  * On error a negative errno is returned.
3421  */
3422 int regulator_set_load(struct regulator *regulator, int uA_load)
3423 {
3424         struct regulator_dev *rdev = regulator->rdev;
3425         int ret;
3426
3427         mutex_lock(&rdev->mutex);
3428         regulator->uA_load = uA_load;
3429         ret = drms_uA_update(rdev);
3430         mutex_unlock(&rdev->mutex);
3431
3432         return ret;
3433 }
3434 EXPORT_SYMBOL_GPL(regulator_set_load);
3435
3436 /**
3437  * regulator_allow_bypass - allow the regulator to go into bypass mode
3438  *
3439  * @regulator: Regulator to configure
3440  * @enable: enable or disable bypass mode
3441  *
3442  * Allow the regulator to go into bypass mode if all other consumers
3443  * for the regulator also enable bypass mode and the machine
3444  * constraints allow this.  Bypass mode means that the regulator is
3445  * simply passing the input directly to the output with no regulation.
3446  */
3447 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3448 {
3449         struct regulator_dev *rdev = regulator->rdev;
3450         int ret = 0;
3451
3452         if (!rdev->desc->ops->set_bypass)
3453                 return 0;
3454
3455         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3456                 return 0;
3457
3458         mutex_lock(&rdev->mutex);
3459
3460         if (enable && !regulator->bypass) {
3461                 rdev->bypass_count++;
3462
3463                 if (rdev->bypass_count == rdev->open_count) {
3464                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3465                         if (ret != 0)
3466                                 rdev->bypass_count--;
3467                 }
3468
3469         } else if (!enable && regulator->bypass) {
3470                 rdev->bypass_count--;
3471
3472                 if (rdev->bypass_count != rdev->open_count) {
3473                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3474                         if (ret != 0)
3475                                 rdev->bypass_count++;
3476                 }
3477         }
3478
3479         if (ret == 0)
3480                 regulator->bypass = enable;
3481
3482         mutex_unlock(&rdev->mutex);
3483
3484         return ret;
3485 }
3486 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3487
3488 /**
3489  * regulator_register_notifier - register regulator event notifier
3490  * @regulator: regulator source
3491  * @nb: notifier block
3492  *
3493  * Register notifier block to receive regulator events.
3494  */
3495 int regulator_register_notifier(struct regulator *regulator,
3496                               struct notifier_block *nb)
3497 {
3498         return blocking_notifier_chain_register(&regulator->rdev->notifier,
3499                                                 nb);
3500 }
3501 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3502
3503 /**
3504  * regulator_unregister_notifier - unregister regulator event notifier
3505  * @regulator: regulator source
3506  * @nb: notifier block
3507  *
3508  * Unregister regulator event notifier block.
3509  */
3510 int regulator_unregister_notifier(struct regulator *regulator,
3511                                 struct notifier_block *nb)
3512 {
3513         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3514                                                   nb);
3515 }
3516 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3517
3518 /* notify regulator consumers and downstream regulator consumers.
3519  * Note mutex must be held by caller.
3520  */
3521 static int _notifier_call_chain(struct regulator_dev *rdev,
3522                                   unsigned long event, void *data)
3523 {
3524         /* call rdev chain first */
3525         return blocking_notifier_call_chain(&rdev->notifier, event, data);
3526 }
3527
3528 /**
3529  * regulator_bulk_get - get multiple regulator consumers
3530  *
3531  * @dev:           Device to supply
3532  * @num_consumers: Number of consumers to register
3533  * @consumers:     Configuration of consumers; clients are stored here.
3534  *
3535  * @return 0 on success, an errno on failure.
3536  *
3537  * This helper function allows drivers to get several regulator
3538  * consumers in one operation.  If any of the regulators cannot be
3539  * acquired then any regulators that were allocated will be freed
3540  * before returning to the caller.
3541  */
3542 int regulator_bulk_get(struct device *dev, int num_consumers,
3543                        struct regulator_bulk_data *consumers)
3544 {
3545         int i;
3546         int ret;
3547
3548         for (i = 0; i < num_consumers; i++)
3549                 consumers[i].consumer = NULL;
3550
3551         for (i = 0; i < num_consumers; i++) {
3552                 consumers[i].consumer = regulator_get(dev,
3553                                                       consumers[i].supply);
3554                 if (IS_ERR(consumers[i].consumer)) {
3555                         ret = PTR_ERR(consumers[i].consumer);
3556                         dev_err(dev, "Failed to get supply '%s': %d\n",
3557                                 consumers[i].supply, ret);
3558                         consumers[i].consumer = NULL;
3559                         goto err;
3560                 }
3561         }
3562
3563         return 0;
3564
3565 err:
3566         while (--i >= 0)
3567                 regulator_put(consumers[i].consumer);
3568
3569         return ret;
3570 }
3571 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3572
3573 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3574 {
3575         struct regulator_bulk_data *bulk = data;
3576
3577         bulk->ret = regulator_enable(bulk->consumer);
3578 }
3579
3580 /**
3581  * regulator_bulk_enable - enable multiple regulator consumers
3582  *
3583  * @num_consumers: Number of consumers
3584  * @consumers:     Consumer data; clients are stored here.
3585  * @return         0 on success, an errno on failure
3586  *
3587  * This convenience API allows consumers to enable multiple regulator
3588  * clients in a single API call.  If any consumers cannot be enabled
3589  * then any others that were enabled will be disabled again prior to
3590  * return.
3591  */
3592 int regulator_bulk_enable(int num_consumers,
3593                           struct regulator_bulk_data *consumers)
3594 {
3595         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3596         int i;
3597         int ret = 0;
3598
3599         for (i = 0; i < num_consumers; i++) {
3600                 if (consumers[i].consumer->always_on)
3601                         consumers[i].ret = 0;
3602                 else
3603                         async_schedule_domain(regulator_bulk_enable_async,
3604                                               &consumers[i], &async_domain);
3605         }
3606
3607         async_synchronize_full_domain(&async_domain);
3608
3609         /* If any consumer failed we need to unwind any that succeeded */
3610         for (i = 0; i < num_consumers; i++) {
3611                 if (consumers[i].ret != 0) {
3612                         ret = consumers[i].ret;
3613                         goto err;
3614                 }
3615         }
3616
3617         return 0;
3618
3619 err:
3620         for (i = 0; i < num_consumers; i++) {
3621                 if (consumers[i].ret < 0)
3622                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3623                                consumers[i].ret);
3624                 else
3625                         regulator_disable(consumers[i].consumer);
3626         }
3627
3628         return ret;
3629 }
3630 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3631
3632 /**
3633  * regulator_bulk_disable - disable multiple regulator consumers
3634  *
3635  * @num_consumers: Number of consumers
3636  * @consumers:     Consumer data; clients are stored here.
3637  * @return         0 on success, an errno on failure
3638  *
3639  * This convenience API allows consumers to disable multiple regulator
3640  * clients in a single API call.  If any consumers cannot be disabled
3641  * then any others that were disabled will be enabled again prior to
3642  * return.
3643  */
3644 int regulator_bulk_disable(int num_consumers,
3645                            struct regulator_bulk_data *consumers)
3646 {
3647         int i;
3648         int ret, r;
3649
3650         for (i = num_consumers - 1; i >= 0; --i) {
3651                 ret = regulator_disable(consumers[i].consumer);
3652                 if (ret != 0)
3653                         goto err;
3654         }
3655
3656         return 0;
3657
3658 err:
3659         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3660         for (++i; i < num_consumers; ++i) {
3661                 r = regulator_enable(consumers[i].consumer);
3662                 if (r != 0)
3663                         pr_err("Failed to reename %s: %d\n",
3664                                consumers[i].supply, r);
3665         }
3666
3667         return ret;
3668 }
3669 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3670
3671 /**
3672  * regulator_bulk_force_disable - force disable multiple regulator consumers
3673  *
3674  * @num_consumers: Number of consumers
3675  * @consumers:     Consumer data; clients are stored here.
3676  * @return         0 on success, an errno on failure
3677  *
3678  * This convenience API allows consumers to forcibly disable multiple regulator
3679  * clients in a single API call.
3680  * NOTE: This should be used for situations when device damage will
3681  * likely occur if the regulators are not disabled (e.g. over temp).
3682  * Although regulator_force_disable function call for some consumers can
3683  * return error numbers, the function is called for all consumers.
3684  */
3685 int regulator_bulk_force_disable(int num_consumers,
3686                            struct regulator_bulk_data *consumers)
3687 {
3688         int i;
3689         int ret;
3690
3691         for (i = 0; i < num_consumers; i++)
3692                 consumers[i].ret =
3693                             regulator_force_disable(consumers[i].consumer);
3694
3695         for (i = 0; i < num_consumers; i++) {
3696                 if (consumers[i].ret != 0) {
3697                         ret = consumers[i].ret;
3698                         goto out;
3699                 }
3700         }
3701
3702         return 0;
3703 out:
3704         return ret;
3705 }
3706 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3707
3708 /**
3709  * regulator_bulk_free - free multiple regulator consumers
3710  *
3711  * @num_consumers: Number of consumers
3712  * @consumers:     Consumer data; clients are stored here.
3713  *
3714  * This convenience API allows consumers to free multiple regulator
3715  * clients in a single API call.
3716  */
3717 void regulator_bulk_free(int num_consumers,
3718                          struct regulator_bulk_data *consumers)
3719 {
3720         int i;
3721
3722         for (i = 0; i < num_consumers; i++) {
3723                 regulator_put(consumers[i].consumer);
3724                 consumers[i].consumer = NULL;
3725         }
3726 }
3727 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3728
3729 /**
3730  * regulator_notifier_call_chain - call regulator event notifier
3731  * @rdev: regulator source
3732  * @event: notifier block
3733  * @data: callback-specific data.
3734  *
3735  * Called by regulator drivers to notify clients a regulator event has
3736  * occurred. We also notify regulator clients downstream.
3737  * Note lock must be held by caller.
3738  */
3739 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3740                                   unsigned long event, void *data)
3741 {
3742         lockdep_assert_held_once(&rdev->mutex);
3743
3744         _notifier_call_chain(rdev, event, data);
3745         return NOTIFY_DONE;
3746
3747 }
3748 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3749
3750 /**
3751  * regulator_mode_to_status - convert a regulator mode into a status
3752  *
3753  * @mode: Mode to convert
3754  *
3755  * Convert a regulator mode into a status.
3756  */
3757 int regulator_mode_to_status(unsigned int mode)
3758 {
3759         switch (mode) {
3760         case REGULATOR_MODE_FAST:
3761                 return REGULATOR_STATUS_FAST;
3762         case REGULATOR_MODE_NORMAL:
3763                 return REGULATOR_STATUS_NORMAL;
3764         case REGULATOR_MODE_IDLE:
3765                 return REGULATOR_STATUS_IDLE;
3766         case REGULATOR_MODE_STANDBY:
3767                 return REGULATOR_STATUS_STANDBY;
3768         default:
3769                 return REGULATOR_STATUS_UNDEFINED;
3770         }
3771 }
3772 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3773
3774 static struct attribute *regulator_dev_attrs[] = {
3775         &dev_attr_name.attr,
3776         &dev_attr_num_users.attr,
3777         &dev_attr_type.attr,
3778         &dev_attr_microvolts.attr,
3779         &dev_attr_microamps.attr,
3780         &dev_attr_opmode.attr,
3781         &dev_attr_state.attr,
3782         &dev_attr_status.attr,
3783         &dev_attr_bypass.attr,
3784         &dev_attr_requested_microamps.attr,
3785         &dev_attr_min_microvolts.attr,
3786         &dev_attr_max_microvolts.attr,
3787         &dev_attr_min_microamps.attr,
3788         &dev_attr_max_microamps.attr,
3789         &dev_attr_suspend_standby_state.attr,
3790         &dev_attr_suspend_mem_state.attr,
3791         &dev_attr_suspend_disk_state.attr,
3792         &dev_attr_suspend_standby_microvolts.attr,
3793         &dev_attr_suspend_mem_microvolts.attr,
3794         &dev_attr_suspend_disk_microvolts.attr,
3795         &dev_attr_suspend_standby_mode.attr,
3796         &dev_attr_suspend_mem_mode.attr,
3797         &dev_attr_suspend_disk_mode.attr,
3798         NULL
3799 };
3800
3801 /*
3802  * To avoid cluttering sysfs (and memory) with useless state, only
3803  * create attributes that can be meaningfully displayed.
3804  */
3805 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3806                                          struct attribute *attr, int idx)
3807 {
3808         struct device *dev = kobj_to_dev(kobj);
3809         struct regulator_dev *rdev = dev_to_rdev(dev);
3810         const struct regulator_ops *ops = rdev->desc->ops;
3811         umode_t mode = attr->mode;
3812
3813         /* these three are always present */
3814         if (attr == &dev_attr_name.attr ||
3815             attr == &dev_attr_num_users.attr ||
3816             attr == &dev_attr_type.attr)
3817                 return mode;
3818
3819         /* some attributes need specific methods to be displayed */
3820         if (attr == &dev_attr_microvolts.attr) {
3821                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3822                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3823                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3824                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3825                         return mode;
3826                 return 0;
3827         }
3828
3829         if (attr == &dev_attr_microamps.attr)
3830                 return ops->get_current_limit ? mode : 0;
3831
3832         if (attr == &dev_attr_opmode.attr)
3833                 return ops->get_mode ? mode : 0;
3834
3835         if (attr == &dev_attr_state.attr)
3836                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3837
3838         if (attr == &dev_attr_status.attr)
3839                 return ops->get_status ? mode : 0;
3840
3841         if (attr == &dev_attr_bypass.attr)
3842                 return ops->get_bypass ? mode : 0;
3843
3844         /* some attributes are type-specific */
3845         if (attr == &dev_attr_requested_microamps.attr)
3846                 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3847
3848         /* constraints need specific supporting methods */
3849         if (attr == &dev_attr_min_microvolts.attr ||
3850             attr == &dev_attr_max_microvolts.attr)
3851                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3852
3853         if (attr == &dev_attr_min_microamps.attr ||
3854             attr == &dev_attr_max_microamps.attr)
3855                 return ops->set_current_limit ? mode : 0;
3856
3857         if (attr == &dev_attr_suspend_standby_state.attr ||
3858             attr == &dev_attr_suspend_mem_state.attr ||
3859             attr == &dev_attr_suspend_disk_state.attr)
3860                 return mode;
3861
3862         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3863             attr == &dev_attr_suspend_mem_microvolts.attr ||
3864             attr == &dev_attr_suspend_disk_microvolts.attr)
3865                 return ops->set_suspend_voltage ? mode : 0;
3866
3867         if (attr == &dev_attr_suspend_standby_mode.attr ||
3868             attr == &dev_attr_suspend_mem_mode.attr ||
3869             attr == &dev_attr_suspend_disk_mode.attr)
3870                 return ops->set_suspend_mode ? mode : 0;
3871
3872         return mode;
3873 }
3874
3875 static const struct attribute_group regulator_dev_group = {
3876         .attrs = regulator_dev_attrs,
3877         .is_visible = regulator_attr_is_visible,
3878 };
3879
3880 static const struct attribute_group *regulator_dev_groups[] = {
3881         &regulator_dev_group,
3882         NULL
3883 };
3884
3885 static void regulator_dev_release(struct device *dev)
3886 {
3887         struct regulator_dev *rdev = dev_get_drvdata(dev);
3888
3889         kfree(rdev->constraints);
3890         of_node_put(rdev->dev.of_node);
3891         kfree(rdev);
3892 }
3893
3894 static struct class regulator_class = {
3895         .name = "regulator",
3896         .dev_release = regulator_dev_release,
3897         .dev_groups = regulator_dev_groups,
3898 };
3899
3900 static void rdev_init_debugfs(struct regulator_dev *rdev)
3901 {
3902         struct device *parent = rdev->dev.parent;
3903         const char *rname = rdev_get_name(rdev);
3904         char name[NAME_MAX];
3905
3906         /* Avoid duplicate debugfs directory names */
3907         if (parent && rname == rdev->desc->name) {
3908                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3909                          rname);
3910                 rname = name;
3911         }
3912
3913         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3914         if (!rdev->debugfs) {
3915                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3916                 return;
3917         }
3918
3919         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3920                            &rdev->use_count);
3921         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3922                            &rdev->open_count);
3923         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3924                            &rdev->bypass_count);
3925 }
3926
3927 static int regulator_register_resolve_supply(struct device *dev, void *data)
3928 {
3929         struct regulator_dev *rdev = dev_to_rdev(dev);
3930
3931         if (regulator_resolve_supply(rdev))
3932                 rdev_dbg(rdev, "unable to resolve supply\n");
3933
3934         return 0;
3935 }
3936
3937 /**
3938  * regulator_register - register regulator
3939  * @regulator_desc: regulator to register
3940  * @cfg: runtime configuration for regulator
3941  *
3942  * Called by regulator drivers to register a regulator.
3943  * Returns a valid pointer to struct regulator_dev on success
3944  * or an ERR_PTR() on error.
3945  */
3946 struct regulator_dev *
3947 regulator_register(const struct regulator_desc *regulator_desc,
3948                    const struct regulator_config *cfg)
3949 {
3950         const struct regulation_constraints *constraints = NULL;
3951         const struct regulator_init_data *init_data;
3952         struct regulator_config *config = NULL;
3953         static atomic_t regulator_no = ATOMIC_INIT(-1);
3954         struct regulator_dev *rdev;
3955         struct device *dev;
3956         int ret, i;
3957
3958         if (regulator_desc == NULL || cfg == NULL)
3959                 return ERR_PTR(-EINVAL);
3960
3961         dev = cfg->dev;
3962         WARN_ON(!dev);
3963
3964         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3965                 return ERR_PTR(-EINVAL);
3966
3967         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3968             regulator_desc->type != REGULATOR_CURRENT)
3969                 return ERR_PTR(-EINVAL);
3970
3971         /* Only one of each should be implemented */
3972         WARN_ON(regulator_desc->ops->get_voltage &&
3973                 regulator_desc->ops->get_voltage_sel);
3974         WARN_ON(regulator_desc->ops->set_voltage &&
3975                 regulator_desc->ops->set_voltage_sel);
3976
3977         /* If we're using selectors we must implement list_voltage. */
3978         if (regulator_desc->ops->get_voltage_sel &&
3979             !regulator_desc->ops->list_voltage) {
3980                 return ERR_PTR(-EINVAL);
3981         }
3982         if (regulator_desc->ops->set_voltage_sel &&
3983             !regulator_desc->ops->list_voltage) {
3984                 return ERR_PTR(-EINVAL);
3985         }
3986
3987         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3988         if (rdev == NULL)
3989                 return ERR_PTR(-ENOMEM);
3990
3991         /*
3992          * Duplicate the config so the driver could override it after
3993          * parsing init data.
3994          */
3995         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3996         if (config == NULL) {
3997                 kfree(rdev);
3998                 return ERR_PTR(-ENOMEM);
3999         }
4000
4001         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4002                                                &rdev->dev.of_node);
4003         if (!init_data) {
4004                 init_data = config->init_data;
4005                 rdev->dev.of_node = of_node_get(config->of_node);
4006         }
4007
4008         mutex_init(&rdev->mutex);
4009         rdev->reg_data = config->driver_data;
4010         rdev->owner = regulator_desc->owner;
4011         rdev->desc = regulator_desc;
4012         if (config->regmap)
4013                 rdev->regmap = config->regmap;
4014         else if (dev_get_regmap(dev, NULL))
4015                 rdev->regmap = dev_get_regmap(dev, NULL);
4016         else if (dev->parent)
4017                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
4018         INIT_LIST_HEAD(&rdev->consumer_list);
4019         INIT_LIST_HEAD(&rdev->list);
4020         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4021         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4022
4023         /* preform any regulator specific init */
4024         if (init_data && init_data->regulator_init) {
4025                 ret = init_data->regulator_init(rdev->reg_data);
4026                 if (ret < 0)
4027                         goto clean;
4028         }
4029
4030         if ((config->ena_gpio || config->ena_gpio_initialized) &&
4031             gpio_is_valid(config->ena_gpio)) {
4032                 mutex_lock(&regulator_list_mutex);
4033                 ret = regulator_ena_gpio_request(rdev, config);
4034                 mutex_unlock(&regulator_list_mutex);
4035                 if (ret != 0) {
4036                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
4037                                  config->ena_gpio, ret);
4038                         goto clean;
4039                 }
4040         }
4041
4042         /* register with sysfs */
4043         rdev->dev.class = &regulator_class;
4044         rdev->dev.parent = dev;
4045         dev_set_name(&rdev->dev, "regulator.%lu",
4046                     (unsigned long) atomic_inc_return(&regulator_no));
4047
4048         /* set regulator constraints */
4049         if (init_data)
4050                 constraints = &init_data->constraints;
4051
4052         if (init_data && init_data->supply_regulator)
4053                 rdev->supply_name = init_data->supply_regulator;
4054         else if (regulator_desc->supply_name)
4055                 rdev->supply_name = regulator_desc->supply_name;
4056
4057         /*
4058          * Attempt to resolve the regulator supply, if specified,
4059          * but don't return an error if we fail because we will try
4060          * to resolve it again later as more regulators are added.
4061          */
4062         if (regulator_resolve_supply(rdev))
4063                 rdev_dbg(rdev, "unable to resolve supply\n");
4064
4065         ret = set_machine_constraints(rdev, constraints);
4066         if (ret < 0)
4067                 goto wash;
4068
4069         /* add consumers devices */
4070         if (init_data) {
4071                 mutex_lock(&regulator_list_mutex);
4072                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
4073                         ret = set_consumer_device_supply(rdev,
4074                                 init_data->consumer_supplies[i].dev_name,
4075                                 init_data->consumer_supplies[i].supply);
4076                         if (ret < 0) {
4077                                 mutex_unlock(&regulator_list_mutex);
4078                                 dev_err(dev, "Failed to set supply %s\n",
4079                                         init_data->consumer_supplies[i].supply);
4080                                 goto unset_supplies;
4081                         }
4082                 }
4083                 mutex_unlock(&regulator_list_mutex);
4084         }
4085
4086         ret = device_register(&rdev->dev);
4087         if (ret != 0) {
4088                 put_device(&rdev->dev);
4089                 goto unset_supplies;
4090         }
4091
4092         dev_set_drvdata(&rdev->dev, rdev);
4093         rdev_init_debugfs(rdev);
4094
4095         /* try to resolve regulators supply since a new one was registered */
4096         class_for_each_device(&regulator_class, NULL, NULL,
4097                               regulator_register_resolve_supply);
4098         kfree(config);
4099         return rdev;
4100
4101 unset_supplies:
4102         mutex_lock(&regulator_list_mutex);
4103         unset_regulator_supplies(rdev);
4104         mutex_unlock(&regulator_list_mutex);
4105 wash:
4106         kfree(rdev->constraints);
4107         mutex_lock(&regulator_list_mutex);
4108         regulator_ena_gpio_free(rdev);
4109         mutex_unlock(&regulator_list_mutex);
4110 clean:
4111         kfree(rdev);
4112         kfree(config);
4113         return ERR_PTR(ret);
4114 }
4115 EXPORT_SYMBOL_GPL(regulator_register);
4116
4117 /**
4118  * regulator_unregister - unregister regulator
4119  * @rdev: regulator to unregister
4120  *
4121  * Called by regulator drivers to unregister a regulator.
4122  */
4123 void regulator_unregister(struct regulator_dev *rdev)
4124 {
4125         if (rdev == NULL)
4126                 return;
4127
4128         if (rdev->supply) {
4129                 while (rdev->use_count--)
4130                         regulator_disable(rdev->supply);
4131                 regulator_put(rdev->supply);
4132         }
4133         mutex_lock(&regulator_list_mutex);
4134         debugfs_remove_recursive(rdev->debugfs);
4135         flush_work(&rdev->disable_work.work);
4136         WARN_ON(rdev->open_count);
4137         unset_regulator_supplies(rdev);
4138         list_del(&rdev->list);
4139         regulator_ena_gpio_free(rdev);
4140         mutex_unlock(&regulator_list_mutex);
4141         device_unregister(&rdev->dev);
4142 }
4143 EXPORT_SYMBOL_GPL(regulator_unregister);
4144
4145 static int _regulator_suspend_prepare(struct device *dev, void *data)
4146 {
4147         struct regulator_dev *rdev = dev_to_rdev(dev);
4148         const suspend_state_t *state = data;
4149         int ret;
4150
4151         mutex_lock(&rdev->mutex);
4152         ret = suspend_prepare(rdev, *state);
4153         mutex_unlock(&rdev->mutex);
4154
4155         return ret;
4156 }
4157
4158 /**
4159  * regulator_suspend_prepare - prepare regulators for system wide suspend
4160  * @state: system suspend state
4161  *
4162  * Configure each regulator with it's suspend operating parameters for state.
4163  * This will usually be called by machine suspend code prior to supending.
4164  */
4165 int regulator_suspend_prepare(suspend_state_t state)
4166 {
4167         /* ON is handled by regulator active state */
4168         if (state == PM_SUSPEND_ON)
4169                 return -EINVAL;
4170
4171         return class_for_each_device(&regulator_class, NULL, &state,
4172                                      _regulator_suspend_prepare);
4173 }
4174 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4175
4176 static int _regulator_suspend_finish(struct device *dev, void *data)
4177 {
4178         struct regulator_dev *rdev = dev_to_rdev(dev);
4179         int ret;
4180
4181         mutex_lock(&rdev->mutex);
4182         if (rdev->use_count > 0  || rdev->constraints->always_on) {
4183                 if (!_regulator_is_enabled(rdev)) {
4184                         ret = _regulator_do_enable(rdev);
4185                         if (ret)
4186                                 dev_err(dev,
4187                                         "Failed to resume regulator %d\n",
4188                                         ret);
4189                 }
4190         } else {
4191                 if (!have_full_constraints())
4192                         goto unlock;
4193                 if (!_regulator_is_enabled(rdev))
4194                         goto unlock;
4195
4196                 ret = _regulator_do_disable(rdev);
4197                 if (ret)
4198                         dev_err(dev, "Failed to suspend regulator %d\n", ret);
4199         }
4200 unlock:
4201         mutex_unlock(&rdev->mutex);
4202
4203         /* Keep processing regulators in spite of any errors */
4204         return 0;
4205 }
4206
4207 /**
4208  * regulator_suspend_finish - resume regulators from system wide suspend
4209  *
4210  * Turn on regulators that might be turned off by regulator_suspend_prepare
4211  * and that should be turned on according to the regulators properties.
4212  */
4213 int regulator_suspend_finish(void)
4214 {
4215         return class_for_each_device(&regulator_class, NULL, NULL,
4216                                      _regulator_suspend_finish);
4217 }
4218 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4219
4220 /**
4221  * regulator_has_full_constraints - the system has fully specified constraints
4222  *
4223  * Calling this function will cause the regulator API to disable all
4224  * regulators which have a zero use count and don't have an always_on
4225  * constraint in a late_initcall.
4226  *
4227  * The intention is that this will become the default behaviour in a
4228  * future kernel release so users are encouraged to use this facility
4229  * now.
4230  */
4231 void regulator_has_full_constraints(void)
4232 {
4233         has_full_constraints = 1;
4234 }
4235 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4236
4237 /**
4238  * rdev_get_drvdata - get rdev regulator driver data
4239  * @rdev: regulator
4240  *
4241  * Get rdev regulator driver private data. This call can be used in the
4242  * regulator driver context.
4243  */
4244 void *rdev_get_drvdata(struct regulator_dev *rdev)
4245 {
4246         return rdev->reg_data;
4247 }
4248 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4249
4250 /**
4251  * regulator_get_drvdata - get regulator driver data
4252  * @regulator: regulator
4253  *
4254  * Get regulator driver private data. This call can be used in the consumer
4255  * driver context when non API regulator specific functions need to be called.
4256  */
4257 void *regulator_get_drvdata(struct regulator *regulator)
4258 {
4259         return regulator->rdev->reg_data;
4260 }
4261 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4262
4263 /**
4264  * regulator_set_drvdata - set regulator driver data
4265  * @regulator: regulator
4266  * @data: data
4267  */
4268 void regulator_set_drvdata(struct regulator *regulator, void *data)
4269 {
4270         regulator->rdev->reg_data = data;
4271 }
4272 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4273
4274 /**
4275  * regulator_get_id - get regulator ID
4276  * @rdev: regulator
4277  */
4278 int rdev_get_id(struct regulator_dev *rdev)
4279 {
4280         return rdev->desc->id;
4281 }
4282 EXPORT_SYMBOL_GPL(rdev_get_id);
4283
4284 struct device *rdev_get_dev(struct regulator_dev *rdev)
4285 {
4286         return &rdev->dev;
4287 }
4288 EXPORT_SYMBOL_GPL(rdev_get_dev);
4289
4290 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4291 {
4292         return reg_init_data->driver_data;
4293 }
4294 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4295
4296 #ifdef CONFIG_DEBUG_FS
4297 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4298                                     size_t count, loff_t *ppos)
4299 {
4300         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4301         ssize_t len, ret = 0;
4302         struct regulator_map *map;
4303
4304         if (!buf)
4305                 return -ENOMEM;
4306
4307         list_for_each_entry(map, &regulator_map_list, list) {
4308                 len = snprintf(buf + ret, PAGE_SIZE - ret,
4309                                "%s -> %s.%s\n",
4310                                rdev_get_name(map->regulator), map->dev_name,
4311                                map->supply);
4312                 if (len >= 0)
4313                         ret += len;
4314                 if (ret > PAGE_SIZE) {
4315                         ret = PAGE_SIZE;
4316                         break;
4317                 }
4318         }
4319
4320         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4321
4322         kfree(buf);
4323
4324         return ret;
4325 }
4326 #endif
4327
4328 static const struct file_operations supply_map_fops = {
4329 #ifdef CONFIG_DEBUG_FS
4330         .read = supply_map_read_file,
4331         .llseek = default_llseek,
4332 #endif
4333 };
4334
4335 #ifdef CONFIG_DEBUG_FS
4336 struct summary_data {
4337         struct seq_file *s;
4338         struct regulator_dev *parent;
4339         int level;
4340 };
4341
4342 static void regulator_summary_show_subtree(struct seq_file *s,
4343                                            struct regulator_dev *rdev,
4344                                            int level);
4345
4346 static int regulator_summary_show_children(struct device *dev, void *data)
4347 {
4348         struct regulator_dev *rdev = dev_to_rdev(dev);
4349         struct summary_data *summary_data = data;
4350
4351         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4352                 regulator_summary_show_subtree(summary_data->s, rdev,
4353                                                summary_data->level + 1);
4354
4355         return 0;
4356 }
4357
4358 static void regulator_summary_show_subtree(struct seq_file *s,
4359                                            struct regulator_dev *rdev,
4360                                            int level)
4361 {
4362         struct regulation_constraints *c;
4363         struct regulator *consumer;
4364         struct summary_data summary_data;
4365
4366         if (!rdev)
4367                 return;
4368
4369         seq_printf(s, "%*s%-*s %3d %4d %6d ",
4370                    level * 3 + 1, "",
4371                    30 - level * 3, rdev_get_name(rdev),
4372                    rdev->use_count, rdev->open_count, rdev->bypass_count);
4373
4374         seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4375         seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4376
4377         c = rdev->constraints;
4378         if (c) {
4379                 switch (rdev->desc->type) {
4380                 case REGULATOR_VOLTAGE:
4381                         seq_printf(s, "%5dmV %5dmV ",
4382                                    c->min_uV / 1000, c->max_uV / 1000);
4383                         break;
4384                 case REGULATOR_CURRENT:
4385                         seq_printf(s, "%5dmA %5dmA ",
4386                                    c->min_uA / 1000, c->max_uA / 1000);
4387                         break;
4388                 }
4389         }
4390
4391         seq_puts(s, "\n");
4392
4393         list_for_each_entry(consumer, &rdev->consumer_list, list) {
4394                 if (consumer->dev->class == &regulator_class)
4395                         continue;
4396
4397                 seq_printf(s, "%*s%-*s ",
4398                            (level + 1) * 3 + 1, "",
4399                            30 - (level + 1) * 3, dev_name(consumer->dev));
4400
4401                 switch (rdev->desc->type) {
4402                 case REGULATOR_VOLTAGE:
4403                         seq_printf(s, "%37dmV %5dmV",
4404                                    consumer->min_uV / 1000,
4405                                    consumer->max_uV / 1000);
4406                         break;
4407                 case REGULATOR_CURRENT:
4408                         break;
4409                 }
4410
4411                 seq_puts(s, "\n");
4412         }
4413
4414         summary_data.s = s;
4415         summary_data.level = level;
4416         summary_data.parent = rdev;
4417
4418         class_for_each_device(&regulator_class, NULL, &summary_data,
4419                               regulator_summary_show_children);
4420 }
4421
4422 static int regulator_summary_show_roots(struct device *dev, void *data)
4423 {
4424         struct regulator_dev *rdev = dev_to_rdev(dev);
4425         struct seq_file *s = data;
4426
4427         if (!rdev->supply)
4428                 regulator_summary_show_subtree(s, rdev, 0);
4429
4430         return 0;
4431 }
4432
4433 static int regulator_summary_show(struct seq_file *s, void *data)
4434 {
4435         seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4436         seq_puts(s, "-------------------------------------------------------------------------------\n");
4437
4438         class_for_each_device(&regulator_class, NULL, s,
4439                               regulator_summary_show_roots);
4440
4441         return 0;
4442 }
4443
4444 static int regulator_summary_open(struct inode *inode, struct file *file)
4445 {
4446         return single_open(file, regulator_summary_show, inode->i_private);
4447 }
4448 #endif
4449
4450 static const struct file_operations regulator_summary_fops = {
4451 #ifdef CONFIG_DEBUG_FS
4452         .open           = regulator_summary_open,
4453         .read           = seq_read,
4454         .llseek         = seq_lseek,
4455         .release        = single_release,
4456 #endif
4457 };
4458
4459 static int __init regulator_init(void)
4460 {
4461         int ret;
4462
4463         ret = class_register(&regulator_class);
4464
4465         debugfs_root = debugfs_create_dir("regulator", NULL);
4466         if (!debugfs_root)
4467                 pr_warn("regulator: Failed to create debugfs directory\n");
4468
4469         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4470                             &supply_map_fops);
4471
4472         debugfs_create_file("regulator_summary", 0444, debugfs_root,
4473                             NULL, &regulator_summary_fops);
4474
4475         regulator_dummy_init();
4476
4477         return ret;
4478 }
4479
4480 /* init early to allow our consumers to complete system booting */
4481 core_initcall(regulator_init);
4482
4483 static int __init regulator_late_cleanup(struct device *dev, void *data)
4484 {
4485         struct regulator_dev *rdev = dev_to_rdev(dev);
4486         const struct regulator_ops *ops = rdev->desc->ops;
4487         struct regulation_constraints *c = rdev->constraints;
4488         int enabled, ret;
4489
4490         if (c && c->always_on)
4491                 return 0;
4492
4493         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4494                 return 0;
4495
4496         mutex_lock(&rdev->mutex);
4497
4498         if (rdev->use_count)
4499                 goto unlock;
4500
4501         /* If we can't read the status assume it's on. */
4502         if (ops->is_enabled)
4503                 enabled = ops->is_enabled(rdev);
4504         else
4505                 enabled = 1;
4506
4507         if (!enabled)
4508                 goto unlock;
4509
4510         if (have_full_constraints()) {
4511                 /* We log since this may kill the system if it goes
4512                  * wrong. */
4513                 rdev_info(rdev, "disabling\n");
4514                 ret = _regulator_do_disable(rdev);
4515                 if (ret != 0)
4516                         rdev_err(rdev, "couldn't disable: %d\n", ret);
4517         } else {
4518                 /* The intention is that in future we will
4519                  * assume that full constraints are provided
4520                  * so warn even if we aren't going to do
4521                  * anything here.
4522                  */
4523                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4524         }
4525
4526 unlock:
4527         mutex_unlock(&rdev->mutex);
4528
4529         return 0;
4530 }
4531
4532 static int __init regulator_init_complete(void)
4533 {
4534         /*
4535          * Since DT doesn't provide an idiomatic mechanism for
4536          * enabling full constraints and since it's much more natural
4537          * with DT to provide them just assume that a DT enabled
4538          * system has full constraints.
4539          */
4540         if (of_have_populated_dt())
4541                 has_full_constraints = true;
4542
4543         /* If we have a full configuration then disable any regulators
4544          * we have permission to change the status for and which are
4545          * not in use or always_on.  This is effectively the default
4546          * for DT and ACPI as they have full constraints.
4547          */
4548         class_for_each_device(&regulator_class, NULL, NULL,
4549                               regulator_late_cleanup);
4550
4551         return 0;
4552 }
4553 late_initcall_sync(regulator_init_complete);