]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/regulator/core.c
regulator: Add option for machine drivers to enable the dummy regulator
[karo-tx-linux.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/slab.h>
20 #include <linux/err.h>
21 #include <linux/mutex.h>
22 #include <linux/suspend.h>
23 #include <linux/delay.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/driver.h>
26 #include <linux/regulator/machine.h>
27
28 #include "dummy.h"
29
30 #define REGULATOR_VERSION "0.5"
31
32 static DEFINE_MUTEX(regulator_list_mutex);
33 static LIST_HEAD(regulator_list);
34 static LIST_HEAD(regulator_map_list);
35 static int has_full_constraints;
36 static bool board_wants_dummy_regulator;
37
38 /*
39  * struct regulator_map
40  *
41  * Used to provide symbolic supply names to devices.
42  */
43 struct regulator_map {
44         struct list_head list;
45         const char *dev_name;   /* The dev_name() for the consumer */
46         const char *supply;
47         struct regulator_dev *regulator;
48 };
49
50 /*
51  * struct regulator
52  *
53  * One for each consumer device.
54  */
55 struct regulator {
56         struct device *dev;
57         struct list_head list;
58         int uA_load;
59         int min_uV;
60         int max_uV;
61         char *supply_name;
62         struct device_attribute dev_attr;
63         struct regulator_dev *rdev;
64 };
65
66 static int _regulator_is_enabled(struct regulator_dev *rdev);
67 static int _regulator_disable(struct regulator_dev *rdev);
68 static int _regulator_get_voltage(struct regulator_dev *rdev);
69 static int _regulator_get_current_limit(struct regulator_dev *rdev);
70 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
71 static void _notifier_call_chain(struct regulator_dev *rdev,
72                                   unsigned long event, void *data);
73
74 static const char *rdev_get_name(struct regulator_dev *rdev)
75 {
76         if (rdev->constraints && rdev->constraints->name)
77                 return rdev->constraints->name;
78         else if (rdev->desc->name)
79                 return rdev->desc->name;
80         else
81                 return "";
82 }
83
84 /* gets the regulator for a given consumer device */
85 static struct regulator *get_device_regulator(struct device *dev)
86 {
87         struct regulator *regulator = NULL;
88         struct regulator_dev *rdev;
89
90         mutex_lock(&regulator_list_mutex);
91         list_for_each_entry(rdev, &regulator_list, list) {
92                 mutex_lock(&rdev->mutex);
93                 list_for_each_entry(regulator, &rdev->consumer_list, list) {
94                         if (regulator->dev == dev) {
95                                 mutex_unlock(&rdev->mutex);
96                                 mutex_unlock(&regulator_list_mutex);
97                                 return regulator;
98                         }
99                 }
100                 mutex_unlock(&rdev->mutex);
101         }
102         mutex_unlock(&regulator_list_mutex);
103         return NULL;
104 }
105
106 /* Platform voltage constraint check */
107 static int regulator_check_voltage(struct regulator_dev *rdev,
108                                    int *min_uV, int *max_uV)
109 {
110         BUG_ON(*min_uV > *max_uV);
111
112         if (!rdev->constraints) {
113                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
114                        rdev_get_name(rdev));
115                 return -ENODEV;
116         }
117         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
118                 printk(KERN_ERR "%s: operation not allowed for %s\n",
119                        __func__, rdev_get_name(rdev));
120                 return -EPERM;
121         }
122
123         if (*max_uV > rdev->constraints->max_uV)
124                 *max_uV = rdev->constraints->max_uV;
125         if (*min_uV < rdev->constraints->min_uV)
126                 *min_uV = rdev->constraints->min_uV;
127
128         if (*min_uV > *max_uV)
129                 return -EINVAL;
130
131         return 0;
132 }
133
134 /* current constraint check */
135 static int regulator_check_current_limit(struct regulator_dev *rdev,
136                                         int *min_uA, int *max_uA)
137 {
138         BUG_ON(*min_uA > *max_uA);
139
140         if (!rdev->constraints) {
141                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
142                        rdev_get_name(rdev));
143                 return -ENODEV;
144         }
145         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
146                 printk(KERN_ERR "%s: operation not allowed for %s\n",
147                        __func__, rdev_get_name(rdev));
148                 return -EPERM;
149         }
150
151         if (*max_uA > rdev->constraints->max_uA)
152                 *max_uA = rdev->constraints->max_uA;
153         if (*min_uA < rdev->constraints->min_uA)
154                 *min_uA = rdev->constraints->min_uA;
155
156         if (*min_uA > *max_uA)
157                 return -EINVAL;
158
159         return 0;
160 }
161
162 /* operating mode constraint check */
163 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
164 {
165         switch (mode) {
166         case REGULATOR_MODE_FAST:
167         case REGULATOR_MODE_NORMAL:
168         case REGULATOR_MODE_IDLE:
169         case REGULATOR_MODE_STANDBY:
170                 break;
171         default:
172                 return -EINVAL;
173         }
174
175         if (!rdev->constraints) {
176                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
177                        rdev_get_name(rdev));
178                 return -ENODEV;
179         }
180         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
181                 printk(KERN_ERR "%s: operation not allowed for %s\n",
182                        __func__, rdev_get_name(rdev));
183                 return -EPERM;
184         }
185         if (!(rdev->constraints->valid_modes_mask & mode)) {
186                 printk(KERN_ERR "%s: invalid mode %x for %s\n",
187                        __func__, mode, rdev_get_name(rdev));
188                 return -EINVAL;
189         }
190         return 0;
191 }
192
193 /* dynamic regulator mode switching constraint check */
194 static int regulator_check_drms(struct regulator_dev *rdev)
195 {
196         if (!rdev->constraints) {
197                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
198                        rdev_get_name(rdev));
199                 return -ENODEV;
200         }
201         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
202                 printk(KERN_ERR "%s: operation not allowed for %s\n",
203                        __func__, rdev_get_name(rdev));
204                 return -EPERM;
205         }
206         return 0;
207 }
208
209 static ssize_t device_requested_uA_show(struct device *dev,
210                              struct device_attribute *attr, char *buf)
211 {
212         struct regulator *regulator;
213
214         regulator = get_device_regulator(dev);
215         if (regulator == NULL)
216                 return 0;
217
218         return sprintf(buf, "%d\n", regulator->uA_load);
219 }
220
221 static ssize_t regulator_uV_show(struct device *dev,
222                                 struct device_attribute *attr, char *buf)
223 {
224         struct regulator_dev *rdev = dev_get_drvdata(dev);
225         ssize_t ret;
226
227         mutex_lock(&rdev->mutex);
228         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
229         mutex_unlock(&rdev->mutex);
230
231         return ret;
232 }
233 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
234
235 static ssize_t regulator_uA_show(struct device *dev,
236                                 struct device_attribute *attr, char *buf)
237 {
238         struct regulator_dev *rdev = dev_get_drvdata(dev);
239
240         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
241 }
242 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
243
244 static ssize_t regulator_name_show(struct device *dev,
245                              struct device_attribute *attr, char *buf)
246 {
247         struct regulator_dev *rdev = dev_get_drvdata(dev);
248
249         return sprintf(buf, "%s\n", rdev_get_name(rdev));
250 }
251
252 static ssize_t regulator_print_opmode(char *buf, int mode)
253 {
254         switch (mode) {
255         case REGULATOR_MODE_FAST:
256                 return sprintf(buf, "fast\n");
257         case REGULATOR_MODE_NORMAL:
258                 return sprintf(buf, "normal\n");
259         case REGULATOR_MODE_IDLE:
260                 return sprintf(buf, "idle\n");
261         case REGULATOR_MODE_STANDBY:
262                 return sprintf(buf, "standby\n");
263         }
264         return sprintf(buf, "unknown\n");
265 }
266
267 static ssize_t regulator_opmode_show(struct device *dev,
268                                     struct device_attribute *attr, char *buf)
269 {
270         struct regulator_dev *rdev = dev_get_drvdata(dev);
271
272         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
273 }
274 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
275
276 static ssize_t regulator_print_state(char *buf, int state)
277 {
278         if (state > 0)
279                 return sprintf(buf, "enabled\n");
280         else if (state == 0)
281                 return sprintf(buf, "disabled\n");
282         else
283                 return sprintf(buf, "unknown\n");
284 }
285
286 static ssize_t regulator_state_show(struct device *dev,
287                                    struct device_attribute *attr, char *buf)
288 {
289         struct regulator_dev *rdev = dev_get_drvdata(dev);
290         ssize_t ret;
291
292         mutex_lock(&rdev->mutex);
293         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
294         mutex_unlock(&rdev->mutex);
295
296         return ret;
297 }
298 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
299
300 static ssize_t regulator_status_show(struct device *dev,
301                                    struct device_attribute *attr, char *buf)
302 {
303         struct regulator_dev *rdev = dev_get_drvdata(dev);
304         int status;
305         char *label;
306
307         status = rdev->desc->ops->get_status(rdev);
308         if (status < 0)
309                 return status;
310
311         switch (status) {
312         case REGULATOR_STATUS_OFF:
313                 label = "off";
314                 break;
315         case REGULATOR_STATUS_ON:
316                 label = "on";
317                 break;
318         case REGULATOR_STATUS_ERROR:
319                 label = "error";
320                 break;
321         case REGULATOR_STATUS_FAST:
322                 label = "fast";
323                 break;
324         case REGULATOR_STATUS_NORMAL:
325                 label = "normal";
326                 break;
327         case REGULATOR_STATUS_IDLE:
328                 label = "idle";
329                 break;
330         case REGULATOR_STATUS_STANDBY:
331                 label = "standby";
332                 break;
333         default:
334                 return -ERANGE;
335         }
336
337         return sprintf(buf, "%s\n", label);
338 }
339 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
340
341 static ssize_t regulator_min_uA_show(struct device *dev,
342                                     struct device_attribute *attr, char *buf)
343 {
344         struct regulator_dev *rdev = dev_get_drvdata(dev);
345
346         if (!rdev->constraints)
347                 return sprintf(buf, "constraint not defined\n");
348
349         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
350 }
351 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
352
353 static ssize_t regulator_max_uA_show(struct device *dev,
354                                     struct device_attribute *attr, char *buf)
355 {
356         struct regulator_dev *rdev = dev_get_drvdata(dev);
357
358         if (!rdev->constraints)
359                 return sprintf(buf, "constraint not defined\n");
360
361         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
362 }
363 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
364
365 static ssize_t regulator_min_uV_show(struct device *dev,
366                                     struct device_attribute *attr, char *buf)
367 {
368         struct regulator_dev *rdev = dev_get_drvdata(dev);
369
370         if (!rdev->constraints)
371                 return sprintf(buf, "constraint not defined\n");
372
373         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
374 }
375 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
376
377 static ssize_t regulator_max_uV_show(struct device *dev,
378                                     struct device_attribute *attr, char *buf)
379 {
380         struct regulator_dev *rdev = dev_get_drvdata(dev);
381
382         if (!rdev->constraints)
383                 return sprintf(buf, "constraint not defined\n");
384
385         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
386 }
387 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
388
389 static ssize_t regulator_total_uA_show(struct device *dev,
390                                       struct device_attribute *attr, char *buf)
391 {
392         struct regulator_dev *rdev = dev_get_drvdata(dev);
393         struct regulator *regulator;
394         int uA = 0;
395
396         mutex_lock(&rdev->mutex);
397         list_for_each_entry(regulator, &rdev->consumer_list, list)
398                 uA += regulator->uA_load;
399         mutex_unlock(&rdev->mutex);
400         return sprintf(buf, "%d\n", uA);
401 }
402 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
403
404 static ssize_t regulator_num_users_show(struct device *dev,
405                                       struct device_attribute *attr, char *buf)
406 {
407         struct regulator_dev *rdev = dev_get_drvdata(dev);
408         return sprintf(buf, "%d\n", rdev->use_count);
409 }
410
411 static ssize_t regulator_type_show(struct device *dev,
412                                   struct device_attribute *attr, char *buf)
413 {
414         struct regulator_dev *rdev = dev_get_drvdata(dev);
415
416         switch (rdev->desc->type) {
417         case REGULATOR_VOLTAGE:
418                 return sprintf(buf, "voltage\n");
419         case REGULATOR_CURRENT:
420                 return sprintf(buf, "current\n");
421         }
422         return sprintf(buf, "unknown\n");
423 }
424
425 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
426                                 struct device_attribute *attr, char *buf)
427 {
428         struct regulator_dev *rdev = dev_get_drvdata(dev);
429
430         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
431 }
432 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
433                 regulator_suspend_mem_uV_show, NULL);
434
435 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
436                                 struct device_attribute *attr, char *buf)
437 {
438         struct regulator_dev *rdev = dev_get_drvdata(dev);
439
440         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
441 }
442 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
443                 regulator_suspend_disk_uV_show, NULL);
444
445 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
446                                 struct device_attribute *attr, char *buf)
447 {
448         struct regulator_dev *rdev = dev_get_drvdata(dev);
449
450         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
451 }
452 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
453                 regulator_suspend_standby_uV_show, NULL);
454
455 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
456                                 struct device_attribute *attr, char *buf)
457 {
458         struct regulator_dev *rdev = dev_get_drvdata(dev);
459
460         return regulator_print_opmode(buf,
461                 rdev->constraints->state_mem.mode);
462 }
463 static DEVICE_ATTR(suspend_mem_mode, 0444,
464                 regulator_suspend_mem_mode_show, NULL);
465
466 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
467                                 struct device_attribute *attr, char *buf)
468 {
469         struct regulator_dev *rdev = dev_get_drvdata(dev);
470
471         return regulator_print_opmode(buf,
472                 rdev->constraints->state_disk.mode);
473 }
474 static DEVICE_ATTR(suspend_disk_mode, 0444,
475                 regulator_suspend_disk_mode_show, NULL);
476
477 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
478                                 struct device_attribute *attr, char *buf)
479 {
480         struct regulator_dev *rdev = dev_get_drvdata(dev);
481
482         return regulator_print_opmode(buf,
483                 rdev->constraints->state_standby.mode);
484 }
485 static DEVICE_ATTR(suspend_standby_mode, 0444,
486                 regulator_suspend_standby_mode_show, NULL);
487
488 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
489                                    struct device_attribute *attr, char *buf)
490 {
491         struct regulator_dev *rdev = dev_get_drvdata(dev);
492
493         return regulator_print_state(buf,
494                         rdev->constraints->state_mem.enabled);
495 }
496 static DEVICE_ATTR(suspend_mem_state, 0444,
497                 regulator_suspend_mem_state_show, NULL);
498
499 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
500                                    struct device_attribute *attr, char *buf)
501 {
502         struct regulator_dev *rdev = dev_get_drvdata(dev);
503
504         return regulator_print_state(buf,
505                         rdev->constraints->state_disk.enabled);
506 }
507 static DEVICE_ATTR(suspend_disk_state, 0444,
508                 regulator_suspend_disk_state_show, NULL);
509
510 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
511                                    struct device_attribute *attr, char *buf)
512 {
513         struct regulator_dev *rdev = dev_get_drvdata(dev);
514
515         return regulator_print_state(buf,
516                         rdev->constraints->state_standby.enabled);
517 }
518 static DEVICE_ATTR(suspend_standby_state, 0444,
519                 regulator_suspend_standby_state_show, NULL);
520
521
522 /*
523  * These are the only attributes are present for all regulators.
524  * Other attributes are a function of regulator functionality.
525  */
526 static struct device_attribute regulator_dev_attrs[] = {
527         __ATTR(name, 0444, regulator_name_show, NULL),
528         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
529         __ATTR(type, 0444, regulator_type_show, NULL),
530         __ATTR_NULL,
531 };
532
533 static void regulator_dev_release(struct device *dev)
534 {
535         struct regulator_dev *rdev = dev_get_drvdata(dev);
536         kfree(rdev);
537 }
538
539 static struct class regulator_class = {
540         .name = "regulator",
541         .dev_release = regulator_dev_release,
542         .dev_attrs = regulator_dev_attrs,
543 };
544
545 /* Calculate the new optimum regulator operating mode based on the new total
546  * consumer load. All locks held by caller */
547 static void drms_uA_update(struct regulator_dev *rdev)
548 {
549         struct regulator *sibling;
550         int current_uA = 0, output_uV, input_uV, err;
551         unsigned int mode;
552
553         err = regulator_check_drms(rdev);
554         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
555             !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
556                 return;
557
558         /* get output voltage */
559         output_uV = rdev->desc->ops->get_voltage(rdev);
560         if (output_uV <= 0)
561                 return;
562
563         /* get input voltage */
564         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
565                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
566         else
567                 input_uV = rdev->constraints->input_uV;
568         if (input_uV <= 0)
569                 return;
570
571         /* calc total requested load */
572         list_for_each_entry(sibling, &rdev->consumer_list, list)
573                 current_uA += sibling->uA_load;
574
575         /* now get the optimum mode for our new total regulator load */
576         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
577                                                   output_uV, current_uA);
578
579         /* check the new mode is allowed */
580         err = regulator_check_mode(rdev, mode);
581         if (err == 0)
582                 rdev->desc->ops->set_mode(rdev, mode);
583 }
584
585 static int suspend_set_state(struct regulator_dev *rdev,
586         struct regulator_state *rstate)
587 {
588         int ret = 0;
589         bool can_set_state;
590
591         can_set_state = rdev->desc->ops->set_suspend_enable &&
592                 rdev->desc->ops->set_suspend_disable;
593
594         /* If we have no suspend mode configration don't set anything;
595          * only warn if the driver actually makes the suspend mode
596          * configurable.
597          */
598         if (!rstate->enabled && !rstate->disabled) {
599                 if (can_set_state)
600                         printk(KERN_WARNING "%s: No configuration for %s\n",
601                                __func__, rdev_get_name(rdev));
602                 return 0;
603         }
604
605         if (rstate->enabled && rstate->disabled) {
606                 printk(KERN_ERR "%s: invalid configuration for %s\n",
607                        __func__, rdev_get_name(rdev));
608                 return -EINVAL;
609         }
610
611         if (!can_set_state) {
612                 printk(KERN_ERR "%s: no way to set suspend state\n",
613                         __func__);
614                 return -EINVAL;
615         }
616
617         if (rstate->enabled)
618                 ret = rdev->desc->ops->set_suspend_enable(rdev);
619         else
620                 ret = rdev->desc->ops->set_suspend_disable(rdev);
621         if (ret < 0) {
622                 printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
623                 return ret;
624         }
625
626         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
627                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
628                 if (ret < 0) {
629                         printk(KERN_ERR "%s: failed to set voltage\n",
630                                 __func__);
631                         return ret;
632                 }
633         }
634
635         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
636                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
637                 if (ret < 0) {
638                         printk(KERN_ERR "%s: failed to set mode\n", __func__);
639                         return ret;
640                 }
641         }
642         return ret;
643 }
644
645 /* locks held by caller */
646 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
647 {
648         if (!rdev->constraints)
649                 return -EINVAL;
650
651         switch (state) {
652         case PM_SUSPEND_STANDBY:
653                 return suspend_set_state(rdev,
654                         &rdev->constraints->state_standby);
655         case PM_SUSPEND_MEM:
656                 return suspend_set_state(rdev,
657                         &rdev->constraints->state_mem);
658         case PM_SUSPEND_MAX:
659                 return suspend_set_state(rdev,
660                         &rdev->constraints->state_disk);
661         default:
662                 return -EINVAL;
663         }
664 }
665
666 static void print_constraints(struct regulator_dev *rdev)
667 {
668         struct regulation_constraints *constraints = rdev->constraints;
669         char buf[80] = "";
670         int count = 0;
671         int ret;
672
673         if (constraints->min_uV && constraints->max_uV) {
674                 if (constraints->min_uV == constraints->max_uV)
675                         count += sprintf(buf + count, "%d mV ",
676                                          constraints->min_uV / 1000);
677                 else
678                         count += sprintf(buf + count, "%d <--> %d mV ",
679                                          constraints->min_uV / 1000,
680                                          constraints->max_uV / 1000);
681         }
682
683         if (!constraints->min_uV ||
684             constraints->min_uV != constraints->max_uV) {
685                 ret = _regulator_get_voltage(rdev);
686                 if (ret > 0)
687                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
688         }
689
690         if (constraints->min_uA && constraints->max_uA) {
691                 if (constraints->min_uA == constraints->max_uA)
692                         count += sprintf(buf + count, "%d mA ",
693                                          constraints->min_uA / 1000);
694                 else
695                         count += sprintf(buf + count, "%d <--> %d mA ",
696                                          constraints->min_uA / 1000,
697                                          constraints->max_uA / 1000);
698         }
699
700         if (!constraints->min_uA ||
701             constraints->min_uA != constraints->max_uA) {
702                 ret = _regulator_get_current_limit(rdev);
703                 if (ret > 0)
704                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
705         }
706
707         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
708                 count += sprintf(buf + count, "fast ");
709         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
710                 count += sprintf(buf + count, "normal ");
711         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
712                 count += sprintf(buf + count, "idle ");
713         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
714                 count += sprintf(buf + count, "standby");
715
716         printk(KERN_INFO "regulator: %s: %s\n", rdev_get_name(rdev), buf);
717 }
718
719 static int machine_constraints_voltage(struct regulator_dev *rdev,
720         struct regulation_constraints *constraints)
721 {
722         struct regulator_ops *ops = rdev->desc->ops;
723         const char *name = rdev_get_name(rdev);
724         int ret;
725
726         /* do we need to apply the constraint voltage */
727         if (rdev->constraints->apply_uV &&
728                 rdev->constraints->min_uV == rdev->constraints->max_uV &&
729                 ops->set_voltage) {
730                 ret = ops->set_voltage(rdev,
731                         rdev->constraints->min_uV, rdev->constraints->max_uV);
732                         if (ret < 0) {
733                                 printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
734                                        __func__,
735                                        rdev->constraints->min_uV, name);
736                                 rdev->constraints = NULL;
737                                 return ret;
738                         }
739         }
740
741         /* constrain machine-level voltage specs to fit
742          * the actual range supported by this regulator.
743          */
744         if (ops->list_voltage && rdev->desc->n_voltages) {
745                 int     count = rdev->desc->n_voltages;
746                 int     i;
747                 int     min_uV = INT_MAX;
748                 int     max_uV = INT_MIN;
749                 int     cmin = constraints->min_uV;
750                 int     cmax = constraints->max_uV;
751
752                 /* it's safe to autoconfigure fixed-voltage supplies
753                    and the constraints are used by list_voltage. */
754                 if (count == 1 && !cmin) {
755                         cmin = 1;
756                         cmax = INT_MAX;
757                         constraints->min_uV = cmin;
758                         constraints->max_uV = cmax;
759                 }
760
761                 /* voltage constraints are optional */
762                 if ((cmin == 0) && (cmax == 0))
763                         return 0;
764
765                 /* else require explicit machine-level constraints */
766                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
767                         pr_err("%s: %s '%s' voltage constraints\n",
768                                        __func__, "invalid", name);
769                         return -EINVAL;
770                 }
771
772                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
773                 for (i = 0; i < count; i++) {
774                         int     value;
775
776                         value = ops->list_voltage(rdev, i);
777                         if (value <= 0)
778                                 continue;
779
780                         /* maybe adjust [min_uV..max_uV] */
781                         if (value >= cmin && value < min_uV)
782                                 min_uV = value;
783                         if (value <= cmax && value > max_uV)
784                                 max_uV = value;
785                 }
786
787                 /* final: [min_uV..max_uV] valid iff constraints valid */
788                 if (max_uV < min_uV) {
789                         pr_err("%s: %s '%s' voltage constraints\n",
790                                        __func__, "unsupportable", name);
791                         return -EINVAL;
792                 }
793
794                 /* use regulator's subset of machine constraints */
795                 if (constraints->min_uV < min_uV) {
796                         pr_debug("%s: override '%s' %s, %d -> %d\n",
797                                        __func__, name, "min_uV",
798                                         constraints->min_uV, min_uV);
799                         constraints->min_uV = min_uV;
800                 }
801                 if (constraints->max_uV > max_uV) {
802                         pr_debug("%s: override '%s' %s, %d -> %d\n",
803                                        __func__, name, "max_uV",
804                                         constraints->max_uV, max_uV);
805                         constraints->max_uV = max_uV;
806                 }
807         }
808
809         return 0;
810 }
811
812 /**
813  * set_machine_constraints - sets regulator constraints
814  * @rdev: regulator source
815  * @constraints: constraints to apply
816  *
817  * Allows platform initialisation code to define and constrain
818  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
819  * Constraints *must* be set by platform code in order for some
820  * regulator operations to proceed i.e. set_voltage, set_current_limit,
821  * set_mode.
822  */
823 static int set_machine_constraints(struct regulator_dev *rdev,
824         struct regulation_constraints *constraints)
825 {
826         int ret = 0;
827         const char *name;
828         struct regulator_ops *ops = rdev->desc->ops;
829
830         rdev->constraints = constraints;
831
832         name = rdev_get_name(rdev);
833
834         ret = machine_constraints_voltage(rdev, constraints);
835         if (ret != 0)
836                 goto out;
837
838         /* do we need to setup our suspend state */
839         if (constraints->initial_state) {
840                 ret = suspend_prepare(rdev, constraints->initial_state);
841                 if (ret < 0) {
842                         printk(KERN_ERR "%s: failed to set suspend state for %s\n",
843                                __func__, name);
844                         rdev->constraints = NULL;
845                         goto out;
846                 }
847         }
848
849         if (constraints->initial_mode) {
850                 if (!ops->set_mode) {
851                         printk(KERN_ERR "%s: no set_mode operation for %s\n",
852                                __func__, name);
853                         ret = -EINVAL;
854                         goto out;
855                 }
856
857                 ret = ops->set_mode(rdev, constraints->initial_mode);
858                 if (ret < 0) {
859                         printk(KERN_ERR
860                                "%s: failed to set initial mode for %s: %d\n",
861                                __func__, name, ret);
862                         goto out;
863                 }
864         }
865
866         /* If the constraints say the regulator should be on at this point
867          * and we have control then make sure it is enabled.
868          */
869         if ((constraints->always_on || constraints->boot_on) && ops->enable) {
870                 ret = ops->enable(rdev);
871                 if (ret < 0) {
872                         printk(KERN_ERR "%s: failed to enable %s\n",
873                                __func__, name);
874                         rdev->constraints = NULL;
875                         goto out;
876                 }
877         }
878
879         print_constraints(rdev);
880 out:
881         return ret;
882 }
883
884 /**
885  * set_supply - set regulator supply regulator
886  * @rdev: regulator name
887  * @supply_rdev: supply regulator name
888  *
889  * Called by platform initialisation code to set the supply regulator for this
890  * regulator. This ensures that a regulators supply will also be enabled by the
891  * core if it's child is enabled.
892  */
893 static int set_supply(struct regulator_dev *rdev,
894         struct regulator_dev *supply_rdev)
895 {
896         int err;
897
898         err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
899                                 "supply");
900         if (err) {
901                 printk(KERN_ERR
902                        "%s: could not add device link %s err %d\n",
903                        __func__, supply_rdev->dev.kobj.name, err);
904                        goto out;
905         }
906         rdev->supply = supply_rdev;
907         list_add(&rdev->slist, &supply_rdev->supply_list);
908 out:
909         return err;
910 }
911
912 /**
913  * set_consumer_device_supply: Bind a regulator to a symbolic supply
914  * @rdev:         regulator source
915  * @consumer_dev: device the supply applies to
916  * @consumer_dev_name: dev_name() string for device supply applies to
917  * @supply:       symbolic name for supply
918  *
919  * Allows platform initialisation code to map physical regulator
920  * sources to symbolic names for supplies for use by devices.  Devices
921  * should use these symbolic names to request regulators, avoiding the
922  * need to provide board-specific regulator names as platform data.
923  *
924  * Only one of consumer_dev and consumer_dev_name may be specified.
925  */
926 static int set_consumer_device_supply(struct regulator_dev *rdev,
927         struct device *consumer_dev, const char *consumer_dev_name,
928         const char *supply)
929 {
930         struct regulator_map *node;
931         int has_dev;
932
933         if (consumer_dev && consumer_dev_name)
934                 return -EINVAL;
935
936         if (!consumer_dev_name && consumer_dev)
937                 consumer_dev_name = dev_name(consumer_dev);
938
939         if (supply == NULL)
940                 return -EINVAL;
941
942         if (consumer_dev_name != NULL)
943                 has_dev = 1;
944         else
945                 has_dev = 0;
946
947         list_for_each_entry(node, &regulator_map_list, list) {
948                 if (node->dev_name && consumer_dev_name) {
949                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
950                                 continue;
951                 } else if (node->dev_name || consumer_dev_name) {
952                         continue;
953                 }
954
955                 if (strcmp(node->supply, supply) != 0)
956                         continue;
957
958                 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
959                                 dev_name(&node->regulator->dev),
960                                 node->regulator->desc->name,
961                                 supply,
962                                 dev_name(&rdev->dev), rdev_get_name(rdev));
963                 return -EBUSY;
964         }
965
966         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
967         if (node == NULL)
968                 return -ENOMEM;
969
970         node->regulator = rdev;
971         node->supply = supply;
972
973         if (has_dev) {
974                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
975                 if (node->dev_name == NULL) {
976                         kfree(node);
977                         return -ENOMEM;
978                 }
979         }
980
981         list_add(&node->list, &regulator_map_list);
982         return 0;
983 }
984
985 static void unset_regulator_supplies(struct regulator_dev *rdev)
986 {
987         struct regulator_map *node, *n;
988
989         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
990                 if (rdev == node->regulator) {
991                         list_del(&node->list);
992                         kfree(node->dev_name);
993                         kfree(node);
994                 }
995         }
996 }
997
998 #define REG_STR_SIZE    32
999
1000 static struct regulator *create_regulator(struct regulator_dev *rdev,
1001                                           struct device *dev,
1002                                           const char *supply_name)
1003 {
1004         struct regulator *regulator;
1005         char buf[REG_STR_SIZE];
1006         int err, size;
1007
1008         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1009         if (regulator == NULL)
1010                 return NULL;
1011
1012         mutex_lock(&rdev->mutex);
1013         regulator->rdev = rdev;
1014         list_add(&regulator->list, &rdev->consumer_list);
1015
1016         if (dev) {
1017                 /* create a 'requested_microamps_name' sysfs entry */
1018                 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1019                         supply_name);
1020                 if (size >= REG_STR_SIZE)
1021                         goto overflow_err;
1022
1023                 regulator->dev = dev;
1024                 sysfs_attr_init(&regulator->dev_attr.attr);
1025                 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1026                 if (regulator->dev_attr.attr.name == NULL)
1027                         goto attr_name_err;
1028
1029                 regulator->dev_attr.attr.mode = 0444;
1030                 regulator->dev_attr.show = device_requested_uA_show;
1031                 err = device_create_file(dev, &regulator->dev_attr);
1032                 if (err < 0) {
1033                         printk(KERN_WARNING "%s: could not add regulator_dev"
1034                                 " load sysfs\n", __func__);
1035                         goto attr_name_err;
1036                 }
1037
1038                 /* also add a link to the device sysfs entry */
1039                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1040                                  dev->kobj.name, supply_name);
1041                 if (size >= REG_STR_SIZE)
1042                         goto attr_err;
1043
1044                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1045                 if (regulator->supply_name == NULL)
1046                         goto attr_err;
1047
1048                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1049                                         buf);
1050                 if (err) {
1051                         printk(KERN_WARNING
1052                                "%s: could not add device link %s err %d\n",
1053                                __func__, dev->kobj.name, err);
1054                         device_remove_file(dev, &regulator->dev_attr);
1055                         goto link_name_err;
1056                 }
1057         }
1058         mutex_unlock(&rdev->mutex);
1059         return regulator;
1060 link_name_err:
1061         kfree(regulator->supply_name);
1062 attr_err:
1063         device_remove_file(regulator->dev, &regulator->dev_attr);
1064 attr_name_err:
1065         kfree(regulator->dev_attr.attr.name);
1066 overflow_err:
1067         list_del(&regulator->list);
1068         kfree(regulator);
1069         mutex_unlock(&rdev->mutex);
1070         return NULL;
1071 }
1072
1073 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1074 {
1075         if (!rdev->desc->ops->enable_time)
1076                 return 0;
1077         return rdev->desc->ops->enable_time(rdev);
1078 }
1079
1080 /* Internal regulator request function */
1081 static struct regulator *_regulator_get(struct device *dev, const char *id,
1082                                         int exclusive)
1083 {
1084         struct regulator_dev *rdev;
1085         struct regulator_map *map;
1086         struct regulator *regulator = ERR_PTR(-ENODEV);
1087         const char *devname = NULL;
1088         int ret;
1089
1090         if (id == NULL) {
1091                 printk(KERN_ERR "regulator: get() with no identifier\n");
1092                 return regulator;
1093         }
1094
1095         if (dev)
1096                 devname = dev_name(dev);
1097
1098         mutex_lock(&regulator_list_mutex);
1099
1100         list_for_each_entry(map, &regulator_map_list, list) {
1101                 /* If the mapping has a device set up it must match */
1102                 if (map->dev_name &&
1103                     (!devname || strcmp(map->dev_name, devname)))
1104                         continue;
1105
1106                 if (strcmp(map->supply, id) == 0) {
1107                         rdev = map->regulator;
1108                         goto found;
1109                 }
1110         }
1111
1112         if (board_wants_dummy_regulator) {
1113                 rdev = dummy_regulator_rdev;
1114                 goto found;
1115         }
1116
1117 #ifdef CONFIG_REGULATOR_DUMMY
1118         if (!devname)
1119                 devname = "deviceless";
1120
1121         /* If the board didn't flag that it was fully constrained then
1122          * substitute in a dummy regulator so consumers can continue.
1123          */
1124         if (!has_full_constraints) {
1125                 pr_warning("%s supply %s not found, using dummy regulator\n",
1126                            devname, id);
1127                 rdev = dummy_regulator_rdev;
1128                 goto found;
1129         }
1130 #endif
1131
1132         mutex_unlock(&regulator_list_mutex);
1133         return regulator;
1134
1135 found:
1136         if (rdev->exclusive) {
1137                 regulator = ERR_PTR(-EPERM);
1138                 goto out;
1139         }
1140
1141         if (exclusive && rdev->open_count) {
1142                 regulator = ERR_PTR(-EBUSY);
1143                 goto out;
1144         }
1145
1146         if (!try_module_get(rdev->owner))
1147                 goto out;
1148
1149         regulator = create_regulator(rdev, dev, id);
1150         if (regulator == NULL) {
1151                 regulator = ERR_PTR(-ENOMEM);
1152                 module_put(rdev->owner);
1153         }
1154
1155         rdev->open_count++;
1156         if (exclusive) {
1157                 rdev->exclusive = 1;
1158
1159                 ret = _regulator_is_enabled(rdev);
1160                 if (ret > 0)
1161                         rdev->use_count = 1;
1162                 else
1163                         rdev->use_count = 0;
1164         }
1165
1166 out:
1167         mutex_unlock(&regulator_list_mutex);
1168
1169         return regulator;
1170 }
1171
1172 /**
1173  * regulator_get - lookup and obtain a reference to a regulator.
1174  * @dev: device for regulator "consumer"
1175  * @id: Supply name or regulator ID.
1176  *
1177  * Returns a struct regulator corresponding to the regulator producer,
1178  * or IS_ERR() condition containing errno.
1179  *
1180  * Use of supply names configured via regulator_set_device_supply() is
1181  * strongly encouraged.  It is recommended that the supply name used
1182  * should match the name used for the supply and/or the relevant
1183  * device pins in the datasheet.
1184  */
1185 struct regulator *regulator_get(struct device *dev, const char *id)
1186 {
1187         return _regulator_get(dev, id, 0);
1188 }
1189 EXPORT_SYMBOL_GPL(regulator_get);
1190
1191 /**
1192  * regulator_get_exclusive - obtain exclusive access to a regulator.
1193  * @dev: device for regulator "consumer"
1194  * @id: Supply name or regulator ID.
1195  *
1196  * Returns a struct regulator corresponding to the regulator producer,
1197  * or IS_ERR() condition containing errno.  Other consumers will be
1198  * unable to obtain this reference is held and the use count for the
1199  * regulator will be initialised to reflect the current state of the
1200  * regulator.
1201  *
1202  * This is intended for use by consumers which cannot tolerate shared
1203  * use of the regulator such as those which need to force the
1204  * regulator off for correct operation of the hardware they are
1205  * controlling.
1206  *
1207  * Use of supply names configured via regulator_set_device_supply() is
1208  * strongly encouraged.  It is recommended that the supply name used
1209  * should match the name used for the supply and/or the relevant
1210  * device pins in the datasheet.
1211  */
1212 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1213 {
1214         return _regulator_get(dev, id, 1);
1215 }
1216 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1217
1218 /**
1219  * regulator_put - "free" the regulator source
1220  * @regulator: regulator source
1221  *
1222  * Note: drivers must ensure that all regulator_enable calls made on this
1223  * regulator source are balanced by regulator_disable calls prior to calling
1224  * this function.
1225  */
1226 void regulator_put(struct regulator *regulator)
1227 {
1228         struct regulator_dev *rdev;
1229
1230         if (regulator == NULL || IS_ERR(regulator))
1231                 return;
1232
1233         mutex_lock(&regulator_list_mutex);
1234         rdev = regulator->rdev;
1235
1236         /* remove any sysfs entries */
1237         if (regulator->dev) {
1238                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1239                 kfree(regulator->supply_name);
1240                 device_remove_file(regulator->dev, &regulator->dev_attr);
1241                 kfree(regulator->dev_attr.attr.name);
1242         }
1243         list_del(&regulator->list);
1244         kfree(regulator);
1245
1246         rdev->open_count--;
1247         rdev->exclusive = 0;
1248
1249         module_put(rdev->owner);
1250         mutex_unlock(&regulator_list_mutex);
1251 }
1252 EXPORT_SYMBOL_GPL(regulator_put);
1253
1254 static int _regulator_can_change_status(struct regulator_dev *rdev)
1255 {
1256         if (!rdev->constraints)
1257                 return 0;
1258
1259         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1260                 return 1;
1261         else
1262                 return 0;
1263 }
1264
1265 /* locks held by regulator_enable() */
1266 static int _regulator_enable(struct regulator_dev *rdev)
1267 {
1268         int ret, delay;
1269
1270         /* do we need to enable the supply regulator first */
1271         if (rdev->supply) {
1272                 ret = _regulator_enable(rdev->supply);
1273                 if (ret < 0) {
1274                         printk(KERN_ERR "%s: failed to enable %s: %d\n",
1275                                __func__, rdev_get_name(rdev), ret);
1276                         return ret;
1277                 }
1278         }
1279
1280         /* check voltage and requested load before enabling */
1281         if (rdev->constraints &&
1282             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1283                 drms_uA_update(rdev);
1284
1285         if (rdev->use_count == 0) {
1286                 /* The regulator may on if it's not switchable or left on */
1287                 ret = _regulator_is_enabled(rdev);
1288                 if (ret == -EINVAL || ret == 0) {
1289                         if (!_regulator_can_change_status(rdev))
1290                                 return -EPERM;
1291
1292                         if (!rdev->desc->ops->enable)
1293                                 return -EINVAL;
1294
1295                         /* Query before enabling in case configuration
1296                          * dependant.  */
1297                         ret = _regulator_get_enable_time(rdev);
1298                         if (ret >= 0) {
1299                                 delay = ret;
1300                         } else {
1301                                 printk(KERN_WARNING
1302                                         "%s: enable_time() failed for %s: %d\n",
1303                                         __func__, rdev_get_name(rdev),
1304                                         ret);
1305                                 delay = 0;
1306                         }
1307
1308                         /* Allow the regulator to ramp; it would be useful
1309                          * to extend this for bulk operations so that the
1310                          * regulators can ramp together.  */
1311                         ret = rdev->desc->ops->enable(rdev);
1312                         if (ret < 0)
1313                                 return ret;
1314
1315                         if (delay >= 1000)
1316                                 mdelay(delay / 1000);
1317                         else if (delay)
1318                                 udelay(delay);
1319
1320                 } else if (ret < 0) {
1321                         printk(KERN_ERR "%s: is_enabled() failed for %s: %d\n",
1322                                __func__, rdev_get_name(rdev), ret);
1323                         return ret;
1324                 }
1325                 /* Fallthrough on positive return values - already enabled */
1326         }
1327
1328         rdev->use_count++;
1329
1330         return 0;
1331 }
1332
1333 /**
1334  * regulator_enable - enable regulator output
1335  * @regulator: regulator source
1336  *
1337  * Request that the regulator be enabled with the regulator output at
1338  * the predefined voltage or current value.  Calls to regulator_enable()
1339  * must be balanced with calls to regulator_disable().
1340  *
1341  * NOTE: the output value can be set by other drivers, boot loader or may be
1342  * hardwired in the regulator.
1343  */
1344 int regulator_enable(struct regulator *regulator)
1345 {
1346         struct regulator_dev *rdev = regulator->rdev;
1347         int ret = 0;
1348
1349         mutex_lock(&rdev->mutex);
1350         ret = _regulator_enable(rdev);
1351         mutex_unlock(&rdev->mutex);
1352         return ret;
1353 }
1354 EXPORT_SYMBOL_GPL(regulator_enable);
1355
1356 /* locks held by regulator_disable() */
1357 static int _regulator_disable(struct regulator_dev *rdev)
1358 {
1359         int ret = 0;
1360
1361         if (WARN(rdev->use_count <= 0,
1362                         "unbalanced disables for %s\n",
1363                         rdev_get_name(rdev)))
1364                 return -EIO;
1365
1366         /* are we the last user and permitted to disable ? */
1367         if (rdev->use_count == 1 &&
1368             (rdev->constraints && !rdev->constraints->always_on)) {
1369
1370                 /* we are last user */
1371                 if (_regulator_can_change_status(rdev) &&
1372                     rdev->desc->ops->disable) {
1373                         ret = rdev->desc->ops->disable(rdev);
1374                         if (ret < 0) {
1375                                 printk(KERN_ERR "%s: failed to disable %s\n",
1376                                        __func__, rdev_get_name(rdev));
1377                                 return ret;
1378                         }
1379
1380                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1381                                              NULL);
1382                 }
1383
1384                 /* decrease our supplies ref count and disable if required */
1385                 if (rdev->supply)
1386                         _regulator_disable(rdev->supply);
1387
1388                 rdev->use_count = 0;
1389         } else if (rdev->use_count > 1) {
1390
1391                 if (rdev->constraints &&
1392                         (rdev->constraints->valid_ops_mask &
1393                         REGULATOR_CHANGE_DRMS))
1394                         drms_uA_update(rdev);
1395
1396                 rdev->use_count--;
1397         }
1398         return ret;
1399 }
1400
1401 /**
1402  * regulator_disable - disable regulator output
1403  * @regulator: regulator source
1404  *
1405  * Disable the regulator output voltage or current.  Calls to
1406  * regulator_enable() must be balanced with calls to
1407  * regulator_disable().
1408  *
1409  * NOTE: this will only disable the regulator output if no other consumer
1410  * devices have it enabled, the regulator device supports disabling and
1411  * machine constraints permit this operation.
1412  */
1413 int regulator_disable(struct regulator *regulator)
1414 {
1415         struct regulator_dev *rdev = regulator->rdev;
1416         int ret = 0;
1417
1418         mutex_lock(&rdev->mutex);
1419         ret = _regulator_disable(rdev);
1420         mutex_unlock(&rdev->mutex);
1421         return ret;
1422 }
1423 EXPORT_SYMBOL_GPL(regulator_disable);
1424
1425 /* locks held by regulator_force_disable() */
1426 static int _regulator_force_disable(struct regulator_dev *rdev)
1427 {
1428         int ret = 0;
1429
1430         /* force disable */
1431         if (rdev->desc->ops->disable) {
1432                 /* ah well, who wants to live forever... */
1433                 ret = rdev->desc->ops->disable(rdev);
1434                 if (ret < 0) {
1435                         printk(KERN_ERR "%s: failed to force disable %s\n",
1436                                __func__, rdev_get_name(rdev));
1437                         return ret;
1438                 }
1439                 /* notify other consumers that power has been forced off */
1440                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1441                         REGULATOR_EVENT_DISABLE, NULL);
1442         }
1443
1444         /* decrease our supplies ref count and disable if required */
1445         if (rdev->supply)
1446                 _regulator_disable(rdev->supply);
1447
1448         rdev->use_count = 0;
1449         return ret;
1450 }
1451
1452 /**
1453  * regulator_force_disable - force disable regulator output
1454  * @regulator: regulator source
1455  *
1456  * Forcibly disable the regulator output voltage or current.
1457  * NOTE: this *will* disable the regulator output even if other consumer
1458  * devices have it enabled. This should be used for situations when device
1459  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1460  */
1461 int regulator_force_disable(struct regulator *regulator)
1462 {
1463         int ret;
1464
1465         mutex_lock(&regulator->rdev->mutex);
1466         regulator->uA_load = 0;
1467         ret = _regulator_force_disable(regulator->rdev);
1468         mutex_unlock(&regulator->rdev->mutex);
1469         return ret;
1470 }
1471 EXPORT_SYMBOL_GPL(regulator_force_disable);
1472
1473 static int _regulator_is_enabled(struct regulator_dev *rdev)
1474 {
1475         /* If we don't know then assume that the regulator is always on */
1476         if (!rdev->desc->ops->is_enabled)
1477                 return 1;
1478
1479         return rdev->desc->ops->is_enabled(rdev);
1480 }
1481
1482 /**
1483  * regulator_is_enabled - is the regulator output enabled
1484  * @regulator: regulator source
1485  *
1486  * Returns positive if the regulator driver backing the source/client
1487  * has requested that the device be enabled, zero if it hasn't, else a
1488  * negative errno code.
1489  *
1490  * Note that the device backing this regulator handle can have multiple
1491  * users, so it might be enabled even if regulator_enable() was never
1492  * called for this particular source.
1493  */
1494 int regulator_is_enabled(struct regulator *regulator)
1495 {
1496         int ret;
1497
1498         mutex_lock(&regulator->rdev->mutex);
1499         ret = _regulator_is_enabled(regulator->rdev);
1500         mutex_unlock(&regulator->rdev->mutex);
1501
1502         return ret;
1503 }
1504 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1505
1506 /**
1507  * regulator_count_voltages - count regulator_list_voltage() selectors
1508  * @regulator: regulator source
1509  *
1510  * Returns number of selectors, or negative errno.  Selectors are
1511  * numbered starting at zero, and typically correspond to bitfields
1512  * in hardware registers.
1513  */
1514 int regulator_count_voltages(struct regulator *regulator)
1515 {
1516         struct regulator_dev    *rdev = regulator->rdev;
1517
1518         return rdev->desc->n_voltages ? : -EINVAL;
1519 }
1520 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1521
1522 /**
1523  * regulator_list_voltage - enumerate supported voltages
1524  * @regulator: regulator source
1525  * @selector: identify voltage to list
1526  * Context: can sleep
1527  *
1528  * Returns a voltage that can be passed to @regulator_set_voltage(),
1529  * zero if this selector code can't be used on this system, or a
1530  * negative errno.
1531  */
1532 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1533 {
1534         struct regulator_dev    *rdev = regulator->rdev;
1535         struct regulator_ops    *ops = rdev->desc->ops;
1536         int                     ret;
1537
1538         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1539                 return -EINVAL;
1540
1541         mutex_lock(&rdev->mutex);
1542         ret = ops->list_voltage(rdev, selector);
1543         mutex_unlock(&rdev->mutex);
1544
1545         if (ret > 0) {
1546                 if (ret < rdev->constraints->min_uV)
1547                         ret = 0;
1548                 else if (ret > rdev->constraints->max_uV)
1549                         ret = 0;
1550         }
1551
1552         return ret;
1553 }
1554 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1555
1556 /**
1557  * regulator_is_supported_voltage - check if a voltage range can be supported
1558  *
1559  * @regulator: Regulator to check.
1560  * @min_uV: Minimum required voltage in uV.
1561  * @max_uV: Maximum required voltage in uV.
1562  *
1563  * Returns a boolean or a negative error code.
1564  */
1565 int regulator_is_supported_voltage(struct regulator *regulator,
1566                                    int min_uV, int max_uV)
1567 {
1568         int i, voltages, ret;
1569
1570         ret = regulator_count_voltages(regulator);
1571         if (ret < 0)
1572                 return ret;
1573         voltages = ret;
1574
1575         for (i = 0; i < voltages; i++) {
1576                 ret = regulator_list_voltage(regulator, i);
1577
1578                 if (ret >= min_uV && ret <= max_uV)
1579                         return 1;
1580         }
1581
1582         return 0;
1583 }
1584
1585 /**
1586  * regulator_set_voltage - set regulator output voltage
1587  * @regulator: regulator source
1588  * @min_uV: Minimum required voltage in uV
1589  * @max_uV: Maximum acceptable voltage in uV
1590  *
1591  * Sets a voltage regulator to the desired output voltage. This can be set
1592  * during any regulator state. IOW, regulator can be disabled or enabled.
1593  *
1594  * If the regulator is enabled then the voltage will change to the new value
1595  * immediately otherwise if the regulator is disabled the regulator will
1596  * output at the new voltage when enabled.
1597  *
1598  * NOTE: If the regulator is shared between several devices then the lowest
1599  * request voltage that meets the system constraints will be used.
1600  * Regulator system constraints must be set for this regulator before
1601  * calling this function otherwise this call will fail.
1602  */
1603 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1604 {
1605         struct regulator_dev *rdev = regulator->rdev;
1606         int ret;
1607
1608         mutex_lock(&rdev->mutex);
1609
1610         /* sanity check */
1611         if (!rdev->desc->ops->set_voltage) {
1612                 ret = -EINVAL;
1613                 goto out;
1614         }
1615
1616         /* constraints check */
1617         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1618         if (ret < 0)
1619                 goto out;
1620         regulator->min_uV = min_uV;
1621         regulator->max_uV = max_uV;
1622         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1623
1624 out:
1625         _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1626         mutex_unlock(&rdev->mutex);
1627         return ret;
1628 }
1629 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1630
1631 static int _regulator_get_voltage(struct regulator_dev *rdev)
1632 {
1633         /* sanity check */
1634         if (rdev->desc->ops->get_voltage)
1635                 return rdev->desc->ops->get_voltage(rdev);
1636         else
1637                 return -EINVAL;
1638 }
1639
1640 /**
1641  * regulator_get_voltage - get regulator output voltage
1642  * @regulator: regulator source
1643  *
1644  * This returns the current regulator voltage in uV.
1645  *
1646  * NOTE: If the regulator is disabled it will return the voltage value. This
1647  * function should not be used to determine regulator state.
1648  */
1649 int regulator_get_voltage(struct regulator *regulator)
1650 {
1651         int ret;
1652
1653         mutex_lock(&regulator->rdev->mutex);
1654
1655         ret = _regulator_get_voltage(regulator->rdev);
1656
1657         mutex_unlock(&regulator->rdev->mutex);
1658
1659         return ret;
1660 }
1661 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1662
1663 /**
1664  * regulator_set_current_limit - set regulator output current limit
1665  * @regulator: regulator source
1666  * @min_uA: Minimuum supported current in uA
1667  * @max_uA: Maximum supported current in uA
1668  *
1669  * Sets current sink to the desired output current. This can be set during
1670  * any regulator state. IOW, regulator can be disabled or enabled.
1671  *
1672  * If the regulator is enabled then the current will change to the new value
1673  * immediately otherwise if the regulator is disabled the regulator will
1674  * output at the new current when enabled.
1675  *
1676  * NOTE: Regulator system constraints must be set for this regulator before
1677  * calling this function otherwise this call will fail.
1678  */
1679 int regulator_set_current_limit(struct regulator *regulator,
1680                                int min_uA, int max_uA)
1681 {
1682         struct regulator_dev *rdev = regulator->rdev;
1683         int ret;
1684
1685         mutex_lock(&rdev->mutex);
1686
1687         /* sanity check */
1688         if (!rdev->desc->ops->set_current_limit) {
1689                 ret = -EINVAL;
1690                 goto out;
1691         }
1692
1693         /* constraints check */
1694         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1695         if (ret < 0)
1696                 goto out;
1697
1698         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1699 out:
1700         mutex_unlock(&rdev->mutex);
1701         return ret;
1702 }
1703 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1704
1705 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1706 {
1707         int ret;
1708
1709         mutex_lock(&rdev->mutex);
1710
1711         /* sanity check */
1712         if (!rdev->desc->ops->get_current_limit) {
1713                 ret = -EINVAL;
1714                 goto out;
1715         }
1716
1717         ret = rdev->desc->ops->get_current_limit(rdev);
1718 out:
1719         mutex_unlock(&rdev->mutex);
1720         return ret;
1721 }
1722
1723 /**
1724  * regulator_get_current_limit - get regulator output current
1725  * @regulator: regulator source
1726  *
1727  * This returns the current supplied by the specified current sink in uA.
1728  *
1729  * NOTE: If the regulator is disabled it will return the current value. This
1730  * function should not be used to determine regulator state.
1731  */
1732 int regulator_get_current_limit(struct regulator *regulator)
1733 {
1734         return _regulator_get_current_limit(regulator->rdev);
1735 }
1736 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1737
1738 /**
1739  * regulator_set_mode - set regulator operating mode
1740  * @regulator: regulator source
1741  * @mode: operating mode - one of the REGULATOR_MODE constants
1742  *
1743  * Set regulator operating mode to increase regulator efficiency or improve
1744  * regulation performance.
1745  *
1746  * NOTE: Regulator system constraints must be set for this regulator before
1747  * calling this function otherwise this call will fail.
1748  */
1749 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1750 {
1751         struct regulator_dev *rdev = regulator->rdev;
1752         int ret;
1753         int regulator_curr_mode;
1754
1755         mutex_lock(&rdev->mutex);
1756
1757         /* sanity check */
1758         if (!rdev->desc->ops->set_mode) {
1759                 ret = -EINVAL;
1760                 goto out;
1761         }
1762
1763         /* return if the same mode is requested */
1764         if (rdev->desc->ops->get_mode) {
1765                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
1766                 if (regulator_curr_mode == mode) {
1767                         ret = 0;
1768                         goto out;
1769                 }
1770         }
1771
1772         /* constraints check */
1773         ret = regulator_check_mode(rdev, mode);
1774         if (ret < 0)
1775                 goto out;
1776
1777         ret = rdev->desc->ops->set_mode(rdev, mode);
1778 out:
1779         mutex_unlock(&rdev->mutex);
1780         return ret;
1781 }
1782 EXPORT_SYMBOL_GPL(regulator_set_mode);
1783
1784 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1785 {
1786         int ret;
1787
1788         mutex_lock(&rdev->mutex);
1789
1790         /* sanity check */
1791         if (!rdev->desc->ops->get_mode) {
1792                 ret = -EINVAL;
1793                 goto out;
1794         }
1795
1796         ret = rdev->desc->ops->get_mode(rdev);
1797 out:
1798         mutex_unlock(&rdev->mutex);
1799         return ret;
1800 }
1801
1802 /**
1803  * regulator_get_mode - get regulator operating mode
1804  * @regulator: regulator source
1805  *
1806  * Get the current regulator operating mode.
1807  */
1808 unsigned int regulator_get_mode(struct regulator *regulator)
1809 {
1810         return _regulator_get_mode(regulator->rdev);
1811 }
1812 EXPORT_SYMBOL_GPL(regulator_get_mode);
1813
1814 /**
1815  * regulator_set_optimum_mode - set regulator optimum operating mode
1816  * @regulator: regulator source
1817  * @uA_load: load current
1818  *
1819  * Notifies the regulator core of a new device load. This is then used by
1820  * DRMS (if enabled by constraints) to set the most efficient regulator
1821  * operating mode for the new regulator loading.
1822  *
1823  * Consumer devices notify their supply regulator of the maximum power
1824  * they will require (can be taken from device datasheet in the power
1825  * consumption tables) when they change operational status and hence power
1826  * state. Examples of operational state changes that can affect power
1827  * consumption are :-
1828  *
1829  *    o Device is opened / closed.
1830  *    o Device I/O is about to begin or has just finished.
1831  *    o Device is idling in between work.
1832  *
1833  * This information is also exported via sysfs to userspace.
1834  *
1835  * DRMS will sum the total requested load on the regulator and change
1836  * to the most efficient operating mode if platform constraints allow.
1837  *
1838  * Returns the new regulator mode or error.
1839  */
1840 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1841 {
1842         struct regulator_dev *rdev = regulator->rdev;
1843         struct regulator *consumer;
1844         int ret, output_uV, input_uV, total_uA_load = 0;
1845         unsigned int mode;
1846
1847         mutex_lock(&rdev->mutex);
1848
1849         regulator->uA_load = uA_load;
1850         ret = regulator_check_drms(rdev);
1851         if (ret < 0)
1852                 goto out;
1853         ret = -EINVAL;
1854
1855         /* sanity check */
1856         if (!rdev->desc->ops->get_optimum_mode)
1857                 goto out;
1858
1859         /* get output voltage */
1860         output_uV = rdev->desc->ops->get_voltage(rdev);
1861         if (output_uV <= 0) {
1862                 printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1863                         __func__, rdev_get_name(rdev));
1864                 goto out;
1865         }
1866
1867         /* get input voltage */
1868         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1869                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1870         else
1871                 input_uV = rdev->constraints->input_uV;
1872         if (input_uV <= 0) {
1873                 printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1874                         __func__, rdev_get_name(rdev));
1875                 goto out;
1876         }
1877
1878         /* calc total requested load for this regulator */
1879         list_for_each_entry(consumer, &rdev->consumer_list, list)
1880                 total_uA_load += consumer->uA_load;
1881
1882         mode = rdev->desc->ops->get_optimum_mode(rdev,
1883                                                  input_uV, output_uV,
1884                                                  total_uA_load);
1885         ret = regulator_check_mode(rdev, mode);
1886         if (ret < 0) {
1887                 printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1888                         " %d uA %d -> %d uV\n", __func__, rdev_get_name(rdev),
1889                         total_uA_load, input_uV, output_uV);
1890                 goto out;
1891         }
1892
1893         ret = rdev->desc->ops->set_mode(rdev, mode);
1894         if (ret < 0) {
1895                 printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1896                         __func__, mode, rdev_get_name(rdev));
1897                 goto out;
1898         }
1899         ret = mode;
1900 out:
1901         mutex_unlock(&rdev->mutex);
1902         return ret;
1903 }
1904 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1905
1906 /**
1907  * regulator_register_notifier - register regulator event notifier
1908  * @regulator: regulator source
1909  * @nb: notifier block
1910  *
1911  * Register notifier block to receive regulator events.
1912  */
1913 int regulator_register_notifier(struct regulator *regulator,
1914                               struct notifier_block *nb)
1915 {
1916         return blocking_notifier_chain_register(&regulator->rdev->notifier,
1917                                                 nb);
1918 }
1919 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1920
1921 /**
1922  * regulator_unregister_notifier - unregister regulator event notifier
1923  * @regulator: regulator source
1924  * @nb: notifier block
1925  *
1926  * Unregister regulator event notifier block.
1927  */
1928 int regulator_unregister_notifier(struct regulator *regulator,
1929                                 struct notifier_block *nb)
1930 {
1931         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1932                                                   nb);
1933 }
1934 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1935
1936 /* notify regulator consumers and downstream regulator consumers.
1937  * Note mutex must be held by caller.
1938  */
1939 static void _notifier_call_chain(struct regulator_dev *rdev,
1940                                   unsigned long event, void *data)
1941 {
1942         struct regulator_dev *_rdev;
1943
1944         /* call rdev chain first */
1945         blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1946
1947         /* now notify regulator we supply */
1948         list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1949                 mutex_lock(&_rdev->mutex);
1950                 _notifier_call_chain(_rdev, event, data);
1951                 mutex_unlock(&_rdev->mutex);
1952         }
1953 }
1954
1955 /**
1956  * regulator_bulk_get - get multiple regulator consumers
1957  *
1958  * @dev:           Device to supply
1959  * @num_consumers: Number of consumers to register
1960  * @consumers:     Configuration of consumers; clients are stored here.
1961  *
1962  * @return 0 on success, an errno on failure.
1963  *
1964  * This helper function allows drivers to get several regulator
1965  * consumers in one operation.  If any of the regulators cannot be
1966  * acquired then any regulators that were allocated will be freed
1967  * before returning to the caller.
1968  */
1969 int regulator_bulk_get(struct device *dev, int num_consumers,
1970                        struct regulator_bulk_data *consumers)
1971 {
1972         int i;
1973         int ret;
1974
1975         for (i = 0; i < num_consumers; i++)
1976                 consumers[i].consumer = NULL;
1977
1978         for (i = 0; i < num_consumers; i++) {
1979                 consumers[i].consumer = regulator_get(dev,
1980                                                       consumers[i].supply);
1981                 if (IS_ERR(consumers[i].consumer)) {
1982                         ret = PTR_ERR(consumers[i].consumer);
1983                         dev_err(dev, "Failed to get supply '%s': %d\n",
1984                                 consumers[i].supply, ret);
1985                         consumers[i].consumer = NULL;
1986                         goto err;
1987                 }
1988         }
1989
1990         return 0;
1991
1992 err:
1993         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1994                 regulator_put(consumers[i].consumer);
1995
1996         return ret;
1997 }
1998 EXPORT_SYMBOL_GPL(regulator_bulk_get);
1999
2000 /**
2001  * regulator_bulk_enable - enable multiple regulator consumers
2002  *
2003  * @num_consumers: Number of consumers
2004  * @consumers:     Consumer data; clients are stored here.
2005  * @return         0 on success, an errno on failure
2006  *
2007  * This convenience API allows consumers to enable multiple regulator
2008  * clients in a single API call.  If any consumers cannot be enabled
2009  * then any others that were enabled will be disabled again prior to
2010  * return.
2011  */
2012 int regulator_bulk_enable(int num_consumers,
2013                           struct regulator_bulk_data *consumers)
2014 {
2015         int i;
2016         int ret;
2017
2018         for (i = 0; i < num_consumers; i++) {
2019                 ret = regulator_enable(consumers[i].consumer);
2020                 if (ret != 0)
2021                         goto err;
2022         }
2023
2024         return 0;
2025
2026 err:
2027         printk(KERN_ERR "Failed to enable %s: %d\n", consumers[i].supply, ret);
2028         for (--i; i >= 0; --i)
2029                 regulator_disable(consumers[i].consumer);
2030
2031         return ret;
2032 }
2033 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2034
2035 /**
2036  * regulator_bulk_disable - disable multiple regulator consumers
2037  *
2038  * @num_consumers: Number of consumers
2039  * @consumers:     Consumer data; clients are stored here.
2040  * @return         0 on success, an errno on failure
2041  *
2042  * This convenience API allows consumers to disable multiple regulator
2043  * clients in a single API call.  If any consumers cannot be enabled
2044  * then any others that were disabled will be disabled again prior to
2045  * return.
2046  */
2047 int regulator_bulk_disable(int num_consumers,
2048                            struct regulator_bulk_data *consumers)
2049 {
2050         int i;
2051         int ret;
2052
2053         for (i = 0; i < num_consumers; i++) {
2054                 ret = regulator_disable(consumers[i].consumer);
2055                 if (ret != 0)
2056                         goto err;
2057         }
2058
2059         return 0;
2060
2061 err:
2062         printk(KERN_ERR "Failed to disable %s: %d\n", consumers[i].supply,
2063                ret);
2064         for (--i; i >= 0; --i)
2065                 regulator_enable(consumers[i].consumer);
2066
2067         return ret;
2068 }
2069 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2070
2071 /**
2072  * regulator_bulk_free - free multiple regulator consumers
2073  *
2074  * @num_consumers: Number of consumers
2075  * @consumers:     Consumer data; clients are stored here.
2076  *
2077  * This convenience API allows consumers to free multiple regulator
2078  * clients in a single API call.
2079  */
2080 void regulator_bulk_free(int num_consumers,
2081                          struct regulator_bulk_data *consumers)
2082 {
2083         int i;
2084
2085         for (i = 0; i < num_consumers; i++) {
2086                 regulator_put(consumers[i].consumer);
2087                 consumers[i].consumer = NULL;
2088         }
2089 }
2090 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2091
2092 /**
2093  * regulator_notifier_call_chain - call regulator event notifier
2094  * @rdev: regulator source
2095  * @event: notifier block
2096  * @data: callback-specific data.
2097  *
2098  * Called by regulator drivers to notify clients a regulator event has
2099  * occurred. We also notify regulator clients downstream.
2100  * Note lock must be held by caller.
2101  */
2102 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2103                                   unsigned long event, void *data)
2104 {
2105         _notifier_call_chain(rdev, event, data);
2106         return NOTIFY_DONE;
2107
2108 }
2109 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2110
2111 /**
2112  * regulator_mode_to_status - convert a regulator mode into a status
2113  *
2114  * @mode: Mode to convert
2115  *
2116  * Convert a regulator mode into a status.
2117  */
2118 int regulator_mode_to_status(unsigned int mode)
2119 {
2120         switch (mode) {
2121         case REGULATOR_MODE_FAST:
2122                 return REGULATOR_STATUS_FAST;
2123         case REGULATOR_MODE_NORMAL:
2124                 return REGULATOR_STATUS_NORMAL;
2125         case REGULATOR_MODE_IDLE:
2126                 return REGULATOR_STATUS_IDLE;
2127         case REGULATOR_STATUS_STANDBY:
2128                 return REGULATOR_STATUS_STANDBY;
2129         default:
2130                 return 0;
2131         }
2132 }
2133 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2134
2135 /*
2136  * To avoid cluttering sysfs (and memory) with useless state, only
2137  * create attributes that can be meaningfully displayed.
2138  */
2139 static int add_regulator_attributes(struct regulator_dev *rdev)
2140 {
2141         struct device           *dev = &rdev->dev;
2142         struct regulator_ops    *ops = rdev->desc->ops;
2143         int                     status = 0;
2144
2145         /* some attributes need specific methods to be displayed */
2146         if (ops->get_voltage) {
2147                 status = device_create_file(dev, &dev_attr_microvolts);
2148                 if (status < 0)
2149                         return status;
2150         }
2151         if (ops->get_current_limit) {
2152                 status = device_create_file(dev, &dev_attr_microamps);
2153                 if (status < 0)
2154                         return status;
2155         }
2156         if (ops->get_mode) {
2157                 status = device_create_file(dev, &dev_attr_opmode);
2158                 if (status < 0)
2159                         return status;
2160         }
2161         if (ops->is_enabled) {
2162                 status = device_create_file(dev, &dev_attr_state);
2163                 if (status < 0)
2164                         return status;
2165         }
2166         if (ops->get_status) {
2167                 status = device_create_file(dev, &dev_attr_status);
2168                 if (status < 0)
2169                         return status;
2170         }
2171
2172         /* some attributes are type-specific */
2173         if (rdev->desc->type == REGULATOR_CURRENT) {
2174                 status = device_create_file(dev, &dev_attr_requested_microamps);
2175                 if (status < 0)
2176                         return status;
2177         }
2178
2179         /* all the other attributes exist to support constraints;
2180          * don't show them if there are no constraints, or if the
2181          * relevant supporting methods are missing.
2182          */
2183         if (!rdev->constraints)
2184                 return status;
2185
2186         /* constraints need specific supporting methods */
2187         if (ops->set_voltage) {
2188                 status = device_create_file(dev, &dev_attr_min_microvolts);
2189                 if (status < 0)
2190                         return status;
2191                 status = device_create_file(dev, &dev_attr_max_microvolts);
2192                 if (status < 0)
2193                         return status;
2194         }
2195         if (ops->set_current_limit) {
2196                 status = device_create_file(dev, &dev_attr_min_microamps);
2197                 if (status < 0)
2198                         return status;
2199                 status = device_create_file(dev, &dev_attr_max_microamps);
2200                 if (status < 0)
2201                         return status;
2202         }
2203
2204         /* suspend mode constraints need multiple supporting methods */
2205         if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2206                 return status;
2207
2208         status = device_create_file(dev, &dev_attr_suspend_standby_state);
2209         if (status < 0)
2210                 return status;
2211         status = device_create_file(dev, &dev_attr_suspend_mem_state);
2212         if (status < 0)
2213                 return status;
2214         status = device_create_file(dev, &dev_attr_suspend_disk_state);
2215         if (status < 0)
2216                 return status;
2217
2218         if (ops->set_suspend_voltage) {
2219                 status = device_create_file(dev,
2220                                 &dev_attr_suspend_standby_microvolts);
2221                 if (status < 0)
2222                         return status;
2223                 status = device_create_file(dev,
2224                                 &dev_attr_suspend_mem_microvolts);
2225                 if (status < 0)
2226                         return status;
2227                 status = device_create_file(dev,
2228                                 &dev_attr_suspend_disk_microvolts);
2229                 if (status < 0)
2230                         return status;
2231         }
2232
2233         if (ops->set_suspend_mode) {
2234                 status = device_create_file(dev,
2235                                 &dev_attr_suspend_standby_mode);
2236                 if (status < 0)
2237                         return status;
2238                 status = device_create_file(dev,
2239                                 &dev_attr_suspend_mem_mode);
2240                 if (status < 0)
2241                         return status;
2242                 status = device_create_file(dev,
2243                                 &dev_attr_suspend_disk_mode);
2244                 if (status < 0)
2245                         return status;
2246         }
2247
2248         return status;
2249 }
2250
2251 /**
2252  * regulator_register - register regulator
2253  * @regulator_desc: regulator to register
2254  * @dev: struct device for the regulator
2255  * @init_data: platform provided init data, passed through by driver
2256  * @driver_data: private regulator data
2257  *
2258  * Called by regulator drivers to register a regulator.
2259  * Returns 0 on success.
2260  */
2261 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2262         struct device *dev, struct regulator_init_data *init_data,
2263         void *driver_data)
2264 {
2265         static atomic_t regulator_no = ATOMIC_INIT(0);
2266         struct regulator_dev *rdev;
2267         int ret, i;
2268
2269         if (regulator_desc == NULL)
2270                 return ERR_PTR(-EINVAL);
2271
2272         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2273                 return ERR_PTR(-EINVAL);
2274
2275         if (regulator_desc->type != REGULATOR_VOLTAGE &&
2276             regulator_desc->type != REGULATOR_CURRENT)
2277                 return ERR_PTR(-EINVAL);
2278
2279         if (!init_data)
2280                 return ERR_PTR(-EINVAL);
2281
2282         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2283         if (rdev == NULL)
2284                 return ERR_PTR(-ENOMEM);
2285
2286         mutex_lock(&regulator_list_mutex);
2287
2288         mutex_init(&rdev->mutex);
2289         rdev->reg_data = driver_data;
2290         rdev->owner = regulator_desc->owner;
2291         rdev->desc = regulator_desc;
2292         INIT_LIST_HEAD(&rdev->consumer_list);
2293         INIT_LIST_HEAD(&rdev->supply_list);
2294         INIT_LIST_HEAD(&rdev->list);
2295         INIT_LIST_HEAD(&rdev->slist);
2296         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2297
2298         /* preform any regulator specific init */
2299         if (init_data->regulator_init) {
2300                 ret = init_data->regulator_init(rdev->reg_data);
2301                 if (ret < 0)
2302                         goto clean;
2303         }
2304
2305         /* register with sysfs */
2306         rdev->dev.class = &regulator_class;
2307         rdev->dev.parent = dev;
2308         dev_set_name(&rdev->dev, "regulator.%d",
2309                      atomic_inc_return(&regulator_no) - 1);
2310         ret = device_register(&rdev->dev);
2311         if (ret != 0) {
2312                 put_device(&rdev->dev);
2313                 goto clean;
2314         }
2315
2316         dev_set_drvdata(&rdev->dev, rdev);
2317
2318         /* set regulator constraints */
2319         ret = set_machine_constraints(rdev, &init_data->constraints);
2320         if (ret < 0)
2321                 goto scrub;
2322
2323         /* add attributes supported by this regulator */
2324         ret = add_regulator_attributes(rdev);
2325         if (ret < 0)
2326                 goto scrub;
2327
2328         /* set supply regulator if it exists */
2329         if (init_data->supply_regulator && init_data->supply_regulator_dev) {
2330                 dev_err(dev,
2331                         "Supply regulator specified by both name and dev\n");
2332                 goto scrub;
2333         }
2334
2335         if (init_data->supply_regulator) {
2336                 struct regulator_dev *r;
2337                 int found = 0;
2338
2339                 list_for_each_entry(r, &regulator_list, list) {
2340                         if (strcmp(rdev_get_name(r),
2341                                    init_data->supply_regulator) == 0) {
2342                                 found = 1;
2343                                 break;
2344                         }
2345                 }
2346
2347                 if (!found) {
2348                         dev_err(dev, "Failed to find supply %s\n",
2349                                 init_data->supply_regulator);
2350                         goto scrub;
2351                 }
2352
2353                 ret = set_supply(rdev, r);
2354                 if (ret < 0)
2355                         goto scrub;
2356         }
2357
2358         if (init_data->supply_regulator_dev) {
2359                 dev_warn(dev, "Uses supply_regulator_dev instead of regulator_supply\n");
2360                 ret = set_supply(rdev,
2361                         dev_get_drvdata(init_data->supply_regulator_dev));
2362                 if (ret < 0)
2363                         goto scrub;
2364         }
2365
2366         /* add consumers devices */
2367         for (i = 0; i < init_data->num_consumer_supplies; i++) {
2368                 ret = set_consumer_device_supply(rdev,
2369                         init_data->consumer_supplies[i].dev,
2370                         init_data->consumer_supplies[i].dev_name,
2371                         init_data->consumer_supplies[i].supply);
2372                 if (ret < 0)
2373                         goto unset_supplies;
2374         }
2375
2376         list_add(&rdev->list, &regulator_list);
2377 out:
2378         mutex_unlock(&regulator_list_mutex);
2379         return rdev;
2380
2381 unset_supplies:
2382         unset_regulator_supplies(rdev);
2383
2384 scrub:
2385         device_unregister(&rdev->dev);
2386         /* device core frees rdev */
2387         rdev = ERR_PTR(ret);
2388         goto out;
2389
2390 clean:
2391         kfree(rdev);
2392         rdev = ERR_PTR(ret);
2393         goto out;
2394 }
2395 EXPORT_SYMBOL_GPL(regulator_register);
2396
2397 /**
2398  * regulator_unregister - unregister regulator
2399  * @rdev: regulator to unregister
2400  *
2401  * Called by regulator drivers to unregister a regulator.
2402  */
2403 void regulator_unregister(struct regulator_dev *rdev)
2404 {
2405         if (rdev == NULL)
2406                 return;
2407
2408         mutex_lock(&regulator_list_mutex);
2409         WARN_ON(rdev->open_count);
2410         unset_regulator_supplies(rdev);
2411         list_del(&rdev->list);
2412         if (rdev->supply)
2413                 sysfs_remove_link(&rdev->dev.kobj, "supply");
2414         device_unregister(&rdev->dev);
2415         mutex_unlock(&regulator_list_mutex);
2416 }
2417 EXPORT_SYMBOL_GPL(regulator_unregister);
2418
2419 /**
2420  * regulator_suspend_prepare - prepare regulators for system wide suspend
2421  * @state: system suspend state
2422  *
2423  * Configure each regulator with it's suspend operating parameters for state.
2424  * This will usually be called by machine suspend code prior to supending.
2425  */
2426 int regulator_suspend_prepare(suspend_state_t state)
2427 {
2428         struct regulator_dev *rdev;
2429         int ret = 0;
2430
2431         /* ON is handled by regulator active state */
2432         if (state == PM_SUSPEND_ON)
2433                 return -EINVAL;
2434
2435         mutex_lock(&regulator_list_mutex);
2436         list_for_each_entry(rdev, &regulator_list, list) {
2437
2438                 mutex_lock(&rdev->mutex);
2439                 ret = suspend_prepare(rdev, state);
2440                 mutex_unlock(&rdev->mutex);
2441
2442                 if (ret < 0) {
2443                         printk(KERN_ERR "%s: failed to prepare %s\n",
2444                                 __func__, rdev_get_name(rdev));
2445                         goto out;
2446                 }
2447         }
2448 out:
2449         mutex_unlock(&regulator_list_mutex);
2450         return ret;
2451 }
2452 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2453
2454 /**
2455  * regulator_has_full_constraints - the system has fully specified constraints
2456  *
2457  * Calling this function will cause the regulator API to disable all
2458  * regulators which have a zero use count and don't have an always_on
2459  * constraint in a late_initcall.
2460  *
2461  * The intention is that this will become the default behaviour in a
2462  * future kernel release so users are encouraged to use this facility
2463  * now.
2464  */
2465 void regulator_has_full_constraints(void)
2466 {
2467         has_full_constraints = 1;
2468 }
2469 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2470
2471 /**
2472  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2473  *
2474  * Calling this function will cause the regulator API to provide a
2475  * dummy regulator to consumers if no physical regulator is found,
2476  * allowing most consumers to proceed as though a regulator were
2477  * configured.  This allows systems such as those with software
2478  * controllable regulators for the CPU core only to be brought up more
2479  * readily.
2480  */
2481 void regulator_use_dummy_regulator(void)
2482 {
2483         board_wants_dummy_regulator = true;
2484 }
2485 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2486
2487 /**
2488  * rdev_get_drvdata - get rdev regulator driver data
2489  * @rdev: regulator
2490  *
2491  * Get rdev regulator driver private data. This call can be used in the
2492  * regulator driver context.
2493  */
2494 void *rdev_get_drvdata(struct regulator_dev *rdev)
2495 {
2496         return rdev->reg_data;
2497 }
2498 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2499
2500 /**
2501  * regulator_get_drvdata - get regulator driver data
2502  * @regulator: regulator
2503  *
2504  * Get regulator driver private data. This call can be used in the consumer
2505  * driver context when non API regulator specific functions need to be called.
2506  */
2507 void *regulator_get_drvdata(struct regulator *regulator)
2508 {
2509         return regulator->rdev->reg_data;
2510 }
2511 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2512
2513 /**
2514  * regulator_set_drvdata - set regulator driver data
2515  * @regulator: regulator
2516  * @data: data
2517  */
2518 void regulator_set_drvdata(struct regulator *regulator, void *data)
2519 {
2520         regulator->rdev->reg_data = data;
2521 }
2522 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2523
2524 /**
2525  * regulator_get_id - get regulator ID
2526  * @rdev: regulator
2527  */
2528 int rdev_get_id(struct regulator_dev *rdev)
2529 {
2530         return rdev->desc->id;
2531 }
2532 EXPORT_SYMBOL_GPL(rdev_get_id);
2533
2534 struct device *rdev_get_dev(struct regulator_dev *rdev)
2535 {
2536         return &rdev->dev;
2537 }
2538 EXPORT_SYMBOL_GPL(rdev_get_dev);
2539
2540 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2541 {
2542         return reg_init_data->driver_data;
2543 }
2544 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2545
2546 static int __init regulator_init(void)
2547 {
2548         int ret;
2549
2550         printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2551
2552         ret = class_register(&regulator_class);
2553
2554         regulator_dummy_init();
2555
2556         return ret;
2557 }
2558
2559 /* init early to allow our consumers to complete system booting */
2560 core_initcall(regulator_init);
2561
2562 static int __init regulator_init_complete(void)
2563 {
2564         struct regulator_dev *rdev;
2565         struct regulator_ops *ops;
2566         struct regulation_constraints *c;
2567         int enabled, ret;
2568         const char *name;
2569
2570         mutex_lock(&regulator_list_mutex);
2571
2572         /* If we have a full configuration then disable any regulators
2573          * which are not in use or always_on.  This will become the
2574          * default behaviour in the future.
2575          */
2576         list_for_each_entry(rdev, &regulator_list, list) {
2577                 ops = rdev->desc->ops;
2578                 c = rdev->constraints;
2579
2580                 name = rdev_get_name(rdev);
2581
2582                 if (!ops->disable || (c && c->always_on))
2583                         continue;
2584
2585                 mutex_lock(&rdev->mutex);
2586
2587                 if (rdev->use_count)
2588                         goto unlock;
2589
2590                 /* If we can't read the status assume it's on. */
2591                 if (ops->is_enabled)
2592                         enabled = ops->is_enabled(rdev);
2593                 else
2594                         enabled = 1;
2595
2596                 if (!enabled)
2597                         goto unlock;
2598
2599                 if (has_full_constraints) {
2600                         /* We log since this may kill the system if it
2601                          * goes wrong. */
2602                         printk(KERN_INFO "%s: disabling %s\n",
2603                                __func__, name);
2604                         ret = ops->disable(rdev);
2605                         if (ret != 0) {
2606                                 printk(KERN_ERR
2607                                        "%s: couldn't disable %s: %d\n",
2608                                        __func__, name, ret);
2609                         }
2610                 } else {
2611                         /* The intention is that in future we will
2612                          * assume that full constraints are provided
2613                          * so warn even if we aren't going to do
2614                          * anything here.
2615                          */
2616                         printk(KERN_WARNING
2617                                "%s: incomplete constraints, leaving %s on\n",
2618                                __func__, name);
2619                 }
2620
2621 unlock:
2622                 mutex_unlock(&rdev->mutex);
2623         }
2624
2625         mutex_unlock(&regulator_list_mutex);
2626
2627         return 0;
2628 }
2629 late_initcall(regulator_init_complete);