]> git.karo-electronics.de Git - linux-beck.git/blob - drivers/regulator/core.c
Merge remote-tracking branch 'regulator/topic/core' into regulator-next
[linux-beck.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...)                                       \
43         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)                                        \
45         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)                                       \
47         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)                                       \
49         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)                                        \
51         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_list);
55 static LIST_HEAD(regulator_map_list);
56 static LIST_HEAD(regulator_ena_gpio_list);
57 static LIST_HEAD(regulator_supply_alias_list);
58 static bool has_full_constraints;
59
60 static struct dentry *debugfs_root;
61
62 /*
63  * struct regulator_map
64  *
65  * Used to provide symbolic supply names to devices.
66  */
67 struct regulator_map {
68         struct list_head list;
69         const char *dev_name;   /* The dev_name() for the consumer */
70         const char *supply;
71         struct regulator_dev *regulator;
72 };
73
74 /*
75  * struct regulator_enable_gpio
76  *
77  * Management for shared enable GPIO pin
78  */
79 struct regulator_enable_gpio {
80         struct list_head list;
81         struct gpio_desc *gpiod;
82         u32 enable_count;       /* a number of enabled shared GPIO */
83         u32 request_count;      /* a number of requested shared GPIO */
84         unsigned int ena_gpio_invert:1;
85 };
86
87 /*
88  * struct regulator_supply_alias
89  *
90  * Used to map lookups for a supply onto an alternative device.
91  */
92 struct regulator_supply_alias {
93         struct list_head list;
94         struct device *src_dev;
95         const char *src_supply;
96         struct device *alias_dev;
97         const char *alias_supply;
98 };
99
100 static int _regulator_is_enabled(struct regulator_dev *rdev);
101 static int _regulator_disable(struct regulator_dev *rdev);
102 static int _regulator_get_voltage(struct regulator_dev *rdev);
103 static int _regulator_get_current_limit(struct regulator_dev *rdev);
104 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
105 static int _notifier_call_chain(struct regulator_dev *rdev,
106                                   unsigned long event, void *data);
107 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
108                                      int min_uV, int max_uV);
109 static struct regulator *create_regulator(struct regulator_dev *rdev,
110                                           struct device *dev,
111                                           const char *supply_name);
112
113 static const char *rdev_get_name(struct regulator_dev *rdev)
114 {
115         if (rdev->constraints && rdev->constraints->name)
116                 return rdev->constraints->name;
117         else if (rdev->desc->name)
118                 return rdev->desc->name;
119         else
120                 return "";
121 }
122
123 static bool have_full_constraints(void)
124 {
125         return has_full_constraints || of_have_populated_dt();
126 }
127
128 /**
129  * of_get_regulator - get a regulator device node based on supply name
130  * @dev: Device pointer for the consumer (of regulator) device
131  * @supply: regulator supply name
132  *
133  * Extract the regulator device node corresponding to the supply name.
134  * returns the device node corresponding to the regulator if found, else
135  * returns NULL.
136  */
137 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
138 {
139         struct device_node *regnode = NULL;
140         char prop_name[32]; /* 32 is max size of property name */
141
142         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
143
144         snprintf(prop_name, 32, "%s-supply", supply);
145         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
146
147         if (!regnode) {
148                 dev_dbg(dev, "Looking up %s property in node %s failed",
149                                 prop_name, dev->of_node->full_name);
150                 return NULL;
151         }
152         return regnode;
153 }
154
155 static int _regulator_can_change_status(struct regulator_dev *rdev)
156 {
157         if (!rdev->constraints)
158                 return 0;
159
160         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
161                 return 1;
162         else
163                 return 0;
164 }
165
166 /* Platform voltage constraint check */
167 static int regulator_check_voltage(struct regulator_dev *rdev,
168                                    int *min_uV, int *max_uV)
169 {
170         BUG_ON(*min_uV > *max_uV);
171
172         if (!rdev->constraints) {
173                 rdev_err(rdev, "no constraints\n");
174                 return -ENODEV;
175         }
176         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
177                 rdev_err(rdev, "operation not allowed\n");
178                 return -EPERM;
179         }
180
181         if (*max_uV > rdev->constraints->max_uV)
182                 *max_uV = rdev->constraints->max_uV;
183         if (*min_uV < rdev->constraints->min_uV)
184                 *min_uV = rdev->constraints->min_uV;
185
186         if (*min_uV > *max_uV) {
187                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
188                          *min_uV, *max_uV);
189                 return -EINVAL;
190         }
191
192         return 0;
193 }
194
195 /* Make sure we select a voltage that suits the needs of all
196  * regulator consumers
197  */
198 static int regulator_check_consumers(struct regulator_dev *rdev,
199                                      int *min_uV, int *max_uV)
200 {
201         struct regulator *regulator;
202
203         list_for_each_entry(regulator, &rdev->consumer_list, list) {
204                 /*
205                  * Assume consumers that didn't say anything are OK
206                  * with anything in the constraint range.
207                  */
208                 if (!regulator->min_uV && !regulator->max_uV)
209                         continue;
210
211                 if (*max_uV > regulator->max_uV)
212                         *max_uV = regulator->max_uV;
213                 if (*min_uV < regulator->min_uV)
214                         *min_uV = regulator->min_uV;
215         }
216
217         if (*min_uV > *max_uV) {
218                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
219                         *min_uV, *max_uV);
220                 return -EINVAL;
221         }
222
223         return 0;
224 }
225
226 /* current constraint check */
227 static int regulator_check_current_limit(struct regulator_dev *rdev,
228                                         int *min_uA, int *max_uA)
229 {
230         BUG_ON(*min_uA > *max_uA);
231
232         if (!rdev->constraints) {
233                 rdev_err(rdev, "no constraints\n");
234                 return -ENODEV;
235         }
236         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
237                 rdev_err(rdev, "operation not allowed\n");
238                 return -EPERM;
239         }
240
241         if (*max_uA > rdev->constraints->max_uA)
242                 *max_uA = rdev->constraints->max_uA;
243         if (*min_uA < rdev->constraints->min_uA)
244                 *min_uA = rdev->constraints->min_uA;
245
246         if (*min_uA > *max_uA) {
247                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
248                          *min_uA, *max_uA);
249                 return -EINVAL;
250         }
251
252         return 0;
253 }
254
255 /* operating mode constraint check */
256 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
257 {
258         switch (*mode) {
259         case REGULATOR_MODE_FAST:
260         case REGULATOR_MODE_NORMAL:
261         case REGULATOR_MODE_IDLE:
262         case REGULATOR_MODE_STANDBY:
263                 break;
264         default:
265                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
266                 return -EINVAL;
267         }
268
269         if (!rdev->constraints) {
270                 rdev_err(rdev, "no constraints\n");
271                 return -ENODEV;
272         }
273         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
274                 rdev_err(rdev, "operation not allowed\n");
275                 return -EPERM;
276         }
277
278         /* The modes are bitmasks, the most power hungry modes having
279          * the lowest values. If the requested mode isn't supported
280          * try higher modes. */
281         while (*mode) {
282                 if (rdev->constraints->valid_modes_mask & *mode)
283                         return 0;
284                 *mode /= 2;
285         }
286
287         return -EINVAL;
288 }
289
290 /* dynamic regulator mode switching constraint check */
291 static int regulator_check_drms(struct regulator_dev *rdev)
292 {
293         if (!rdev->constraints) {
294                 rdev_err(rdev, "no constraints\n");
295                 return -ENODEV;
296         }
297         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
298                 rdev_err(rdev, "operation not allowed\n");
299                 return -EPERM;
300         }
301         return 0;
302 }
303
304 static ssize_t regulator_uV_show(struct device *dev,
305                                 struct device_attribute *attr, char *buf)
306 {
307         struct regulator_dev *rdev = dev_get_drvdata(dev);
308         ssize_t ret;
309
310         mutex_lock(&rdev->mutex);
311         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
312         mutex_unlock(&rdev->mutex);
313
314         return ret;
315 }
316 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
317
318 static ssize_t regulator_uA_show(struct device *dev,
319                                 struct device_attribute *attr, char *buf)
320 {
321         struct regulator_dev *rdev = dev_get_drvdata(dev);
322
323         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
324 }
325 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
326
327 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
328                          char *buf)
329 {
330         struct regulator_dev *rdev = dev_get_drvdata(dev);
331
332         return sprintf(buf, "%s\n", rdev_get_name(rdev));
333 }
334 static DEVICE_ATTR_RO(name);
335
336 static ssize_t regulator_print_opmode(char *buf, int mode)
337 {
338         switch (mode) {
339         case REGULATOR_MODE_FAST:
340                 return sprintf(buf, "fast\n");
341         case REGULATOR_MODE_NORMAL:
342                 return sprintf(buf, "normal\n");
343         case REGULATOR_MODE_IDLE:
344                 return sprintf(buf, "idle\n");
345         case REGULATOR_MODE_STANDBY:
346                 return sprintf(buf, "standby\n");
347         }
348         return sprintf(buf, "unknown\n");
349 }
350
351 static ssize_t regulator_opmode_show(struct device *dev,
352                                     struct device_attribute *attr, char *buf)
353 {
354         struct regulator_dev *rdev = dev_get_drvdata(dev);
355
356         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
357 }
358 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
359
360 static ssize_t regulator_print_state(char *buf, int state)
361 {
362         if (state > 0)
363                 return sprintf(buf, "enabled\n");
364         else if (state == 0)
365                 return sprintf(buf, "disabled\n");
366         else
367                 return sprintf(buf, "unknown\n");
368 }
369
370 static ssize_t regulator_state_show(struct device *dev,
371                                    struct device_attribute *attr, char *buf)
372 {
373         struct regulator_dev *rdev = dev_get_drvdata(dev);
374         ssize_t ret;
375
376         mutex_lock(&rdev->mutex);
377         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
378         mutex_unlock(&rdev->mutex);
379
380         return ret;
381 }
382 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
383
384 static ssize_t regulator_status_show(struct device *dev,
385                                    struct device_attribute *attr, char *buf)
386 {
387         struct regulator_dev *rdev = dev_get_drvdata(dev);
388         int status;
389         char *label;
390
391         status = rdev->desc->ops->get_status(rdev);
392         if (status < 0)
393                 return status;
394
395         switch (status) {
396         case REGULATOR_STATUS_OFF:
397                 label = "off";
398                 break;
399         case REGULATOR_STATUS_ON:
400                 label = "on";
401                 break;
402         case REGULATOR_STATUS_ERROR:
403                 label = "error";
404                 break;
405         case REGULATOR_STATUS_FAST:
406                 label = "fast";
407                 break;
408         case REGULATOR_STATUS_NORMAL:
409                 label = "normal";
410                 break;
411         case REGULATOR_STATUS_IDLE:
412                 label = "idle";
413                 break;
414         case REGULATOR_STATUS_STANDBY:
415                 label = "standby";
416                 break;
417         case REGULATOR_STATUS_BYPASS:
418                 label = "bypass";
419                 break;
420         case REGULATOR_STATUS_UNDEFINED:
421                 label = "undefined";
422                 break;
423         default:
424                 return -ERANGE;
425         }
426
427         return sprintf(buf, "%s\n", label);
428 }
429 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
430
431 static ssize_t regulator_min_uA_show(struct device *dev,
432                                     struct device_attribute *attr, char *buf)
433 {
434         struct regulator_dev *rdev = dev_get_drvdata(dev);
435
436         if (!rdev->constraints)
437                 return sprintf(buf, "constraint not defined\n");
438
439         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
440 }
441 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442
443 static ssize_t regulator_max_uA_show(struct device *dev,
444                                     struct device_attribute *attr, char *buf)
445 {
446         struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448         if (!rdev->constraints)
449                 return sprintf(buf, "constraint not defined\n");
450
451         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
452 }
453 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454
455 static ssize_t regulator_min_uV_show(struct device *dev,
456                                     struct device_attribute *attr, char *buf)
457 {
458         struct regulator_dev *rdev = dev_get_drvdata(dev);
459
460         if (!rdev->constraints)
461                 return sprintf(buf, "constraint not defined\n");
462
463         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
464 }
465 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466
467 static ssize_t regulator_max_uV_show(struct device *dev,
468                                     struct device_attribute *attr, char *buf)
469 {
470         struct regulator_dev *rdev = dev_get_drvdata(dev);
471
472         if (!rdev->constraints)
473                 return sprintf(buf, "constraint not defined\n");
474
475         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
476 }
477 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478
479 static ssize_t regulator_total_uA_show(struct device *dev,
480                                       struct device_attribute *attr, char *buf)
481 {
482         struct regulator_dev *rdev = dev_get_drvdata(dev);
483         struct regulator *regulator;
484         int uA = 0;
485
486         mutex_lock(&rdev->mutex);
487         list_for_each_entry(regulator, &rdev->consumer_list, list)
488                 uA += regulator->uA_load;
489         mutex_unlock(&rdev->mutex);
490         return sprintf(buf, "%d\n", uA);
491 }
492 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493
494 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
495                               char *buf)
496 {
497         struct regulator_dev *rdev = dev_get_drvdata(dev);
498         return sprintf(buf, "%d\n", rdev->use_count);
499 }
500 static DEVICE_ATTR_RO(num_users);
501
502 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
503                          char *buf)
504 {
505         struct regulator_dev *rdev = dev_get_drvdata(dev);
506
507         switch (rdev->desc->type) {
508         case REGULATOR_VOLTAGE:
509                 return sprintf(buf, "voltage\n");
510         case REGULATOR_CURRENT:
511                 return sprintf(buf, "current\n");
512         }
513         return sprintf(buf, "unknown\n");
514 }
515 static DEVICE_ATTR_RO(type);
516
517 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
518                                 struct device_attribute *attr, char *buf)
519 {
520         struct regulator_dev *rdev = dev_get_drvdata(dev);
521
522         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
523 }
524 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
525                 regulator_suspend_mem_uV_show, NULL);
526
527 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
528                                 struct device_attribute *attr, char *buf)
529 {
530         struct regulator_dev *rdev = dev_get_drvdata(dev);
531
532         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
533 }
534 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
535                 regulator_suspend_disk_uV_show, NULL);
536
537 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
538                                 struct device_attribute *attr, char *buf)
539 {
540         struct regulator_dev *rdev = dev_get_drvdata(dev);
541
542         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
543 }
544 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
545                 regulator_suspend_standby_uV_show, NULL);
546
547 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
548                                 struct device_attribute *attr, char *buf)
549 {
550         struct regulator_dev *rdev = dev_get_drvdata(dev);
551
552         return regulator_print_opmode(buf,
553                 rdev->constraints->state_mem.mode);
554 }
555 static DEVICE_ATTR(suspend_mem_mode, 0444,
556                 regulator_suspend_mem_mode_show, NULL);
557
558 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
559                                 struct device_attribute *attr, char *buf)
560 {
561         struct regulator_dev *rdev = dev_get_drvdata(dev);
562
563         return regulator_print_opmode(buf,
564                 rdev->constraints->state_disk.mode);
565 }
566 static DEVICE_ATTR(suspend_disk_mode, 0444,
567                 regulator_suspend_disk_mode_show, NULL);
568
569 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
570                                 struct device_attribute *attr, char *buf)
571 {
572         struct regulator_dev *rdev = dev_get_drvdata(dev);
573
574         return regulator_print_opmode(buf,
575                 rdev->constraints->state_standby.mode);
576 }
577 static DEVICE_ATTR(suspend_standby_mode, 0444,
578                 regulator_suspend_standby_mode_show, NULL);
579
580 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
581                                    struct device_attribute *attr, char *buf)
582 {
583         struct regulator_dev *rdev = dev_get_drvdata(dev);
584
585         return regulator_print_state(buf,
586                         rdev->constraints->state_mem.enabled);
587 }
588 static DEVICE_ATTR(suspend_mem_state, 0444,
589                 regulator_suspend_mem_state_show, NULL);
590
591 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
592                                    struct device_attribute *attr, char *buf)
593 {
594         struct regulator_dev *rdev = dev_get_drvdata(dev);
595
596         return regulator_print_state(buf,
597                         rdev->constraints->state_disk.enabled);
598 }
599 static DEVICE_ATTR(suspend_disk_state, 0444,
600                 regulator_suspend_disk_state_show, NULL);
601
602 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
603                                    struct device_attribute *attr, char *buf)
604 {
605         struct regulator_dev *rdev = dev_get_drvdata(dev);
606
607         return regulator_print_state(buf,
608                         rdev->constraints->state_standby.enabled);
609 }
610 static DEVICE_ATTR(suspend_standby_state, 0444,
611                 regulator_suspend_standby_state_show, NULL);
612
613 static ssize_t regulator_bypass_show(struct device *dev,
614                                      struct device_attribute *attr, char *buf)
615 {
616         struct regulator_dev *rdev = dev_get_drvdata(dev);
617         const char *report;
618         bool bypass;
619         int ret;
620
621         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
622
623         if (ret != 0)
624                 report = "unknown";
625         else if (bypass)
626                 report = "enabled";
627         else
628                 report = "disabled";
629
630         return sprintf(buf, "%s\n", report);
631 }
632 static DEVICE_ATTR(bypass, 0444,
633                    regulator_bypass_show, NULL);
634
635 /* Calculate the new optimum regulator operating mode based on the new total
636  * consumer load. All locks held by caller */
637 static int drms_uA_update(struct regulator_dev *rdev)
638 {
639         struct regulator *sibling;
640         int current_uA = 0, output_uV, input_uV, err;
641         unsigned int mode;
642
643         /*
644          * first check to see if we can set modes at all, otherwise just
645          * tell the consumer everything is OK.
646          */
647         err = regulator_check_drms(rdev);
648         if (err < 0)
649                 return 0;
650
651         if (!rdev->desc->ops->get_optimum_mode)
652                 return 0;
653
654         if (!rdev->desc->ops->set_mode)
655                 return -EINVAL;
656
657         /* get output voltage */
658         output_uV = _regulator_get_voltage(rdev);
659         if (output_uV <= 0) {
660                 rdev_err(rdev, "invalid output voltage found\n");
661                 return -EINVAL;
662         }
663
664         /* get input voltage */
665         input_uV = 0;
666         if (rdev->supply)
667                 input_uV = regulator_get_voltage(rdev->supply);
668         if (input_uV <= 0)
669                 input_uV = rdev->constraints->input_uV;
670         if (input_uV <= 0) {
671                 rdev_err(rdev, "invalid input voltage found\n");
672                 return -EINVAL;
673         }
674
675         /* calc total requested load */
676         list_for_each_entry(sibling, &rdev->consumer_list, list)
677                 current_uA += sibling->uA_load;
678
679         /* now get the optimum mode for our new total regulator load */
680         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
681                                                   output_uV, current_uA);
682
683         /* check the new mode is allowed */
684         err = regulator_mode_constrain(rdev, &mode);
685         if (err < 0) {
686                 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
687                          current_uA, input_uV, output_uV);
688                 return err;
689         }
690
691         err = rdev->desc->ops->set_mode(rdev, mode);
692         if (err < 0)
693                 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
694
695         return err;
696 }
697
698 static int suspend_set_state(struct regulator_dev *rdev,
699         struct regulator_state *rstate)
700 {
701         int ret = 0;
702
703         /* If we have no suspend mode configration don't set anything;
704          * only warn if the driver implements set_suspend_voltage or
705          * set_suspend_mode callback.
706          */
707         if (!rstate->enabled && !rstate->disabled) {
708                 if (rdev->desc->ops->set_suspend_voltage ||
709                     rdev->desc->ops->set_suspend_mode)
710                         rdev_warn(rdev, "No configuration\n");
711                 return 0;
712         }
713
714         if (rstate->enabled && rstate->disabled) {
715                 rdev_err(rdev, "invalid configuration\n");
716                 return -EINVAL;
717         }
718
719         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
720                 ret = rdev->desc->ops->set_suspend_enable(rdev);
721         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
722                 ret = rdev->desc->ops->set_suspend_disable(rdev);
723         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
724                 ret = 0;
725
726         if (ret < 0) {
727                 rdev_err(rdev, "failed to enabled/disable\n");
728                 return ret;
729         }
730
731         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
732                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
733                 if (ret < 0) {
734                         rdev_err(rdev, "failed to set voltage\n");
735                         return ret;
736                 }
737         }
738
739         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
740                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
741                 if (ret < 0) {
742                         rdev_err(rdev, "failed to set mode\n");
743                         return ret;
744                 }
745         }
746         return ret;
747 }
748
749 /* locks held by caller */
750 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
751 {
752         if (!rdev->constraints)
753                 return -EINVAL;
754
755         switch (state) {
756         case PM_SUSPEND_STANDBY:
757                 return suspend_set_state(rdev,
758                         &rdev->constraints->state_standby);
759         case PM_SUSPEND_MEM:
760                 return suspend_set_state(rdev,
761                         &rdev->constraints->state_mem);
762         case PM_SUSPEND_MAX:
763                 return suspend_set_state(rdev,
764                         &rdev->constraints->state_disk);
765         default:
766                 return -EINVAL;
767         }
768 }
769
770 static void print_constraints(struct regulator_dev *rdev)
771 {
772         struct regulation_constraints *constraints = rdev->constraints;
773         char buf[80] = "";
774         int count = 0;
775         int ret;
776
777         if (constraints->min_uV && constraints->max_uV) {
778                 if (constraints->min_uV == constraints->max_uV)
779                         count += sprintf(buf + count, "%d mV ",
780                                          constraints->min_uV / 1000);
781                 else
782                         count += sprintf(buf + count, "%d <--> %d mV ",
783                                          constraints->min_uV / 1000,
784                                          constraints->max_uV / 1000);
785         }
786
787         if (!constraints->min_uV ||
788             constraints->min_uV != constraints->max_uV) {
789                 ret = _regulator_get_voltage(rdev);
790                 if (ret > 0)
791                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
792         }
793
794         if (constraints->uV_offset)
795                 count += sprintf(buf, "%dmV offset ",
796                                  constraints->uV_offset / 1000);
797
798         if (constraints->min_uA && constraints->max_uA) {
799                 if (constraints->min_uA == constraints->max_uA)
800                         count += sprintf(buf + count, "%d mA ",
801                                          constraints->min_uA / 1000);
802                 else
803                         count += sprintf(buf + count, "%d <--> %d mA ",
804                                          constraints->min_uA / 1000,
805                                          constraints->max_uA / 1000);
806         }
807
808         if (!constraints->min_uA ||
809             constraints->min_uA != constraints->max_uA) {
810                 ret = _regulator_get_current_limit(rdev);
811                 if (ret > 0)
812                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
813         }
814
815         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
816                 count += sprintf(buf + count, "fast ");
817         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
818                 count += sprintf(buf + count, "normal ");
819         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
820                 count += sprintf(buf + count, "idle ");
821         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
822                 count += sprintf(buf + count, "standby");
823
824         if (!count)
825                 sprintf(buf, "no parameters");
826
827         rdev_dbg(rdev, "%s\n", buf);
828
829         if ((constraints->min_uV != constraints->max_uV) &&
830             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
831                 rdev_warn(rdev,
832                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
833 }
834
835 static int machine_constraints_voltage(struct regulator_dev *rdev,
836         struct regulation_constraints *constraints)
837 {
838         const struct regulator_ops *ops = rdev->desc->ops;
839         int ret;
840
841         /* do we need to apply the constraint voltage */
842         if (rdev->constraints->apply_uV &&
843             rdev->constraints->min_uV == rdev->constraints->max_uV) {
844                 int current_uV = _regulator_get_voltage(rdev);
845                 if (current_uV < 0) {
846                         rdev_err(rdev,
847                                  "failed to get the current voltage(%d)\n",
848                                  current_uV);
849                         return current_uV;
850                 }
851                 if (current_uV < rdev->constraints->min_uV ||
852                     current_uV > rdev->constraints->max_uV) {
853                         ret = _regulator_do_set_voltage(
854                                 rdev, rdev->constraints->min_uV,
855                                 rdev->constraints->max_uV);
856                         if (ret < 0) {
857                                 rdev_err(rdev,
858                                         "failed to apply %duV constraint(%d)\n",
859                                         rdev->constraints->min_uV, ret);
860                                 return ret;
861                         }
862                 }
863         }
864
865         /* constrain machine-level voltage specs to fit
866          * the actual range supported by this regulator.
867          */
868         if (ops->list_voltage && rdev->desc->n_voltages) {
869                 int     count = rdev->desc->n_voltages;
870                 int     i;
871                 int     min_uV = INT_MAX;
872                 int     max_uV = INT_MIN;
873                 int     cmin = constraints->min_uV;
874                 int     cmax = constraints->max_uV;
875
876                 /* it's safe to autoconfigure fixed-voltage supplies
877                    and the constraints are used by list_voltage. */
878                 if (count == 1 && !cmin) {
879                         cmin = 1;
880                         cmax = INT_MAX;
881                         constraints->min_uV = cmin;
882                         constraints->max_uV = cmax;
883                 }
884
885                 /* voltage constraints are optional */
886                 if ((cmin == 0) && (cmax == 0))
887                         return 0;
888
889                 /* else require explicit machine-level constraints */
890                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
891                         rdev_err(rdev, "invalid voltage constraints\n");
892                         return -EINVAL;
893                 }
894
895                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
896                 for (i = 0; i < count; i++) {
897                         int     value;
898
899                         value = ops->list_voltage(rdev, i);
900                         if (value <= 0)
901                                 continue;
902
903                         /* maybe adjust [min_uV..max_uV] */
904                         if (value >= cmin && value < min_uV)
905                                 min_uV = value;
906                         if (value <= cmax && value > max_uV)
907                                 max_uV = value;
908                 }
909
910                 /* final: [min_uV..max_uV] valid iff constraints valid */
911                 if (max_uV < min_uV) {
912                         rdev_err(rdev,
913                                  "unsupportable voltage constraints %u-%uuV\n",
914                                  min_uV, max_uV);
915                         return -EINVAL;
916                 }
917
918                 /* use regulator's subset of machine constraints */
919                 if (constraints->min_uV < min_uV) {
920                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
921                                  constraints->min_uV, min_uV);
922                         constraints->min_uV = min_uV;
923                 }
924                 if (constraints->max_uV > max_uV) {
925                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
926                                  constraints->max_uV, max_uV);
927                         constraints->max_uV = max_uV;
928                 }
929         }
930
931         return 0;
932 }
933
934 static int machine_constraints_current(struct regulator_dev *rdev,
935         struct regulation_constraints *constraints)
936 {
937         const struct regulator_ops *ops = rdev->desc->ops;
938         int ret;
939
940         if (!constraints->min_uA && !constraints->max_uA)
941                 return 0;
942
943         if (constraints->min_uA > constraints->max_uA) {
944                 rdev_err(rdev, "Invalid current constraints\n");
945                 return -EINVAL;
946         }
947
948         if (!ops->set_current_limit || !ops->get_current_limit) {
949                 rdev_warn(rdev, "Operation of current configuration missing\n");
950                 return 0;
951         }
952
953         /* Set regulator current in constraints range */
954         ret = ops->set_current_limit(rdev, constraints->min_uA,
955                         constraints->max_uA);
956         if (ret < 0) {
957                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
958                 return ret;
959         }
960
961         return 0;
962 }
963
964 static int _regulator_do_enable(struct regulator_dev *rdev);
965
966 /**
967  * set_machine_constraints - sets regulator constraints
968  * @rdev: regulator source
969  * @constraints: constraints to apply
970  *
971  * Allows platform initialisation code to define and constrain
972  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
973  * Constraints *must* be set by platform code in order for some
974  * regulator operations to proceed i.e. set_voltage, set_current_limit,
975  * set_mode.
976  */
977 static int set_machine_constraints(struct regulator_dev *rdev,
978         const struct regulation_constraints *constraints)
979 {
980         int ret = 0;
981         const struct regulator_ops *ops = rdev->desc->ops;
982
983         if (constraints)
984                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
985                                             GFP_KERNEL);
986         else
987                 rdev->constraints = kzalloc(sizeof(*constraints),
988                                             GFP_KERNEL);
989         if (!rdev->constraints)
990                 return -ENOMEM;
991
992         ret = machine_constraints_voltage(rdev, rdev->constraints);
993         if (ret != 0)
994                 goto out;
995
996         ret = machine_constraints_current(rdev, rdev->constraints);
997         if (ret != 0)
998                 goto out;
999
1000         /* do we need to setup our suspend state */
1001         if (rdev->constraints->initial_state) {
1002                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1003                 if (ret < 0) {
1004                         rdev_err(rdev, "failed to set suspend state\n");
1005                         goto out;
1006                 }
1007         }
1008
1009         if (rdev->constraints->initial_mode) {
1010                 if (!ops->set_mode) {
1011                         rdev_err(rdev, "no set_mode operation\n");
1012                         ret = -EINVAL;
1013                         goto out;
1014                 }
1015
1016                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1017                 if (ret < 0) {
1018                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1019                         goto out;
1020                 }
1021         }
1022
1023         /* If the constraints say the regulator should be on at this point
1024          * and we have control then make sure it is enabled.
1025          */
1026         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1027                 ret = _regulator_do_enable(rdev);
1028                 if (ret < 0 && ret != -EINVAL) {
1029                         rdev_err(rdev, "failed to enable\n");
1030                         goto out;
1031                 }
1032         }
1033
1034         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1035                 && ops->set_ramp_delay) {
1036                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1037                 if (ret < 0) {
1038                         rdev_err(rdev, "failed to set ramp_delay\n");
1039                         goto out;
1040                 }
1041         }
1042
1043         print_constraints(rdev);
1044         return 0;
1045 out:
1046         kfree(rdev->constraints);
1047         rdev->constraints = NULL;
1048         return ret;
1049 }
1050
1051 /**
1052  * set_supply - set regulator supply regulator
1053  * @rdev: regulator name
1054  * @supply_rdev: supply regulator name
1055  *
1056  * Called by platform initialisation code to set the supply regulator for this
1057  * regulator. This ensures that a regulators supply will also be enabled by the
1058  * core if it's child is enabled.
1059  */
1060 static int set_supply(struct regulator_dev *rdev,
1061                       struct regulator_dev *supply_rdev)
1062 {
1063         int err;
1064
1065         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1066
1067         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1068         if (rdev->supply == NULL) {
1069                 err = -ENOMEM;
1070                 return err;
1071         }
1072         supply_rdev->open_count++;
1073
1074         return 0;
1075 }
1076
1077 /**
1078  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1079  * @rdev:         regulator source
1080  * @consumer_dev_name: dev_name() string for device supply applies to
1081  * @supply:       symbolic name for supply
1082  *
1083  * Allows platform initialisation code to map physical regulator
1084  * sources to symbolic names for supplies for use by devices.  Devices
1085  * should use these symbolic names to request regulators, avoiding the
1086  * need to provide board-specific regulator names as platform data.
1087  */
1088 static int set_consumer_device_supply(struct regulator_dev *rdev,
1089                                       const char *consumer_dev_name,
1090                                       const char *supply)
1091 {
1092         struct regulator_map *node;
1093         int has_dev;
1094
1095         if (supply == NULL)
1096                 return -EINVAL;
1097
1098         if (consumer_dev_name != NULL)
1099                 has_dev = 1;
1100         else
1101                 has_dev = 0;
1102
1103         list_for_each_entry(node, &regulator_map_list, list) {
1104                 if (node->dev_name && consumer_dev_name) {
1105                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1106                                 continue;
1107                 } else if (node->dev_name || consumer_dev_name) {
1108                         continue;
1109                 }
1110
1111                 if (strcmp(node->supply, supply) != 0)
1112                         continue;
1113
1114                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1115                          consumer_dev_name,
1116                          dev_name(&node->regulator->dev),
1117                          node->regulator->desc->name,
1118                          supply,
1119                          dev_name(&rdev->dev), rdev_get_name(rdev));
1120                 return -EBUSY;
1121         }
1122
1123         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1124         if (node == NULL)
1125                 return -ENOMEM;
1126
1127         node->regulator = rdev;
1128         node->supply = supply;
1129
1130         if (has_dev) {
1131                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1132                 if (node->dev_name == NULL) {
1133                         kfree(node);
1134                         return -ENOMEM;
1135                 }
1136         }
1137
1138         list_add(&node->list, &regulator_map_list);
1139         return 0;
1140 }
1141
1142 static void unset_regulator_supplies(struct regulator_dev *rdev)
1143 {
1144         struct regulator_map *node, *n;
1145
1146         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1147                 if (rdev == node->regulator) {
1148                         list_del(&node->list);
1149                         kfree(node->dev_name);
1150                         kfree(node);
1151                 }
1152         }
1153 }
1154
1155 #define REG_STR_SIZE    64
1156
1157 static struct regulator *create_regulator(struct regulator_dev *rdev,
1158                                           struct device *dev,
1159                                           const char *supply_name)
1160 {
1161         struct regulator *regulator;
1162         char buf[REG_STR_SIZE];
1163         int err, size;
1164
1165         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1166         if (regulator == NULL)
1167                 return NULL;
1168
1169         mutex_lock(&rdev->mutex);
1170         regulator->rdev = rdev;
1171         list_add(&regulator->list, &rdev->consumer_list);
1172
1173         if (dev) {
1174                 regulator->dev = dev;
1175
1176                 /* Add a link to the device sysfs entry */
1177                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1178                                  dev->kobj.name, supply_name);
1179                 if (size >= REG_STR_SIZE)
1180                         goto overflow_err;
1181
1182                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1183                 if (regulator->supply_name == NULL)
1184                         goto overflow_err;
1185
1186                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1187                                         buf);
1188                 if (err) {
1189                         rdev_warn(rdev, "could not add device link %s err %d\n",
1190                                   dev->kobj.name, err);
1191                         /* non-fatal */
1192                 }
1193         } else {
1194                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1195                 if (regulator->supply_name == NULL)
1196                         goto overflow_err;
1197         }
1198
1199         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1200                                                 rdev->debugfs);
1201         if (!regulator->debugfs) {
1202                 rdev_warn(rdev, "Failed to create debugfs directory\n");
1203         } else {
1204                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1205                                    &regulator->uA_load);
1206                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1207                                    &regulator->min_uV);
1208                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1209                                    &regulator->max_uV);
1210         }
1211
1212         /*
1213          * Check now if the regulator is an always on regulator - if
1214          * it is then we don't need to do nearly so much work for
1215          * enable/disable calls.
1216          */
1217         if (!_regulator_can_change_status(rdev) &&
1218             _regulator_is_enabled(rdev))
1219                 regulator->always_on = true;
1220
1221         mutex_unlock(&rdev->mutex);
1222         return regulator;
1223 overflow_err:
1224         list_del(&regulator->list);
1225         kfree(regulator);
1226         mutex_unlock(&rdev->mutex);
1227         return NULL;
1228 }
1229
1230 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1231 {
1232         if (rdev->constraints && rdev->constraints->enable_time)
1233                 return rdev->constraints->enable_time;
1234         if (!rdev->desc->ops->enable_time)
1235                 return rdev->desc->enable_time;
1236         return rdev->desc->ops->enable_time(rdev);
1237 }
1238
1239 static struct regulator_supply_alias *regulator_find_supply_alias(
1240                 struct device *dev, const char *supply)
1241 {
1242         struct regulator_supply_alias *map;
1243
1244         list_for_each_entry(map, &regulator_supply_alias_list, list)
1245                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1246                         return map;
1247
1248         return NULL;
1249 }
1250
1251 static void regulator_supply_alias(struct device **dev, const char **supply)
1252 {
1253         struct regulator_supply_alias *map;
1254
1255         map = regulator_find_supply_alias(*dev, *supply);
1256         if (map) {
1257                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1258                                 *supply, map->alias_supply,
1259                                 dev_name(map->alias_dev));
1260                 *dev = map->alias_dev;
1261                 *supply = map->alias_supply;
1262         }
1263 }
1264
1265 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1266                                                   const char *supply,
1267                                                   int *ret)
1268 {
1269         struct regulator_dev *r;
1270         struct device_node *node;
1271         struct regulator_map *map;
1272         const char *devname = NULL;
1273
1274         regulator_supply_alias(&dev, &supply);
1275
1276         /* first do a dt based lookup */
1277         if (dev && dev->of_node) {
1278                 node = of_get_regulator(dev, supply);
1279                 if (node) {
1280                         list_for_each_entry(r, &regulator_list, list)
1281                                 if (r->dev.parent &&
1282                                         node == r->dev.of_node)
1283                                         return r;
1284                         *ret = -EPROBE_DEFER;
1285                         return NULL;
1286                 } else {
1287                         /*
1288                          * If we couldn't even get the node then it's
1289                          * not just that the device didn't register
1290                          * yet, there's no node and we'll never
1291                          * succeed.
1292                          */
1293                         *ret = -ENODEV;
1294                 }
1295         }
1296
1297         /* if not found, try doing it non-dt way */
1298         if (dev)
1299                 devname = dev_name(dev);
1300
1301         list_for_each_entry(r, &regulator_list, list)
1302                 if (strcmp(rdev_get_name(r), supply) == 0)
1303                         return r;
1304
1305         list_for_each_entry(map, &regulator_map_list, list) {
1306                 /* If the mapping has a device set up it must match */
1307                 if (map->dev_name &&
1308                     (!devname || strcmp(map->dev_name, devname)))
1309                         continue;
1310
1311                 if (strcmp(map->supply, supply) == 0)
1312                         return map->regulator;
1313         }
1314
1315
1316         return NULL;
1317 }
1318
1319 static int regulator_resolve_supply(struct regulator_dev *rdev)
1320 {
1321         struct regulator_dev *r;
1322         struct device *dev = rdev->dev.parent;
1323         int ret;
1324
1325         /* No supply to resovle? */
1326         if (!rdev->supply_name)
1327                 return 0;
1328
1329         /* Supply already resolved? */
1330         if (rdev->supply)
1331                 return 0;
1332
1333         r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1334         if (ret == -ENODEV) {
1335                 /*
1336                  * No supply was specified for this regulator and
1337                  * there will never be one.
1338                  */
1339                 return 0;
1340         }
1341
1342         if (!r) {
1343                 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1344                         rdev->supply_name, rdev->desc->name);
1345                 return -EPROBE_DEFER;
1346         }
1347
1348         /* Recursively resolve the supply of the supply */
1349         ret = regulator_resolve_supply(r);
1350         if (ret < 0)
1351                 return ret;
1352
1353         ret = set_supply(rdev, r);
1354         if (ret < 0)
1355                 return ret;
1356
1357         /* Cascade always-on state to supply */
1358         if (_regulator_is_enabled(rdev)) {
1359                 ret = regulator_enable(rdev->supply);
1360                 if (ret < 0)
1361                         return ret;
1362         }
1363
1364         return 0;
1365 }
1366
1367 /* Internal regulator request function */
1368 static struct regulator *_regulator_get(struct device *dev, const char *id,
1369                                         bool exclusive, bool allow_dummy)
1370 {
1371         struct regulator_dev *rdev;
1372         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1373         const char *devname = NULL;
1374         int ret;
1375
1376         if (id == NULL) {
1377                 pr_err("get() with no identifier\n");
1378                 return ERR_PTR(-EINVAL);
1379         }
1380
1381         if (dev)
1382                 devname = dev_name(dev);
1383
1384         if (have_full_constraints())
1385                 ret = -ENODEV;
1386         else
1387                 ret = -EPROBE_DEFER;
1388
1389         mutex_lock(&regulator_list_mutex);
1390
1391         rdev = regulator_dev_lookup(dev, id, &ret);
1392         if (rdev)
1393                 goto found;
1394
1395         regulator = ERR_PTR(ret);
1396
1397         /*
1398          * If we have return value from dev_lookup fail, we do not expect to
1399          * succeed, so, quit with appropriate error value
1400          */
1401         if (ret && ret != -ENODEV)
1402                 goto out;
1403
1404         if (!devname)
1405                 devname = "deviceless";
1406
1407         /*
1408          * Assume that a regulator is physically present and enabled
1409          * even if it isn't hooked up and just provide a dummy.
1410          */
1411         if (have_full_constraints() && allow_dummy) {
1412                 pr_warn("%s supply %s not found, using dummy regulator\n",
1413                         devname, id);
1414
1415                 rdev = dummy_regulator_rdev;
1416                 goto found;
1417         /* Don't log an error when called from regulator_get_optional() */
1418         } else if (!have_full_constraints() || exclusive) {
1419                 dev_warn(dev, "dummy supplies not allowed\n");
1420         }
1421
1422         mutex_unlock(&regulator_list_mutex);
1423         return regulator;
1424
1425 found:
1426         if (rdev->exclusive) {
1427                 regulator = ERR_PTR(-EPERM);
1428                 goto out;
1429         }
1430
1431         if (exclusive && rdev->open_count) {
1432                 regulator = ERR_PTR(-EBUSY);
1433                 goto out;
1434         }
1435
1436         ret = regulator_resolve_supply(rdev);
1437         if (ret < 0) {
1438                 regulator = ERR_PTR(ret);
1439                 goto out;
1440         }
1441
1442         if (!try_module_get(rdev->owner))
1443                 goto out;
1444
1445         regulator = create_regulator(rdev, dev, id);
1446         if (regulator == NULL) {
1447                 regulator = ERR_PTR(-ENOMEM);
1448                 module_put(rdev->owner);
1449                 goto out;
1450         }
1451
1452         rdev->open_count++;
1453         if (exclusive) {
1454                 rdev->exclusive = 1;
1455
1456                 ret = _regulator_is_enabled(rdev);
1457                 if (ret > 0)
1458                         rdev->use_count = 1;
1459                 else
1460                         rdev->use_count = 0;
1461         }
1462
1463 out:
1464         mutex_unlock(&regulator_list_mutex);
1465
1466         return regulator;
1467 }
1468
1469 /**
1470  * regulator_get - lookup and obtain a reference to a regulator.
1471  * @dev: device for regulator "consumer"
1472  * @id: Supply name or regulator ID.
1473  *
1474  * Returns a struct regulator corresponding to the regulator producer,
1475  * or IS_ERR() condition containing errno.
1476  *
1477  * Use of supply names configured via regulator_set_device_supply() is
1478  * strongly encouraged.  It is recommended that the supply name used
1479  * should match the name used for the supply and/or the relevant
1480  * device pins in the datasheet.
1481  */
1482 struct regulator *regulator_get(struct device *dev, const char *id)
1483 {
1484         return _regulator_get(dev, id, false, true);
1485 }
1486 EXPORT_SYMBOL_GPL(regulator_get);
1487
1488 /**
1489  * regulator_get_exclusive - obtain exclusive access to a regulator.
1490  * @dev: device for regulator "consumer"
1491  * @id: Supply name or regulator ID.
1492  *
1493  * Returns a struct regulator corresponding to the regulator producer,
1494  * or IS_ERR() condition containing errno.  Other consumers will be
1495  * unable to obtain this regulator while this reference is held and the
1496  * use count for the regulator will be initialised to reflect the current
1497  * state of the regulator.
1498  *
1499  * This is intended for use by consumers which cannot tolerate shared
1500  * use of the regulator such as those which need to force the
1501  * regulator off for correct operation of the hardware they are
1502  * controlling.
1503  *
1504  * Use of supply names configured via regulator_set_device_supply() is
1505  * strongly encouraged.  It is recommended that the supply name used
1506  * should match the name used for the supply and/or the relevant
1507  * device pins in the datasheet.
1508  */
1509 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1510 {
1511         return _regulator_get(dev, id, true, false);
1512 }
1513 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1514
1515 /**
1516  * regulator_get_optional - obtain optional access to a regulator.
1517  * @dev: device for regulator "consumer"
1518  * @id: Supply name or regulator ID.
1519  *
1520  * Returns a struct regulator corresponding to the regulator producer,
1521  * or IS_ERR() condition containing errno.
1522  *
1523  * This is intended for use by consumers for devices which can have
1524  * some supplies unconnected in normal use, such as some MMC devices.
1525  * It can allow the regulator core to provide stub supplies for other
1526  * supplies requested using normal regulator_get() calls without
1527  * disrupting the operation of drivers that can handle absent
1528  * supplies.
1529  *
1530  * Use of supply names configured via regulator_set_device_supply() is
1531  * strongly encouraged.  It is recommended that the supply name used
1532  * should match the name used for the supply and/or the relevant
1533  * device pins in the datasheet.
1534  */
1535 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1536 {
1537         return _regulator_get(dev, id, false, false);
1538 }
1539 EXPORT_SYMBOL_GPL(regulator_get_optional);
1540
1541 /* regulator_list_mutex lock held by regulator_put() */
1542 static void _regulator_put(struct regulator *regulator)
1543 {
1544         struct regulator_dev *rdev;
1545
1546         if (regulator == NULL || IS_ERR(regulator))
1547                 return;
1548
1549         rdev = regulator->rdev;
1550
1551         debugfs_remove_recursive(regulator->debugfs);
1552
1553         /* remove any sysfs entries */
1554         if (regulator->dev)
1555                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1556         mutex_lock(&rdev->mutex);
1557         kfree(regulator->supply_name);
1558         list_del(&regulator->list);
1559         kfree(regulator);
1560
1561         rdev->open_count--;
1562         rdev->exclusive = 0;
1563         mutex_unlock(&rdev->mutex);
1564
1565         module_put(rdev->owner);
1566 }
1567
1568 /**
1569  * regulator_put - "free" the regulator source
1570  * @regulator: regulator source
1571  *
1572  * Note: drivers must ensure that all regulator_enable calls made on this
1573  * regulator source are balanced by regulator_disable calls prior to calling
1574  * this function.
1575  */
1576 void regulator_put(struct regulator *regulator)
1577 {
1578         mutex_lock(&regulator_list_mutex);
1579         _regulator_put(regulator);
1580         mutex_unlock(&regulator_list_mutex);
1581 }
1582 EXPORT_SYMBOL_GPL(regulator_put);
1583
1584 /**
1585  * regulator_register_supply_alias - Provide device alias for supply lookup
1586  *
1587  * @dev: device that will be given as the regulator "consumer"
1588  * @id: Supply name or regulator ID
1589  * @alias_dev: device that should be used to lookup the supply
1590  * @alias_id: Supply name or regulator ID that should be used to lookup the
1591  * supply
1592  *
1593  * All lookups for id on dev will instead be conducted for alias_id on
1594  * alias_dev.
1595  */
1596 int regulator_register_supply_alias(struct device *dev, const char *id,
1597                                     struct device *alias_dev,
1598                                     const char *alias_id)
1599 {
1600         struct regulator_supply_alias *map;
1601
1602         map = regulator_find_supply_alias(dev, id);
1603         if (map)
1604                 return -EEXIST;
1605
1606         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1607         if (!map)
1608                 return -ENOMEM;
1609
1610         map->src_dev = dev;
1611         map->src_supply = id;
1612         map->alias_dev = alias_dev;
1613         map->alias_supply = alias_id;
1614
1615         list_add(&map->list, &regulator_supply_alias_list);
1616
1617         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1618                 id, dev_name(dev), alias_id, dev_name(alias_dev));
1619
1620         return 0;
1621 }
1622 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1623
1624 /**
1625  * regulator_unregister_supply_alias - Remove device alias
1626  *
1627  * @dev: device that will be given as the regulator "consumer"
1628  * @id: Supply name or regulator ID
1629  *
1630  * Remove a lookup alias if one exists for id on dev.
1631  */
1632 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1633 {
1634         struct regulator_supply_alias *map;
1635
1636         map = regulator_find_supply_alias(dev, id);
1637         if (map) {
1638                 list_del(&map->list);
1639                 kfree(map);
1640         }
1641 }
1642 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1643
1644 /**
1645  * regulator_bulk_register_supply_alias - register multiple aliases
1646  *
1647  * @dev: device that will be given as the regulator "consumer"
1648  * @id: List of supply names or regulator IDs
1649  * @alias_dev: device that should be used to lookup the supply
1650  * @alias_id: List of supply names or regulator IDs that should be used to
1651  * lookup the supply
1652  * @num_id: Number of aliases to register
1653  *
1654  * @return 0 on success, an errno on failure.
1655  *
1656  * This helper function allows drivers to register several supply
1657  * aliases in one operation.  If any of the aliases cannot be
1658  * registered any aliases that were registered will be removed
1659  * before returning to the caller.
1660  */
1661 int regulator_bulk_register_supply_alias(struct device *dev,
1662                                          const char *const *id,
1663                                          struct device *alias_dev,
1664                                          const char *const *alias_id,
1665                                          int num_id)
1666 {
1667         int i;
1668         int ret;
1669
1670         for (i = 0; i < num_id; ++i) {
1671                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1672                                                       alias_id[i]);
1673                 if (ret < 0)
1674                         goto err;
1675         }
1676
1677         return 0;
1678
1679 err:
1680         dev_err(dev,
1681                 "Failed to create supply alias %s,%s -> %s,%s\n",
1682                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1683
1684         while (--i >= 0)
1685                 regulator_unregister_supply_alias(dev, id[i]);
1686
1687         return ret;
1688 }
1689 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1690
1691 /**
1692  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1693  *
1694  * @dev: device that will be given as the regulator "consumer"
1695  * @id: List of supply names or regulator IDs
1696  * @num_id: Number of aliases to unregister
1697  *
1698  * This helper function allows drivers to unregister several supply
1699  * aliases in one operation.
1700  */
1701 void regulator_bulk_unregister_supply_alias(struct device *dev,
1702                                             const char *const *id,
1703                                             int num_id)
1704 {
1705         int i;
1706
1707         for (i = 0; i < num_id; ++i)
1708                 regulator_unregister_supply_alias(dev, id[i]);
1709 }
1710 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1711
1712
1713 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1714 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1715                                 const struct regulator_config *config)
1716 {
1717         struct regulator_enable_gpio *pin;
1718         struct gpio_desc *gpiod;
1719         int ret;
1720
1721         gpiod = gpio_to_desc(config->ena_gpio);
1722
1723         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1724                 if (pin->gpiod == gpiod) {
1725                         rdev_dbg(rdev, "GPIO %d is already used\n",
1726                                 config->ena_gpio);
1727                         goto update_ena_gpio_to_rdev;
1728                 }
1729         }
1730
1731         ret = gpio_request_one(config->ena_gpio,
1732                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1733                                 rdev_get_name(rdev));
1734         if (ret)
1735                 return ret;
1736
1737         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1738         if (pin == NULL) {
1739                 gpio_free(config->ena_gpio);
1740                 return -ENOMEM;
1741         }
1742
1743         pin->gpiod = gpiod;
1744         pin->ena_gpio_invert = config->ena_gpio_invert;
1745         list_add(&pin->list, &regulator_ena_gpio_list);
1746
1747 update_ena_gpio_to_rdev:
1748         pin->request_count++;
1749         rdev->ena_pin = pin;
1750         return 0;
1751 }
1752
1753 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1754 {
1755         struct regulator_enable_gpio *pin, *n;
1756
1757         if (!rdev->ena_pin)
1758                 return;
1759
1760         /* Free the GPIO only in case of no use */
1761         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1762                 if (pin->gpiod == rdev->ena_pin->gpiod) {
1763                         if (pin->request_count <= 1) {
1764                                 pin->request_count = 0;
1765                                 gpiod_put(pin->gpiod);
1766                                 list_del(&pin->list);
1767                                 kfree(pin);
1768                                 rdev->ena_pin = NULL;
1769                                 return;
1770                         } else {
1771                                 pin->request_count--;
1772                         }
1773                 }
1774         }
1775 }
1776
1777 /**
1778  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1779  * @rdev: regulator_dev structure
1780  * @enable: enable GPIO at initial use?
1781  *
1782  * GPIO is enabled in case of initial use. (enable_count is 0)
1783  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1784  */
1785 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1786 {
1787         struct regulator_enable_gpio *pin = rdev->ena_pin;
1788
1789         if (!pin)
1790                 return -EINVAL;
1791
1792         if (enable) {
1793                 /* Enable GPIO at initial use */
1794                 if (pin->enable_count == 0)
1795                         gpiod_set_value_cansleep(pin->gpiod,
1796                                                  !pin->ena_gpio_invert);
1797
1798                 pin->enable_count++;
1799         } else {
1800                 if (pin->enable_count > 1) {
1801                         pin->enable_count--;
1802                         return 0;
1803                 }
1804
1805                 /* Disable GPIO if not used */
1806                 if (pin->enable_count <= 1) {
1807                         gpiod_set_value_cansleep(pin->gpiod,
1808                                                  pin->ena_gpio_invert);
1809                         pin->enable_count = 0;
1810                 }
1811         }
1812
1813         return 0;
1814 }
1815
1816 /**
1817  * _regulator_enable_delay - a delay helper function
1818  * @delay: time to delay in microseconds
1819  *
1820  * Delay for the requested amount of time as per the guidelines in:
1821  *
1822  *     Documentation/timers/timers-howto.txt
1823  *
1824  * The assumption here is that regulators will never be enabled in
1825  * atomic context and therefore sleeping functions can be used.
1826  */
1827 static void _regulator_enable_delay(unsigned int delay)
1828 {
1829         unsigned int ms = delay / 1000;
1830         unsigned int us = delay % 1000;
1831
1832         if (ms > 0) {
1833                 /*
1834                  * For small enough values, handle super-millisecond
1835                  * delays in the usleep_range() call below.
1836                  */
1837                 if (ms < 20)
1838                         us += ms * 1000;
1839                 else
1840                         msleep(ms);
1841         }
1842
1843         /*
1844          * Give the scheduler some room to coalesce with any other
1845          * wakeup sources. For delays shorter than 10 us, don't even
1846          * bother setting up high-resolution timers and just busy-
1847          * loop.
1848          */
1849         if (us >= 10)
1850                 usleep_range(us, us + 100);
1851         else
1852                 udelay(us);
1853 }
1854
1855 static int _regulator_do_enable(struct regulator_dev *rdev)
1856 {
1857         int ret, delay;
1858
1859         /* Query before enabling in case configuration dependent.  */
1860         ret = _regulator_get_enable_time(rdev);
1861         if (ret >= 0) {
1862                 delay = ret;
1863         } else {
1864                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1865                 delay = 0;
1866         }
1867
1868         trace_regulator_enable(rdev_get_name(rdev));
1869
1870         if (rdev->desc->off_on_delay) {
1871                 /* if needed, keep a distance of off_on_delay from last time
1872                  * this regulator was disabled.
1873                  */
1874                 unsigned long start_jiffy = jiffies;
1875                 unsigned long intended, max_delay, remaining;
1876
1877                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
1878                 intended = rdev->last_off_jiffy + max_delay;
1879
1880                 if (time_before(start_jiffy, intended)) {
1881                         /* calc remaining jiffies to deal with one-time
1882                          * timer wrapping.
1883                          * in case of multiple timer wrapping, either it can be
1884                          * detected by out-of-range remaining, or it cannot be
1885                          * detected and we gets a panelty of
1886                          * _regulator_enable_delay().
1887                          */
1888                         remaining = intended - start_jiffy;
1889                         if (remaining <= max_delay)
1890                                 _regulator_enable_delay(
1891                                                 jiffies_to_usecs(remaining));
1892                 }
1893         }
1894
1895         if (rdev->ena_pin) {
1896                 if (!rdev->ena_gpio_state) {
1897                         ret = regulator_ena_gpio_ctrl(rdev, true);
1898                         if (ret < 0)
1899                                 return ret;
1900                         rdev->ena_gpio_state = 1;
1901                 }
1902         } else if (rdev->desc->ops->enable) {
1903                 ret = rdev->desc->ops->enable(rdev);
1904                 if (ret < 0)
1905                         return ret;
1906         } else {
1907                 return -EINVAL;
1908         }
1909
1910         /* Allow the regulator to ramp; it would be useful to extend
1911          * this for bulk operations so that the regulators can ramp
1912          * together.  */
1913         trace_regulator_enable_delay(rdev_get_name(rdev));
1914
1915         _regulator_enable_delay(delay);
1916
1917         trace_regulator_enable_complete(rdev_get_name(rdev));
1918
1919         return 0;
1920 }
1921
1922 /* locks held by regulator_enable() */
1923 static int _regulator_enable(struct regulator_dev *rdev)
1924 {
1925         int ret;
1926
1927         /* check voltage and requested load before enabling */
1928         if (rdev->constraints &&
1929             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1930                 drms_uA_update(rdev);
1931
1932         if (rdev->use_count == 0) {
1933                 /* The regulator may on if it's not switchable or left on */
1934                 ret = _regulator_is_enabled(rdev);
1935                 if (ret == -EINVAL || ret == 0) {
1936                         if (!_regulator_can_change_status(rdev))
1937                                 return -EPERM;
1938
1939                         ret = _regulator_do_enable(rdev);
1940                         if (ret < 0)
1941                                 return ret;
1942
1943                 } else if (ret < 0) {
1944                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1945                         return ret;
1946                 }
1947                 /* Fallthrough on positive return values - already enabled */
1948         }
1949
1950         rdev->use_count++;
1951
1952         return 0;
1953 }
1954
1955 /**
1956  * regulator_enable - enable regulator output
1957  * @regulator: regulator source
1958  *
1959  * Request that the regulator be enabled with the regulator output at
1960  * the predefined voltage or current value.  Calls to regulator_enable()
1961  * must be balanced with calls to regulator_disable().
1962  *
1963  * NOTE: the output value can be set by other drivers, boot loader or may be
1964  * hardwired in the regulator.
1965  */
1966 int regulator_enable(struct regulator *regulator)
1967 {
1968         struct regulator_dev *rdev = regulator->rdev;
1969         int ret = 0;
1970
1971         if (regulator->always_on)
1972                 return 0;
1973
1974         if (rdev->supply) {
1975                 ret = regulator_enable(rdev->supply);
1976                 if (ret != 0)
1977                         return ret;
1978         }
1979
1980         mutex_lock(&rdev->mutex);
1981         ret = _regulator_enable(rdev);
1982         mutex_unlock(&rdev->mutex);
1983
1984         if (ret != 0 && rdev->supply)
1985                 regulator_disable(rdev->supply);
1986
1987         return ret;
1988 }
1989 EXPORT_SYMBOL_GPL(regulator_enable);
1990
1991 static int _regulator_do_disable(struct regulator_dev *rdev)
1992 {
1993         int ret;
1994
1995         trace_regulator_disable(rdev_get_name(rdev));
1996
1997         if (rdev->ena_pin) {
1998                 if (rdev->ena_gpio_state) {
1999                         ret = regulator_ena_gpio_ctrl(rdev, false);
2000                         if (ret < 0)
2001                                 return ret;
2002                         rdev->ena_gpio_state = 0;
2003                 }
2004
2005         } else if (rdev->desc->ops->disable) {
2006                 ret = rdev->desc->ops->disable(rdev);
2007                 if (ret != 0)
2008                         return ret;
2009         }
2010
2011         /* cares about last_off_jiffy only if off_on_delay is required by
2012          * device.
2013          */
2014         if (rdev->desc->off_on_delay)
2015                 rdev->last_off_jiffy = jiffies;
2016
2017         trace_regulator_disable_complete(rdev_get_name(rdev));
2018
2019         return 0;
2020 }
2021
2022 /* locks held by regulator_disable() */
2023 static int _regulator_disable(struct regulator_dev *rdev)
2024 {
2025         int ret = 0;
2026
2027         if (WARN(rdev->use_count <= 0,
2028                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2029                 return -EIO;
2030
2031         /* are we the last user and permitted to disable ? */
2032         if (rdev->use_count == 1 &&
2033             (rdev->constraints && !rdev->constraints->always_on)) {
2034
2035                 /* we are last user */
2036                 if (_regulator_can_change_status(rdev)) {
2037                         ret = _notifier_call_chain(rdev,
2038                                                    REGULATOR_EVENT_PRE_DISABLE,
2039                                                    NULL);
2040                         if (ret & NOTIFY_STOP_MASK)
2041                                 return -EINVAL;
2042
2043                         ret = _regulator_do_disable(rdev);
2044                         if (ret < 0) {
2045                                 rdev_err(rdev, "failed to disable\n");
2046                                 _notifier_call_chain(rdev,
2047                                                 REGULATOR_EVENT_ABORT_DISABLE,
2048                                                 NULL);
2049                                 return ret;
2050                         }
2051                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2052                                         NULL);
2053                 }
2054
2055                 rdev->use_count = 0;
2056         } else if (rdev->use_count > 1) {
2057
2058                 if (rdev->constraints &&
2059                         (rdev->constraints->valid_ops_mask &
2060                         REGULATOR_CHANGE_DRMS))
2061                         drms_uA_update(rdev);
2062
2063                 rdev->use_count--;
2064         }
2065
2066         return ret;
2067 }
2068
2069 /**
2070  * regulator_disable - disable regulator output
2071  * @regulator: regulator source
2072  *
2073  * Disable the regulator output voltage or current.  Calls to
2074  * regulator_enable() must be balanced with calls to
2075  * regulator_disable().
2076  *
2077  * NOTE: this will only disable the regulator output if no other consumer
2078  * devices have it enabled, the regulator device supports disabling and
2079  * machine constraints permit this operation.
2080  */
2081 int regulator_disable(struct regulator *regulator)
2082 {
2083         struct regulator_dev *rdev = regulator->rdev;
2084         int ret = 0;
2085
2086         if (regulator->always_on)
2087                 return 0;
2088
2089         mutex_lock(&rdev->mutex);
2090         ret = _regulator_disable(rdev);
2091         mutex_unlock(&rdev->mutex);
2092
2093         if (ret == 0 && rdev->supply)
2094                 regulator_disable(rdev->supply);
2095
2096         return ret;
2097 }
2098 EXPORT_SYMBOL_GPL(regulator_disable);
2099
2100 /* locks held by regulator_force_disable() */
2101 static int _regulator_force_disable(struct regulator_dev *rdev)
2102 {
2103         int ret = 0;
2104
2105         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2106                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2107         if (ret & NOTIFY_STOP_MASK)
2108                 return -EINVAL;
2109
2110         ret = _regulator_do_disable(rdev);
2111         if (ret < 0) {
2112                 rdev_err(rdev, "failed to force disable\n");
2113                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2114                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2115                 return ret;
2116         }
2117
2118         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2119                         REGULATOR_EVENT_DISABLE, NULL);
2120
2121         return 0;
2122 }
2123
2124 /**
2125  * regulator_force_disable - force disable regulator output
2126  * @regulator: regulator source
2127  *
2128  * Forcibly disable the regulator output voltage or current.
2129  * NOTE: this *will* disable the regulator output even if other consumer
2130  * devices have it enabled. This should be used for situations when device
2131  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2132  */
2133 int regulator_force_disable(struct regulator *regulator)
2134 {
2135         struct regulator_dev *rdev = regulator->rdev;
2136         int ret;
2137
2138         mutex_lock(&rdev->mutex);
2139         regulator->uA_load = 0;
2140         ret = _regulator_force_disable(regulator->rdev);
2141         mutex_unlock(&rdev->mutex);
2142
2143         if (rdev->supply)
2144                 while (rdev->open_count--)
2145                         regulator_disable(rdev->supply);
2146
2147         return ret;
2148 }
2149 EXPORT_SYMBOL_GPL(regulator_force_disable);
2150
2151 static void regulator_disable_work(struct work_struct *work)
2152 {
2153         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2154                                                   disable_work.work);
2155         int count, i, ret;
2156
2157         mutex_lock(&rdev->mutex);
2158
2159         BUG_ON(!rdev->deferred_disables);
2160
2161         count = rdev->deferred_disables;
2162         rdev->deferred_disables = 0;
2163
2164         for (i = 0; i < count; i++) {
2165                 ret = _regulator_disable(rdev);
2166                 if (ret != 0)
2167                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2168         }
2169
2170         mutex_unlock(&rdev->mutex);
2171
2172         if (rdev->supply) {
2173                 for (i = 0; i < count; i++) {
2174                         ret = regulator_disable(rdev->supply);
2175                         if (ret != 0) {
2176                                 rdev_err(rdev,
2177                                          "Supply disable failed: %d\n", ret);
2178                         }
2179                 }
2180         }
2181 }
2182
2183 /**
2184  * regulator_disable_deferred - disable regulator output with delay
2185  * @regulator: regulator source
2186  * @ms: miliseconds until the regulator is disabled
2187  *
2188  * Execute regulator_disable() on the regulator after a delay.  This
2189  * is intended for use with devices that require some time to quiesce.
2190  *
2191  * NOTE: this will only disable the regulator output if no other consumer
2192  * devices have it enabled, the regulator device supports disabling and
2193  * machine constraints permit this operation.
2194  */
2195 int regulator_disable_deferred(struct regulator *regulator, int ms)
2196 {
2197         struct regulator_dev *rdev = regulator->rdev;
2198         int ret;
2199
2200         if (regulator->always_on)
2201                 return 0;
2202
2203         if (!ms)
2204                 return regulator_disable(regulator);
2205
2206         mutex_lock(&rdev->mutex);
2207         rdev->deferred_disables++;
2208         mutex_unlock(&rdev->mutex);
2209
2210         ret = queue_delayed_work(system_power_efficient_wq,
2211                                  &rdev->disable_work,
2212                                  msecs_to_jiffies(ms));
2213         if (ret < 0)
2214                 return ret;
2215         else
2216                 return 0;
2217 }
2218 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2219
2220 static int _regulator_is_enabled(struct regulator_dev *rdev)
2221 {
2222         /* A GPIO control always takes precedence */
2223         if (rdev->ena_pin)
2224                 return rdev->ena_gpio_state;
2225
2226         /* If we don't know then assume that the regulator is always on */
2227         if (!rdev->desc->ops->is_enabled)
2228                 return 1;
2229
2230         return rdev->desc->ops->is_enabled(rdev);
2231 }
2232
2233 /**
2234  * regulator_is_enabled - is the regulator output enabled
2235  * @regulator: regulator source
2236  *
2237  * Returns positive if the regulator driver backing the source/client
2238  * has requested that the device be enabled, zero if it hasn't, else a
2239  * negative errno code.
2240  *
2241  * Note that the device backing this regulator handle can have multiple
2242  * users, so it might be enabled even if regulator_enable() was never
2243  * called for this particular source.
2244  */
2245 int regulator_is_enabled(struct regulator *regulator)
2246 {
2247         int ret;
2248
2249         if (regulator->always_on)
2250                 return 1;
2251
2252         mutex_lock(&regulator->rdev->mutex);
2253         ret = _regulator_is_enabled(regulator->rdev);
2254         mutex_unlock(&regulator->rdev->mutex);
2255
2256         return ret;
2257 }
2258 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2259
2260 /**
2261  * regulator_can_change_voltage - check if regulator can change voltage
2262  * @regulator: regulator source
2263  *
2264  * Returns positive if the regulator driver backing the source/client
2265  * can change its voltage, false otherwise. Useful for detecting fixed
2266  * or dummy regulators and disabling voltage change logic in the client
2267  * driver.
2268  */
2269 int regulator_can_change_voltage(struct regulator *regulator)
2270 {
2271         struct regulator_dev    *rdev = regulator->rdev;
2272
2273         if (rdev->constraints &&
2274             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2275                 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2276                         return 1;
2277
2278                 if (rdev->desc->continuous_voltage_range &&
2279                     rdev->constraints->min_uV && rdev->constraints->max_uV &&
2280                     rdev->constraints->min_uV != rdev->constraints->max_uV)
2281                         return 1;
2282         }
2283
2284         return 0;
2285 }
2286 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2287
2288 /**
2289  * regulator_count_voltages - count regulator_list_voltage() selectors
2290  * @regulator: regulator source
2291  *
2292  * Returns number of selectors, or negative errno.  Selectors are
2293  * numbered starting at zero, and typically correspond to bitfields
2294  * in hardware registers.
2295  */
2296 int regulator_count_voltages(struct regulator *regulator)
2297 {
2298         struct regulator_dev    *rdev = regulator->rdev;
2299
2300         if (rdev->desc->n_voltages)
2301                 return rdev->desc->n_voltages;
2302
2303         if (!rdev->supply)
2304                 return -EINVAL;
2305
2306         return regulator_count_voltages(rdev->supply);
2307 }
2308 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2309
2310 /**
2311  * regulator_list_voltage - enumerate supported voltages
2312  * @regulator: regulator source
2313  * @selector: identify voltage to list
2314  * Context: can sleep
2315  *
2316  * Returns a voltage that can be passed to @regulator_set_voltage(),
2317  * zero if this selector code can't be used on this system, or a
2318  * negative errno.
2319  */
2320 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2321 {
2322         struct regulator_dev *rdev = regulator->rdev;
2323         const struct regulator_ops *ops = rdev->desc->ops;
2324         int ret;
2325
2326         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2327                 return rdev->desc->fixed_uV;
2328
2329         if (ops->list_voltage) {
2330                 if (selector >= rdev->desc->n_voltages)
2331                         return -EINVAL;
2332                 mutex_lock(&rdev->mutex);
2333                 ret = ops->list_voltage(rdev, selector);
2334                 mutex_unlock(&rdev->mutex);
2335         } else if (rdev->supply) {
2336                 ret = regulator_list_voltage(rdev->supply, selector);
2337         } else {
2338                 return -EINVAL;
2339         }
2340
2341         if (ret > 0) {
2342                 if (ret < rdev->constraints->min_uV)
2343                         ret = 0;
2344                 else if (ret > rdev->constraints->max_uV)
2345                         ret = 0;
2346         }
2347
2348         return ret;
2349 }
2350 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2351
2352 /**
2353  * regulator_get_regmap - get the regulator's register map
2354  * @regulator: regulator source
2355  *
2356  * Returns the register map for the given regulator, or an ERR_PTR value
2357  * if the regulator doesn't use regmap.
2358  */
2359 struct regmap *regulator_get_regmap(struct regulator *regulator)
2360 {
2361         struct regmap *map = regulator->rdev->regmap;
2362
2363         return map ? map : ERR_PTR(-EOPNOTSUPP);
2364 }
2365
2366 /**
2367  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2368  * @regulator: regulator source
2369  * @vsel_reg: voltage selector register, output parameter
2370  * @vsel_mask: mask for voltage selector bitfield, output parameter
2371  *
2372  * Returns the hardware register offset and bitmask used for setting the
2373  * regulator voltage. This might be useful when configuring voltage-scaling
2374  * hardware or firmware that can make I2C requests behind the kernel's back,
2375  * for example.
2376  *
2377  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2378  * and 0 is returned, otherwise a negative errno is returned.
2379  */
2380 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2381                                          unsigned *vsel_reg,
2382                                          unsigned *vsel_mask)
2383 {
2384         struct regulator_dev *rdev = regulator->rdev;
2385         const struct regulator_ops *ops = rdev->desc->ops;
2386
2387         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2388                 return -EOPNOTSUPP;
2389
2390          *vsel_reg = rdev->desc->vsel_reg;
2391          *vsel_mask = rdev->desc->vsel_mask;
2392
2393          return 0;
2394 }
2395 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2396
2397 /**
2398  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2399  * @regulator: regulator source
2400  * @selector: identify voltage to list
2401  *
2402  * Converts the selector to a hardware-specific voltage selector that can be
2403  * directly written to the regulator registers. The address of the voltage
2404  * register can be determined by calling @regulator_get_hardware_vsel_register.
2405  *
2406  * On error a negative errno is returned.
2407  */
2408 int regulator_list_hardware_vsel(struct regulator *regulator,
2409                                  unsigned selector)
2410 {
2411         struct regulator_dev *rdev = regulator->rdev;
2412         const struct regulator_ops *ops = rdev->desc->ops;
2413
2414         if (selector >= rdev->desc->n_voltages)
2415                 return -EINVAL;
2416         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2417                 return -EOPNOTSUPP;
2418
2419         return selector;
2420 }
2421 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2422
2423 /**
2424  * regulator_get_linear_step - return the voltage step size between VSEL values
2425  * @regulator: regulator source
2426  *
2427  * Returns the voltage step size between VSEL values for linear
2428  * regulators, or return 0 if the regulator isn't a linear regulator.
2429  */
2430 unsigned int regulator_get_linear_step(struct regulator *regulator)
2431 {
2432         struct regulator_dev *rdev = regulator->rdev;
2433
2434         return rdev->desc->uV_step;
2435 }
2436 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2437
2438 /**
2439  * regulator_is_supported_voltage - check if a voltage range can be supported
2440  *
2441  * @regulator: Regulator to check.
2442  * @min_uV: Minimum required voltage in uV.
2443  * @max_uV: Maximum required voltage in uV.
2444  *
2445  * Returns a boolean or a negative error code.
2446  */
2447 int regulator_is_supported_voltage(struct regulator *regulator,
2448                                    int min_uV, int max_uV)
2449 {
2450         struct regulator_dev *rdev = regulator->rdev;
2451         int i, voltages, ret;
2452
2453         /* If we can't change voltage check the current voltage */
2454         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2455                 ret = regulator_get_voltage(regulator);
2456                 if (ret >= 0)
2457                         return min_uV <= ret && ret <= max_uV;
2458                 else
2459                         return ret;
2460         }
2461
2462         /* Any voltage within constrains range is fine? */
2463         if (rdev->desc->continuous_voltage_range)
2464                 return min_uV >= rdev->constraints->min_uV &&
2465                                 max_uV <= rdev->constraints->max_uV;
2466
2467         ret = regulator_count_voltages(regulator);
2468         if (ret < 0)
2469                 return ret;
2470         voltages = ret;
2471
2472         for (i = 0; i < voltages; i++) {
2473                 ret = regulator_list_voltage(regulator, i);
2474
2475                 if (ret >= min_uV && ret <= max_uV)
2476                         return 1;
2477         }
2478
2479         return 0;
2480 }
2481 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2482
2483 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2484                                        int min_uV, int max_uV,
2485                                        unsigned *selector)
2486 {
2487         struct pre_voltage_change_data data;
2488         int ret;
2489
2490         data.old_uV = _regulator_get_voltage(rdev);
2491         data.min_uV = min_uV;
2492         data.max_uV = max_uV;
2493         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2494                                    &data);
2495         if (ret & NOTIFY_STOP_MASK)
2496                 return -EINVAL;
2497
2498         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2499         if (ret >= 0)
2500                 return ret;
2501
2502         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2503                              (void *)data.old_uV);
2504
2505         return ret;
2506 }
2507
2508 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2509                                            int uV, unsigned selector)
2510 {
2511         struct pre_voltage_change_data data;
2512         int ret;
2513
2514         data.old_uV = _regulator_get_voltage(rdev);
2515         data.min_uV = uV;
2516         data.max_uV = uV;
2517         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2518                                    &data);
2519         if (ret & NOTIFY_STOP_MASK)
2520                 return -EINVAL;
2521
2522         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2523         if (ret >= 0)
2524                 return ret;
2525
2526         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2527                              (void *)data.old_uV);
2528
2529         return ret;
2530 }
2531
2532 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2533                                      int min_uV, int max_uV)
2534 {
2535         int ret;
2536         int delay = 0;
2537         int best_val = 0;
2538         unsigned int selector;
2539         int old_selector = -1;
2540
2541         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2542
2543         min_uV += rdev->constraints->uV_offset;
2544         max_uV += rdev->constraints->uV_offset;
2545
2546         /*
2547          * If we can't obtain the old selector there is not enough
2548          * info to call set_voltage_time_sel().
2549          */
2550         if (_regulator_is_enabled(rdev) &&
2551             rdev->desc->ops->set_voltage_time_sel &&
2552             rdev->desc->ops->get_voltage_sel) {
2553                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2554                 if (old_selector < 0)
2555                         return old_selector;
2556         }
2557
2558         if (rdev->desc->ops->set_voltage) {
2559                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2560                                                   &selector);
2561
2562                 if (ret >= 0) {
2563                         if (rdev->desc->ops->list_voltage)
2564                                 best_val = rdev->desc->ops->list_voltage(rdev,
2565                                                                          selector);
2566                         else
2567                                 best_val = _regulator_get_voltage(rdev);
2568                 }
2569
2570         } else if (rdev->desc->ops->set_voltage_sel) {
2571                 if (rdev->desc->ops->map_voltage) {
2572                         ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2573                                                            max_uV);
2574                 } else {
2575                         if (rdev->desc->ops->list_voltage ==
2576                             regulator_list_voltage_linear)
2577                                 ret = regulator_map_voltage_linear(rdev,
2578                                                                 min_uV, max_uV);
2579                         else if (rdev->desc->ops->list_voltage ==
2580                                  regulator_list_voltage_linear_range)
2581                                 ret = regulator_map_voltage_linear_range(rdev,
2582                                                                 min_uV, max_uV);
2583                         else
2584                                 ret = regulator_map_voltage_iterate(rdev,
2585                                                                 min_uV, max_uV);
2586                 }
2587
2588                 if (ret >= 0) {
2589                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2590                         if (min_uV <= best_val && max_uV >= best_val) {
2591                                 selector = ret;
2592                                 if (old_selector == selector)
2593                                         ret = 0;
2594                                 else
2595                                         ret = _regulator_call_set_voltage_sel(
2596                                                 rdev, best_val, selector);
2597                         } else {
2598                                 ret = -EINVAL;
2599                         }
2600                 }
2601         } else {
2602                 ret = -EINVAL;
2603         }
2604
2605         /* Call set_voltage_time_sel if successfully obtained old_selector */
2606         if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2607                 && old_selector != selector) {
2608
2609                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2610                                                 old_selector, selector);
2611                 if (delay < 0) {
2612                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2613                                   delay);
2614                         delay = 0;
2615                 }
2616
2617                 /* Insert any necessary delays */
2618                 if (delay >= 1000) {
2619                         mdelay(delay / 1000);
2620                         udelay(delay % 1000);
2621                 } else if (delay) {
2622                         udelay(delay);
2623                 }
2624         }
2625
2626         if (ret == 0 && best_val >= 0) {
2627                 unsigned long data = best_val;
2628
2629                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2630                                      (void *)data);
2631         }
2632
2633         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2634
2635         return ret;
2636 }
2637
2638 /**
2639  * regulator_set_voltage - set regulator output voltage
2640  * @regulator: regulator source
2641  * @min_uV: Minimum required voltage in uV
2642  * @max_uV: Maximum acceptable voltage in uV
2643  *
2644  * Sets a voltage regulator to the desired output voltage. This can be set
2645  * during any regulator state. IOW, regulator can be disabled or enabled.
2646  *
2647  * If the regulator is enabled then the voltage will change to the new value
2648  * immediately otherwise if the regulator is disabled the regulator will
2649  * output at the new voltage when enabled.
2650  *
2651  * NOTE: If the regulator is shared between several devices then the lowest
2652  * request voltage that meets the system constraints will be used.
2653  * Regulator system constraints must be set for this regulator before
2654  * calling this function otherwise this call will fail.
2655  */
2656 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2657 {
2658         struct regulator_dev *rdev = regulator->rdev;
2659         int ret = 0;
2660         int old_min_uV, old_max_uV;
2661         int current_uV;
2662
2663         mutex_lock(&rdev->mutex);
2664
2665         /* If we're setting the same range as last time the change
2666          * should be a noop (some cpufreq implementations use the same
2667          * voltage for multiple frequencies, for example).
2668          */
2669         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2670                 goto out;
2671
2672         /* If we're trying to set a range that overlaps the current voltage,
2673          * return succesfully even though the regulator does not support
2674          * changing the voltage.
2675          */
2676         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2677                 current_uV = _regulator_get_voltage(rdev);
2678                 if (min_uV <= current_uV && current_uV <= max_uV) {
2679                         regulator->min_uV = min_uV;
2680                         regulator->max_uV = max_uV;
2681                         goto out;
2682                 }
2683         }
2684
2685         /* sanity check */
2686         if (!rdev->desc->ops->set_voltage &&
2687             !rdev->desc->ops->set_voltage_sel) {
2688                 ret = -EINVAL;
2689                 goto out;
2690         }
2691
2692         /* constraints check */
2693         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2694         if (ret < 0)
2695                 goto out;
2696
2697         /* restore original values in case of error */
2698         old_min_uV = regulator->min_uV;
2699         old_max_uV = regulator->max_uV;
2700         regulator->min_uV = min_uV;
2701         regulator->max_uV = max_uV;
2702
2703         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2704         if (ret < 0)
2705                 goto out2;
2706
2707         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2708         if (ret < 0)
2709                 goto out2;
2710
2711 out:
2712         mutex_unlock(&rdev->mutex);
2713         return ret;
2714 out2:
2715         regulator->min_uV = old_min_uV;
2716         regulator->max_uV = old_max_uV;
2717         mutex_unlock(&rdev->mutex);
2718         return ret;
2719 }
2720 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2721
2722 /**
2723  * regulator_set_voltage_time - get raise/fall time
2724  * @regulator: regulator source
2725  * @old_uV: starting voltage in microvolts
2726  * @new_uV: target voltage in microvolts
2727  *
2728  * Provided with the starting and ending voltage, this function attempts to
2729  * calculate the time in microseconds required to rise or fall to this new
2730  * voltage.
2731  */
2732 int regulator_set_voltage_time(struct regulator *regulator,
2733                                int old_uV, int new_uV)
2734 {
2735         struct regulator_dev *rdev = regulator->rdev;
2736         const struct regulator_ops *ops = rdev->desc->ops;
2737         int old_sel = -1;
2738         int new_sel = -1;
2739         int voltage;
2740         int i;
2741
2742         /* Currently requires operations to do this */
2743         if (!ops->list_voltage || !ops->set_voltage_time_sel
2744             || !rdev->desc->n_voltages)
2745                 return -EINVAL;
2746
2747         for (i = 0; i < rdev->desc->n_voltages; i++) {
2748                 /* We only look for exact voltage matches here */
2749                 voltage = regulator_list_voltage(regulator, i);
2750                 if (voltage < 0)
2751                         return -EINVAL;
2752                 if (voltage == 0)
2753                         continue;
2754                 if (voltage == old_uV)
2755                         old_sel = i;
2756                 if (voltage == new_uV)
2757                         new_sel = i;
2758         }
2759
2760         if (old_sel < 0 || new_sel < 0)
2761                 return -EINVAL;
2762
2763         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2764 }
2765 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2766
2767 /**
2768  * regulator_set_voltage_time_sel - get raise/fall time
2769  * @rdev: regulator source device
2770  * @old_selector: selector for starting voltage
2771  * @new_selector: selector for target voltage
2772  *
2773  * Provided with the starting and target voltage selectors, this function
2774  * returns time in microseconds required to rise or fall to this new voltage
2775  *
2776  * Drivers providing ramp_delay in regulation_constraints can use this as their
2777  * set_voltage_time_sel() operation.
2778  */
2779 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2780                                    unsigned int old_selector,
2781                                    unsigned int new_selector)
2782 {
2783         unsigned int ramp_delay = 0;
2784         int old_volt, new_volt;
2785
2786         if (rdev->constraints->ramp_delay)
2787                 ramp_delay = rdev->constraints->ramp_delay;
2788         else if (rdev->desc->ramp_delay)
2789                 ramp_delay = rdev->desc->ramp_delay;
2790
2791         if (ramp_delay == 0) {
2792                 rdev_warn(rdev, "ramp_delay not set\n");
2793                 return 0;
2794         }
2795
2796         /* sanity check */
2797         if (!rdev->desc->ops->list_voltage)
2798                 return -EINVAL;
2799
2800         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2801         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2802
2803         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2804 }
2805 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2806
2807 /**
2808  * regulator_sync_voltage - re-apply last regulator output voltage
2809  * @regulator: regulator source
2810  *
2811  * Re-apply the last configured voltage.  This is intended to be used
2812  * where some external control source the consumer is cooperating with
2813  * has caused the configured voltage to change.
2814  */
2815 int regulator_sync_voltage(struct regulator *regulator)
2816 {
2817         struct regulator_dev *rdev = regulator->rdev;
2818         int ret, min_uV, max_uV;
2819
2820         mutex_lock(&rdev->mutex);
2821
2822         if (!rdev->desc->ops->set_voltage &&
2823             !rdev->desc->ops->set_voltage_sel) {
2824                 ret = -EINVAL;
2825                 goto out;
2826         }
2827
2828         /* This is only going to work if we've had a voltage configured. */
2829         if (!regulator->min_uV && !regulator->max_uV) {
2830                 ret = -EINVAL;
2831                 goto out;
2832         }
2833
2834         min_uV = regulator->min_uV;
2835         max_uV = regulator->max_uV;
2836
2837         /* This should be a paranoia check... */
2838         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2839         if (ret < 0)
2840                 goto out;
2841
2842         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2843         if (ret < 0)
2844                 goto out;
2845
2846         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2847
2848 out:
2849         mutex_unlock(&rdev->mutex);
2850         return ret;
2851 }
2852 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2853
2854 static int _regulator_get_voltage(struct regulator_dev *rdev)
2855 {
2856         int sel, ret;
2857
2858         if (rdev->desc->ops->get_voltage_sel) {
2859                 sel = rdev->desc->ops->get_voltage_sel(rdev);
2860                 if (sel < 0)
2861                         return sel;
2862                 ret = rdev->desc->ops->list_voltage(rdev, sel);
2863         } else if (rdev->desc->ops->get_voltage) {
2864                 ret = rdev->desc->ops->get_voltage(rdev);
2865         } else if (rdev->desc->ops->list_voltage) {
2866                 ret = rdev->desc->ops->list_voltage(rdev, 0);
2867         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2868                 ret = rdev->desc->fixed_uV;
2869         } else if (rdev->supply) {
2870                 ret = regulator_get_voltage(rdev->supply);
2871         } else {
2872                 return -EINVAL;
2873         }
2874
2875         if (ret < 0)
2876                 return ret;
2877         return ret - rdev->constraints->uV_offset;
2878 }
2879
2880 /**
2881  * regulator_get_voltage - get regulator output voltage
2882  * @regulator: regulator source
2883  *
2884  * This returns the current regulator voltage in uV.
2885  *
2886  * NOTE: If the regulator is disabled it will return the voltage value. This
2887  * function should not be used to determine regulator state.
2888  */
2889 int regulator_get_voltage(struct regulator *regulator)
2890 {
2891         int ret;
2892
2893         mutex_lock(&regulator->rdev->mutex);
2894
2895         ret = _regulator_get_voltage(regulator->rdev);
2896
2897         mutex_unlock(&regulator->rdev->mutex);
2898
2899         return ret;
2900 }
2901 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2902
2903 /**
2904  * regulator_set_current_limit - set regulator output current limit
2905  * @regulator: regulator source
2906  * @min_uA: Minimum supported current in uA
2907  * @max_uA: Maximum supported current in uA
2908  *
2909  * Sets current sink to the desired output current. This can be set during
2910  * any regulator state. IOW, regulator can be disabled or enabled.
2911  *
2912  * If the regulator is enabled then the current will change to the new value
2913  * immediately otherwise if the regulator is disabled the regulator will
2914  * output at the new current when enabled.
2915  *
2916  * NOTE: Regulator system constraints must be set for this regulator before
2917  * calling this function otherwise this call will fail.
2918  */
2919 int regulator_set_current_limit(struct regulator *regulator,
2920                                int min_uA, int max_uA)
2921 {
2922         struct regulator_dev *rdev = regulator->rdev;
2923         int ret;
2924
2925         mutex_lock(&rdev->mutex);
2926
2927         /* sanity check */
2928         if (!rdev->desc->ops->set_current_limit) {
2929                 ret = -EINVAL;
2930                 goto out;
2931         }
2932
2933         /* constraints check */
2934         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2935         if (ret < 0)
2936                 goto out;
2937
2938         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2939 out:
2940         mutex_unlock(&rdev->mutex);
2941         return ret;
2942 }
2943 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2944
2945 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2946 {
2947         int ret;
2948
2949         mutex_lock(&rdev->mutex);
2950
2951         /* sanity check */
2952         if (!rdev->desc->ops->get_current_limit) {
2953                 ret = -EINVAL;
2954                 goto out;
2955         }
2956
2957         ret = rdev->desc->ops->get_current_limit(rdev);
2958 out:
2959         mutex_unlock(&rdev->mutex);
2960         return ret;
2961 }
2962
2963 /**
2964  * regulator_get_current_limit - get regulator output current
2965  * @regulator: regulator source
2966  *
2967  * This returns the current supplied by the specified current sink in uA.
2968  *
2969  * NOTE: If the regulator is disabled it will return the current value. This
2970  * function should not be used to determine regulator state.
2971  */
2972 int regulator_get_current_limit(struct regulator *regulator)
2973 {
2974         return _regulator_get_current_limit(regulator->rdev);
2975 }
2976 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2977
2978 /**
2979  * regulator_set_mode - set regulator operating mode
2980  * @regulator: regulator source
2981  * @mode: operating mode - one of the REGULATOR_MODE constants
2982  *
2983  * Set regulator operating mode to increase regulator efficiency or improve
2984  * regulation performance.
2985  *
2986  * NOTE: Regulator system constraints must be set for this regulator before
2987  * calling this function otherwise this call will fail.
2988  */
2989 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2990 {
2991         struct regulator_dev *rdev = regulator->rdev;
2992         int ret;
2993         int regulator_curr_mode;
2994
2995         mutex_lock(&rdev->mutex);
2996
2997         /* sanity check */
2998         if (!rdev->desc->ops->set_mode) {
2999                 ret = -EINVAL;
3000                 goto out;
3001         }
3002
3003         /* return if the same mode is requested */
3004         if (rdev->desc->ops->get_mode) {
3005                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3006                 if (regulator_curr_mode == mode) {
3007                         ret = 0;
3008                         goto out;
3009                 }
3010         }
3011
3012         /* constraints check */
3013         ret = regulator_mode_constrain(rdev, &mode);
3014         if (ret < 0)
3015                 goto out;
3016
3017         ret = rdev->desc->ops->set_mode(rdev, mode);
3018 out:
3019         mutex_unlock(&rdev->mutex);
3020         return ret;
3021 }
3022 EXPORT_SYMBOL_GPL(regulator_set_mode);
3023
3024 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3025 {
3026         int ret;
3027
3028         mutex_lock(&rdev->mutex);
3029
3030         /* sanity check */
3031         if (!rdev->desc->ops->get_mode) {
3032                 ret = -EINVAL;
3033                 goto out;
3034         }
3035
3036         ret = rdev->desc->ops->get_mode(rdev);
3037 out:
3038         mutex_unlock(&rdev->mutex);
3039         return ret;
3040 }
3041
3042 /**
3043  * regulator_get_mode - get regulator operating mode
3044  * @regulator: regulator source
3045  *
3046  * Get the current regulator operating mode.
3047  */
3048 unsigned int regulator_get_mode(struct regulator *regulator)
3049 {
3050         return _regulator_get_mode(regulator->rdev);
3051 }
3052 EXPORT_SYMBOL_GPL(regulator_get_mode);
3053
3054 /**
3055  * regulator_set_optimum_mode - set regulator optimum operating mode
3056  * @regulator: regulator source
3057  * @uA_load: load current
3058  *
3059  * Notifies the regulator core of a new device load. This is then used by
3060  * DRMS (if enabled by constraints) to set the most efficient regulator
3061  * operating mode for the new regulator loading.
3062  *
3063  * Consumer devices notify their supply regulator of the maximum power
3064  * they will require (can be taken from device datasheet in the power
3065  * consumption tables) when they change operational status and hence power
3066  * state. Examples of operational state changes that can affect power
3067  * consumption are :-
3068  *
3069  *    o Device is opened / closed.
3070  *    o Device I/O is about to begin or has just finished.
3071  *    o Device is idling in between work.
3072  *
3073  * This information is also exported via sysfs to userspace.
3074  *
3075  * DRMS will sum the total requested load on the regulator and change
3076  * to the most efficient operating mode if platform constraints allow.
3077  *
3078  * Returns the new regulator mode or error.
3079  */
3080 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
3081 {
3082         struct regulator_dev *rdev = regulator->rdev;
3083         int ret;
3084
3085         mutex_lock(&rdev->mutex);
3086         regulator->uA_load = uA_load;
3087         ret = drms_uA_update(rdev);
3088         mutex_unlock(&rdev->mutex);
3089
3090         return ret;
3091 }
3092 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
3093
3094 /**
3095  * regulator_allow_bypass - allow the regulator to go into bypass mode
3096  *
3097  * @regulator: Regulator to configure
3098  * @enable: enable or disable bypass mode
3099  *
3100  * Allow the regulator to go into bypass mode if all other consumers
3101  * for the regulator also enable bypass mode and the machine
3102  * constraints allow this.  Bypass mode means that the regulator is
3103  * simply passing the input directly to the output with no regulation.
3104  */
3105 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3106 {
3107         struct regulator_dev *rdev = regulator->rdev;
3108         int ret = 0;
3109
3110         if (!rdev->desc->ops->set_bypass)
3111                 return 0;
3112
3113         if (rdev->constraints &&
3114             !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3115                 return 0;
3116
3117         mutex_lock(&rdev->mutex);
3118
3119         if (enable && !regulator->bypass) {
3120                 rdev->bypass_count++;
3121
3122                 if (rdev->bypass_count == rdev->open_count) {
3123                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3124                         if (ret != 0)
3125                                 rdev->bypass_count--;
3126                 }
3127
3128         } else if (!enable && regulator->bypass) {
3129                 rdev->bypass_count--;
3130
3131                 if (rdev->bypass_count != rdev->open_count) {
3132                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3133                         if (ret != 0)
3134                                 rdev->bypass_count++;
3135                 }
3136         }
3137
3138         if (ret == 0)
3139                 regulator->bypass = enable;
3140
3141         mutex_unlock(&rdev->mutex);
3142
3143         return ret;
3144 }
3145 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3146
3147 /**
3148  * regulator_register_notifier - register regulator event notifier
3149  * @regulator: regulator source
3150  * @nb: notifier block
3151  *
3152  * Register notifier block to receive regulator events.
3153  */
3154 int regulator_register_notifier(struct regulator *regulator,
3155                               struct notifier_block *nb)
3156 {
3157         return blocking_notifier_chain_register(&regulator->rdev->notifier,
3158                                                 nb);
3159 }
3160 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3161
3162 /**
3163  * regulator_unregister_notifier - unregister regulator event notifier
3164  * @regulator: regulator source
3165  * @nb: notifier block
3166  *
3167  * Unregister regulator event notifier block.
3168  */
3169 int regulator_unregister_notifier(struct regulator *regulator,
3170                                 struct notifier_block *nb)
3171 {
3172         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3173                                                   nb);
3174 }
3175 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3176
3177 /* notify regulator consumers and downstream regulator consumers.
3178  * Note mutex must be held by caller.
3179  */
3180 static int _notifier_call_chain(struct regulator_dev *rdev,
3181                                   unsigned long event, void *data)
3182 {
3183         /* call rdev chain first */
3184         return blocking_notifier_call_chain(&rdev->notifier, event, data);
3185 }
3186
3187 /**
3188  * regulator_bulk_get - get multiple regulator consumers
3189  *
3190  * @dev:           Device to supply
3191  * @num_consumers: Number of consumers to register
3192  * @consumers:     Configuration of consumers; clients are stored here.
3193  *
3194  * @return 0 on success, an errno on failure.
3195  *
3196  * This helper function allows drivers to get several regulator
3197  * consumers in one operation.  If any of the regulators cannot be
3198  * acquired then any regulators that were allocated will be freed
3199  * before returning to the caller.
3200  */
3201 int regulator_bulk_get(struct device *dev, int num_consumers,
3202                        struct regulator_bulk_data *consumers)
3203 {
3204         int i;
3205         int ret;
3206
3207         for (i = 0; i < num_consumers; i++)
3208                 consumers[i].consumer = NULL;
3209
3210         for (i = 0; i < num_consumers; i++) {
3211                 consumers[i].consumer = regulator_get(dev,
3212                                                       consumers[i].supply);
3213                 if (IS_ERR(consumers[i].consumer)) {
3214                         ret = PTR_ERR(consumers[i].consumer);
3215                         dev_err(dev, "Failed to get supply '%s': %d\n",
3216                                 consumers[i].supply, ret);
3217                         consumers[i].consumer = NULL;
3218                         goto err;
3219                 }
3220         }
3221
3222         return 0;
3223
3224 err:
3225         while (--i >= 0)
3226                 regulator_put(consumers[i].consumer);
3227
3228         return ret;
3229 }
3230 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3231
3232 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3233 {
3234         struct regulator_bulk_data *bulk = data;
3235
3236         bulk->ret = regulator_enable(bulk->consumer);
3237 }
3238
3239 /**
3240  * regulator_bulk_enable - enable multiple regulator consumers
3241  *
3242  * @num_consumers: Number of consumers
3243  * @consumers:     Consumer data; clients are stored here.
3244  * @return         0 on success, an errno on failure
3245  *
3246  * This convenience API allows consumers to enable multiple regulator
3247  * clients in a single API call.  If any consumers cannot be enabled
3248  * then any others that were enabled will be disabled again prior to
3249  * return.
3250  */
3251 int regulator_bulk_enable(int num_consumers,
3252                           struct regulator_bulk_data *consumers)
3253 {
3254         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3255         int i;
3256         int ret = 0;
3257
3258         for (i = 0; i < num_consumers; i++) {
3259                 if (consumers[i].consumer->always_on)
3260                         consumers[i].ret = 0;
3261                 else
3262                         async_schedule_domain(regulator_bulk_enable_async,
3263                                               &consumers[i], &async_domain);
3264         }
3265
3266         async_synchronize_full_domain(&async_domain);
3267
3268         /* If any consumer failed we need to unwind any that succeeded */
3269         for (i = 0; i < num_consumers; i++) {
3270                 if (consumers[i].ret != 0) {
3271                         ret = consumers[i].ret;
3272                         goto err;
3273                 }
3274         }
3275
3276         return 0;
3277
3278 err:
3279         for (i = 0; i < num_consumers; i++) {
3280                 if (consumers[i].ret < 0)
3281                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3282                                consumers[i].ret);
3283                 else
3284                         regulator_disable(consumers[i].consumer);
3285         }
3286
3287         return ret;
3288 }
3289 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3290
3291 /**
3292  * regulator_bulk_disable - disable multiple regulator consumers
3293  *
3294  * @num_consumers: Number of consumers
3295  * @consumers:     Consumer data; clients are stored here.
3296  * @return         0 on success, an errno on failure
3297  *
3298  * This convenience API allows consumers to disable multiple regulator
3299  * clients in a single API call.  If any consumers cannot be disabled
3300  * then any others that were disabled will be enabled again prior to
3301  * return.
3302  */
3303 int regulator_bulk_disable(int num_consumers,
3304                            struct regulator_bulk_data *consumers)
3305 {
3306         int i;
3307         int ret, r;
3308
3309         for (i = num_consumers - 1; i >= 0; --i) {
3310                 ret = regulator_disable(consumers[i].consumer);
3311                 if (ret != 0)
3312                         goto err;
3313         }
3314
3315         return 0;
3316
3317 err:
3318         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3319         for (++i; i < num_consumers; ++i) {
3320                 r = regulator_enable(consumers[i].consumer);
3321                 if (r != 0)
3322                         pr_err("Failed to reename %s: %d\n",
3323                                consumers[i].supply, r);
3324         }
3325
3326         return ret;
3327 }
3328 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3329
3330 /**
3331  * regulator_bulk_force_disable - force disable multiple regulator consumers
3332  *
3333  * @num_consumers: Number of consumers
3334  * @consumers:     Consumer data; clients are stored here.
3335  * @return         0 on success, an errno on failure
3336  *
3337  * This convenience API allows consumers to forcibly disable multiple regulator
3338  * clients in a single API call.
3339  * NOTE: This should be used for situations when device damage will
3340  * likely occur if the regulators are not disabled (e.g. over temp).
3341  * Although regulator_force_disable function call for some consumers can
3342  * return error numbers, the function is called for all consumers.
3343  */
3344 int regulator_bulk_force_disable(int num_consumers,
3345                            struct regulator_bulk_data *consumers)
3346 {
3347         int i;
3348         int ret;
3349
3350         for (i = 0; i < num_consumers; i++)
3351                 consumers[i].ret =
3352                             regulator_force_disable(consumers[i].consumer);
3353
3354         for (i = 0; i < num_consumers; i++) {
3355                 if (consumers[i].ret != 0) {
3356                         ret = consumers[i].ret;
3357                         goto out;
3358                 }
3359         }
3360
3361         return 0;
3362 out:
3363         return ret;
3364 }
3365 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3366
3367 /**
3368  * regulator_bulk_free - free multiple regulator consumers
3369  *
3370  * @num_consumers: Number of consumers
3371  * @consumers:     Consumer data; clients are stored here.
3372  *
3373  * This convenience API allows consumers to free multiple regulator
3374  * clients in a single API call.
3375  */
3376 void regulator_bulk_free(int num_consumers,
3377                          struct regulator_bulk_data *consumers)
3378 {
3379         int i;
3380
3381         for (i = 0; i < num_consumers; i++) {
3382                 regulator_put(consumers[i].consumer);
3383                 consumers[i].consumer = NULL;
3384         }
3385 }
3386 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3387
3388 /**
3389  * regulator_notifier_call_chain - call regulator event notifier
3390  * @rdev: regulator source
3391  * @event: notifier block
3392  * @data: callback-specific data.
3393  *
3394  * Called by regulator drivers to notify clients a regulator event has
3395  * occurred. We also notify regulator clients downstream.
3396  * Note lock must be held by caller.
3397  */
3398 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3399                                   unsigned long event, void *data)
3400 {
3401         _notifier_call_chain(rdev, event, data);
3402         return NOTIFY_DONE;
3403
3404 }
3405 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3406
3407 /**
3408  * regulator_mode_to_status - convert a regulator mode into a status
3409  *
3410  * @mode: Mode to convert
3411  *
3412  * Convert a regulator mode into a status.
3413  */
3414 int regulator_mode_to_status(unsigned int mode)
3415 {
3416         switch (mode) {
3417         case REGULATOR_MODE_FAST:
3418                 return REGULATOR_STATUS_FAST;
3419         case REGULATOR_MODE_NORMAL:
3420                 return REGULATOR_STATUS_NORMAL;
3421         case REGULATOR_MODE_IDLE:
3422                 return REGULATOR_STATUS_IDLE;
3423         case REGULATOR_MODE_STANDBY:
3424                 return REGULATOR_STATUS_STANDBY;
3425         default:
3426                 return REGULATOR_STATUS_UNDEFINED;
3427         }
3428 }
3429 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3430
3431 static struct attribute *regulator_dev_attrs[] = {
3432         &dev_attr_name.attr,
3433         &dev_attr_num_users.attr,
3434         &dev_attr_type.attr,
3435         &dev_attr_microvolts.attr,
3436         &dev_attr_microamps.attr,
3437         &dev_attr_opmode.attr,
3438         &dev_attr_state.attr,
3439         &dev_attr_status.attr,
3440         &dev_attr_bypass.attr,
3441         &dev_attr_requested_microamps.attr,
3442         &dev_attr_min_microvolts.attr,
3443         &dev_attr_max_microvolts.attr,
3444         &dev_attr_min_microamps.attr,
3445         &dev_attr_max_microamps.attr,
3446         &dev_attr_suspend_standby_state.attr,
3447         &dev_attr_suspend_mem_state.attr,
3448         &dev_attr_suspend_disk_state.attr,
3449         &dev_attr_suspend_standby_microvolts.attr,
3450         &dev_attr_suspend_mem_microvolts.attr,
3451         &dev_attr_suspend_disk_microvolts.attr,
3452         &dev_attr_suspend_standby_mode.attr,
3453         &dev_attr_suspend_mem_mode.attr,
3454         &dev_attr_suspend_disk_mode.attr,
3455         NULL
3456 };
3457
3458 /*
3459  * To avoid cluttering sysfs (and memory) with useless state, only
3460  * create attributes that can be meaningfully displayed.
3461  */
3462 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3463                                          struct attribute *attr, int idx)
3464 {
3465         struct device *dev = kobj_to_dev(kobj);
3466         struct regulator_dev *rdev = container_of(dev, struct regulator_dev, dev);
3467         const struct regulator_ops *ops = rdev->desc->ops;
3468         umode_t mode = attr->mode;
3469
3470         /* these three are always present */
3471         if (attr == &dev_attr_name.attr ||
3472             attr == &dev_attr_num_users.attr ||
3473             attr == &dev_attr_type.attr)
3474                 return mode;
3475
3476         /* some attributes need specific methods to be displayed */
3477         if (attr == &dev_attr_microvolts.attr) {
3478                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3479                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3480                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3481                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3482                         return mode;
3483                 return 0;
3484         }
3485
3486         if (attr == &dev_attr_microamps.attr)
3487                 return ops->get_current_limit ? mode : 0;
3488
3489         if (attr == &dev_attr_opmode.attr)
3490                 return ops->get_mode ? mode : 0;
3491
3492         if (attr == &dev_attr_state.attr)
3493                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3494
3495         if (attr == &dev_attr_status.attr)
3496                 return ops->get_status ? mode : 0;
3497
3498         if (attr == &dev_attr_bypass.attr)
3499                 return ops->get_bypass ? mode : 0;
3500
3501         /* some attributes are type-specific */
3502         if (attr == &dev_attr_requested_microamps.attr)
3503                 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3504
3505         /* constraints need specific supporting methods */
3506         if (attr == &dev_attr_min_microvolts.attr ||
3507             attr == &dev_attr_max_microvolts.attr)
3508                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3509
3510         if (attr == &dev_attr_min_microamps.attr ||
3511             attr == &dev_attr_max_microamps.attr)
3512                 return ops->set_current_limit ? mode : 0;
3513
3514         if (attr == &dev_attr_suspend_standby_state.attr ||
3515             attr == &dev_attr_suspend_mem_state.attr ||
3516             attr == &dev_attr_suspend_disk_state.attr)
3517                 return mode;
3518
3519         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3520             attr == &dev_attr_suspend_mem_microvolts.attr ||
3521             attr == &dev_attr_suspend_disk_microvolts.attr)
3522                 return ops->set_suspend_voltage ? mode : 0;
3523
3524         if (attr == &dev_attr_suspend_standby_mode.attr ||
3525             attr == &dev_attr_suspend_mem_mode.attr ||
3526             attr == &dev_attr_suspend_disk_mode.attr)
3527                 return ops->set_suspend_mode ? mode : 0;
3528
3529         return mode;
3530 }
3531
3532 static const struct attribute_group regulator_dev_group = {
3533         .attrs = regulator_dev_attrs,
3534         .is_visible = regulator_attr_is_visible,
3535 };
3536
3537 static const struct attribute_group *regulator_dev_groups[] = {
3538         &regulator_dev_group,
3539         NULL
3540 };
3541
3542 static void regulator_dev_release(struct device *dev)
3543 {
3544         struct regulator_dev *rdev = dev_get_drvdata(dev);
3545         kfree(rdev);
3546 }
3547
3548 static struct class regulator_class = {
3549         .name = "regulator",
3550         .dev_release = regulator_dev_release,
3551         .dev_groups = regulator_dev_groups,
3552 };
3553
3554 static void rdev_init_debugfs(struct regulator_dev *rdev)
3555 {
3556         struct device *parent = rdev->dev.parent;
3557         const char *rname = rdev_get_name(rdev);
3558         char name[NAME_MAX];
3559
3560         /* Avoid duplicate debugfs directory names */
3561         if (parent && rname == rdev->desc->name) {
3562                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3563                          rname);
3564                 rname = name;
3565         }
3566
3567         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3568         if (!rdev->debugfs) {
3569                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3570                 return;
3571         }
3572
3573         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3574                            &rdev->use_count);
3575         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3576                            &rdev->open_count);
3577         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3578                            &rdev->bypass_count);
3579 }
3580
3581 /**
3582  * regulator_register - register regulator
3583  * @regulator_desc: regulator to register
3584  * @cfg: runtime configuration for regulator
3585  *
3586  * Called by regulator drivers to register a regulator.
3587  * Returns a valid pointer to struct regulator_dev on success
3588  * or an ERR_PTR() on error.
3589  */
3590 struct regulator_dev *
3591 regulator_register(const struct regulator_desc *regulator_desc,
3592                    const struct regulator_config *cfg)
3593 {
3594         const struct regulation_constraints *constraints = NULL;
3595         const struct regulator_init_data *init_data;
3596         struct regulator_config *config = NULL;
3597         static atomic_t regulator_no = ATOMIC_INIT(-1);
3598         struct regulator_dev *rdev;
3599         struct device *dev;
3600         int ret, i;
3601
3602         if (regulator_desc == NULL || cfg == NULL)
3603                 return ERR_PTR(-EINVAL);
3604
3605         dev = cfg->dev;
3606         WARN_ON(!dev);
3607
3608         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3609                 return ERR_PTR(-EINVAL);
3610
3611         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3612             regulator_desc->type != REGULATOR_CURRENT)
3613                 return ERR_PTR(-EINVAL);
3614
3615         /* Only one of each should be implemented */
3616         WARN_ON(regulator_desc->ops->get_voltage &&
3617                 regulator_desc->ops->get_voltage_sel);
3618         WARN_ON(regulator_desc->ops->set_voltage &&
3619                 regulator_desc->ops->set_voltage_sel);
3620
3621         /* If we're using selectors we must implement list_voltage. */
3622         if (regulator_desc->ops->get_voltage_sel &&
3623             !regulator_desc->ops->list_voltage) {
3624                 return ERR_PTR(-EINVAL);
3625         }
3626         if (regulator_desc->ops->set_voltage_sel &&
3627             !regulator_desc->ops->list_voltage) {
3628                 return ERR_PTR(-EINVAL);
3629         }
3630
3631         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3632         if (rdev == NULL)
3633                 return ERR_PTR(-ENOMEM);
3634
3635         /*
3636          * Duplicate the config so the driver could override it after
3637          * parsing init data.
3638          */
3639         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3640         if (config == NULL) {
3641                 kfree(rdev);
3642                 return ERR_PTR(-ENOMEM);
3643         }
3644
3645         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3646                                                &rdev->dev.of_node);
3647         if (!init_data) {
3648                 init_data = config->init_data;
3649                 rdev->dev.of_node = of_node_get(config->of_node);
3650         }
3651
3652         mutex_lock(&regulator_list_mutex);
3653
3654         mutex_init(&rdev->mutex);
3655         rdev->reg_data = config->driver_data;
3656         rdev->owner = regulator_desc->owner;
3657         rdev->desc = regulator_desc;
3658         if (config->regmap)
3659                 rdev->regmap = config->regmap;
3660         else if (dev_get_regmap(dev, NULL))
3661                 rdev->regmap = dev_get_regmap(dev, NULL);
3662         else if (dev->parent)
3663                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3664         INIT_LIST_HEAD(&rdev->consumer_list);
3665         INIT_LIST_HEAD(&rdev->list);
3666         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3667         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3668
3669         /* preform any regulator specific init */
3670         if (init_data && init_data->regulator_init) {
3671                 ret = init_data->regulator_init(rdev->reg_data);
3672                 if (ret < 0)
3673                         goto clean;
3674         }
3675
3676         /* register with sysfs */
3677         rdev->dev.class = &regulator_class;
3678         rdev->dev.parent = dev;
3679         dev_set_name(&rdev->dev, "regulator.%lu",
3680                     (unsigned long) atomic_inc_return(&regulator_no));
3681         ret = device_register(&rdev->dev);
3682         if (ret != 0) {
3683                 put_device(&rdev->dev);
3684                 goto clean;
3685         }
3686
3687         dev_set_drvdata(&rdev->dev, rdev);
3688
3689         if ((config->ena_gpio || config->ena_gpio_initialized) &&
3690             gpio_is_valid(config->ena_gpio)) {
3691                 ret = regulator_ena_gpio_request(rdev, config);
3692                 if (ret != 0) {
3693                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3694                                  config->ena_gpio, ret);
3695                         goto wash;
3696                 }
3697         }
3698
3699         /* set regulator constraints */
3700         if (init_data)
3701                 constraints = &init_data->constraints;
3702
3703         ret = set_machine_constraints(rdev, constraints);
3704         if (ret < 0)
3705                 goto scrub;
3706
3707         if (init_data && init_data->supply_regulator)
3708                 rdev->supply_name = init_data->supply_regulator;
3709         else if (regulator_desc->supply_name)
3710                 rdev->supply_name = regulator_desc->supply_name;
3711
3712         /* add consumers devices */
3713         if (init_data) {
3714                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3715                         ret = set_consumer_device_supply(rdev,
3716                                 init_data->consumer_supplies[i].dev_name,
3717                                 init_data->consumer_supplies[i].supply);
3718                         if (ret < 0) {
3719                                 dev_err(dev, "Failed to set supply %s\n",
3720                                         init_data->consumer_supplies[i].supply);
3721                                 goto unset_supplies;
3722                         }
3723                 }
3724         }
3725
3726         list_add(&rdev->list, &regulator_list);
3727
3728         rdev_init_debugfs(rdev);
3729 out:
3730         mutex_unlock(&regulator_list_mutex);
3731         kfree(config);
3732         return rdev;
3733
3734 unset_supplies:
3735         unset_regulator_supplies(rdev);
3736
3737 scrub:
3738         regulator_ena_gpio_free(rdev);
3739         kfree(rdev->constraints);
3740 wash:
3741         device_unregister(&rdev->dev);
3742         /* device core frees rdev */
3743         rdev = ERR_PTR(ret);
3744         goto out;
3745
3746 clean:
3747         kfree(rdev);
3748         rdev = ERR_PTR(ret);
3749         goto out;
3750 }
3751 EXPORT_SYMBOL_GPL(regulator_register);
3752
3753 /**
3754  * regulator_unregister - unregister regulator
3755  * @rdev: regulator to unregister
3756  *
3757  * Called by regulator drivers to unregister a regulator.
3758  */
3759 void regulator_unregister(struct regulator_dev *rdev)
3760 {
3761         if (rdev == NULL)
3762                 return;
3763
3764         if (rdev->supply) {
3765                 while (rdev->use_count--)
3766                         regulator_disable(rdev->supply);
3767                 regulator_put(rdev->supply);
3768         }
3769         mutex_lock(&regulator_list_mutex);
3770         debugfs_remove_recursive(rdev->debugfs);
3771         flush_work(&rdev->disable_work.work);
3772         WARN_ON(rdev->open_count);
3773         unset_regulator_supplies(rdev);
3774         list_del(&rdev->list);
3775         kfree(rdev->constraints);
3776         regulator_ena_gpio_free(rdev);
3777         of_node_put(rdev->dev.of_node);
3778         device_unregister(&rdev->dev);
3779         mutex_unlock(&regulator_list_mutex);
3780 }
3781 EXPORT_SYMBOL_GPL(regulator_unregister);
3782
3783 /**
3784  * regulator_suspend_prepare - prepare regulators for system wide suspend
3785  * @state: system suspend state
3786  *
3787  * Configure each regulator with it's suspend operating parameters for state.
3788  * This will usually be called by machine suspend code prior to supending.
3789  */
3790 int regulator_suspend_prepare(suspend_state_t state)
3791 {
3792         struct regulator_dev *rdev;
3793         int ret = 0;
3794
3795         /* ON is handled by regulator active state */
3796         if (state == PM_SUSPEND_ON)
3797                 return -EINVAL;
3798
3799         mutex_lock(&regulator_list_mutex);
3800         list_for_each_entry(rdev, &regulator_list, list) {
3801
3802                 mutex_lock(&rdev->mutex);
3803                 ret = suspend_prepare(rdev, state);
3804                 mutex_unlock(&rdev->mutex);
3805
3806                 if (ret < 0) {
3807                         rdev_err(rdev, "failed to prepare\n");
3808                         goto out;
3809                 }
3810         }
3811 out:
3812         mutex_unlock(&regulator_list_mutex);
3813         return ret;
3814 }
3815 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3816
3817 /**
3818  * regulator_suspend_finish - resume regulators from system wide suspend
3819  *
3820  * Turn on regulators that might be turned off by regulator_suspend_prepare
3821  * and that should be turned on according to the regulators properties.
3822  */
3823 int regulator_suspend_finish(void)
3824 {
3825         struct regulator_dev *rdev;
3826         int ret = 0, error;
3827
3828         mutex_lock(&regulator_list_mutex);
3829         list_for_each_entry(rdev, &regulator_list, list) {
3830                 mutex_lock(&rdev->mutex);
3831                 if (rdev->use_count > 0  || rdev->constraints->always_on) {
3832                         if (!_regulator_is_enabled(rdev)) {
3833                                 error = _regulator_do_enable(rdev);
3834                                 if (error)
3835                                         ret = error;
3836                         }
3837                 } else {
3838                         if (!have_full_constraints())
3839                                 goto unlock;
3840                         if (!_regulator_is_enabled(rdev))
3841                                 goto unlock;
3842
3843                         error = _regulator_do_disable(rdev);
3844                         if (error)
3845                                 ret = error;
3846                 }
3847 unlock:
3848                 mutex_unlock(&rdev->mutex);
3849         }
3850         mutex_unlock(&regulator_list_mutex);
3851         return ret;
3852 }
3853 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3854
3855 /**
3856  * regulator_has_full_constraints - the system has fully specified constraints
3857  *
3858  * Calling this function will cause the regulator API to disable all
3859  * regulators which have a zero use count and don't have an always_on
3860  * constraint in a late_initcall.
3861  *
3862  * The intention is that this will become the default behaviour in a
3863  * future kernel release so users are encouraged to use this facility
3864  * now.
3865  */
3866 void regulator_has_full_constraints(void)
3867 {
3868         has_full_constraints = 1;
3869 }
3870 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3871
3872 /**
3873  * rdev_get_drvdata - get rdev regulator driver data
3874  * @rdev: regulator
3875  *
3876  * Get rdev regulator driver private data. This call can be used in the
3877  * regulator driver context.
3878  */
3879 void *rdev_get_drvdata(struct regulator_dev *rdev)
3880 {
3881         return rdev->reg_data;
3882 }
3883 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3884
3885 /**
3886  * regulator_get_drvdata - get regulator driver data
3887  * @regulator: regulator
3888  *
3889  * Get regulator driver private data. This call can be used in the consumer
3890  * driver context when non API regulator specific functions need to be called.
3891  */
3892 void *regulator_get_drvdata(struct regulator *regulator)
3893 {
3894         return regulator->rdev->reg_data;
3895 }
3896 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3897
3898 /**
3899  * regulator_set_drvdata - set regulator driver data
3900  * @regulator: regulator
3901  * @data: data
3902  */
3903 void regulator_set_drvdata(struct regulator *regulator, void *data)
3904 {
3905         regulator->rdev->reg_data = data;
3906 }
3907 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3908
3909 /**
3910  * regulator_get_id - get regulator ID
3911  * @rdev: regulator
3912  */
3913 int rdev_get_id(struct regulator_dev *rdev)
3914 {
3915         return rdev->desc->id;
3916 }
3917 EXPORT_SYMBOL_GPL(rdev_get_id);
3918
3919 struct device *rdev_get_dev(struct regulator_dev *rdev)
3920 {
3921         return &rdev->dev;
3922 }
3923 EXPORT_SYMBOL_GPL(rdev_get_dev);
3924
3925 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3926 {
3927         return reg_init_data->driver_data;
3928 }
3929 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3930
3931 #ifdef CONFIG_DEBUG_FS
3932 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3933                                     size_t count, loff_t *ppos)
3934 {
3935         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3936         ssize_t len, ret = 0;
3937         struct regulator_map *map;
3938
3939         if (!buf)
3940                 return -ENOMEM;
3941
3942         list_for_each_entry(map, &regulator_map_list, list) {
3943                 len = snprintf(buf + ret, PAGE_SIZE - ret,
3944                                "%s -> %s.%s\n",
3945                                rdev_get_name(map->regulator), map->dev_name,
3946                                map->supply);
3947                 if (len >= 0)
3948                         ret += len;
3949                 if (ret > PAGE_SIZE) {
3950                         ret = PAGE_SIZE;
3951                         break;
3952                 }
3953         }
3954
3955         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3956
3957         kfree(buf);
3958
3959         return ret;
3960 }
3961 #endif
3962
3963 static const struct file_operations supply_map_fops = {
3964 #ifdef CONFIG_DEBUG_FS
3965         .read = supply_map_read_file,
3966         .llseek = default_llseek,
3967 #endif
3968 };
3969
3970 #ifdef CONFIG_DEBUG_FS
3971 static void regulator_summary_show_subtree(struct seq_file *s,
3972                                            struct regulator_dev *rdev,
3973                                            int level)
3974 {
3975         struct list_head *list = s->private;
3976         struct regulator_dev *child;
3977         struct regulation_constraints *c;
3978         struct regulator *consumer;
3979
3980         if (!rdev)
3981                 return;
3982
3983         seq_printf(s, "%*s%-*s %3d %4d %6d ",
3984                    level * 3 + 1, "",
3985                    30 - level * 3, rdev_get_name(rdev),
3986                    rdev->use_count, rdev->open_count, rdev->bypass_count);
3987
3988         seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
3989         seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
3990
3991         c = rdev->constraints;
3992         if (c) {
3993                 switch (rdev->desc->type) {
3994                 case REGULATOR_VOLTAGE:
3995                         seq_printf(s, "%5dmV %5dmV ",
3996                                    c->min_uV / 1000, c->max_uV / 1000);
3997                         break;
3998                 case REGULATOR_CURRENT:
3999                         seq_printf(s, "%5dmA %5dmA ",
4000                                    c->min_uA / 1000, c->max_uA / 1000);
4001                         break;
4002                 }
4003         }
4004
4005         seq_puts(s, "\n");
4006
4007         list_for_each_entry(consumer, &rdev->consumer_list, list) {
4008                 if (consumer->dev->class == &regulator_class)
4009                         continue;
4010
4011                 seq_printf(s, "%*s%-*s ",
4012                            (level + 1) * 3 + 1, "",
4013                            30 - (level + 1) * 3, dev_name(consumer->dev));
4014
4015                 switch (rdev->desc->type) {
4016                 case REGULATOR_VOLTAGE:
4017                         seq_printf(s, "%37dmV %5dmV",
4018                                    consumer->min_uV / 1000,
4019                                    consumer->max_uV / 1000);
4020                         break;
4021                 case REGULATOR_CURRENT:
4022                         break;
4023                 }
4024
4025                 seq_puts(s, "\n");
4026         }
4027
4028         list_for_each_entry(child, list, list) {
4029                 /* handle only non-root regulators supplied by current rdev */
4030                 if (!child->supply || child->supply->rdev != rdev)
4031                         continue;
4032
4033                 regulator_summary_show_subtree(s, child, level + 1);
4034         }
4035 }
4036
4037 static int regulator_summary_show(struct seq_file *s, void *data)
4038 {
4039         struct list_head *list = s->private;
4040         struct regulator_dev *rdev;
4041
4042         seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4043         seq_puts(s, "-------------------------------------------------------------------------------\n");
4044
4045         mutex_lock(&regulator_list_mutex);
4046
4047         list_for_each_entry(rdev, list, list) {
4048                 if (rdev->supply)
4049                         continue;
4050
4051                 regulator_summary_show_subtree(s, rdev, 0);
4052         }
4053
4054         mutex_unlock(&regulator_list_mutex);
4055
4056         return 0;
4057 }
4058
4059 static int regulator_summary_open(struct inode *inode, struct file *file)
4060 {
4061         return single_open(file, regulator_summary_show, inode->i_private);
4062 }
4063 #endif
4064
4065 static const struct file_operations regulator_summary_fops = {
4066 #ifdef CONFIG_DEBUG_FS
4067         .open           = regulator_summary_open,
4068         .read           = seq_read,
4069         .llseek         = seq_lseek,
4070         .release        = single_release,
4071 #endif
4072 };
4073
4074 static int __init regulator_init(void)
4075 {
4076         int ret;
4077
4078         ret = class_register(&regulator_class);
4079
4080         debugfs_root = debugfs_create_dir("regulator", NULL);
4081         if (!debugfs_root)
4082                 pr_warn("regulator: Failed to create debugfs directory\n");
4083
4084         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4085                             &supply_map_fops);
4086
4087         debugfs_create_file("regulator_summary", 0444, debugfs_root,
4088                             &regulator_list, &regulator_summary_fops);
4089
4090         regulator_dummy_init();
4091
4092         return ret;
4093 }
4094
4095 /* init early to allow our consumers to complete system booting */
4096 core_initcall(regulator_init);
4097
4098 static int __init regulator_init_complete(void)
4099 {
4100         struct regulator_dev *rdev;
4101         const struct regulator_ops *ops;
4102         struct regulation_constraints *c;
4103         int enabled, ret;
4104
4105         /*
4106          * Since DT doesn't provide an idiomatic mechanism for
4107          * enabling full constraints and since it's much more natural
4108          * with DT to provide them just assume that a DT enabled
4109          * system has full constraints.
4110          */
4111         if (of_have_populated_dt())
4112                 has_full_constraints = true;
4113
4114         mutex_lock(&regulator_list_mutex);
4115
4116         /* If we have a full configuration then disable any regulators
4117          * we have permission to change the status for and which are
4118          * not in use or always_on.  This is effectively the default
4119          * for DT and ACPI as they have full constraints.
4120          */
4121         list_for_each_entry(rdev, &regulator_list, list) {
4122                 ops = rdev->desc->ops;
4123                 c = rdev->constraints;
4124
4125                 if (c && c->always_on)
4126                         continue;
4127
4128                 if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4129                         continue;
4130
4131                 mutex_lock(&rdev->mutex);
4132
4133                 if (rdev->use_count)
4134                         goto unlock;
4135
4136                 /* If we can't read the status assume it's on. */
4137                 if (ops->is_enabled)
4138                         enabled = ops->is_enabled(rdev);
4139                 else
4140                         enabled = 1;
4141
4142                 if (!enabled)
4143                         goto unlock;
4144
4145                 if (have_full_constraints()) {
4146                         /* We log since this may kill the system if it
4147                          * goes wrong. */
4148                         rdev_info(rdev, "disabling\n");
4149                         ret = _regulator_do_disable(rdev);
4150                         if (ret != 0)
4151                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
4152                 } else {
4153                         /* The intention is that in future we will
4154                          * assume that full constraints are provided
4155                          * so warn even if we aren't going to do
4156                          * anything here.
4157                          */
4158                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
4159                 }
4160
4161 unlock:
4162                 mutex_unlock(&rdev->mutex);
4163         }
4164
4165         mutex_unlock(&regulator_list_mutex);
4166
4167         return 0;
4168 }
4169 late_initcall_sync(regulator_init_complete);