]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/regulator/core.c
27d062e1395c30411ec4a1f20b06e2d455d62f4a
[mv-sheeva.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/slab.h>
20 #include <linux/err.h>
21 #include <linux/mutex.h>
22 #include <linux/suspend.h>
23 #include <linux/delay.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/driver.h>
26 #include <linux/regulator/machine.h>
27
28 #include "dummy.h"
29
30 #define REGULATOR_VERSION "0.5"
31
32 static DEFINE_MUTEX(regulator_list_mutex);
33 static LIST_HEAD(regulator_list);
34 static LIST_HEAD(regulator_map_list);
35 static int has_full_constraints;
36 static bool board_wants_dummy_regulator;
37
38 /*
39  * struct regulator_map
40  *
41  * Used to provide symbolic supply names to devices.
42  */
43 struct regulator_map {
44         struct list_head list;
45         const char *dev_name;   /* The dev_name() for the consumer */
46         const char *supply;
47         struct regulator_dev *regulator;
48 };
49
50 /*
51  * struct regulator
52  *
53  * One for each consumer device.
54  */
55 struct regulator {
56         struct device *dev;
57         struct list_head list;
58         int uA_load;
59         int min_uV;
60         int max_uV;
61         char *supply_name;
62         struct device_attribute dev_attr;
63         struct regulator_dev *rdev;
64 };
65
66 static int _regulator_is_enabled(struct regulator_dev *rdev);
67 static int _regulator_disable(struct regulator_dev *rdev,
68                 struct regulator_dev **supply_rdev_ptr);
69 static int _regulator_get_voltage(struct regulator_dev *rdev);
70 static int _regulator_get_current_limit(struct regulator_dev *rdev);
71 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
72 static void _notifier_call_chain(struct regulator_dev *rdev,
73                                   unsigned long event, void *data);
74
75 static const char *rdev_get_name(struct regulator_dev *rdev)
76 {
77         if (rdev->constraints && rdev->constraints->name)
78                 return rdev->constraints->name;
79         else if (rdev->desc->name)
80                 return rdev->desc->name;
81         else
82                 return "";
83 }
84
85 /* gets the regulator for a given consumer device */
86 static struct regulator *get_device_regulator(struct device *dev)
87 {
88         struct regulator *regulator = NULL;
89         struct regulator_dev *rdev;
90
91         mutex_lock(&regulator_list_mutex);
92         list_for_each_entry(rdev, &regulator_list, list) {
93                 mutex_lock(&rdev->mutex);
94                 list_for_each_entry(regulator, &rdev->consumer_list, list) {
95                         if (regulator->dev == dev) {
96                                 mutex_unlock(&rdev->mutex);
97                                 mutex_unlock(&regulator_list_mutex);
98                                 return regulator;
99                         }
100                 }
101                 mutex_unlock(&rdev->mutex);
102         }
103         mutex_unlock(&regulator_list_mutex);
104         return NULL;
105 }
106
107 /* Platform voltage constraint check */
108 static int regulator_check_voltage(struct regulator_dev *rdev,
109                                    int *min_uV, int *max_uV)
110 {
111         BUG_ON(*min_uV > *max_uV);
112
113         if (!rdev->constraints) {
114                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
115                        rdev_get_name(rdev));
116                 return -ENODEV;
117         }
118         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
119                 printk(KERN_ERR "%s: operation not allowed for %s\n",
120                        __func__, rdev_get_name(rdev));
121                 return -EPERM;
122         }
123
124         if (*max_uV > rdev->constraints->max_uV)
125                 *max_uV = rdev->constraints->max_uV;
126         if (*min_uV < rdev->constraints->min_uV)
127                 *min_uV = rdev->constraints->min_uV;
128
129         if (*min_uV > *max_uV)
130                 return -EINVAL;
131
132         return 0;
133 }
134
135 /* current constraint check */
136 static int regulator_check_current_limit(struct regulator_dev *rdev,
137                                         int *min_uA, int *max_uA)
138 {
139         BUG_ON(*min_uA > *max_uA);
140
141         if (!rdev->constraints) {
142                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
143                        rdev_get_name(rdev));
144                 return -ENODEV;
145         }
146         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
147                 printk(KERN_ERR "%s: operation not allowed for %s\n",
148                        __func__, rdev_get_name(rdev));
149                 return -EPERM;
150         }
151
152         if (*max_uA > rdev->constraints->max_uA)
153                 *max_uA = rdev->constraints->max_uA;
154         if (*min_uA < rdev->constraints->min_uA)
155                 *min_uA = rdev->constraints->min_uA;
156
157         if (*min_uA > *max_uA)
158                 return -EINVAL;
159
160         return 0;
161 }
162
163 /* operating mode constraint check */
164 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
165 {
166         switch (mode) {
167         case REGULATOR_MODE_FAST:
168         case REGULATOR_MODE_NORMAL:
169         case REGULATOR_MODE_IDLE:
170         case REGULATOR_MODE_STANDBY:
171                 break;
172         default:
173                 return -EINVAL;
174         }
175
176         if (!rdev->constraints) {
177                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
178                        rdev_get_name(rdev));
179                 return -ENODEV;
180         }
181         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
182                 printk(KERN_ERR "%s: operation not allowed for %s\n",
183                        __func__, rdev_get_name(rdev));
184                 return -EPERM;
185         }
186         if (!(rdev->constraints->valid_modes_mask & mode)) {
187                 printk(KERN_ERR "%s: invalid mode %x for %s\n",
188                        __func__, mode, rdev_get_name(rdev));
189                 return -EINVAL;
190         }
191         return 0;
192 }
193
194 /* dynamic regulator mode switching constraint check */
195 static int regulator_check_drms(struct regulator_dev *rdev)
196 {
197         if (!rdev->constraints) {
198                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
199                        rdev_get_name(rdev));
200                 return -ENODEV;
201         }
202         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
203                 printk(KERN_ERR "%s: operation not allowed for %s\n",
204                        __func__, rdev_get_name(rdev));
205                 return -EPERM;
206         }
207         return 0;
208 }
209
210 static ssize_t device_requested_uA_show(struct device *dev,
211                              struct device_attribute *attr, char *buf)
212 {
213         struct regulator *regulator;
214
215         regulator = get_device_regulator(dev);
216         if (regulator == NULL)
217                 return 0;
218
219         return sprintf(buf, "%d\n", regulator->uA_load);
220 }
221
222 static ssize_t regulator_uV_show(struct device *dev,
223                                 struct device_attribute *attr, char *buf)
224 {
225         struct regulator_dev *rdev = dev_get_drvdata(dev);
226         ssize_t ret;
227
228         mutex_lock(&rdev->mutex);
229         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
230         mutex_unlock(&rdev->mutex);
231
232         return ret;
233 }
234 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
235
236 static ssize_t regulator_uA_show(struct device *dev,
237                                 struct device_attribute *attr, char *buf)
238 {
239         struct regulator_dev *rdev = dev_get_drvdata(dev);
240
241         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
242 }
243 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
244
245 static ssize_t regulator_name_show(struct device *dev,
246                              struct device_attribute *attr, char *buf)
247 {
248         struct regulator_dev *rdev = dev_get_drvdata(dev);
249
250         return sprintf(buf, "%s\n", rdev_get_name(rdev));
251 }
252
253 static ssize_t regulator_print_opmode(char *buf, int mode)
254 {
255         switch (mode) {
256         case REGULATOR_MODE_FAST:
257                 return sprintf(buf, "fast\n");
258         case REGULATOR_MODE_NORMAL:
259                 return sprintf(buf, "normal\n");
260         case REGULATOR_MODE_IDLE:
261                 return sprintf(buf, "idle\n");
262         case REGULATOR_MODE_STANDBY:
263                 return sprintf(buf, "standby\n");
264         }
265         return sprintf(buf, "unknown\n");
266 }
267
268 static ssize_t regulator_opmode_show(struct device *dev,
269                                     struct device_attribute *attr, char *buf)
270 {
271         struct regulator_dev *rdev = dev_get_drvdata(dev);
272
273         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
274 }
275 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
276
277 static ssize_t regulator_print_state(char *buf, int state)
278 {
279         if (state > 0)
280                 return sprintf(buf, "enabled\n");
281         else if (state == 0)
282                 return sprintf(buf, "disabled\n");
283         else
284                 return sprintf(buf, "unknown\n");
285 }
286
287 static ssize_t regulator_state_show(struct device *dev,
288                                    struct device_attribute *attr, char *buf)
289 {
290         struct regulator_dev *rdev = dev_get_drvdata(dev);
291         ssize_t ret;
292
293         mutex_lock(&rdev->mutex);
294         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
295         mutex_unlock(&rdev->mutex);
296
297         return ret;
298 }
299 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
300
301 static ssize_t regulator_status_show(struct device *dev,
302                                    struct device_attribute *attr, char *buf)
303 {
304         struct regulator_dev *rdev = dev_get_drvdata(dev);
305         int status;
306         char *label;
307
308         status = rdev->desc->ops->get_status(rdev);
309         if (status < 0)
310                 return status;
311
312         switch (status) {
313         case REGULATOR_STATUS_OFF:
314                 label = "off";
315                 break;
316         case REGULATOR_STATUS_ON:
317                 label = "on";
318                 break;
319         case REGULATOR_STATUS_ERROR:
320                 label = "error";
321                 break;
322         case REGULATOR_STATUS_FAST:
323                 label = "fast";
324                 break;
325         case REGULATOR_STATUS_NORMAL:
326                 label = "normal";
327                 break;
328         case REGULATOR_STATUS_IDLE:
329                 label = "idle";
330                 break;
331         case REGULATOR_STATUS_STANDBY:
332                 label = "standby";
333                 break;
334         default:
335                 return -ERANGE;
336         }
337
338         return sprintf(buf, "%s\n", label);
339 }
340 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
341
342 static ssize_t regulator_min_uA_show(struct device *dev,
343                                     struct device_attribute *attr, char *buf)
344 {
345         struct regulator_dev *rdev = dev_get_drvdata(dev);
346
347         if (!rdev->constraints)
348                 return sprintf(buf, "constraint not defined\n");
349
350         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
351 }
352 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
353
354 static ssize_t regulator_max_uA_show(struct device *dev,
355                                     struct device_attribute *attr, char *buf)
356 {
357         struct regulator_dev *rdev = dev_get_drvdata(dev);
358
359         if (!rdev->constraints)
360                 return sprintf(buf, "constraint not defined\n");
361
362         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
363 }
364 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
365
366 static ssize_t regulator_min_uV_show(struct device *dev,
367                                     struct device_attribute *attr, char *buf)
368 {
369         struct regulator_dev *rdev = dev_get_drvdata(dev);
370
371         if (!rdev->constraints)
372                 return sprintf(buf, "constraint not defined\n");
373
374         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
375 }
376 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
377
378 static ssize_t regulator_max_uV_show(struct device *dev,
379                                     struct device_attribute *attr, char *buf)
380 {
381         struct regulator_dev *rdev = dev_get_drvdata(dev);
382
383         if (!rdev->constraints)
384                 return sprintf(buf, "constraint not defined\n");
385
386         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
387 }
388 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
389
390 static ssize_t regulator_total_uA_show(struct device *dev,
391                                       struct device_attribute *attr, char *buf)
392 {
393         struct regulator_dev *rdev = dev_get_drvdata(dev);
394         struct regulator *regulator;
395         int uA = 0;
396
397         mutex_lock(&rdev->mutex);
398         list_for_each_entry(regulator, &rdev->consumer_list, list)
399                 uA += regulator->uA_load;
400         mutex_unlock(&rdev->mutex);
401         return sprintf(buf, "%d\n", uA);
402 }
403 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
404
405 static ssize_t regulator_num_users_show(struct device *dev,
406                                       struct device_attribute *attr, char *buf)
407 {
408         struct regulator_dev *rdev = dev_get_drvdata(dev);
409         return sprintf(buf, "%d\n", rdev->use_count);
410 }
411
412 static ssize_t regulator_type_show(struct device *dev,
413                                   struct device_attribute *attr, char *buf)
414 {
415         struct regulator_dev *rdev = dev_get_drvdata(dev);
416
417         switch (rdev->desc->type) {
418         case REGULATOR_VOLTAGE:
419                 return sprintf(buf, "voltage\n");
420         case REGULATOR_CURRENT:
421                 return sprintf(buf, "current\n");
422         }
423         return sprintf(buf, "unknown\n");
424 }
425
426 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
427                                 struct device_attribute *attr, char *buf)
428 {
429         struct regulator_dev *rdev = dev_get_drvdata(dev);
430
431         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
432 }
433 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
434                 regulator_suspend_mem_uV_show, NULL);
435
436 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
437                                 struct device_attribute *attr, char *buf)
438 {
439         struct regulator_dev *rdev = dev_get_drvdata(dev);
440
441         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
442 }
443 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
444                 regulator_suspend_disk_uV_show, NULL);
445
446 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
447                                 struct device_attribute *attr, char *buf)
448 {
449         struct regulator_dev *rdev = dev_get_drvdata(dev);
450
451         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
452 }
453 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
454                 regulator_suspend_standby_uV_show, NULL);
455
456 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
457                                 struct device_attribute *attr, char *buf)
458 {
459         struct regulator_dev *rdev = dev_get_drvdata(dev);
460
461         return regulator_print_opmode(buf,
462                 rdev->constraints->state_mem.mode);
463 }
464 static DEVICE_ATTR(suspend_mem_mode, 0444,
465                 regulator_suspend_mem_mode_show, NULL);
466
467 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
468                                 struct device_attribute *attr, char *buf)
469 {
470         struct regulator_dev *rdev = dev_get_drvdata(dev);
471
472         return regulator_print_opmode(buf,
473                 rdev->constraints->state_disk.mode);
474 }
475 static DEVICE_ATTR(suspend_disk_mode, 0444,
476                 regulator_suspend_disk_mode_show, NULL);
477
478 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
479                                 struct device_attribute *attr, char *buf)
480 {
481         struct regulator_dev *rdev = dev_get_drvdata(dev);
482
483         return regulator_print_opmode(buf,
484                 rdev->constraints->state_standby.mode);
485 }
486 static DEVICE_ATTR(suspend_standby_mode, 0444,
487                 regulator_suspend_standby_mode_show, NULL);
488
489 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
490                                    struct device_attribute *attr, char *buf)
491 {
492         struct regulator_dev *rdev = dev_get_drvdata(dev);
493
494         return regulator_print_state(buf,
495                         rdev->constraints->state_mem.enabled);
496 }
497 static DEVICE_ATTR(suspend_mem_state, 0444,
498                 regulator_suspend_mem_state_show, NULL);
499
500 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
501                                    struct device_attribute *attr, char *buf)
502 {
503         struct regulator_dev *rdev = dev_get_drvdata(dev);
504
505         return regulator_print_state(buf,
506                         rdev->constraints->state_disk.enabled);
507 }
508 static DEVICE_ATTR(suspend_disk_state, 0444,
509                 regulator_suspend_disk_state_show, NULL);
510
511 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
512                                    struct device_attribute *attr, char *buf)
513 {
514         struct regulator_dev *rdev = dev_get_drvdata(dev);
515
516         return regulator_print_state(buf,
517                         rdev->constraints->state_standby.enabled);
518 }
519 static DEVICE_ATTR(suspend_standby_state, 0444,
520                 regulator_suspend_standby_state_show, NULL);
521
522
523 /*
524  * These are the only attributes are present for all regulators.
525  * Other attributes are a function of regulator functionality.
526  */
527 static struct device_attribute regulator_dev_attrs[] = {
528         __ATTR(name, 0444, regulator_name_show, NULL),
529         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
530         __ATTR(type, 0444, regulator_type_show, NULL),
531         __ATTR_NULL,
532 };
533
534 static void regulator_dev_release(struct device *dev)
535 {
536         struct regulator_dev *rdev = dev_get_drvdata(dev);
537         kfree(rdev);
538 }
539
540 static struct class regulator_class = {
541         .name = "regulator",
542         .dev_release = regulator_dev_release,
543         .dev_attrs = regulator_dev_attrs,
544 };
545
546 /* Calculate the new optimum regulator operating mode based on the new total
547  * consumer load. All locks held by caller */
548 static void drms_uA_update(struct regulator_dev *rdev)
549 {
550         struct regulator *sibling;
551         int current_uA = 0, output_uV, input_uV, err;
552         unsigned int mode;
553
554         err = regulator_check_drms(rdev);
555         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
556             !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
557                 return;
558
559         /* get output voltage */
560         output_uV = rdev->desc->ops->get_voltage(rdev);
561         if (output_uV <= 0)
562                 return;
563
564         /* get input voltage */
565         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
566                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
567         else
568                 input_uV = rdev->constraints->input_uV;
569         if (input_uV <= 0)
570                 return;
571
572         /* calc total requested load */
573         list_for_each_entry(sibling, &rdev->consumer_list, list)
574                 current_uA += sibling->uA_load;
575
576         /* now get the optimum mode for our new total regulator load */
577         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
578                                                   output_uV, current_uA);
579
580         /* check the new mode is allowed */
581         err = regulator_check_mode(rdev, mode);
582         if (err == 0)
583                 rdev->desc->ops->set_mode(rdev, mode);
584 }
585
586 static int suspend_set_state(struct regulator_dev *rdev,
587         struct regulator_state *rstate)
588 {
589         int ret = 0;
590         bool can_set_state;
591
592         can_set_state = rdev->desc->ops->set_suspend_enable &&
593                 rdev->desc->ops->set_suspend_disable;
594
595         /* If we have no suspend mode configration don't set anything;
596          * only warn if the driver actually makes the suspend mode
597          * configurable.
598          */
599         if (!rstate->enabled && !rstate->disabled) {
600                 if (can_set_state)
601                         printk(KERN_WARNING "%s: No configuration for %s\n",
602                                __func__, rdev_get_name(rdev));
603                 return 0;
604         }
605
606         if (rstate->enabled && rstate->disabled) {
607                 printk(KERN_ERR "%s: invalid configuration for %s\n",
608                        __func__, rdev_get_name(rdev));
609                 return -EINVAL;
610         }
611
612         if (!can_set_state) {
613                 printk(KERN_ERR "%s: no way to set suspend state\n",
614                         __func__);
615                 return -EINVAL;
616         }
617
618         if (rstate->enabled)
619                 ret = rdev->desc->ops->set_suspend_enable(rdev);
620         else
621                 ret = rdev->desc->ops->set_suspend_disable(rdev);
622         if (ret < 0) {
623                 printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
624                 return ret;
625         }
626
627         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
628                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
629                 if (ret < 0) {
630                         printk(KERN_ERR "%s: failed to set voltage\n",
631                                 __func__);
632                         return ret;
633                 }
634         }
635
636         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
637                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
638                 if (ret < 0) {
639                         printk(KERN_ERR "%s: failed to set mode\n", __func__);
640                         return ret;
641                 }
642         }
643         return ret;
644 }
645
646 /* locks held by caller */
647 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
648 {
649         if (!rdev->constraints)
650                 return -EINVAL;
651
652         switch (state) {
653         case PM_SUSPEND_STANDBY:
654                 return suspend_set_state(rdev,
655                         &rdev->constraints->state_standby);
656         case PM_SUSPEND_MEM:
657                 return suspend_set_state(rdev,
658                         &rdev->constraints->state_mem);
659         case PM_SUSPEND_MAX:
660                 return suspend_set_state(rdev,
661                         &rdev->constraints->state_disk);
662         default:
663                 return -EINVAL;
664         }
665 }
666
667 static void print_constraints(struct regulator_dev *rdev)
668 {
669         struct regulation_constraints *constraints = rdev->constraints;
670         char buf[80] = "";
671         int count = 0;
672         int ret;
673
674         if (constraints->min_uV && constraints->max_uV) {
675                 if (constraints->min_uV == constraints->max_uV)
676                         count += sprintf(buf + count, "%d mV ",
677                                          constraints->min_uV / 1000);
678                 else
679                         count += sprintf(buf + count, "%d <--> %d mV ",
680                                          constraints->min_uV / 1000,
681                                          constraints->max_uV / 1000);
682         }
683
684         if (!constraints->min_uV ||
685             constraints->min_uV != constraints->max_uV) {
686                 ret = _regulator_get_voltage(rdev);
687                 if (ret > 0)
688                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
689         }
690
691         if (constraints->min_uA && constraints->max_uA) {
692                 if (constraints->min_uA == constraints->max_uA)
693                         count += sprintf(buf + count, "%d mA ",
694                                          constraints->min_uA / 1000);
695                 else
696                         count += sprintf(buf + count, "%d <--> %d mA ",
697                                          constraints->min_uA / 1000,
698                                          constraints->max_uA / 1000);
699         }
700
701         if (!constraints->min_uA ||
702             constraints->min_uA != constraints->max_uA) {
703                 ret = _regulator_get_current_limit(rdev);
704                 if (ret > 0)
705                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
706         }
707
708         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
709                 count += sprintf(buf + count, "fast ");
710         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
711                 count += sprintf(buf + count, "normal ");
712         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
713                 count += sprintf(buf + count, "idle ");
714         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
715                 count += sprintf(buf + count, "standby");
716
717         printk(KERN_INFO "regulator: %s: %s\n", rdev_get_name(rdev), buf);
718 }
719
720 static int machine_constraints_voltage(struct regulator_dev *rdev,
721         struct regulation_constraints *constraints)
722 {
723         struct regulator_ops *ops = rdev->desc->ops;
724         const char *name = rdev_get_name(rdev);
725         int ret;
726
727         /* do we need to apply the constraint voltage */
728         if (rdev->constraints->apply_uV &&
729                 rdev->constraints->min_uV == rdev->constraints->max_uV &&
730                 ops->set_voltage) {
731                 ret = ops->set_voltage(rdev,
732                         rdev->constraints->min_uV, rdev->constraints->max_uV);
733                         if (ret < 0) {
734                                 printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
735                                        __func__,
736                                        rdev->constraints->min_uV, name);
737                                 rdev->constraints = NULL;
738                                 return ret;
739                         }
740         }
741
742         /* constrain machine-level voltage specs to fit
743          * the actual range supported by this regulator.
744          */
745         if (ops->list_voltage && rdev->desc->n_voltages) {
746                 int     count = rdev->desc->n_voltages;
747                 int     i;
748                 int     min_uV = INT_MAX;
749                 int     max_uV = INT_MIN;
750                 int     cmin = constraints->min_uV;
751                 int     cmax = constraints->max_uV;
752
753                 /* it's safe to autoconfigure fixed-voltage supplies
754                    and the constraints are used by list_voltage. */
755                 if (count == 1 && !cmin) {
756                         cmin = 1;
757                         cmax = INT_MAX;
758                         constraints->min_uV = cmin;
759                         constraints->max_uV = cmax;
760                 }
761
762                 /* voltage constraints are optional */
763                 if ((cmin == 0) && (cmax == 0))
764                         return 0;
765
766                 /* else require explicit machine-level constraints */
767                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
768                         pr_err("%s: %s '%s' voltage constraints\n",
769                                        __func__, "invalid", name);
770                         return -EINVAL;
771                 }
772
773                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
774                 for (i = 0; i < count; i++) {
775                         int     value;
776
777                         value = ops->list_voltage(rdev, i);
778                         if (value <= 0)
779                                 continue;
780
781                         /* maybe adjust [min_uV..max_uV] */
782                         if (value >= cmin && value < min_uV)
783                                 min_uV = value;
784                         if (value <= cmax && value > max_uV)
785                                 max_uV = value;
786                 }
787
788                 /* final: [min_uV..max_uV] valid iff constraints valid */
789                 if (max_uV < min_uV) {
790                         pr_err("%s: %s '%s' voltage constraints\n",
791                                        __func__, "unsupportable", name);
792                         return -EINVAL;
793                 }
794
795                 /* use regulator's subset of machine constraints */
796                 if (constraints->min_uV < min_uV) {
797                         pr_debug("%s: override '%s' %s, %d -> %d\n",
798                                        __func__, name, "min_uV",
799                                         constraints->min_uV, min_uV);
800                         constraints->min_uV = min_uV;
801                 }
802                 if (constraints->max_uV > max_uV) {
803                         pr_debug("%s: override '%s' %s, %d -> %d\n",
804                                        __func__, name, "max_uV",
805                                         constraints->max_uV, max_uV);
806                         constraints->max_uV = max_uV;
807                 }
808         }
809
810         return 0;
811 }
812
813 /**
814  * set_machine_constraints - sets regulator constraints
815  * @rdev: regulator source
816  * @constraints: constraints to apply
817  *
818  * Allows platform initialisation code to define and constrain
819  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
820  * Constraints *must* be set by platform code in order for some
821  * regulator operations to proceed i.e. set_voltage, set_current_limit,
822  * set_mode.
823  */
824 static int set_machine_constraints(struct regulator_dev *rdev,
825         struct regulation_constraints *constraints)
826 {
827         int ret = 0;
828         const char *name;
829         struct regulator_ops *ops = rdev->desc->ops;
830
831         rdev->constraints = constraints;
832
833         name = rdev_get_name(rdev);
834
835         ret = machine_constraints_voltage(rdev, constraints);
836         if (ret != 0)
837                 goto out;
838
839         /* do we need to setup our suspend state */
840         if (constraints->initial_state) {
841                 ret = suspend_prepare(rdev, constraints->initial_state);
842                 if (ret < 0) {
843                         printk(KERN_ERR "%s: failed to set suspend state for %s\n",
844                                __func__, name);
845                         rdev->constraints = NULL;
846                         goto out;
847                 }
848         }
849
850         if (constraints->initial_mode) {
851                 if (!ops->set_mode) {
852                         printk(KERN_ERR "%s: no set_mode operation for %s\n",
853                                __func__, name);
854                         ret = -EINVAL;
855                         goto out;
856                 }
857
858                 ret = ops->set_mode(rdev, constraints->initial_mode);
859                 if (ret < 0) {
860                         printk(KERN_ERR
861                                "%s: failed to set initial mode for %s: %d\n",
862                                __func__, name, ret);
863                         goto out;
864                 }
865         }
866
867         /* If the constraints say the regulator should be on at this point
868          * and we have control then make sure it is enabled.
869          */
870         if ((constraints->always_on || constraints->boot_on) && ops->enable) {
871                 ret = ops->enable(rdev);
872                 if (ret < 0) {
873                         printk(KERN_ERR "%s: failed to enable %s\n",
874                                __func__, name);
875                         rdev->constraints = NULL;
876                         goto out;
877                 }
878         }
879
880         print_constraints(rdev);
881 out:
882         return ret;
883 }
884
885 /**
886  * set_supply - set regulator supply regulator
887  * @rdev: regulator name
888  * @supply_rdev: supply regulator name
889  *
890  * Called by platform initialisation code to set the supply regulator for this
891  * regulator. This ensures that a regulators supply will also be enabled by the
892  * core if it's child is enabled.
893  */
894 static int set_supply(struct regulator_dev *rdev,
895         struct regulator_dev *supply_rdev)
896 {
897         int err;
898
899         err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
900                                 "supply");
901         if (err) {
902                 printk(KERN_ERR
903                        "%s: could not add device link %s err %d\n",
904                        __func__, supply_rdev->dev.kobj.name, err);
905                        goto out;
906         }
907         rdev->supply = supply_rdev;
908         list_add(&rdev->slist, &supply_rdev->supply_list);
909 out:
910         return err;
911 }
912
913 /**
914  * set_consumer_device_supply: Bind a regulator to a symbolic supply
915  * @rdev:         regulator source
916  * @consumer_dev: device the supply applies to
917  * @consumer_dev_name: dev_name() string for device supply applies to
918  * @supply:       symbolic name for supply
919  *
920  * Allows platform initialisation code to map physical regulator
921  * sources to symbolic names for supplies for use by devices.  Devices
922  * should use these symbolic names to request regulators, avoiding the
923  * need to provide board-specific regulator names as platform data.
924  *
925  * Only one of consumer_dev and consumer_dev_name may be specified.
926  */
927 static int set_consumer_device_supply(struct regulator_dev *rdev,
928         struct device *consumer_dev, const char *consumer_dev_name,
929         const char *supply)
930 {
931         struct regulator_map *node;
932         int has_dev;
933
934         if (consumer_dev && consumer_dev_name)
935                 return -EINVAL;
936
937         if (!consumer_dev_name && consumer_dev)
938                 consumer_dev_name = dev_name(consumer_dev);
939
940         if (supply == NULL)
941                 return -EINVAL;
942
943         if (consumer_dev_name != NULL)
944                 has_dev = 1;
945         else
946                 has_dev = 0;
947
948         list_for_each_entry(node, &regulator_map_list, list) {
949                 if (node->dev_name && consumer_dev_name) {
950                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
951                                 continue;
952                 } else if (node->dev_name || consumer_dev_name) {
953                         continue;
954                 }
955
956                 if (strcmp(node->supply, supply) != 0)
957                         continue;
958
959                 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
960                                 dev_name(&node->regulator->dev),
961                                 node->regulator->desc->name,
962                                 supply,
963                                 dev_name(&rdev->dev), rdev_get_name(rdev));
964                 return -EBUSY;
965         }
966
967         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
968         if (node == NULL)
969                 return -ENOMEM;
970
971         node->regulator = rdev;
972         node->supply = supply;
973
974         if (has_dev) {
975                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
976                 if (node->dev_name == NULL) {
977                         kfree(node);
978                         return -ENOMEM;
979                 }
980         }
981
982         list_add(&node->list, &regulator_map_list);
983         return 0;
984 }
985
986 static void unset_regulator_supplies(struct regulator_dev *rdev)
987 {
988         struct regulator_map *node, *n;
989
990         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
991                 if (rdev == node->regulator) {
992                         list_del(&node->list);
993                         kfree(node->dev_name);
994                         kfree(node);
995                 }
996         }
997 }
998
999 #define REG_STR_SIZE    32
1000
1001 static struct regulator *create_regulator(struct regulator_dev *rdev,
1002                                           struct device *dev,
1003                                           const char *supply_name)
1004 {
1005         struct regulator *regulator;
1006         char buf[REG_STR_SIZE];
1007         int err, size;
1008
1009         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1010         if (regulator == NULL)
1011                 return NULL;
1012
1013         mutex_lock(&rdev->mutex);
1014         regulator->rdev = rdev;
1015         list_add(&regulator->list, &rdev->consumer_list);
1016
1017         if (dev) {
1018                 /* create a 'requested_microamps_name' sysfs entry */
1019                 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1020                         supply_name);
1021                 if (size >= REG_STR_SIZE)
1022                         goto overflow_err;
1023
1024                 regulator->dev = dev;
1025                 sysfs_attr_init(&regulator->dev_attr.attr);
1026                 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1027                 if (regulator->dev_attr.attr.name == NULL)
1028                         goto attr_name_err;
1029
1030                 regulator->dev_attr.attr.mode = 0444;
1031                 regulator->dev_attr.show = device_requested_uA_show;
1032                 err = device_create_file(dev, &regulator->dev_attr);
1033                 if (err < 0) {
1034                         printk(KERN_WARNING "%s: could not add regulator_dev"
1035                                 " load sysfs\n", __func__);
1036                         goto attr_name_err;
1037                 }
1038
1039                 /* also add a link to the device sysfs entry */
1040                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1041                                  dev->kobj.name, supply_name);
1042                 if (size >= REG_STR_SIZE)
1043                         goto attr_err;
1044
1045                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1046                 if (regulator->supply_name == NULL)
1047                         goto attr_err;
1048
1049                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1050                                         buf);
1051                 if (err) {
1052                         printk(KERN_WARNING
1053                                "%s: could not add device link %s err %d\n",
1054                                __func__, dev->kobj.name, err);
1055                         goto link_name_err;
1056                 }
1057         }
1058         mutex_unlock(&rdev->mutex);
1059         return regulator;
1060 link_name_err:
1061         kfree(regulator->supply_name);
1062 attr_err:
1063         device_remove_file(regulator->dev, &regulator->dev_attr);
1064 attr_name_err:
1065         kfree(regulator->dev_attr.attr.name);
1066 overflow_err:
1067         list_del(&regulator->list);
1068         kfree(regulator);
1069         mutex_unlock(&rdev->mutex);
1070         return NULL;
1071 }
1072
1073 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1074 {
1075         if (!rdev->desc->ops->enable_time)
1076                 return 0;
1077         return rdev->desc->ops->enable_time(rdev);
1078 }
1079
1080 /* Internal regulator request function */
1081 static struct regulator *_regulator_get(struct device *dev, const char *id,
1082                                         int exclusive)
1083 {
1084         struct regulator_dev *rdev;
1085         struct regulator_map *map;
1086         struct regulator *regulator = ERR_PTR(-ENODEV);
1087         const char *devname = NULL;
1088         int ret;
1089
1090         if (id == NULL) {
1091                 printk(KERN_ERR "regulator: get() with no identifier\n");
1092                 return regulator;
1093         }
1094
1095         if (dev)
1096                 devname = dev_name(dev);
1097
1098         mutex_lock(&regulator_list_mutex);
1099
1100         list_for_each_entry(map, &regulator_map_list, list) {
1101                 /* If the mapping has a device set up it must match */
1102                 if (map->dev_name &&
1103                     (!devname || strcmp(map->dev_name, devname)))
1104                         continue;
1105
1106                 if (strcmp(map->supply, id) == 0) {
1107                         rdev = map->regulator;
1108                         goto found;
1109                 }
1110         }
1111
1112         if (board_wants_dummy_regulator) {
1113                 rdev = dummy_regulator_rdev;
1114                 goto found;
1115         }
1116
1117 #ifdef CONFIG_REGULATOR_DUMMY
1118         if (!devname)
1119                 devname = "deviceless";
1120
1121         /* If the board didn't flag that it was fully constrained then
1122          * substitute in a dummy regulator so consumers can continue.
1123          */
1124         if (!has_full_constraints) {
1125                 pr_warning("%s supply %s not found, using dummy regulator\n",
1126                            devname, id);
1127                 rdev = dummy_regulator_rdev;
1128                 goto found;
1129         }
1130 #endif
1131
1132         mutex_unlock(&regulator_list_mutex);
1133         return regulator;
1134
1135 found:
1136         if (rdev->exclusive) {
1137                 regulator = ERR_PTR(-EPERM);
1138                 goto out;
1139         }
1140
1141         if (exclusive && rdev->open_count) {
1142                 regulator = ERR_PTR(-EBUSY);
1143                 goto out;
1144         }
1145
1146         if (!try_module_get(rdev->owner))
1147                 goto out;
1148
1149         regulator = create_regulator(rdev, dev, id);
1150         if (regulator == NULL) {
1151                 regulator = ERR_PTR(-ENOMEM);
1152                 module_put(rdev->owner);
1153         }
1154
1155         rdev->open_count++;
1156         if (exclusive) {
1157                 rdev->exclusive = 1;
1158
1159                 ret = _regulator_is_enabled(rdev);
1160                 if (ret > 0)
1161                         rdev->use_count = 1;
1162                 else
1163                         rdev->use_count = 0;
1164         }
1165
1166 out:
1167         mutex_unlock(&regulator_list_mutex);
1168
1169         return regulator;
1170 }
1171
1172 /**
1173  * regulator_get - lookup and obtain a reference to a regulator.
1174  * @dev: device for regulator "consumer"
1175  * @id: Supply name or regulator ID.
1176  *
1177  * Returns a struct regulator corresponding to the regulator producer,
1178  * or IS_ERR() condition containing errno.
1179  *
1180  * Use of supply names configured via regulator_set_device_supply() is
1181  * strongly encouraged.  It is recommended that the supply name used
1182  * should match the name used for the supply and/or the relevant
1183  * device pins in the datasheet.
1184  */
1185 struct regulator *regulator_get(struct device *dev, const char *id)
1186 {
1187         return _regulator_get(dev, id, 0);
1188 }
1189 EXPORT_SYMBOL_GPL(regulator_get);
1190
1191 /**
1192  * regulator_get_exclusive - obtain exclusive access to a regulator.
1193  * @dev: device for regulator "consumer"
1194  * @id: Supply name or regulator ID.
1195  *
1196  * Returns a struct regulator corresponding to the regulator producer,
1197  * or IS_ERR() condition containing errno.  Other consumers will be
1198  * unable to obtain this reference is held and the use count for the
1199  * regulator will be initialised to reflect the current state of the
1200  * regulator.
1201  *
1202  * This is intended for use by consumers which cannot tolerate shared
1203  * use of the regulator such as those which need to force the
1204  * regulator off for correct operation of the hardware they are
1205  * controlling.
1206  *
1207  * Use of supply names configured via regulator_set_device_supply() is
1208  * strongly encouraged.  It is recommended that the supply name used
1209  * should match the name used for the supply and/or the relevant
1210  * device pins in the datasheet.
1211  */
1212 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1213 {
1214         return _regulator_get(dev, id, 1);
1215 }
1216 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1217
1218 /**
1219  * regulator_put - "free" the regulator source
1220  * @regulator: regulator source
1221  *
1222  * Note: drivers must ensure that all regulator_enable calls made on this
1223  * regulator source are balanced by regulator_disable calls prior to calling
1224  * this function.
1225  */
1226 void regulator_put(struct regulator *regulator)
1227 {
1228         struct regulator_dev *rdev;
1229
1230         if (regulator == NULL || IS_ERR(regulator))
1231                 return;
1232
1233         mutex_lock(&regulator_list_mutex);
1234         rdev = regulator->rdev;
1235
1236         /* remove any sysfs entries */
1237         if (regulator->dev) {
1238                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1239                 kfree(regulator->supply_name);
1240                 device_remove_file(regulator->dev, &regulator->dev_attr);
1241                 kfree(regulator->dev_attr.attr.name);
1242         }
1243         list_del(&regulator->list);
1244         kfree(regulator);
1245
1246         rdev->open_count--;
1247         rdev->exclusive = 0;
1248
1249         module_put(rdev->owner);
1250         mutex_unlock(&regulator_list_mutex);
1251 }
1252 EXPORT_SYMBOL_GPL(regulator_put);
1253
1254 static int _regulator_can_change_status(struct regulator_dev *rdev)
1255 {
1256         if (!rdev->constraints)
1257                 return 0;
1258
1259         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1260                 return 1;
1261         else
1262                 return 0;
1263 }
1264
1265 /* locks held by regulator_enable() */
1266 static int _regulator_enable(struct regulator_dev *rdev)
1267 {
1268         int ret, delay;
1269
1270         /* do we need to enable the supply regulator first */
1271         if (rdev->supply) {
1272                 mutex_lock(&rdev->supply->mutex);
1273                 ret = _regulator_enable(rdev->supply);
1274                 mutex_unlock(&rdev->supply->mutex);
1275                 if (ret < 0) {
1276                         printk(KERN_ERR "%s: failed to enable %s: %d\n",
1277                                __func__, rdev_get_name(rdev), ret);
1278                         return ret;
1279                 }
1280         }
1281
1282         /* check voltage and requested load before enabling */
1283         if (rdev->constraints &&
1284             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1285                 drms_uA_update(rdev);
1286
1287         if (rdev->use_count == 0) {
1288                 /* The regulator may on if it's not switchable or left on */
1289                 ret = _regulator_is_enabled(rdev);
1290                 if (ret == -EINVAL || ret == 0) {
1291                         if (!_regulator_can_change_status(rdev))
1292                                 return -EPERM;
1293
1294                         if (!rdev->desc->ops->enable)
1295                                 return -EINVAL;
1296
1297                         /* Query before enabling in case configuration
1298                          * dependant.  */
1299                         ret = _regulator_get_enable_time(rdev);
1300                         if (ret >= 0) {
1301                                 delay = ret;
1302                         } else {
1303                                 printk(KERN_WARNING
1304                                         "%s: enable_time() failed for %s: %d\n",
1305                                         __func__, rdev_get_name(rdev),
1306                                         ret);
1307                                 delay = 0;
1308                         }
1309
1310                         /* Allow the regulator to ramp; it would be useful
1311                          * to extend this for bulk operations so that the
1312                          * regulators can ramp together.  */
1313                         ret = rdev->desc->ops->enable(rdev);
1314                         if (ret < 0)
1315                                 return ret;
1316
1317                         if (delay >= 1000) {
1318                                 mdelay(delay / 1000);
1319                                 udelay(delay % 1000);
1320                         } else if (delay) {
1321                                 udelay(delay);
1322                         }
1323
1324                 } else if (ret < 0) {
1325                         printk(KERN_ERR "%s: is_enabled() failed for %s: %d\n",
1326                                __func__, rdev_get_name(rdev), ret);
1327                         return ret;
1328                 }
1329                 /* Fallthrough on positive return values - already enabled */
1330         }
1331
1332         rdev->use_count++;
1333
1334         return 0;
1335 }
1336
1337 /**
1338  * regulator_enable - enable regulator output
1339  * @regulator: regulator source
1340  *
1341  * Request that the regulator be enabled with the regulator output at
1342  * the predefined voltage or current value.  Calls to regulator_enable()
1343  * must be balanced with calls to regulator_disable().
1344  *
1345  * NOTE: the output value can be set by other drivers, boot loader or may be
1346  * hardwired in the regulator.
1347  */
1348 int regulator_enable(struct regulator *regulator)
1349 {
1350         struct regulator_dev *rdev = regulator->rdev;
1351         int ret = 0;
1352
1353         mutex_lock(&rdev->mutex);
1354         ret = _regulator_enable(rdev);
1355         mutex_unlock(&rdev->mutex);
1356         return ret;
1357 }
1358 EXPORT_SYMBOL_GPL(regulator_enable);
1359
1360 /* locks held by regulator_disable() */
1361 static int _regulator_disable(struct regulator_dev *rdev,
1362                 struct regulator_dev **supply_rdev_ptr)
1363 {
1364         int ret = 0;
1365         *supply_rdev_ptr = NULL;
1366
1367         if (WARN(rdev->use_count <= 0,
1368                         "unbalanced disables for %s\n",
1369                         rdev_get_name(rdev)))
1370                 return -EIO;
1371
1372         /* are we the last user and permitted to disable ? */
1373         if (rdev->use_count == 1 &&
1374             (rdev->constraints && !rdev->constraints->always_on)) {
1375
1376                 /* we are last user */
1377                 if (_regulator_can_change_status(rdev) &&
1378                     rdev->desc->ops->disable) {
1379                         ret = rdev->desc->ops->disable(rdev);
1380                         if (ret < 0) {
1381                                 printk(KERN_ERR "%s: failed to disable %s\n",
1382                                        __func__, rdev_get_name(rdev));
1383                                 return ret;
1384                         }
1385
1386                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1387                                              NULL);
1388                 }
1389
1390                 /* decrease our supplies ref count and disable if required */
1391                 *supply_rdev_ptr = rdev->supply;
1392
1393                 rdev->use_count = 0;
1394         } else if (rdev->use_count > 1) {
1395
1396                 if (rdev->constraints &&
1397                         (rdev->constraints->valid_ops_mask &
1398                         REGULATOR_CHANGE_DRMS))
1399                         drms_uA_update(rdev);
1400
1401                 rdev->use_count--;
1402         }
1403         return ret;
1404 }
1405
1406 /**
1407  * regulator_disable - disable regulator output
1408  * @regulator: regulator source
1409  *
1410  * Disable the regulator output voltage or current.  Calls to
1411  * regulator_enable() must be balanced with calls to
1412  * regulator_disable().
1413  *
1414  * NOTE: this will only disable the regulator output if no other consumer
1415  * devices have it enabled, the regulator device supports disabling and
1416  * machine constraints permit this operation.
1417  */
1418 int regulator_disable(struct regulator *regulator)
1419 {
1420         struct regulator_dev *rdev = regulator->rdev;
1421         struct regulator_dev *supply_rdev = NULL;
1422         int ret = 0;
1423
1424         mutex_lock(&rdev->mutex);
1425         ret = _regulator_disable(rdev, &supply_rdev);
1426         mutex_unlock(&rdev->mutex);
1427
1428         /* decrease our supplies ref count and disable if required */
1429         while (supply_rdev != NULL) {
1430                 rdev = supply_rdev;
1431
1432                 mutex_lock(&rdev->mutex);
1433                 _regulator_disable(rdev, &supply_rdev);
1434                 mutex_unlock(&rdev->mutex);
1435         }
1436
1437         return ret;
1438 }
1439 EXPORT_SYMBOL_GPL(regulator_disable);
1440
1441 /* locks held by regulator_force_disable() */
1442 static int _regulator_force_disable(struct regulator_dev *rdev,
1443                 struct regulator_dev **supply_rdev_ptr)
1444 {
1445         int ret = 0;
1446
1447         /* force disable */
1448         if (rdev->desc->ops->disable) {
1449                 /* ah well, who wants to live forever... */
1450                 ret = rdev->desc->ops->disable(rdev);
1451                 if (ret < 0) {
1452                         printk(KERN_ERR "%s: failed to force disable %s\n",
1453                                __func__, rdev_get_name(rdev));
1454                         return ret;
1455                 }
1456                 /* notify other consumers that power has been forced off */
1457                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1458                         REGULATOR_EVENT_DISABLE, NULL);
1459         }
1460
1461         /* decrease our supplies ref count and disable if required */
1462         *supply_rdev_ptr = rdev->supply;
1463
1464         rdev->use_count = 0;
1465         return ret;
1466 }
1467
1468 /**
1469  * regulator_force_disable - force disable regulator output
1470  * @regulator: regulator source
1471  *
1472  * Forcibly disable the regulator output voltage or current.
1473  * NOTE: this *will* disable the regulator output even if other consumer
1474  * devices have it enabled. This should be used for situations when device
1475  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1476  */
1477 int regulator_force_disable(struct regulator *regulator)
1478 {
1479         struct regulator_dev *supply_rdev = NULL;
1480         int ret;
1481
1482         mutex_lock(&regulator->rdev->mutex);
1483         regulator->uA_load = 0;
1484         ret = _regulator_force_disable(regulator->rdev, &supply_rdev);
1485         mutex_unlock(&regulator->rdev->mutex);
1486
1487         if (supply_rdev)
1488                 regulator_disable(get_device_regulator(rdev_get_dev(supply_rdev)));
1489
1490         return ret;
1491 }
1492 EXPORT_SYMBOL_GPL(regulator_force_disable);
1493
1494 static int _regulator_is_enabled(struct regulator_dev *rdev)
1495 {
1496         /* If we don't know then assume that the regulator is always on */
1497         if (!rdev->desc->ops->is_enabled)
1498                 return 1;
1499
1500         return rdev->desc->ops->is_enabled(rdev);
1501 }
1502
1503 /**
1504  * regulator_is_enabled - is the regulator output enabled
1505  * @regulator: regulator source
1506  *
1507  * Returns positive if the regulator driver backing the source/client
1508  * has requested that the device be enabled, zero if it hasn't, else a
1509  * negative errno code.
1510  *
1511  * Note that the device backing this regulator handle can have multiple
1512  * users, so it might be enabled even if regulator_enable() was never
1513  * called for this particular source.
1514  */
1515 int regulator_is_enabled(struct regulator *regulator)
1516 {
1517         int ret;
1518
1519         mutex_lock(&regulator->rdev->mutex);
1520         ret = _regulator_is_enabled(regulator->rdev);
1521         mutex_unlock(&regulator->rdev->mutex);
1522
1523         return ret;
1524 }
1525 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1526
1527 /**
1528  * regulator_count_voltages - count regulator_list_voltage() selectors
1529  * @regulator: regulator source
1530  *
1531  * Returns number of selectors, or negative errno.  Selectors are
1532  * numbered starting at zero, and typically correspond to bitfields
1533  * in hardware registers.
1534  */
1535 int regulator_count_voltages(struct regulator *regulator)
1536 {
1537         struct regulator_dev    *rdev = regulator->rdev;
1538
1539         return rdev->desc->n_voltages ? : -EINVAL;
1540 }
1541 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1542
1543 /**
1544  * regulator_list_voltage - enumerate supported voltages
1545  * @regulator: regulator source
1546  * @selector: identify voltage to list
1547  * Context: can sleep
1548  *
1549  * Returns a voltage that can be passed to @regulator_set_voltage(),
1550  * zero if this selector code can't be used on this system, or a
1551  * negative errno.
1552  */
1553 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1554 {
1555         struct regulator_dev    *rdev = regulator->rdev;
1556         struct regulator_ops    *ops = rdev->desc->ops;
1557         int                     ret;
1558
1559         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1560                 return -EINVAL;
1561
1562         mutex_lock(&rdev->mutex);
1563         ret = ops->list_voltage(rdev, selector);
1564         mutex_unlock(&rdev->mutex);
1565
1566         if (ret > 0) {
1567                 if (ret < rdev->constraints->min_uV)
1568                         ret = 0;
1569                 else if (ret > rdev->constraints->max_uV)
1570                         ret = 0;
1571         }
1572
1573         return ret;
1574 }
1575 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1576
1577 /**
1578  * regulator_is_supported_voltage - check if a voltage range can be supported
1579  *
1580  * @regulator: Regulator to check.
1581  * @min_uV: Minimum required voltage in uV.
1582  * @max_uV: Maximum required voltage in uV.
1583  *
1584  * Returns a boolean or a negative error code.
1585  */
1586 int regulator_is_supported_voltage(struct regulator *regulator,
1587                                    int min_uV, int max_uV)
1588 {
1589         int i, voltages, ret;
1590
1591         ret = regulator_count_voltages(regulator);
1592         if (ret < 0)
1593                 return ret;
1594         voltages = ret;
1595
1596         for (i = 0; i < voltages; i++) {
1597                 ret = regulator_list_voltage(regulator, i);
1598
1599                 if (ret >= min_uV && ret <= max_uV)
1600                         return 1;
1601         }
1602
1603         return 0;
1604 }
1605
1606 /**
1607  * regulator_set_voltage - set regulator output voltage
1608  * @regulator: regulator source
1609  * @min_uV: Minimum required voltage in uV
1610  * @max_uV: Maximum acceptable voltage in uV
1611  *
1612  * Sets a voltage regulator to the desired output voltage. This can be set
1613  * during any regulator state. IOW, regulator can be disabled or enabled.
1614  *
1615  * If the regulator is enabled then the voltage will change to the new value
1616  * immediately otherwise if the regulator is disabled the regulator will
1617  * output at the new voltage when enabled.
1618  *
1619  * NOTE: If the regulator is shared between several devices then the lowest
1620  * request voltage that meets the system constraints will be used.
1621  * Regulator system constraints must be set for this regulator before
1622  * calling this function otherwise this call will fail.
1623  */
1624 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1625 {
1626         struct regulator_dev *rdev = regulator->rdev;
1627         int ret;
1628
1629         mutex_lock(&rdev->mutex);
1630
1631         /* sanity check */
1632         if (!rdev->desc->ops->set_voltage) {
1633                 ret = -EINVAL;
1634                 goto out;
1635         }
1636
1637         /* constraints check */
1638         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1639         if (ret < 0)
1640                 goto out;
1641         regulator->min_uV = min_uV;
1642         regulator->max_uV = max_uV;
1643         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1644
1645 out:
1646         _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1647         mutex_unlock(&rdev->mutex);
1648         return ret;
1649 }
1650 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1651
1652 static int _regulator_get_voltage(struct regulator_dev *rdev)
1653 {
1654         /* sanity check */
1655         if (rdev->desc->ops->get_voltage)
1656                 return rdev->desc->ops->get_voltage(rdev);
1657         else
1658                 return -EINVAL;
1659 }
1660
1661 /**
1662  * regulator_get_voltage - get regulator output voltage
1663  * @regulator: regulator source
1664  *
1665  * This returns the current regulator voltage in uV.
1666  *
1667  * NOTE: If the regulator is disabled it will return the voltage value. This
1668  * function should not be used to determine regulator state.
1669  */
1670 int regulator_get_voltage(struct regulator *regulator)
1671 {
1672         int ret;
1673
1674         mutex_lock(&regulator->rdev->mutex);
1675
1676         ret = _regulator_get_voltage(regulator->rdev);
1677
1678         mutex_unlock(&regulator->rdev->mutex);
1679
1680         return ret;
1681 }
1682 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1683
1684 /**
1685  * regulator_set_current_limit - set regulator output current limit
1686  * @regulator: regulator source
1687  * @min_uA: Minimuum supported current in uA
1688  * @max_uA: Maximum supported current in uA
1689  *
1690  * Sets current sink to the desired output current. This can be set during
1691  * any regulator state. IOW, regulator can be disabled or enabled.
1692  *
1693  * If the regulator is enabled then the current will change to the new value
1694  * immediately otherwise if the regulator is disabled the regulator will
1695  * output at the new current when enabled.
1696  *
1697  * NOTE: Regulator system constraints must be set for this regulator before
1698  * calling this function otherwise this call will fail.
1699  */
1700 int regulator_set_current_limit(struct regulator *regulator,
1701                                int min_uA, int max_uA)
1702 {
1703         struct regulator_dev *rdev = regulator->rdev;
1704         int ret;
1705
1706         mutex_lock(&rdev->mutex);
1707
1708         /* sanity check */
1709         if (!rdev->desc->ops->set_current_limit) {
1710                 ret = -EINVAL;
1711                 goto out;
1712         }
1713
1714         /* constraints check */
1715         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1716         if (ret < 0)
1717                 goto out;
1718
1719         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1720 out:
1721         mutex_unlock(&rdev->mutex);
1722         return ret;
1723 }
1724 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1725
1726 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1727 {
1728         int ret;
1729
1730         mutex_lock(&rdev->mutex);
1731
1732         /* sanity check */
1733         if (!rdev->desc->ops->get_current_limit) {
1734                 ret = -EINVAL;
1735                 goto out;
1736         }
1737
1738         ret = rdev->desc->ops->get_current_limit(rdev);
1739 out:
1740         mutex_unlock(&rdev->mutex);
1741         return ret;
1742 }
1743
1744 /**
1745  * regulator_get_current_limit - get regulator output current
1746  * @regulator: regulator source
1747  *
1748  * This returns the current supplied by the specified current sink in uA.
1749  *
1750  * NOTE: If the regulator is disabled it will return the current value. This
1751  * function should not be used to determine regulator state.
1752  */
1753 int regulator_get_current_limit(struct regulator *regulator)
1754 {
1755         return _regulator_get_current_limit(regulator->rdev);
1756 }
1757 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1758
1759 /**
1760  * regulator_set_mode - set regulator operating mode
1761  * @regulator: regulator source
1762  * @mode: operating mode - one of the REGULATOR_MODE constants
1763  *
1764  * Set regulator operating mode to increase regulator efficiency or improve
1765  * regulation performance.
1766  *
1767  * NOTE: Regulator system constraints must be set for this regulator before
1768  * calling this function otherwise this call will fail.
1769  */
1770 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1771 {
1772         struct regulator_dev *rdev = regulator->rdev;
1773         int ret;
1774         int regulator_curr_mode;
1775
1776         mutex_lock(&rdev->mutex);
1777
1778         /* sanity check */
1779         if (!rdev->desc->ops->set_mode) {
1780                 ret = -EINVAL;
1781                 goto out;
1782         }
1783
1784         /* return if the same mode is requested */
1785         if (rdev->desc->ops->get_mode) {
1786                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
1787                 if (regulator_curr_mode == mode) {
1788                         ret = 0;
1789                         goto out;
1790                 }
1791         }
1792
1793         /* constraints check */
1794         ret = regulator_check_mode(rdev, mode);
1795         if (ret < 0)
1796                 goto out;
1797
1798         ret = rdev->desc->ops->set_mode(rdev, mode);
1799 out:
1800         mutex_unlock(&rdev->mutex);
1801         return ret;
1802 }
1803 EXPORT_SYMBOL_GPL(regulator_set_mode);
1804
1805 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1806 {
1807         int ret;
1808
1809         mutex_lock(&rdev->mutex);
1810
1811         /* sanity check */
1812         if (!rdev->desc->ops->get_mode) {
1813                 ret = -EINVAL;
1814                 goto out;
1815         }
1816
1817         ret = rdev->desc->ops->get_mode(rdev);
1818 out:
1819         mutex_unlock(&rdev->mutex);
1820         return ret;
1821 }
1822
1823 /**
1824  * regulator_get_mode - get regulator operating mode
1825  * @regulator: regulator source
1826  *
1827  * Get the current regulator operating mode.
1828  */
1829 unsigned int regulator_get_mode(struct regulator *regulator)
1830 {
1831         return _regulator_get_mode(regulator->rdev);
1832 }
1833 EXPORT_SYMBOL_GPL(regulator_get_mode);
1834
1835 /**
1836  * regulator_set_optimum_mode - set regulator optimum operating mode
1837  * @regulator: regulator source
1838  * @uA_load: load current
1839  *
1840  * Notifies the regulator core of a new device load. This is then used by
1841  * DRMS (if enabled by constraints) to set the most efficient regulator
1842  * operating mode for the new regulator loading.
1843  *
1844  * Consumer devices notify their supply regulator of the maximum power
1845  * they will require (can be taken from device datasheet in the power
1846  * consumption tables) when they change operational status and hence power
1847  * state. Examples of operational state changes that can affect power
1848  * consumption are :-
1849  *
1850  *    o Device is opened / closed.
1851  *    o Device I/O is about to begin or has just finished.
1852  *    o Device is idling in between work.
1853  *
1854  * This information is also exported via sysfs to userspace.
1855  *
1856  * DRMS will sum the total requested load on the regulator and change
1857  * to the most efficient operating mode if platform constraints allow.
1858  *
1859  * Returns the new regulator mode or error.
1860  */
1861 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1862 {
1863         struct regulator_dev *rdev = regulator->rdev;
1864         struct regulator *consumer;
1865         int ret, output_uV, input_uV, total_uA_load = 0;
1866         unsigned int mode;
1867
1868         mutex_lock(&rdev->mutex);
1869
1870         regulator->uA_load = uA_load;
1871         ret = regulator_check_drms(rdev);
1872         if (ret < 0)
1873                 goto out;
1874         ret = -EINVAL;
1875
1876         /* sanity check */
1877         if (!rdev->desc->ops->get_optimum_mode)
1878                 goto out;
1879
1880         /* get output voltage */
1881         output_uV = rdev->desc->ops->get_voltage(rdev);
1882         if (output_uV <= 0) {
1883                 printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1884                         __func__, rdev_get_name(rdev));
1885                 goto out;
1886         }
1887
1888         /* get input voltage */
1889         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1890                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1891         else
1892                 input_uV = rdev->constraints->input_uV;
1893         if (input_uV <= 0) {
1894                 printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1895                         __func__, rdev_get_name(rdev));
1896                 goto out;
1897         }
1898
1899         /* calc total requested load for this regulator */
1900         list_for_each_entry(consumer, &rdev->consumer_list, list)
1901                 total_uA_load += consumer->uA_load;
1902
1903         mode = rdev->desc->ops->get_optimum_mode(rdev,
1904                                                  input_uV, output_uV,
1905                                                  total_uA_load);
1906         ret = regulator_check_mode(rdev, mode);
1907         if (ret < 0) {
1908                 printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1909                         " %d uA %d -> %d uV\n", __func__, rdev_get_name(rdev),
1910                         total_uA_load, input_uV, output_uV);
1911                 goto out;
1912         }
1913
1914         ret = rdev->desc->ops->set_mode(rdev, mode);
1915         if (ret < 0) {
1916                 printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1917                         __func__, mode, rdev_get_name(rdev));
1918                 goto out;
1919         }
1920         ret = mode;
1921 out:
1922         mutex_unlock(&rdev->mutex);
1923         return ret;
1924 }
1925 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1926
1927 /**
1928  * regulator_register_notifier - register regulator event notifier
1929  * @regulator: regulator source
1930  * @nb: notifier block
1931  *
1932  * Register notifier block to receive regulator events.
1933  */
1934 int regulator_register_notifier(struct regulator *regulator,
1935                               struct notifier_block *nb)
1936 {
1937         return blocking_notifier_chain_register(&regulator->rdev->notifier,
1938                                                 nb);
1939 }
1940 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1941
1942 /**
1943  * regulator_unregister_notifier - unregister regulator event notifier
1944  * @regulator: regulator source
1945  * @nb: notifier block
1946  *
1947  * Unregister regulator event notifier block.
1948  */
1949 int regulator_unregister_notifier(struct regulator *regulator,
1950                                 struct notifier_block *nb)
1951 {
1952         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1953                                                   nb);
1954 }
1955 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1956
1957 /* notify regulator consumers and downstream regulator consumers.
1958  * Note mutex must be held by caller.
1959  */
1960 static void _notifier_call_chain(struct regulator_dev *rdev,
1961                                   unsigned long event, void *data)
1962 {
1963         struct regulator_dev *_rdev;
1964
1965         /* call rdev chain first */
1966         blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1967
1968         /* now notify regulator we supply */
1969         list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1970                 mutex_lock(&_rdev->mutex);
1971                 _notifier_call_chain(_rdev, event, data);
1972                 mutex_unlock(&_rdev->mutex);
1973         }
1974 }
1975
1976 /**
1977  * regulator_bulk_get - get multiple regulator consumers
1978  *
1979  * @dev:           Device to supply
1980  * @num_consumers: Number of consumers to register
1981  * @consumers:     Configuration of consumers; clients are stored here.
1982  *
1983  * @return 0 on success, an errno on failure.
1984  *
1985  * This helper function allows drivers to get several regulator
1986  * consumers in one operation.  If any of the regulators cannot be
1987  * acquired then any regulators that were allocated will be freed
1988  * before returning to the caller.
1989  */
1990 int regulator_bulk_get(struct device *dev, int num_consumers,
1991                        struct regulator_bulk_data *consumers)
1992 {
1993         int i;
1994         int ret;
1995
1996         for (i = 0; i < num_consumers; i++)
1997                 consumers[i].consumer = NULL;
1998
1999         for (i = 0; i < num_consumers; i++) {
2000                 consumers[i].consumer = regulator_get(dev,
2001                                                       consumers[i].supply);
2002                 if (IS_ERR(consumers[i].consumer)) {
2003                         ret = PTR_ERR(consumers[i].consumer);
2004                         dev_err(dev, "Failed to get supply '%s': %d\n",
2005                                 consumers[i].supply, ret);
2006                         consumers[i].consumer = NULL;
2007                         goto err;
2008                 }
2009         }
2010
2011         return 0;
2012
2013 err:
2014         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2015                 regulator_put(consumers[i].consumer);
2016
2017         return ret;
2018 }
2019 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2020
2021 /**
2022  * regulator_bulk_enable - enable multiple regulator consumers
2023  *
2024  * @num_consumers: Number of consumers
2025  * @consumers:     Consumer data; clients are stored here.
2026  * @return         0 on success, an errno on failure
2027  *
2028  * This convenience API allows consumers to enable multiple regulator
2029  * clients in a single API call.  If any consumers cannot be enabled
2030  * then any others that were enabled will be disabled again prior to
2031  * return.
2032  */
2033 int regulator_bulk_enable(int num_consumers,
2034                           struct regulator_bulk_data *consumers)
2035 {
2036         int i;
2037         int ret;
2038
2039         for (i = 0; i < num_consumers; i++) {
2040                 ret = regulator_enable(consumers[i].consumer);
2041                 if (ret != 0)
2042                         goto err;
2043         }
2044
2045         return 0;
2046
2047 err:
2048         printk(KERN_ERR "Failed to enable %s: %d\n", consumers[i].supply, ret);
2049         for (--i; i >= 0; --i)
2050                 regulator_disable(consumers[i].consumer);
2051
2052         return ret;
2053 }
2054 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2055
2056 /**
2057  * regulator_bulk_disable - disable multiple regulator consumers
2058  *
2059  * @num_consumers: Number of consumers
2060  * @consumers:     Consumer data; clients are stored here.
2061  * @return         0 on success, an errno on failure
2062  *
2063  * This convenience API allows consumers to disable multiple regulator
2064  * clients in a single API call.  If any consumers cannot be enabled
2065  * then any others that were disabled will be disabled again prior to
2066  * return.
2067  */
2068 int regulator_bulk_disable(int num_consumers,
2069                            struct regulator_bulk_data *consumers)
2070 {
2071         int i;
2072         int ret;
2073
2074         for (i = 0; i < num_consumers; i++) {
2075                 ret = regulator_disable(consumers[i].consumer);
2076                 if (ret != 0)
2077                         goto err;
2078         }
2079
2080         return 0;
2081
2082 err:
2083         printk(KERN_ERR "Failed to disable %s: %d\n", consumers[i].supply,
2084                ret);
2085         for (--i; i >= 0; --i)
2086                 regulator_enable(consumers[i].consumer);
2087
2088         return ret;
2089 }
2090 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2091
2092 /**
2093  * regulator_bulk_free - free multiple regulator consumers
2094  *
2095  * @num_consumers: Number of consumers
2096  * @consumers:     Consumer data; clients are stored here.
2097  *
2098  * This convenience API allows consumers to free multiple regulator
2099  * clients in a single API call.
2100  */
2101 void regulator_bulk_free(int num_consumers,
2102                          struct regulator_bulk_data *consumers)
2103 {
2104         int i;
2105
2106         for (i = 0; i < num_consumers; i++) {
2107                 regulator_put(consumers[i].consumer);
2108                 consumers[i].consumer = NULL;
2109         }
2110 }
2111 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2112
2113 /**
2114  * regulator_notifier_call_chain - call regulator event notifier
2115  * @rdev: regulator source
2116  * @event: notifier block
2117  * @data: callback-specific data.
2118  *
2119  * Called by regulator drivers to notify clients a regulator event has
2120  * occurred. We also notify regulator clients downstream.
2121  * Note lock must be held by caller.
2122  */
2123 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2124                                   unsigned long event, void *data)
2125 {
2126         _notifier_call_chain(rdev, event, data);
2127         return NOTIFY_DONE;
2128
2129 }
2130 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2131
2132 /**
2133  * regulator_mode_to_status - convert a regulator mode into a status
2134  *
2135  * @mode: Mode to convert
2136  *
2137  * Convert a regulator mode into a status.
2138  */
2139 int regulator_mode_to_status(unsigned int mode)
2140 {
2141         switch (mode) {
2142         case REGULATOR_MODE_FAST:
2143                 return REGULATOR_STATUS_FAST;
2144         case REGULATOR_MODE_NORMAL:
2145                 return REGULATOR_STATUS_NORMAL;
2146         case REGULATOR_MODE_IDLE:
2147                 return REGULATOR_STATUS_IDLE;
2148         case REGULATOR_STATUS_STANDBY:
2149                 return REGULATOR_STATUS_STANDBY;
2150         default:
2151                 return 0;
2152         }
2153 }
2154 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2155
2156 /*
2157  * To avoid cluttering sysfs (and memory) with useless state, only
2158  * create attributes that can be meaningfully displayed.
2159  */
2160 static int add_regulator_attributes(struct regulator_dev *rdev)
2161 {
2162         struct device           *dev = &rdev->dev;
2163         struct regulator_ops    *ops = rdev->desc->ops;
2164         int                     status = 0;
2165
2166         /* some attributes need specific methods to be displayed */
2167         if (ops->get_voltage) {
2168                 status = device_create_file(dev, &dev_attr_microvolts);
2169                 if (status < 0)
2170                         return status;
2171         }
2172         if (ops->get_current_limit) {
2173                 status = device_create_file(dev, &dev_attr_microamps);
2174                 if (status < 0)
2175                         return status;
2176         }
2177         if (ops->get_mode) {
2178                 status = device_create_file(dev, &dev_attr_opmode);
2179                 if (status < 0)
2180                         return status;
2181         }
2182         if (ops->is_enabled) {
2183                 status = device_create_file(dev, &dev_attr_state);
2184                 if (status < 0)
2185                         return status;
2186         }
2187         if (ops->get_status) {
2188                 status = device_create_file(dev, &dev_attr_status);
2189                 if (status < 0)
2190                         return status;
2191         }
2192
2193         /* some attributes are type-specific */
2194         if (rdev->desc->type == REGULATOR_CURRENT) {
2195                 status = device_create_file(dev, &dev_attr_requested_microamps);
2196                 if (status < 0)
2197                         return status;
2198         }
2199
2200         /* all the other attributes exist to support constraints;
2201          * don't show them if there are no constraints, or if the
2202          * relevant supporting methods are missing.
2203          */
2204         if (!rdev->constraints)
2205                 return status;
2206
2207         /* constraints need specific supporting methods */
2208         if (ops->set_voltage) {
2209                 status = device_create_file(dev, &dev_attr_min_microvolts);
2210                 if (status < 0)
2211                         return status;
2212                 status = device_create_file(dev, &dev_attr_max_microvolts);
2213                 if (status < 0)
2214                         return status;
2215         }
2216         if (ops->set_current_limit) {
2217                 status = device_create_file(dev, &dev_attr_min_microamps);
2218                 if (status < 0)
2219                         return status;
2220                 status = device_create_file(dev, &dev_attr_max_microamps);
2221                 if (status < 0)
2222                         return status;
2223         }
2224
2225         /* suspend mode constraints need multiple supporting methods */
2226         if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2227                 return status;
2228
2229         status = device_create_file(dev, &dev_attr_suspend_standby_state);
2230         if (status < 0)
2231                 return status;
2232         status = device_create_file(dev, &dev_attr_suspend_mem_state);
2233         if (status < 0)
2234                 return status;
2235         status = device_create_file(dev, &dev_attr_suspend_disk_state);
2236         if (status < 0)
2237                 return status;
2238
2239         if (ops->set_suspend_voltage) {
2240                 status = device_create_file(dev,
2241                                 &dev_attr_suspend_standby_microvolts);
2242                 if (status < 0)
2243                         return status;
2244                 status = device_create_file(dev,
2245                                 &dev_attr_suspend_mem_microvolts);
2246                 if (status < 0)
2247                         return status;
2248                 status = device_create_file(dev,
2249                                 &dev_attr_suspend_disk_microvolts);
2250                 if (status < 0)
2251                         return status;
2252         }
2253
2254         if (ops->set_suspend_mode) {
2255                 status = device_create_file(dev,
2256                                 &dev_attr_suspend_standby_mode);
2257                 if (status < 0)
2258                         return status;
2259                 status = device_create_file(dev,
2260                                 &dev_attr_suspend_mem_mode);
2261                 if (status < 0)
2262                         return status;
2263                 status = device_create_file(dev,
2264                                 &dev_attr_suspend_disk_mode);
2265                 if (status < 0)
2266                         return status;
2267         }
2268
2269         return status;
2270 }
2271
2272 /**
2273  * regulator_register - register regulator
2274  * @regulator_desc: regulator to register
2275  * @dev: struct device for the regulator
2276  * @init_data: platform provided init data, passed through by driver
2277  * @driver_data: private regulator data
2278  *
2279  * Called by regulator drivers to register a regulator.
2280  * Returns 0 on success.
2281  */
2282 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2283         struct device *dev, struct regulator_init_data *init_data,
2284         void *driver_data)
2285 {
2286         static atomic_t regulator_no = ATOMIC_INIT(0);
2287         struct regulator_dev *rdev;
2288         int ret, i;
2289
2290         if (regulator_desc == NULL)
2291                 return ERR_PTR(-EINVAL);
2292
2293         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2294                 return ERR_PTR(-EINVAL);
2295
2296         if (regulator_desc->type != REGULATOR_VOLTAGE &&
2297             regulator_desc->type != REGULATOR_CURRENT)
2298                 return ERR_PTR(-EINVAL);
2299
2300         if (!init_data)
2301                 return ERR_PTR(-EINVAL);
2302
2303         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2304         if (rdev == NULL)
2305                 return ERR_PTR(-ENOMEM);
2306
2307         mutex_lock(&regulator_list_mutex);
2308
2309         mutex_init(&rdev->mutex);
2310         rdev->reg_data = driver_data;
2311         rdev->owner = regulator_desc->owner;
2312         rdev->desc = regulator_desc;
2313         INIT_LIST_HEAD(&rdev->consumer_list);
2314         INIT_LIST_HEAD(&rdev->supply_list);
2315         INIT_LIST_HEAD(&rdev->list);
2316         INIT_LIST_HEAD(&rdev->slist);
2317         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2318
2319         /* preform any regulator specific init */
2320         if (init_data->regulator_init) {
2321                 ret = init_data->regulator_init(rdev->reg_data);
2322                 if (ret < 0)
2323                         goto clean;
2324         }
2325
2326         /* register with sysfs */
2327         rdev->dev.class = &regulator_class;
2328         rdev->dev.parent = dev;
2329         dev_set_name(&rdev->dev, "regulator.%d",
2330                      atomic_inc_return(&regulator_no) - 1);
2331         ret = device_register(&rdev->dev);
2332         if (ret != 0) {
2333                 put_device(&rdev->dev);
2334                 goto clean;
2335         }
2336
2337         dev_set_drvdata(&rdev->dev, rdev);
2338
2339         /* set regulator constraints */
2340         ret = set_machine_constraints(rdev, &init_data->constraints);
2341         if (ret < 0)
2342                 goto scrub;
2343
2344         /* add attributes supported by this regulator */
2345         ret = add_regulator_attributes(rdev);
2346         if (ret < 0)
2347                 goto scrub;
2348
2349         /* set supply regulator if it exists */
2350         if (init_data->supply_regulator && init_data->supply_regulator_dev) {
2351                 dev_err(dev,
2352                         "Supply regulator specified by both name and dev\n");
2353                 ret = -EINVAL;
2354                 goto scrub;
2355         }
2356
2357         if (init_data->supply_regulator) {
2358                 struct regulator_dev *r;
2359                 int found = 0;
2360
2361                 list_for_each_entry(r, &regulator_list, list) {
2362                         if (strcmp(rdev_get_name(r),
2363                                    init_data->supply_regulator) == 0) {
2364                                 found = 1;
2365                                 break;
2366                         }
2367                 }
2368
2369                 if (!found) {
2370                         dev_err(dev, "Failed to find supply %s\n",
2371                                 init_data->supply_regulator);
2372                         ret = -ENODEV;
2373                         goto scrub;
2374                 }
2375
2376                 ret = set_supply(rdev, r);
2377                 if (ret < 0)
2378                         goto scrub;
2379         }
2380
2381         if (init_data->supply_regulator_dev) {
2382                 dev_warn(dev, "Uses supply_regulator_dev instead of regulator_supply\n");
2383                 ret = set_supply(rdev,
2384                         dev_get_drvdata(init_data->supply_regulator_dev));
2385                 if (ret < 0)
2386                         goto scrub;
2387         }
2388
2389         /* add consumers devices */
2390         for (i = 0; i < init_data->num_consumer_supplies; i++) {
2391                 ret = set_consumer_device_supply(rdev,
2392                         init_data->consumer_supplies[i].dev,
2393                         init_data->consumer_supplies[i].dev_name,
2394                         init_data->consumer_supplies[i].supply);
2395                 if (ret < 0)
2396                         goto unset_supplies;
2397         }
2398
2399         list_add(&rdev->list, &regulator_list);
2400 out:
2401         mutex_unlock(&regulator_list_mutex);
2402         return rdev;
2403
2404 unset_supplies:
2405         unset_regulator_supplies(rdev);
2406
2407 scrub:
2408         device_unregister(&rdev->dev);
2409         /* device core frees rdev */
2410         rdev = ERR_PTR(ret);
2411         goto out;
2412
2413 clean:
2414         kfree(rdev);
2415         rdev = ERR_PTR(ret);
2416         goto out;
2417 }
2418 EXPORT_SYMBOL_GPL(regulator_register);
2419
2420 /**
2421  * regulator_unregister - unregister regulator
2422  * @rdev: regulator to unregister
2423  *
2424  * Called by regulator drivers to unregister a regulator.
2425  */
2426 void regulator_unregister(struct regulator_dev *rdev)
2427 {
2428         if (rdev == NULL)
2429                 return;
2430
2431         mutex_lock(&regulator_list_mutex);
2432         WARN_ON(rdev->open_count);
2433         unset_regulator_supplies(rdev);
2434         list_del(&rdev->list);
2435         if (rdev->supply)
2436                 sysfs_remove_link(&rdev->dev.kobj, "supply");
2437         device_unregister(&rdev->dev);
2438         mutex_unlock(&regulator_list_mutex);
2439 }
2440 EXPORT_SYMBOL_GPL(regulator_unregister);
2441
2442 /**
2443  * regulator_suspend_prepare - prepare regulators for system wide suspend
2444  * @state: system suspend state
2445  *
2446  * Configure each regulator with it's suspend operating parameters for state.
2447  * This will usually be called by machine suspend code prior to supending.
2448  */
2449 int regulator_suspend_prepare(suspend_state_t state)
2450 {
2451         struct regulator_dev *rdev;
2452         int ret = 0;
2453
2454         /* ON is handled by regulator active state */
2455         if (state == PM_SUSPEND_ON)
2456                 return -EINVAL;
2457
2458         mutex_lock(&regulator_list_mutex);
2459         list_for_each_entry(rdev, &regulator_list, list) {
2460
2461                 mutex_lock(&rdev->mutex);
2462                 ret = suspend_prepare(rdev, state);
2463                 mutex_unlock(&rdev->mutex);
2464
2465                 if (ret < 0) {
2466                         printk(KERN_ERR "%s: failed to prepare %s\n",
2467                                 __func__, rdev_get_name(rdev));
2468                         goto out;
2469                 }
2470         }
2471 out:
2472         mutex_unlock(&regulator_list_mutex);
2473         return ret;
2474 }
2475 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2476
2477 /**
2478  * regulator_has_full_constraints - the system has fully specified constraints
2479  *
2480  * Calling this function will cause the regulator API to disable all
2481  * regulators which have a zero use count and don't have an always_on
2482  * constraint in a late_initcall.
2483  *
2484  * The intention is that this will become the default behaviour in a
2485  * future kernel release so users are encouraged to use this facility
2486  * now.
2487  */
2488 void regulator_has_full_constraints(void)
2489 {
2490         has_full_constraints = 1;
2491 }
2492 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2493
2494 /**
2495  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2496  *
2497  * Calling this function will cause the regulator API to provide a
2498  * dummy regulator to consumers if no physical regulator is found,
2499  * allowing most consumers to proceed as though a regulator were
2500  * configured.  This allows systems such as those with software
2501  * controllable regulators for the CPU core only to be brought up more
2502  * readily.
2503  */
2504 void regulator_use_dummy_regulator(void)
2505 {
2506         board_wants_dummy_regulator = true;
2507 }
2508 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2509
2510 /**
2511  * rdev_get_drvdata - get rdev regulator driver data
2512  * @rdev: regulator
2513  *
2514  * Get rdev regulator driver private data. This call can be used in the
2515  * regulator driver context.
2516  */
2517 void *rdev_get_drvdata(struct regulator_dev *rdev)
2518 {
2519         return rdev->reg_data;
2520 }
2521 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2522
2523 /**
2524  * regulator_get_drvdata - get regulator driver data
2525  * @regulator: regulator
2526  *
2527  * Get regulator driver private data. This call can be used in the consumer
2528  * driver context when non API regulator specific functions need to be called.
2529  */
2530 void *regulator_get_drvdata(struct regulator *regulator)
2531 {
2532         return regulator->rdev->reg_data;
2533 }
2534 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2535
2536 /**
2537  * regulator_set_drvdata - set regulator driver data
2538  * @regulator: regulator
2539  * @data: data
2540  */
2541 void regulator_set_drvdata(struct regulator *regulator, void *data)
2542 {
2543         regulator->rdev->reg_data = data;
2544 }
2545 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2546
2547 /**
2548  * regulator_get_id - get regulator ID
2549  * @rdev: regulator
2550  */
2551 int rdev_get_id(struct regulator_dev *rdev)
2552 {
2553         return rdev->desc->id;
2554 }
2555 EXPORT_SYMBOL_GPL(rdev_get_id);
2556
2557 struct device *rdev_get_dev(struct regulator_dev *rdev)
2558 {
2559         return &rdev->dev;
2560 }
2561 EXPORT_SYMBOL_GPL(rdev_get_dev);
2562
2563 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2564 {
2565         return reg_init_data->driver_data;
2566 }
2567 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2568
2569 static int __init regulator_init(void)
2570 {
2571         int ret;
2572
2573         printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2574
2575         ret = class_register(&regulator_class);
2576
2577         regulator_dummy_init();
2578
2579         return ret;
2580 }
2581
2582 /* init early to allow our consumers to complete system booting */
2583 core_initcall(regulator_init);
2584
2585 static int __init regulator_init_complete(void)
2586 {
2587         struct regulator_dev *rdev;
2588         struct regulator_ops *ops;
2589         struct regulation_constraints *c;
2590         int enabled, ret;
2591         const char *name;
2592
2593         mutex_lock(&regulator_list_mutex);
2594
2595         /* If we have a full configuration then disable any regulators
2596          * which are not in use or always_on.  This will become the
2597          * default behaviour in the future.
2598          */
2599         list_for_each_entry(rdev, &regulator_list, list) {
2600                 ops = rdev->desc->ops;
2601                 c = rdev->constraints;
2602
2603                 name = rdev_get_name(rdev);
2604
2605                 if (!ops->disable || (c && c->always_on))
2606                         continue;
2607
2608                 mutex_lock(&rdev->mutex);
2609
2610                 if (rdev->use_count)
2611                         goto unlock;
2612
2613                 /* If we can't read the status assume it's on. */
2614                 if (ops->is_enabled)
2615                         enabled = ops->is_enabled(rdev);
2616                 else
2617                         enabled = 1;
2618
2619                 if (!enabled)
2620                         goto unlock;
2621
2622                 if (has_full_constraints) {
2623                         /* We log since this may kill the system if it
2624                          * goes wrong. */
2625                         printk(KERN_INFO "%s: disabling %s\n",
2626                                __func__, name);
2627                         ret = ops->disable(rdev);
2628                         if (ret != 0) {
2629                                 printk(KERN_ERR
2630                                        "%s: couldn't disable %s: %d\n",
2631                                        __func__, name, ret);
2632                         }
2633                 } else {
2634                         /* The intention is that in future we will
2635                          * assume that full constraints are provided
2636                          * so warn even if we aren't going to do
2637                          * anything here.
2638                          */
2639                         printk(KERN_WARNING
2640                                "%s: incomplete constraints, leaving %s on\n",
2641                                __func__, name);
2642                 }
2643
2644 unlock:
2645                 mutex_unlock(&rdev->mutex);
2646         }
2647
2648         mutex_unlock(&regulator_list_mutex);
2649
2650         return 0;
2651 }
2652 late_initcall(regulator_init_complete);