]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/regulator/core.c
9da85bc21db49f7ed8bcf388d3afce83fd4974d4
[karo-tx-linux.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/slab.h>
20 #include <linux/err.h>
21 #include <linux/mutex.h>
22 #include <linux/suspend.h>
23 #include <linux/delay.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/driver.h>
26 #include <linux/regulator/machine.h>
27
28 #include "dummy.h"
29
30 #define REGULATOR_VERSION "0.5"
31
32 static DEFINE_MUTEX(regulator_list_mutex);
33 static LIST_HEAD(regulator_list);
34 static LIST_HEAD(regulator_map_list);
35 static int has_full_constraints;
36 static bool board_wants_dummy_regulator;
37
38 /*
39  * struct regulator_map
40  *
41  * Used to provide symbolic supply names to devices.
42  */
43 struct regulator_map {
44         struct list_head list;
45         const char *dev_name;   /* The dev_name() for the consumer */
46         const char *supply;
47         struct regulator_dev *regulator;
48 };
49
50 /*
51  * struct regulator
52  *
53  * One for each consumer device.
54  */
55 struct regulator {
56         struct device *dev;
57         struct list_head list;
58         int uA_load;
59         int min_uV;
60         int max_uV;
61         char *supply_name;
62         struct device_attribute dev_attr;
63         struct regulator_dev *rdev;
64 };
65
66 static int _regulator_is_enabled(struct regulator_dev *rdev);
67 static int _regulator_disable(struct regulator_dev *rdev,
68                 struct regulator_dev **supply_rdev_ptr);
69 static int _regulator_get_voltage(struct regulator_dev *rdev);
70 static int _regulator_get_current_limit(struct regulator_dev *rdev);
71 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
72 static void _notifier_call_chain(struct regulator_dev *rdev,
73                                   unsigned long event, void *data);
74
75 static const char *rdev_get_name(struct regulator_dev *rdev)
76 {
77         if (rdev->constraints && rdev->constraints->name)
78                 return rdev->constraints->name;
79         else if (rdev->desc->name)
80                 return rdev->desc->name;
81         else
82                 return "";
83 }
84
85 /* gets the regulator for a given consumer device */
86 static struct regulator *get_device_regulator(struct device *dev)
87 {
88         struct regulator *regulator = NULL;
89         struct regulator_dev *rdev;
90
91         mutex_lock(&regulator_list_mutex);
92         list_for_each_entry(rdev, &regulator_list, list) {
93                 mutex_lock(&rdev->mutex);
94                 list_for_each_entry(regulator, &rdev->consumer_list, list) {
95                         if (regulator->dev == dev) {
96                                 mutex_unlock(&rdev->mutex);
97                                 mutex_unlock(&regulator_list_mutex);
98                                 return regulator;
99                         }
100                 }
101                 mutex_unlock(&rdev->mutex);
102         }
103         mutex_unlock(&regulator_list_mutex);
104         return NULL;
105 }
106
107 /* Platform voltage constraint check */
108 static int regulator_check_voltage(struct regulator_dev *rdev,
109                                    int *min_uV, int *max_uV)
110 {
111         BUG_ON(*min_uV > *max_uV);
112
113         if (!rdev->constraints) {
114                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
115                        rdev_get_name(rdev));
116                 return -ENODEV;
117         }
118         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
119                 printk(KERN_ERR "%s: operation not allowed for %s\n",
120                        __func__, rdev_get_name(rdev));
121                 return -EPERM;
122         }
123
124         if (*max_uV > rdev->constraints->max_uV)
125                 *max_uV = rdev->constraints->max_uV;
126         if (*min_uV < rdev->constraints->min_uV)
127                 *min_uV = rdev->constraints->min_uV;
128
129         if (*min_uV > *max_uV)
130                 return -EINVAL;
131
132         return 0;
133 }
134
135 /* current constraint check */
136 static int regulator_check_current_limit(struct regulator_dev *rdev,
137                                         int *min_uA, int *max_uA)
138 {
139         BUG_ON(*min_uA > *max_uA);
140
141         if (!rdev->constraints) {
142                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
143                        rdev_get_name(rdev));
144                 return -ENODEV;
145         }
146         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
147                 printk(KERN_ERR "%s: operation not allowed for %s\n",
148                        __func__, rdev_get_name(rdev));
149                 return -EPERM;
150         }
151
152         if (*max_uA > rdev->constraints->max_uA)
153                 *max_uA = rdev->constraints->max_uA;
154         if (*min_uA < rdev->constraints->min_uA)
155                 *min_uA = rdev->constraints->min_uA;
156
157         if (*min_uA > *max_uA)
158                 return -EINVAL;
159
160         return 0;
161 }
162
163 /* operating mode constraint check */
164 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
165 {
166         switch (mode) {
167         case REGULATOR_MODE_FAST:
168         case REGULATOR_MODE_NORMAL:
169         case REGULATOR_MODE_IDLE:
170         case REGULATOR_MODE_STANDBY:
171                 break;
172         default:
173                 return -EINVAL;
174         }
175
176         if (!rdev->constraints) {
177                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
178                        rdev_get_name(rdev));
179                 return -ENODEV;
180         }
181         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
182                 printk(KERN_ERR "%s: operation not allowed for %s\n",
183                        __func__, rdev_get_name(rdev));
184                 return -EPERM;
185         }
186         if (!(rdev->constraints->valid_modes_mask & mode)) {
187                 printk(KERN_ERR "%s: invalid mode %x for %s\n",
188                        __func__, mode, rdev_get_name(rdev));
189                 return -EINVAL;
190         }
191         return 0;
192 }
193
194 /* dynamic regulator mode switching constraint check */
195 static int regulator_check_drms(struct regulator_dev *rdev)
196 {
197         if (!rdev->constraints) {
198                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
199                        rdev_get_name(rdev));
200                 return -ENODEV;
201         }
202         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
203                 printk(KERN_ERR "%s: operation not allowed for %s\n",
204                        __func__, rdev_get_name(rdev));
205                 return -EPERM;
206         }
207         return 0;
208 }
209
210 static ssize_t device_requested_uA_show(struct device *dev,
211                              struct device_attribute *attr, char *buf)
212 {
213         struct regulator *regulator;
214
215         regulator = get_device_regulator(dev);
216         if (regulator == NULL)
217                 return 0;
218
219         return sprintf(buf, "%d\n", regulator->uA_load);
220 }
221
222 static ssize_t regulator_uV_show(struct device *dev,
223                                 struct device_attribute *attr, char *buf)
224 {
225         struct regulator_dev *rdev = dev_get_drvdata(dev);
226         ssize_t ret;
227
228         mutex_lock(&rdev->mutex);
229         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
230         mutex_unlock(&rdev->mutex);
231
232         return ret;
233 }
234 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
235
236 static ssize_t regulator_uA_show(struct device *dev,
237                                 struct device_attribute *attr, char *buf)
238 {
239         struct regulator_dev *rdev = dev_get_drvdata(dev);
240
241         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
242 }
243 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
244
245 static ssize_t regulator_name_show(struct device *dev,
246                              struct device_attribute *attr, char *buf)
247 {
248         struct regulator_dev *rdev = dev_get_drvdata(dev);
249
250         return sprintf(buf, "%s\n", rdev_get_name(rdev));
251 }
252
253 static ssize_t regulator_print_opmode(char *buf, int mode)
254 {
255         switch (mode) {
256         case REGULATOR_MODE_FAST:
257                 return sprintf(buf, "fast\n");
258         case REGULATOR_MODE_NORMAL:
259                 return sprintf(buf, "normal\n");
260         case REGULATOR_MODE_IDLE:
261                 return sprintf(buf, "idle\n");
262         case REGULATOR_MODE_STANDBY:
263                 return sprintf(buf, "standby\n");
264         }
265         return sprintf(buf, "unknown\n");
266 }
267
268 static ssize_t regulator_opmode_show(struct device *dev,
269                                     struct device_attribute *attr, char *buf)
270 {
271         struct regulator_dev *rdev = dev_get_drvdata(dev);
272
273         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
274 }
275 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
276
277 static ssize_t regulator_print_state(char *buf, int state)
278 {
279         if (state > 0)
280                 return sprintf(buf, "enabled\n");
281         else if (state == 0)
282                 return sprintf(buf, "disabled\n");
283         else
284                 return sprintf(buf, "unknown\n");
285 }
286
287 static ssize_t regulator_state_show(struct device *dev,
288                                    struct device_attribute *attr, char *buf)
289 {
290         struct regulator_dev *rdev = dev_get_drvdata(dev);
291         ssize_t ret;
292
293         mutex_lock(&rdev->mutex);
294         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
295         mutex_unlock(&rdev->mutex);
296
297         return ret;
298 }
299 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
300
301 static ssize_t regulator_status_show(struct device *dev,
302                                    struct device_attribute *attr, char *buf)
303 {
304         struct regulator_dev *rdev = dev_get_drvdata(dev);
305         int status;
306         char *label;
307
308         status = rdev->desc->ops->get_status(rdev);
309         if (status < 0)
310                 return status;
311
312         switch (status) {
313         case REGULATOR_STATUS_OFF:
314                 label = "off";
315                 break;
316         case REGULATOR_STATUS_ON:
317                 label = "on";
318                 break;
319         case REGULATOR_STATUS_ERROR:
320                 label = "error";
321                 break;
322         case REGULATOR_STATUS_FAST:
323                 label = "fast";
324                 break;
325         case REGULATOR_STATUS_NORMAL:
326                 label = "normal";
327                 break;
328         case REGULATOR_STATUS_IDLE:
329                 label = "idle";
330                 break;
331         case REGULATOR_STATUS_STANDBY:
332                 label = "standby";
333                 break;
334         default:
335                 return -ERANGE;
336         }
337
338         return sprintf(buf, "%s\n", label);
339 }
340 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
341
342 static ssize_t regulator_min_uA_show(struct device *dev,
343                                     struct device_attribute *attr, char *buf)
344 {
345         struct regulator_dev *rdev = dev_get_drvdata(dev);
346
347         if (!rdev->constraints)
348                 return sprintf(buf, "constraint not defined\n");
349
350         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
351 }
352 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
353
354 static ssize_t regulator_max_uA_show(struct device *dev,
355                                     struct device_attribute *attr, char *buf)
356 {
357         struct regulator_dev *rdev = dev_get_drvdata(dev);
358
359         if (!rdev->constraints)
360                 return sprintf(buf, "constraint not defined\n");
361
362         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
363 }
364 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
365
366 static ssize_t regulator_min_uV_show(struct device *dev,
367                                     struct device_attribute *attr, char *buf)
368 {
369         struct regulator_dev *rdev = dev_get_drvdata(dev);
370
371         if (!rdev->constraints)
372                 return sprintf(buf, "constraint not defined\n");
373
374         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
375 }
376 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
377
378 static ssize_t regulator_max_uV_show(struct device *dev,
379                                     struct device_attribute *attr, char *buf)
380 {
381         struct regulator_dev *rdev = dev_get_drvdata(dev);
382
383         if (!rdev->constraints)
384                 return sprintf(buf, "constraint not defined\n");
385
386         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
387 }
388 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
389
390 static ssize_t regulator_total_uA_show(struct device *dev,
391                                       struct device_attribute *attr, char *buf)
392 {
393         struct regulator_dev *rdev = dev_get_drvdata(dev);
394         struct regulator *regulator;
395         int uA = 0;
396
397         mutex_lock(&rdev->mutex);
398         list_for_each_entry(regulator, &rdev->consumer_list, list)
399                 uA += regulator->uA_load;
400         mutex_unlock(&rdev->mutex);
401         return sprintf(buf, "%d\n", uA);
402 }
403 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
404
405 static ssize_t regulator_num_users_show(struct device *dev,
406                                       struct device_attribute *attr, char *buf)
407 {
408         struct regulator_dev *rdev = dev_get_drvdata(dev);
409         return sprintf(buf, "%d\n", rdev->use_count);
410 }
411
412 static ssize_t regulator_type_show(struct device *dev,
413                                   struct device_attribute *attr, char *buf)
414 {
415         struct regulator_dev *rdev = dev_get_drvdata(dev);
416
417         switch (rdev->desc->type) {
418         case REGULATOR_VOLTAGE:
419                 return sprintf(buf, "voltage\n");
420         case REGULATOR_CURRENT:
421                 return sprintf(buf, "current\n");
422         }
423         return sprintf(buf, "unknown\n");
424 }
425
426 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
427                                 struct device_attribute *attr, char *buf)
428 {
429         struct regulator_dev *rdev = dev_get_drvdata(dev);
430
431         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
432 }
433 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
434                 regulator_suspend_mem_uV_show, NULL);
435
436 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
437                                 struct device_attribute *attr, char *buf)
438 {
439         struct regulator_dev *rdev = dev_get_drvdata(dev);
440
441         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
442 }
443 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
444                 regulator_suspend_disk_uV_show, NULL);
445
446 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
447                                 struct device_attribute *attr, char *buf)
448 {
449         struct regulator_dev *rdev = dev_get_drvdata(dev);
450
451         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
452 }
453 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
454                 regulator_suspend_standby_uV_show, NULL);
455
456 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
457                                 struct device_attribute *attr, char *buf)
458 {
459         struct regulator_dev *rdev = dev_get_drvdata(dev);
460
461         return regulator_print_opmode(buf,
462                 rdev->constraints->state_mem.mode);
463 }
464 static DEVICE_ATTR(suspend_mem_mode, 0444,
465                 regulator_suspend_mem_mode_show, NULL);
466
467 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
468                                 struct device_attribute *attr, char *buf)
469 {
470         struct regulator_dev *rdev = dev_get_drvdata(dev);
471
472         return regulator_print_opmode(buf,
473                 rdev->constraints->state_disk.mode);
474 }
475 static DEVICE_ATTR(suspend_disk_mode, 0444,
476                 regulator_suspend_disk_mode_show, NULL);
477
478 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
479                                 struct device_attribute *attr, char *buf)
480 {
481         struct regulator_dev *rdev = dev_get_drvdata(dev);
482
483         return regulator_print_opmode(buf,
484                 rdev->constraints->state_standby.mode);
485 }
486 static DEVICE_ATTR(suspend_standby_mode, 0444,
487                 regulator_suspend_standby_mode_show, NULL);
488
489 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
490                                    struct device_attribute *attr, char *buf)
491 {
492         struct regulator_dev *rdev = dev_get_drvdata(dev);
493
494         return regulator_print_state(buf,
495                         rdev->constraints->state_mem.enabled);
496 }
497 static DEVICE_ATTR(suspend_mem_state, 0444,
498                 regulator_suspend_mem_state_show, NULL);
499
500 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
501                                    struct device_attribute *attr, char *buf)
502 {
503         struct regulator_dev *rdev = dev_get_drvdata(dev);
504
505         return regulator_print_state(buf,
506                         rdev->constraints->state_disk.enabled);
507 }
508 static DEVICE_ATTR(suspend_disk_state, 0444,
509                 regulator_suspend_disk_state_show, NULL);
510
511 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
512                                    struct device_attribute *attr, char *buf)
513 {
514         struct regulator_dev *rdev = dev_get_drvdata(dev);
515
516         return regulator_print_state(buf,
517                         rdev->constraints->state_standby.enabled);
518 }
519 static DEVICE_ATTR(suspend_standby_state, 0444,
520                 regulator_suspend_standby_state_show, NULL);
521
522
523 /*
524  * These are the only attributes are present for all regulators.
525  * Other attributes are a function of regulator functionality.
526  */
527 static struct device_attribute regulator_dev_attrs[] = {
528         __ATTR(name, 0444, regulator_name_show, NULL),
529         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
530         __ATTR(type, 0444, regulator_type_show, NULL),
531         __ATTR_NULL,
532 };
533
534 static void regulator_dev_release(struct device *dev)
535 {
536         struct regulator_dev *rdev = dev_get_drvdata(dev);
537         kfree(rdev);
538 }
539
540 static struct class regulator_class = {
541         .name = "regulator",
542         .dev_release = regulator_dev_release,
543         .dev_attrs = regulator_dev_attrs,
544 };
545
546 /* Calculate the new optimum regulator operating mode based on the new total
547  * consumer load. All locks held by caller */
548 static void drms_uA_update(struct regulator_dev *rdev)
549 {
550         struct regulator *sibling;
551         int current_uA = 0, output_uV, input_uV, err;
552         unsigned int mode;
553
554         err = regulator_check_drms(rdev);
555         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
556             !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
557                 return;
558
559         /* get output voltage */
560         output_uV = rdev->desc->ops->get_voltage(rdev);
561         if (output_uV <= 0)
562                 return;
563
564         /* get input voltage */
565         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
566                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
567         else
568                 input_uV = rdev->constraints->input_uV;
569         if (input_uV <= 0)
570                 return;
571
572         /* calc total requested load */
573         list_for_each_entry(sibling, &rdev->consumer_list, list)
574                 current_uA += sibling->uA_load;
575
576         /* now get the optimum mode for our new total regulator load */
577         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
578                                                   output_uV, current_uA);
579
580         /* check the new mode is allowed */
581         err = regulator_check_mode(rdev, mode);
582         if (err == 0)
583                 rdev->desc->ops->set_mode(rdev, mode);
584 }
585
586 static int suspend_set_state(struct regulator_dev *rdev,
587         struct regulator_state *rstate)
588 {
589         int ret = 0;
590         bool can_set_state;
591
592         can_set_state = rdev->desc->ops->set_suspend_enable &&
593                 rdev->desc->ops->set_suspend_disable;
594
595         /* If we have no suspend mode configration don't set anything;
596          * only warn if the driver actually makes the suspend mode
597          * configurable.
598          */
599         if (!rstate->enabled && !rstate->disabled) {
600                 if (can_set_state)
601                         printk(KERN_WARNING "%s: No configuration for %s\n",
602                                __func__, rdev_get_name(rdev));
603                 return 0;
604         }
605
606         if (rstate->enabled && rstate->disabled) {
607                 printk(KERN_ERR "%s: invalid configuration for %s\n",
608                        __func__, rdev_get_name(rdev));
609                 return -EINVAL;
610         }
611
612         if (!can_set_state) {
613                 printk(KERN_ERR "%s: no way to set suspend state\n",
614                         __func__);
615                 return -EINVAL;
616         }
617
618         if (rstate->enabled)
619                 ret = rdev->desc->ops->set_suspend_enable(rdev);
620         else
621                 ret = rdev->desc->ops->set_suspend_disable(rdev);
622         if (ret < 0) {
623                 printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
624                 return ret;
625         }
626
627         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
628                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
629                 if (ret < 0) {
630                         printk(KERN_ERR "%s: failed to set voltage\n",
631                                 __func__);
632                         return ret;
633                 }
634         }
635
636         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
637                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
638                 if (ret < 0) {
639                         printk(KERN_ERR "%s: failed to set mode\n", __func__);
640                         return ret;
641                 }
642         }
643         return ret;
644 }
645
646 /* locks held by caller */
647 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
648 {
649         if (!rdev->constraints)
650                 return -EINVAL;
651
652         switch (state) {
653         case PM_SUSPEND_STANDBY:
654                 return suspend_set_state(rdev,
655                         &rdev->constraints->state_standby);
656         case PM_SUSPEND_MEM:
657                 return suspend_set_state(rdev,
658                         &rdev->constraints->state_mem);
659         case PM_SUSPEND_MAX:
660                 return suspend_set_state(rdev,
661                         &rdev->constraints->state_disk);
662         default:
663                 return -EINVAL;
664         }
665 }
666
667 static void print_constraints(struct regulator_dev *rdev)
668 {
669         struct regulation_constraints *constraints = rdev->constraints;
670         char buf[80] = "";
671         int count = 0;
672         int ret;
673
674         if (constraints->min_uV && constraints->max_uV) {
675                 if (constraints->min_uV == constraints->max_uV)
676                         count += sprintf(buf + count, "%d mV ",
677                                          constraints->min_uV / 1000);
678                 else
679                         count += sprintf(buf + count, "%d <--> %d mV ",
680                                          constraints->min_uV / 1000,
681                                          constraints->max_uV / 1000);
682         }
683
684         if (!constraints->min_uV ||
685             constraints->min_uV != constraints->max_uV) {
686                 ret = _regulator_get_voltage(rdev);
687                 if (ret > 0)
688                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
689         }
690
691         if (constraints->min_uA && constraints->max_uA) {
692                 if (constraints->min_uA == constraints->max_uA)
693                         count += sprintf(buf + count, "%d mA ",
694                                          constraints->min_uA / 1000);
695                 else
696                         count += sprintf(buf + count, "%d <--> %d mA ",
697                                          constraints->min_uA / 1000,
698                                          constraints->max_uA / 1000);
699         }
700
701         if (!constraints->min_uA ||
702             constraints->min_uA != constraints->max_uA) {
703                 ret = _regulator_get_current_limit(rdev);
704                 if (ret > 0)
705                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
706         }
707
708         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
709                 count += sprintf(buf + count, "fast ");
710         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
711                 count += sprintf(buf + count, "normal ");
712         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
713                 count += sprintf(buf + count, "idle ");
714         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
715                 count += sprintf(buf + count, "standby");
716
717         printk(KERN_INFO "regulator: %s: %s\n", rdev_get_name(rdev), buf);
718 }
719
720 static int machine_constraints_voltage(struct regulator_dev *rdev,
721         struct regulation_constraints *constraints)
722 {
723         struct regulator_ops *ops = rdev->desc->ops;
724         const char *name = rdev_get_name(rdev);
725         int ret;
726
727         /* do we need to apply the constraint voltage */
728         if (rdev->constraints->apply_uV &&
729                 rdev->constraints->min_uV == rdev->constraints->max_uV &&
730                 ops->set_voltage) {
731                 ret = ops->set_voltage(rdev,
732                         rdev->constraints->min_uV, rdev->constraints->max_uV);
733                         if (ret < 0) {
734                                 printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
735                                        __func__,
736                                        rdev->constraints->min_uV, name);
737                                 rdev->constraints = NULL;
738                                 return ret;
739                         }
740         }
741
742         /* constrain machine-level voltage specs to fit
743          * the actual range supported by this regulator.
744          */
745         if (ops->list_voltage && rdev->desc->n_voltages) {
746                 int     count = rdev->desc->n_voltages;
747                 int     i;
748                 int     min_uV = INT_MAX;
749                 int     max_uV = INT_MIN;
750                 int     cmin = constraints->min_uV;
751                 int     cmax = constraints->max_uV;
752
753                 /* it's safe to autoconfigure fixed-voltage supplies
754                    and the constraints are used by list_voltage. */
755                 if (count == 1 && !cmin) {
756                         cmin = 1;
757                         cmax = INT_MAX;
758                         constraints->min_uV = cmin;
759                         constraints->max_uV = cmax;
760                 }
761
762                 /* voltage constraints are optional */
763                 if ((cmin == 0) && (cmax == 0))
764                         return 0;
765
766                 /* else require explicit machine-level constraints */
767                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
768                         pr_err("%s: %s '%s' voltage constraints\n",
769                                        __func__, "invalid", name);
770                         return -EINVAL;
771                 }
772
773                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
774                 for (i = 0; i < count; i++) {
775                         int     value;
776
777                         value = ops->list_voltage(rdev, i);
778                         if (value <= 0)
779                                 continue;
780
781                         /* maybe adjust [min_uV..max_uV] */
782                         if (value >= cmin && value < min_uV)
783                                 min_uV = value;
784                         if (value <= cmax && value > max_uV)
785                                 max_uV = value;
786                 }
787
788                 /* final: [min_uV..max_uV] valid iff constraints valid */
789                 if (max_uV < min_uV) {
790                         pr_err("%s: %s '%s' voltage constraints\n",
791                                        __func__, "unsupportable", name);
792                         return -EINVAL;
793                 }
794
795                 /* use regulator's subset of machine constraints */
796                 if (constraints->min_uV < min_uV) {
797                         pr_debug("%s: override '%s' %s, %d -> %d\n",
798                                        __func__, name, "min_uV",
799                                         constraints->min_uV, min_uV);
800                         constraints->min_uV = min_uV;
801                 }
802                 if (constraints->max_uV > max_uV) {
803                         pr_debug("%s: override '%s' %s, %d -> %d\n",
804                                        __func__, name, "max_uV",
805                                         constraints->max_uV, max_uV);
806                         constraints->max_uV = max_uV;
807                 }
808         }
809
810         return 0;
811 }
812
813 /**
814  * set_machine_constraints - sets regulator constraints
815  * @rdev: regulator source
816  * @constraints: constraints to apply
817  *
818  * Allows platform initialisation code to define and constrain
819  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
820  * Constraints *must* be set by platform code in order for some
821  * regulator operations to proceed i.e. set_voltage, set_current_limit,
822  * set_mode.
823  */
824 static int set_machine_constraints(struct regulator_dev *rdev,
825         struct regulation_constraints *constraints)
826 {
827         int ret = 0;
828         const char *name;
829         struct regulator_ops *ops = rdev->desc->ops;
830
831         rdev->constraints = constraints;
832
833         name = rdev_get_name(rdev);
834
835         ret = machine_constraints_voltage(rdev, constraints);
836         if (ret != 0)
837                 goto out;
838
839         /* do we need to setup our suspend state */
840         if (constraints->initial_state) {
841                 ret = suspend_prepare(rdev, constraints->initial_state);
842                 if (ret < 0) {
843                         printk(KERN_ERR "%s: failed to set suspend state for %s\n",
844                                __func__, name);
845                         rdev->constraints = NULL;
846                         goto out;
847                 }
848         }
849
850         if (constraints->initial_mode) {
851                 if (!ops->set_mode) {
852                         printk(KERN_ERR "%s: no set_mode operation for %s\n",
853                                __func__, name);
854                         ret = -EINVAL;
855                         goto out;
856                 }
857
858                 ret = ops->set_mode(rdev, constraints->initial_mode);
859                 if (ret < 0) {
860                         printk(KERN_ERR
861                                "%s: failed to set initial mode for %s: %d\n",
862                                __func__, name, ret);
863                         goto out;
864                 }
865         }
866
867         /* If the constraints say the regulator should be on at this point
868          * and we have control then make sure it is enabled.
869          */
870         if ((constraints->always_on || constraints->boot_on) && ops->enable) {
871                 ret = ops->enable(rdev);
872                 if (ret < 0) {
873                         printk(KERN_ERR "%s: failed to enable %s\n",
874                                __func__, name);
875                         rdev->constraints = NULL;
876                         goto out;
877                 }
878         }
879
880         print_constraints(rdev);
881 out:
882         return ret;
883 }
884
885 /**
886  * set_supply - set regulator supply regulator
887  * @rdev: regulator name
888  * @supply_rdev: supply regulator name
889  *
890  * Called by platform initialisation code to set the supply regulator for this
891  * regulator. This ensures that a regulators supply will also be enabled by the
892  * core if it's child is enabled.
893  */
894 static int set_supply(struct regulator_dev *rdev,
895         struct regulator_dev *supply_rdev)
896 {
897         int err;
898
899         err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
900                                 "supply");
901         if (err) {
902                 printk(KERN_ERR
903                        "%s: could not add device link %s err %d\n",
904                        __func__, supply_rdev->dev.kobj.name, err);
905                        goto out;
906         }
907         rdev->supply = supply_rdev;
908         list_add(&rdev->slist, &supply_rdev->supply_list);
909 out:
910         return err;
911 }
912
913 /**
914  * set_consumer_device_supply: Bind a regulator to a symbolic supply
915  * @rdev:         regulator source
916  * @consumer_dev: device the supply applies to
917  * @consumer_dev_name: dev_name() string for device supply applies to
918  * @supply:       symbolic name for supply
919  *
920  * Allows platform initialisation code to map physical regulator
921  * sources to symbolic names for supplies for use by devices.  Devices
922  * should use these symbolic names to request regulators, avoiding the
923  * need to provide board-specific regulator names as platform data.
924  *
925  * Only one of consumer_dev and consumer_dev_name may be specified.
926  */
927 static int set_consumer_device_supply(struct regulator_dev *rdev,
928         struct device *consumer_dev, const char *consumer_dev_name,
929         const char *supply)
930 {
931         struct regulator_map *node;
932         int has_dev;
933
934         if (consumer_dev && consumer_dev_name)
935                 return -EINVAL;
936
937         if (!consumer_dev_name && consumer_dev)
938                 consumer_dev_name = dev_name(consumer_dev);
939
940         if (supply == NULL)
941                 return -EINVAL;
942
943         if (consumer_dev_name != NULL)
944                 has_dev = 1;
945         else
946                 has_dev = 0;
947
948         list_for_each_entry(node, &regulator_map_list, list) {
949                 if (node->dev_name && consumer_dev_name) {
950                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
951                                 continue;
952                 } else if (node->dev_name || consumer_dev_name) {
953                         continue;
954                 }
955
956                 if (strcmp(node->supply, supply) != 0)
957                         continue;
958
959                 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
960                                 dev_name(&node->regulator->dev),
961                                 node->regulator->desc->name,
962                                 supply,
963                                 dev_name(&rdev->dev), rdev_get_name(rdev));
964                 return -EBUSY;
965         }
966
967         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
968         if (node == NULL)
969                 return -ENOMEM;
970
971         node->regulator = rdev;
972         node->supply = supply;
973
974         if (has_dev) {
975                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
976                 if (node->dev_name == NULL) {
977                         kfree(node);
978                         return -ENOMEM;
979                 }
980         }
981
982         list_add(&node->list, &regulator_map_list);
983         return 0;
984 }
985
986 static void unset_regulator_supplies(struct regulator_dev *rdev)
987 {
988         struct regulator_map *node, *n;
989
990         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
991                 if (rdev == node->regulator) {
992                         list_del(&node->list);
993                         kfree(node->dev_name);
994                         kfree(node);
995                 }
996         }
997 }
998
999 #define REG_STR_SIZE    32
1000
1001 static struct regulator *create_regulator(struct regulator_dev *rdev,
1002                                           struct device *dev,
1003                                           const char *supply_name)
1004 {
1005         struct regulator *regulator;
1006         char buf[REG_STR_SIZE];
1007         int err, size;
1008
1009         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1010         if (regulator == NULL)
1011                 return NULL;
1012
1013         mutex_lock(&rdev->mutex);
1014         regulator->rdev = rdev;
1015         list_add(&regulator->list, &rdev->consumer_list);
1016
1017         if (dev) {
1018                 /* create a 'requested_microamps_name' sysfs entry */
1019                 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1020                         supply_name);
1021                 if (size >= REG_STR_SIZE)
1022                         goto overflow_err;
1023
1024                 regulator->dev = dev;
1025                 sysfs_attr_init(&regulator->dev_attr.attr);
1026                 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1027                 if (regulator->dev_attr.attr.name == NULL)
1028                         goto attr_name_err;
1029
1030                 regulator->dev_attr.attr.mode = 0444;
1031                 regulator->dev_attr.show = device_requested_uA_show;
1032                 err = device_create_file(dev, &regulator->dev_attr);
1033                 if (err < 0) {
1034                         printk(KERN_WARNING "%s: could not add regulator_dev"
1035                                 " load sysfs\n", __func__);
1036                         goto attr_name_err;
1037                 }
1038
1039                 /* also add a link to the device sysfs entry */
1040                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1041                                  dev->kobj.name, supply_name);
1042                 if (size >= REG_STR_SIZE)
1043                         goto attr_err;
1044
1045                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1046                 if (regulator->supply_name == NULL)
1047                         goto attr_err;
1048
1049                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1050                                         buf);
1051                 if (err) {
1052                         printk(KERN_WARNING
1053                                "%s: could not add device link %s err %d\n",
1054                                __func__, dev->kobj.name, err);
1055                         goto link_name_err;
1056                 }
1057         }
1058         mutex_unlock(&rdev->mutex);
1059         return regulator;
1060 link_name_err:
1061         kfree(regulator->supply_name);
1062 attr_err:
1063         device_remove_file(regulator->dev, &regulator->dev_attr);
1064 attr_name_err:
1065         kfree(regulator->dev_attr.attr.name);
1066 overflow_err:
1067         list_del(&regulator->list);
1068         kfree(regulator);
1069         mutex_unlock(&rdev->mutex);
1070         return NULL;
1071 }
1072
1073 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1074 {
1075         if (!rdev->desc->ops->enable_time)
1076                 return 0;
1077         return rdev->desc->ops->enable_time(rdev);
1078 }
1079
1080 /* Internal regulator request function */
1081 static struct regulator *_regulator_get(struct device *dev, const char *id,
1082                                         int exclusive)
1083 {
1084         struct regulator_dev *rdev;
1085         struct regulator_map *map;
1086         struct regulator *regulator = ERR_PTR(-ENODEV);
1087         const char *devname = NULL;
1088         int ret;
1089
1090         if (id == NULL) {
1091                 printk(KERN_ERR "regulator: get() with no identifier\n");
1092                 return regulator;
1093         }
1094
1095         if (dev)
1096                 devname = dev_name(dev);
1097
1098         mutex_lock(&regulator_list_mutex);
1099
1100         list_for_each_entry(map, &regulator_map_list, list) {
1101                 /* If the mapping has a device set up it must match */
1102                 if (map->dev_name &&
1103                     (!devname || strcmp(map->dev_name, devname)))
1104                         continue;
1105
1106                 if (strcmp(map->supply, id) == 0) {
1107                         rdev = map->regulator;
1108                         goto found;
1109                 }
1110         }
1111
1112         if (board_wants_dummy_regulator) {
1113                 rdev = dummy_regulator_rdev;
1114                 goto found;
1115         }
1116
1117 #ifdef CONFIG_REGULATOR_DUMMY
1118         if (!devname)
1119                 devname = "deviceless";
1120
1121         /* If the board didn't flag that it was fully constrained then
1122          * substitute in a dummy regulator so consumers can continue.
1123          */
1124         if (!has_full_constraints) {
1125                 pr_warning("%s supply %s not found, using dummy regulator\n",
1126                            devname, id);
1127                 rdev = dummy_regulator_rdev;
1128                 goto found;
1129         }
1130 #endif
1131
1132         mutex_unlock(&regulator_list_mutex);
1133         return regulator;
1134
1135 found:
1136         if (rdev->exclusive) {
1137                 regulator = ERR_PTR(-EPERM);
1138                 goto out;
1139         }
1140
1141         if (exclusive && rdev->open_count) {
1142                 regulator = ERR_PTR(-EBUSY);
1143                 goto out;
1144         }
1145
1146         if (!try_module_get(rdev->owner))
1147                 goto out;
1148
1149         regulator = create_regulator(rdev, dev, id);
1150         if (regulator == NULL) {
1151                 regulator = ERR_PTR(-ENOMEM);
1152                 module_put(rdev->owner);
1153         }
1154
1155         rdev->open_count++;
1156         if (exclusive) {
1157                 rdev->exclusive = 1;
1158
1159                 ret = _regulator_is_enabled(rdev);
1160                 if (ret > 0)
1161                         rdev->use_count = 1;
1162                 else
1163                         rdev->use_count = 0;
1164         }
1165
1166 out:
1167         mutex_unlock(&regulator_list_mutex);
1168
1169         return regulator;
1170 }
1171
1172 /**
1173  * regulator_get - lookup and obtain a reference to a regulator.
1174  * @dev: device for regulator "consumer"
1175  * @id: Supply name or regulator ID.
1176  *
1177  * Returns a struct regulator corresponding to the regulator producer,
1178  * or IS_ERR() condition containing errno.
1179  *
1180  * Use of supply names configured via regulator_set_device_supply() is
1181  * strongly encouraged.  It is recommended that the supply name used
1182  * should match the name used for the supply and/or the relevant
1183  * device pins in the datasheet.
1184  */
1185 struct regulator *regulator_get(struct device *dev, const char *id)
1186 {
1187         return _regulator_get(dev, id, 0);
1188 }
1189 EXPORT_SYMBOL_GPL(regulator_get);
1190
1191 /**
1192  * regulator_get_exclusive - obtain exclusive access to a regulator.
1193  * @dev: device for regulator "consumer"
1194  * @id: Supply name or regulator ID.
1195  *
1196  * Returns a struct regulator corresponding to the regulator producer,
1197  * or IS_ERR() condition containing errno.  Other consumers will be
1198  * unable to obtain this reference is held and the use count for the
1199  * regulator will be initialised to reflect the current state of the
1200  * regulator.
1201  *
1202  * This is intended for use by consumers which cannot tolerate shared
1203  * use of the regulator such as those which need to force the
1204  * regulator off for correct operation of the hardware they are
1205  * controlling.
1206  *
1207  * Use of supply names configured via regulator_set_device_supply() is
1208  * strongly encouraged.  It is recommended that the supply name used
1209  * should match the name used for the supply and/or the relevant
1210  * device pins in the datasheet.
1211  */
1212 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1213 {
1214         return _regulator_get(dev, id, 1);
1215 }
1216 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1217
1218 /**
1219  * regulator_put - "free" the regulator source
1220  * @regulator: regulator source
1221  *
1222  * Note: drivers must ensure that all regulator_enable calls made on this
1223  * regulator source are balanced by regulator_disable calls prior to calling
1224  * this function.
1225  */
1226 void regulator_put(struct regulator *regulator)
1227 {
1228         struct regulator_dev *rdev;
1229
1230         if (regulator == NULL || IS_ERR(regulator))
1231                 return;
1232
1233         mutex_lock(&regulator_list_mutex);
1234         rdev = regulator->rdev;
1235
1236         /* remove any sysfs entries */
1237         if (regulator->dev) {
1238                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1239                 kfree(regulator->supply_name);
1240                 device_remove_file(regulator->dev, &regulator->dev_attr);
1241                 kfree(regulator->dev_attr.attr.name);
1242         }
1243         list_del(&regulator->list);
1244         kfree(regulator);
1245
1246         rdev->open_count--;
1247         rdev->exclusive = 0;
1248
1249         module_put(rdev->owner);
1250         mutex_unlock(&regulator_list_mutex);
1251 }
1252 EXPORT_SYMBOL_GPL(regulator_put);
1253
1254 static int _regulator_can_change_status(struct regulator_dev *rdev)
1255 {
1256         if (!rdev->constraints)
1257                 return 0;
1258
1259         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1260                 return 1;
1261         else
1262                 return 0;
1263 }
1264
1265 /* locks held by regulator_enable() */
1266 static int _regulator_enable(struct regulator_dev *rdev)
1267 {
1268         int ret, delay;
1269
1270         /* do we need to enable the supply regulator first */
1271         if (rdev->supply) {
1272                 ret = _regulator_enable(rdev->supply);
1273                 if (ret < 0) {
1274                         printk(KERN_ERR "%s: failed to enable %s: %d\n",
1275                                __func__, rdev_get_name(rdev), ret);
1276                         return ret;
1277                 }
1278         }
1279
1280         /* check voltage and requested load before enabling */
1281         if (rdev->constraints &&
1282             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1283                 drms_uA_update(rdev);
1284
1285         if (rdev->use_count == 0) {
1286                 /* The regulator may on if it's not switchable or left on */
1287                 ret = _regulator_is_enabled(rdev);
1288                 if (ret == -EINVAL || ret == 0) {
1289                         if (!_regulator_can_change_status(rdev))
1290                                 return -EPERM;
1291
1292                         if (!rdev->desc->ops->enable)
1293                                 return -EINVAL;
1294
1295                         /* Query before enabling in case configuration
1296                          * dependant.  */
1297                         ret = _regulator_get_enable_time(rdev);
1298                         if (ret >= 0) {
1299                                 delay = ret;
1300                         } else {
1301                                 printk(KERN_WARNING
1302                                         "%s: enable_time() failed for %s: %d\n",
1303                                         __func__, rdev_get_name(rdev),
1304                                         ret);
1305                                 delay = 0;
1306                         }
1307
1308                         /* Allow the regulator to ramp; it would be useful
1309                          * to extend this for bulk operations so that the
1310                          * regulators can ramp together.  */
1311                         ret = rdev->desc->ops->enable(rdev);
1312                         if (ret < 0)
1313                                 return ret;
1314
1315                         if (delay >= 1000) {
1316                                 mdelay(delay / 1000);
1317                                 udelay(delay % 1000);
1318                         } else if (delay) {
1319                                 udelay(delay);
1320                         }
1321
1322                 } else if (ret < 0) {
1323                         printk(KERN_ERR "%s: is_enabled() failed for %s: %d\n",
1324                                __func__, rdev_get_name(rdev), ret);
1325                         return ret;
1326                 }
1327                 /* Fallthrough on positive return values - already enabled */
1328         }
1329
1330         rdev->use_count++;
1331
1332         return 0;
1333 }
1334
1335 /**
1336  * regulator_enable - enable regulator output
1337  * @regulator: regulator source
1338  *
1339  * Request that the regulator be enabled with the regulator output at
1340  * the predefined voltage or current value.  Calls to regulator_enable()
1341  * must be balanced with calls to regulator_disable().
1342  *
1343  * NOTE: the output value can be set by other drivers, boot loader or may be
1344  * hardwired in the regulator.
1345  */
1346 int regulator_enable(struct regulator *regulator)
1347 {
1348         struct regulator_dev *rdev = regulator->rdev;
1349         int ret = 0;
1350
1351         mutex_lock(&rdev->mutex);
1352         ret = _regulator_enable(rdev);
1353         mutex_unlock(&rdev->mutex);
1354         return ret;
1355 }
1356 EXPORT_SYMBOL_GPL(regulator_enable);
1357
1358 /* locks held by regulator_disable() */
1359 static int _regulator_disable(struct regulator_dev *rdev,
1360                 struct regulator_dev **supply_rdev_ptr)
1361 {
1362         int ret = 0;
1363         *supply_rdev_ptr = NULL;
1364
1365         if (WARN(rdev->use_count <= 0,
1366                         "unbalanced disables for %s\n",
1367                         rdev_get_name(rdev)))
1368                 return -EIO;
1369
1370         /* are we the last user and permitted to disable ? */
1371         if (rdev->use_count == 1 &&
1372             (rdev->constraints && !rdev->constraints->always_on)) {
1373
1374                 /* we are last user */
1375                 if (_regulator_can_change_status(rdev) &&
1376                     rdev->desc->ops->disable) {
1377                         ret = rdev->desc->ops->disable(rdev);
1378                         if (ret < 0) {
1379                                 printk(KERN_ERR "%s: failed to disable %s\n",
1380                                        __func__, rdev_get_name(rdev));
1381                                 return ret;
1382                         }
1383
1384                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1385                                              NULL);
1386                 }
1387
1388                 /* decrease our supplies ref count and disable if required */
1389                 *supply_rdev_ptr = rdev->supply;
1390
1391                 rdev->use_count = 0;
1392         } else if (rdev->use_count > 1) {
1393
1394                 if (rdev->constraints &&
1395                         (rdev->constraints->valid_ops_mask &
1396                         REGULATOR_CHANGE_DRMS))
1397                         drms_uA_update(rdev);
1398
1399                 rdev->use_count--;
1400         }
1401         return ret;
1402 }
1403
1404 /**
1405  * regulator_disable - disable regulator output
1406  * @regulator: regulator source
1407  *
1408  * Disable the regulator output voltage or current.  Calls to
1409  * regulator_enable() must be balanced with calls to
1410  * regulator_disable().
1411  *
1412  * NOTE: this will only disable the regulator output if no other consumer
1413  * devices have it enabled, the regulator device supports disabling and
1414  * machine constraints permit this operation.
1415  */
1416 int regulator_disable(struct regulator *regulator)
1417 {
1418         struct regulator_dev *rdev = regulator->rdev;
1419         struct regulator_dev *supply_rdev = NULL;
1420         int ret = 0;
1421
1422         mutex_lock(&rdev->mutex);
1423         ret = _regulator_disable(rdev, &supply_rdev);
1424         mutex_unlock(&rdev->mutex);
1425
1426         /* decrease our supplies ref count and disable if required */
1427         while (supply_rdev != NULL) {
1428                 rdev = supply_rdev;
1429
1430                 mutex_lock(&rdev->mutex);
1431                 _regulator_disable(rdev, &supply_rdev);
1432                 mutex_unlock(&rdev->mutex);
1433         }
1434
1435         return ret;
1436 }
1437 EXPORT_SYMBOL_GPL(regulator_disable);
1438
1439 /* locks held by regulator_force_disable() */
1440 static int _regulator_force_disable(struct regulator_dev *rdev,
1441                 struct regulator_dev **supply_rdev_ptr)
1442 {
1443         int ret = 0;
1444
1445         /* force disable */
1446         if (rdev->desc->ops->disable) {
1447                 /* ah well, who wants to live forever... */
1448                 ret = rdev->desc->ops->disable(rdev);
1449                 if (ret < 0) {
1450                         printk(KERN_ERR "%s: failed to force disable %s\n",
1451                                __func__, rdev_get_name(rdev));
1452                         return ret;
1453                 }
1454                 /* notify other consumers that power has been forced off */
1455                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1456                         REGULATOR_EVENT_DISABLE, NULL);
1457         }
1458
1459         /* decrease our supplies ref count and disable if required */
1460         *supply_rdev_ptr = rdev->supply;
1461
1462         rdev->use_count = 0;
1463         return ret;
1464 }
1465
1466 /**
1467  * regulator_force_disable - force disable regulator output
1468  * @regulator: regulator source
1469  *
1470  * Forcibly disable the regulator output voltage or current.
1471  * NOTE: this *will* disable the regulator output even if other consumer
1472  * devices have it enabled. This should be used for situations when device
1473  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1474  */
1475 int regulator_force_disable(struct regulator *regulator)
1476 {
1477         struct regulator_dev *supply_rdev = NULL;
1478         int ret;
1479
1480         mutex_lock(&regulator->rdev->mutex);
1481         regulator->uA_load = 0;
1482         ret = _regulator_force_disable(regulator->rdev, &supply_rdev);
1483         mutex_unlock(&regulator->rdev->mutex);
1484
1485         if (supply_rdev)
1486                 regulator_disable(get_device_regulator(rdev_get_dev(supply_rdev)));
1487
1488         return ret;
1489 }
1490 EXPORT_SYMBOL_GPL(regulator_force_disable);
1491
1492 static int _regulator_is_enabled(struct regulator_dev *rdev)
1493 {
1494         /* If we don't know then assume that the regulator is always on */
1495         if (!rdev->desc->ops->is_enabled)
1496                 return 1;
1497
1498         return rdev->desc->ops->is_enabled(rdev);
1499 }
1500
1501 /**
1502  * regulator_is_enabled - is the regulator output enabled
1503  * @regulator: regulator source
1504  *
1505  * Returns positive if the regulator driver backing the source/client
1506  * has requested that the device be enabled, zero if it hasn't, else a
1507  * negative errno code.
1508  *
1509  * Note that the device backing this regulator handle can have multiple
1510  * users, so it might be enabled even if regulator_enable() was never
1511  * called for this particular source.
1512  */
1513 int regulator_is_enabled(struct regulator *regulator)
1514 {
1515         int ret;
1516
1517         mutex_lock(&regulator->rdev->mutex);
1518         ret = _regulator_is_enabled(regulator->rdev);
1519         mutex_unlock(&regulator->rdev->mutex);
1520
1521         return ret;
1522 }
1523 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1524
1525 /**
1526  * regulator_count_voltages - count regulator_list_voltage() selectors
1527  * @regulator: regulator source
1528  *
1529  * Returns number of selectors, or negative errno.  Selectors are
1530  * numbered starting at zero, and typically correspond to bitfields
1531  * in hardware registers.
1532  */
1533 int regulator_count_voltages(struct regulator *regulator)
1534 {
1535         struct regulator_dev    *rdev = regulator->rdev;
1536
1537         return rdev->desc->n_voltages ? : -EINVAL;
1538 }
1539 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1540
1541 /**
1542  * regulator_list_voltage - enumerate supported voltages
1543  * @regulator: regulator source
1544  * @selector: identify voltage to list
1545  * Context: can sleep
1546  *
1547  * Returns a voltage that can be passed to @regulator_set_voltage(),
1548  * zero if this selector code can't be used on this system, or a
1549  * negative errno.
1550  */
1551 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1552 {
1553         struct regulator_dev    *rdev = regulator->rdev;
1554         struct regulator_ops    *ops = rdev->desc->ops;
1555         int                     ret;
1556
1557         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1558                 return -EINVAL;
1559
1560         mutex_lock(&rdev->mutex);
1561         ret = ops->list_voltage(rdev, selector);
1562         mutex_unlock(&rdev->mutex);
1563
1564         if (ret > 0) {
1565                 if (ret < rdev->constraints->min_uV)
1566                         ret = 0;
1567                 else if (ret > rdev->constraints->max_uV)
1568                         ret = 0;
1569         }
1570
1571         return ret;
1572 }
1573 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1574
1575 /**
1576  * regulator_is_supported_voltage - check if a voltage range can be supported
1577  *
1578  * @regulator: Regulator to check.
1579  * @min_uV: Minimum required voltage in uV.
1580  * @max_uV: Maximum required voltage in uV.
1581  *
1582  * Returns a boolean or a negative error code.
1583  */
1584 int regulator_is_supported_voltage(struct regulator *regulator,
1585                                    int min_uV, int max_uV)
1586 {
1587         int i, voltages, ret;
1588
1589         ret = regulator_count_voltages(regulator);
1590         if (ret < 0)
1591                 return ret;
1592         voltages = ret;
1593
1594         for (i = 0; i < voltages; i++) {
1595                 ret = regulator_list_voltage(regulator, i);
1596
1597                 if (ret >= min_uV && ret <= max_uV)
1598                         return 1;
1599         }
1600
1601         return 0;
1602 }
1603
1604 /**
1605  * regulator_set_voltage - set regulator output voltage
1606  * @regulator: regulator source
1607  * @min_uV: Minimum required voltage in uV
1608  * @max_uV: Maximum acceptable voltage in uV
1609  *
1610  * Sets a voltage regulator to the desired output voltage. This can be set
1611  * during any regulator state. IOW, regulator can be disabled or enabled.
1612  *
1613  * If the regulator is enabled then the voltage will change to the new value
1614  * immediately otherwise if the regulator is disabled the regulator will
1615  * output at the new voltage when enabled.
1616  *
1617  * NOTE: If the regulator is shared between several devices then the lowest
1618  * request voltage that meets the system constraints will be used.
1619  * Regulator system constraints must be set for this regulator before
1620  * calling this function otherwise this call will fail.
1621  */
1622 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1623 {
1624         struct regulator_dev *rdev = regulator->rdev;
1625         int ret;
1626
1627         mutex_lock(&rdev->mutex);
1628
1629         /* sanity check */
1630         if (!rdev->desc->ops->set_voltage) {
1631                 ret = -EINVAL;
1632                 goto out;
1633         }
1634
1635         /* constraints check */
1636         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1637         if (ret < 0)
1638                 goto out;
1639         regulator->min_uV = min_uV;
1640         regulator->max_uV = max_uV;
1641         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1642
1643 out:
1644         _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1645         mutex_unlock(&rdev->mutex);
1646         return ret;
1647 }
1648 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1649
1650 static int _regulator_get_voltage(struct regulator_dev *rdev)
1651 {
1652         /* sanity check */
1653         if (rdev->desc->ops->get_voltage)
1654                 return rdev->desc->ops->get_voltage(rdev);
1655         else
1656                 return -EINVAL;
1657 }
1658
1659 /**
1660  * regulator_get_voltage - get regulator output voltage
1661  * @regulator: regulator source
1662  *
1663  * This returns the current regulator voltage in uV.
1664  *
1665  * NOTE: If the regulator is disabled it will return the voltage value. This
1666  * function should not be used to determine regulator state.
1667  */
1668 int regulator_get_voltage(struct regulator *regulator)
1669 {
1670         int ret;
1671
1672         mutex_lock(&regulator->rdev->mutex);
1673
1674         ret = _regulator_get_voltage(regulator->rdev);
1675
1676         mutex_unlock(&regulator->rdev->mutex);
1677
1678         return ret;
1679 }
1680 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1681
1682 /**
1683  * regulator_set_current_limit - set regulator output current limit
1684  * @regulator: regulator source
1685  * @min_uA: Minimuum supported current in uA
1686  * @max_uA: Maximum supported current in uA
1687  *
1688  * Sets current sink to the desired output current. This can be set during
1689  * any regulator state. IOW, regulator can be disabled or enabled.
1690  *
1691  * If the regulator is enabled then the current will change to the new value
1692  * immediately otherwise if the regulator is disabled the regulator will
1693  * output at the new current when enabled.
1694  *
1695  * NOTE: Regulator system constraints must be set for this regulator before
1696  * calling this function otherwise this call will fail.
1697  */
1698 int regulator_set_current_limit(struct regulator *regulator,
1699                                int min_uA, int max_uA)
1700 {
1701         struct regulator_dev *rdev = regulator->rdev;
1702         int ret;
1703
1704         mutex_lock(&rdev->mutex);
1705
1706         /* sanity check */
1707         if (!rdev->desc->ops->set_current_limit) {
1708                 ret = -EINVAL;
1709                 goto out;
1710         }
1711
1712         /* constraints check */
1713         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1714         if (ret < 0)
1715                 goto out;
1716
1717         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1718 out:
1719         mutex_unlock(&rdev->mutex);
1720         return ret;
1721 }
1722 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1723
1724 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1725 {
1726         int ret;
1727
1728         mutex_lock(&rdev->mutex);
1729
1730         /* sanity check */
1731         if (!rdev->desc->ops->get_current_limit) {
1732                 ret = -EINVAL;
1733                 goto out;
1734         }
1735
1736         ret = rdev->desc->ops->get_current_limit(rdev);
1737 out:
1738         mutex_unlock(&rdev->mutex);
1739         return ret;
1740 }
1741
1742 /**
1743  * regulator_get_current_limit - get regulator output current
1744  * @regulator: regulator source
1745  *
1746  * This returns the current supplied by the specified current sink in uA.
1747  *
1748  * NOTE: If the regulator is disabled it will return the current value. This
1749  * function should not be used to determine regulator state.
1750  */
1751 int regulator_get_current_limit(struct regulator *regulator)
1752 {
1753         return _regulator_get_current_limit(regulator->rdev);
1754 }
1755 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1756
1757 /**
1758  * regulator_set_mode - set regulator operating mode
1759  * @regulator: regulator source
1760  * @mode: operating mode - one of the REGULATOR_MODE constants
1761  *
1762  * Set regulator operating mode to increase regulator efficiency or improve
1763  * regulation performance.
1764  *
1765  * NOTE: Regulator system constraints must be set for this regulator before
1766  * calling this function otherwise this call will fail.
1767  */
1768 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1769 {
1770         struct regulator_dev *rdev = regulator->rdev;
1771         int ret;
1772         int regulator_curr_mode;
1773
1774         mutex_lock(&rdev->mutex);
1775
1776         /* sanity check */
1777         if (!rdev->desc->ops->set_mode) {
1778                 ret = -EINVAL;
1779                 goto out;
1780         }
1781
1782         /* return if the same mode is requested */
1783         if (rdev->desc->ops->get_mode) {
1784                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
1785                 if (regulator_curr_mode == mode) {
1786                         ret = 0;
1787                         goto out;
1788                 }
1789         }
1790
1791         /* constraints check */
1792         ret = regulator_check_mode(rdev, mode);
1793         if (ret < 0)
1794                 goto out;
1795
1796         ret = rdev->desc->ops->set_mode(rdev, mode);
1797 out:
1798         mutex_unlock(&rdev->mutex);
1799         return ret;
1800 }
1801 EXPORT_SYMBOL_GPL(regulator_set_mode);
1802
1803 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1804 {
1805         int ret;
1806
1807         mutex_lock(&rdev->mutex);
1808
1809         /* sanity check */
1810         if (!rdev->desc->ops->get_mode) {
1811                 ret = -EINVAL;
1812                 goto out;
1813         }
1814
1815         ret = rdev->desc->ops->get_mode(rdev);
1816 out:
1817         mutex_unlock(&rdev->mutex);
1818         return ret;
1819 }
1820
1821 /**
1822  * regulator_get_mode - get regulator operating mode
1823  * @regulator: regulator source
1824  *
1825  * Get the current regulator operating mode.
1826  */
1827 unsigned int regulator_get_mode(struct regulator *regulator)
1828 {
1829         return _regulator_get_mode(regulator->rdev);
1830 }
1831 EXPORT_SYMBOL_GPL(regulator_get_mode);
1832
1833 /**
1834  * regulator_set_optimum_mode - set regulator optimum operating mode
1835  * @regulator: regulator source
1836  * @uA_load: load current
1837  *
1838  * Notifies the regulator core of a new device load. This is then used by
1839  * DRMS (if enabled by constraints) to set the most efficient regulator
1840  * operating mode for the new regulator loading.
1841  *
1842  * Consumer devices notify their supply regulator of the maximum power
1843  * they will require (can be taken from device datasheet in the power
1844  * consumption tables) when they change operational status and hence power
1845  * state. Examples of operational state changes that can affect power
1846  * consumption are :-
1847  *
1848  *    o Device is opened / closed.
1849  *    o Device I/O is about to begin or has just finished.
1850  *    o Device is idling in between work.
1851  *
1852  * This information is also exported via sysfs to userspace.
1853  *
1854  * DRMS will sum the total requested load on the regulator and change
1855  * to the most efficient operating mode if platform constraints allow.
1856  *
1857  * Returns the new regulator mode or error.
1858  */
1859 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1860 {
1861         struct regulator_dev *rdev = regulator->rdev;
1862         struct regulator *consumer;
1863         int ret, output_uV, input_uV, total_uA_load = 0;
1864         unsigned int mode;
1865
1866         mutex_lock(&rdev->mutex);
1867
1868         regulator->uA_load = uA_load;
1869         ret = regulator_check_drms(rdev);
1870         if (ret < 0)
1871                 goto out;
1872         ret = -EINVAL;
1873
1874         /* sanity check */
1875         if (!rdev->desc->ops->get_optimum_mode)
1876                 goto out;
1877
1878         /* get output voltage */
1879         output_uV = rdev->desc->ops->get_voltage(rdev);
1880         if (output_uV <= 0) {
1881                 printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1882                         __func__, rdev_get_name(rdev));
1883                 goto out;
1884         }
1885
1886         /* get input voltage */
1887         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1888                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1889         else
1890                 input_uV = rdev->constraints->input_uV;
1891         if (input_uV <= 0) {
1892                 printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1893                         __func__, rdev_get_name(rdev));
1894                 goto out;
1895         }
1896
1897         /* calc total requested load for this regulator */
1898         list_for_each_entry(consumer, &rdev->consumer_list, list)
1899                 total_uA_load += consumer->uA_load;
1900
1901         mode = rdev->desc->ops->get_optimum_mode(rdev,
1902                                                  input_uV, output_uV,
1903                                                  total_uA_load);
1904         ret = regulator_check_mode(rdev, mode);
1905         if (ret < 0) {
1906                 printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1907                         " %d uA %d -> %d uV\n", __func__, rdev_get_name(rdev),
1908                         total_uA_load, input_uV, output_uV);
1909                 goto out;
1910         }
1911
1912         ret = rdev->desc->ops->set_mode(rdev, mode);
1913         if (ret < 0) {
1914                 printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1915                         __func__, mode, rdev_get_name(rdev));
1916                 goto out;
1917         }
1918         ret = mode;
1919 out:
1920         mutex_unlock(&rdev->mutex);
1921         return ret;
1922 }
1923 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1924
1925 /**
1926  * regulator_register_notifier - register regulator event notifier
1927  * @regulator: regulator source
1928  * @nb: notifier block
1929  *
1930  * Register notifier block to receive regulator events.
1931  */
1932 int regulator_register_notifier(struct regulator *regulator,
1933                               struct notifier_block *nb)
1934 {
1935         return blocking_notifier_chain_register(&regulator->rdev->notifier,
1936                                                 nb);
1937 }
1938 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1939
1940 /**
1941  * regulator_unregister_notifier - unregister regulator event notifier
1942  * @regulator: regulator source
1943  * @nb: notifier block
1944  *
1945  * Unregister regulator event notifier block.
1946  */
1947 int regulator_unregister_notifier(struct regulator *regulator,
1948                                 struct notifier_block *nb)
1949 {
1950         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1951                                                   nb);
1952 }
1953 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1954
1955 /* notify regulator consumers and downstream regulator consumers.
1956  * Note mutex must be held by caller.
1957  */
1958 static void _notifier_call_chain(struct regulator_dev *rdev,
1959                                   unsigned long event, void *data)
1960 {
1961         struct regulator_dev *_rdev;
1962
1963         /* call rdev chain first */
1964         blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1965
1966         /* now notify regulator we supply */
1967         list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1968                 mutex_lock(&_rdev->mutex);
1969                 _notifier_call_chain(_rdev, event, data);
1970                 mutex_unlock(&_rdev->mutex);
1971         }
1972 }
1973
1974 /**
1975  * regulator_bulk_get - get multiple regulator consumers
1976  *
1977  * @dev:           Device to supply
1978  * @num_consumers: Number of consumers to register
1979  * @consumers:     Configuration of consumers; clients are stored here.
1980  *
1981  * @return 0 on success, an errno on failure.
1982  *
1983  * This helper function allows drivers to get several regulator
1984  * consumers in one operation.  If any of the regulators cannot be
1985  * acquired then any regulators that were allocated will be freed
1986  * before returning to the caller.
1987  */
1988 int regulator_bulk_get(struct device *dev, int num_consumers,
1989                        struct regulator_bulk_data *consumers)
1990 {
1991         int i;
1992         int ret;
1993
1994         for (i = 0; i < num_consumers; i++)
1995                 consumers[i].consumer = NULL;
1996
1997         for (i = 0; i < num_consumers; i++) {
1998                 consumers[i].consumer = regulator_get(dev,
1999                                                       consumers[i].supply);
2000                 if (IS_ERR(consumers[i].consumer)) {
2001                         ret = PTR_ERR(consumers[i].consumer);
2002                         dev_err(dev, "Failed to get supply '%s': %d\n",
2003                                 consumers[i].supply, ret);
2004                         consumers[i].consumer = NULL;
2005                         goto err;
2006                 }
2007         }
2008
2009         return 0;
2010
2011 err:
2012         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2013                 regulator_put(consumers[i].consumer);
2014
2015         return ret;
2016 }
2017 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2018
2019 /**
2020  * regulator_bulk_enable - enable multiple regulator consumers
2021  *
2022  * @num_consumers: Number of consumers
2023  * @consumers:     Consumer data; clients are stored here.
2024  * @return         0 on success, an errno on failure
2025  *
2026  * This convenience API allows consumers to enable multiple regulator
2027  * clients in a single API call.  If any consumers cannot be enabled
2028  * then any others that were enabled will be disabled again prior to
2029  * return.
2030  */
2031 int regulator_bulk_enable(int num_consumers,
2032                           struct regulator_bulk_data *consumers)
2033 {
2034         int i;
2035         int ret;
2036
2037         for (i = 0; i < num_consumers; i++) {
2038                 ret = regulator_enable(consumers[i].consumer);
2039                 if (ret != 0)
2040                         goto err;
2041         }
2042
2043         return 0;
2044
2045 err:
2046         printk(KERN_ERR "Failed to enable %s: %d\n", consumers[i].supply, ret);
2047         for (--i; i >= 0; --i)
2048                 regulator_disable(consumers[i].consumer);
2049
2050         return ret;
2051 }
2052 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2053
2054 /**
2055  * regulator_bulk_disable - disable multiple regulator consumers
2056  *
2057  * @num_consumers: Number of consumers
2058  * @consumers:     Consumer data; clients are stored here.
2059  * @return         0 on success, an errno on failure
2060  *
2061  * This convenience API allows consumers to disable multiple regulator
2062  * clients in a single API call.  If any consumers cannot be enabled
2063  * then any others that were disabled will be disabled again prior to
2064  * return.
2065  */
2066 int regulator_bulk_disable(int num_consumers,
2067                            struct regulator_bulk_data *consumers)
2068 {
2069         int i;
2070         int ret;
2071
2072         for (i = 0; i < num_consumers; i++) {
2073                 ret = regulator_disable(consumers[i].consumer);
2074                 if (ret != 0)
2075                         goto err;
2076         }
2077
2078         return 0;
2079
2080 err:
2081         printk(KERN_ERR "Failed to disable %s: %d\n", consumers[i].supply,
2082                ret);
2083         for (--i; i >= 0; --i)
2084                 regulator_enable(consumers[i].consumer);
2085
2086         return ret;
2087 }
2088 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2089
2090 /**
2091  * regulator_bulk_free - free multiple regulator consumers
2092  *
2093  * @num_consumers: Number of consumers
2094  * @consumers:     Consumer data; clients are stored here.
2095  *
2096  * This convenience API allows consumers to free multiple regulator
2097  * clients in a single API call.
2098  */
2099 void regulator_bulk_free(int num_consumers,
2100                          struct regulator_bulk_data *consumers)
2101 {
2102         int i;
2103
2104         for (i = 0; i < num_consumers; i++) {
2105                 regulator_put(consumers[i].consumer);
2106                 consumers[i].consumer = NULL;
2107         }
2108 }
2109 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2110
2111 /**
2112  * regulator_notifier_call_chain - call regulator event notifier
2113  * @rdev: regulator source
2114  * @event: notifier block
2115  * @data: callback-specific data.
2116  *
2117  * Called by regulator drivers to notify clients a regulator event has
2118  * occurred. We also notify regulator clients downstream.
2119  * Note lock must be held by caller.
2120  */
2121 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2122                                   unsigned long event, void *data)
2123 {
2124         _notifier_call_chain(rdev, event, data);
2125         return NOTIFY_DONE;
2126
2127 }
2128 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2129
2130 /**
2131  * regulator_mode_to_status - convert a regulator mode into a status
2132  *
2133  * @mode: Mode to convert
2134  *
2135  * Convert a regulator mode into a status.
2136  */
2137 int regulator_mode_to_status(unsigned int mode)
2138 {
2139         switch (mode) {
2140         case REGULATOR_MODE_FAST:
2141                 return REGULATOR_STATUS_FAST;
2142         case REGULATOR_MODE_NORMAL:
2143                 return REGULATOR_STATUS_NORMAL;
2144         case REGULATOR_MODE_IDLE:
2145                 return REGULATOR_STATUS_IDLE;
2146         case REGULATOR_STATUS_STANDBY:
2147                 return REGULATOR_STATUS_STANDBY;
2148         default:
2149                 return 0;
2150         }
2151 }
2152 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2153
2154 /*
2155  * To avoid cluttering sysfs (and memory) with useless state, only
2156  * create attributes that can be meaningfully displayed.
2157  */
2158 static int add_regulator_attributes(struct regulator_dev *rdev)
2159 {
2160         struct device           *dev = &rdev->dev;
2161         struct regulator_ops    *ops = rdev->desc->ops;
2162         int                     status = 0;
2163
2164         /* some attributes need specific methods to be displayed */
2165         if (ops->get_voltage) {
2166                 status = device_create_file(dev, &dev_attr_microvolts);
2167                 if (status < 0)
2168                         return status;
2169         }
2170         if (ops->get_current_limit) {
2171                 status = device_create_file(dev, &dev_attr_microamps);
2172                 if (status < 0)
2173                         return status;
2174         }
2175         if (ops->get_mode) {
2176                 status = device_create_file(dev, &dev_attr_opmode);
2177                 if (status < 0)
2178                         return status;
2179         }
2180         if (ops->is_enabled) {
2181                 status = device_create_file(dev, &dev_attr_state);
2182                 if (status < 0)
2183                         return status;
2184         }
2185         if (ops->get_status) {
2186                 status = device_create_file(dev, &dev_attr_status);
2187                 if (status < 0)
2188                         return status;
2189         }
2190
2191         /* some attributes are type-specific */
2192         if (rdev->desc->type == REGULATOR_CURRENT) {
2193                 status = device_create_file(dev, &dev_attr_requested_microamps);
2194                 if (status < 0)
2195                         return status;
2196         }
2197
2198         /* all the other attributes exist to support constraints;
2199          * don't show them if there are no constraints, or if the
2200          * relevant supporting methods are missing.
2201          */
2202         if (!rdev->constraints)
2203                 return status;
2204
2205         /* constraints need specific supporting methods */
2206         if (ops->set_voltage) {
2207                 status = device_create_file(dev, &dev_attr_min_microvolts);
2208                 if (status < 0)
2209                         return status;
2210                 status = device_create_file(dev, &dev_attr_max_microvolts);
2211                 if (status < 0)
2212                         return status;
2213         }
2214         if (ops->set_current_limit) {
2215                 status = device_create_file(dev, &dev_attr_min_microamps);
2216                 if (status < 0)
2217                         return status;
2218                 status = device_create_file(dev, &dev_attr_max_microamps);
2219                 if (status < 0)
2220                         return status;
2221         }
2222
2223         /* suspend mode constraints need multiple supporting methods */
2224         if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2225                 return status;
2226
2227         status = device_create_file(dev, &dev_attr_suspend_standby_state);
2228         if (status < 0)
2229                 return status;
2230         status = device_create_file(dev, &dev_attr_suspend_mem_state);
2231         if (status < 0)
2232                 return status;
2233         status = device_create_file(dev, &dev_attr_suspend_disk_state);
2234         if (status < 0)
2235                 return status;
2236
2237         if (ops->set_suspend_voltage) {
2238                 status = device_create_file(dev,
2239                                 &dev_attr_suspend_standby_microvolts);
2240                 if (status < 0)
2241                         return status;
2242                 status = device_create_file(dev,
2243                                 &dev_attr_suspend_mem_microvolts);
2244                 if (status < 0)
2245                         return status;
2246                 status = device_create_file(dev,
2247                                 &dev_attr_suspend_disk_microvolts);
2248                 if (status < 0)
2249                         return status;
2250         }
2251
2252         if (ops->set_suspend_mode) {
2253                 status = device_create_file(dev,
2254                                 &dev_attr_suspend_standby_mode);
2255                 if (status < 0)
2256                         return status;
2257                 status = device_create_file(dev,
2258                                 &dev_attr_suspend_mem_mode);
2259                 if (status < 0)
2260                         return status;
2261                 status = device_create_file(dev,
2262                                 &dev_attr_suspend_disk_mode);
2263                 if (status < 0)
2264                         return status;
2265         }
2266
2267         return status;
2268 }
2269
2270 /**
2271  * regulator_register - register regulator
2272  * @regulator_desc: regulator to register
2273  * @dev: struct device for the regulator
2274  * @init_data: platform provided init data, passed through by driver
2275  * @driver_data: private regulator data
2276  *
2277  * Called by regulator drivers to register a regulator.
2278  * Returns 0 on success.
2279  */
2280 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2281         struct device *dev, struct regulator_init_data *init_data,
2282         void *driver_data)
2283 {
2284         static atomic_t regulator_no = ATOMIC_INIT(0);
2285         struct regulator_dev *rdev;
2286         int ret, i;
2287
2288         if (regulator_desc == NULL)
2289                 return ERR_PTR(-EINVAL);
2290
2291         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2292                 return ERR_PTR(-EINVAL);
2293
2294         if (regulator_desc->type != REGULATOR_VOLTAGE &&
2295             regulator_desc->type != REGULATOR_CURRENT)
2296                 return ERR_PTR(-EINVAL);
2297
2298         if (!init_data)
2299                 return ERR_PTR(-EINVAL);
2300
2301         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2302         if (rdev == NULL)
2303                 return ERR_PTR(-ENOMEM);
2304
2305         mutex_lock(&regulator_list_mutex);
2306
2307         mutex_init(&rdev->mutex);
2308         rdev->reg_data = driver_data;
2309         rdev->owner = regulator_desc->owner;
2310         rdev->desc = regulator_desc;
2311         INIT_LIST_HEAD(&rdev->consumer_list);
2312         INIT_LIST_HEAD(&rdev->supply_list);
2313         INIT_LIST_HEAD(&rdev->list);
2314         INIT_LIST_HEAD(&rdev->slist);
2315         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2316
2317         /* preform any regulator specific init */
2318         if (init_data->regulator_init) {
2319                 ret = init_data->regulator_init(rdev->reg_data);
2320                 if (ret < 0)
2321                         goto clean;
2322         }
2323
2324         /* register with sysfs */
2325         rdev->dev.class = &regulator_class;
2326         rdev->dev.parent = dev;
2327         dev_set_name(&rdev->dev, "regulator.%d",
2328                      atomic_inc_return(&regulator_no) - 1);
2329         ret = device_register(&rdev->dev);
2330         if (ret != 0) {
2331                 put_device(&rdev->dev);
2332                 goto clean;
2333         }
2334
2335         dev_set_drvdata(&rdev->dev, rdev);
2336
2337         /* set regulator constraints */
2338         ret = set_machine_constraints(rdev, &init_data->constraints);
2339         if (ret < 0)
2340                 goto scrub;
2341
2342         /* add attributes supported by this regulator */
2343         ret = add_regulator_attributes(rdev);
2344         if (ret < 0)
2345                 goto scrub;
2346
2347         /* set supply regulator if it exists */
2348         if (init_data->supply_regulator && init_data->supply_regulator_dev) {
2349                 dev_err(dev,
2350                         "Supply regulator specified by both name and dev\n");
2351                 goto scrub;
2352         }
2353
2354         if (init_data->supply_regulator) {
2355                 struct regulator_dev *r;
2356                 int found = 0;
2357
2358                 list_for_each_entry(r, &regulator_list, list) {
2359                         if (strcmp(rdev_get_name(r),
2360                                    init_data->supply_regulator) == 0) {
2361                                 found = 1;
2362                                 break;
2363                         }
2364                 }
2365
2366                 if (!found) {
2367                         dev_err(dev, "Failed to find supply %s\n",
2368                                 init_data->supply_regulator);
2369                         goto scrub;
2370                 }
2371
2372                 ret = set_supply(rdev, r);
2373                 if (ret < 0)
2374                         goto scrub;
2375         }
2376
2377         if (init_data->supply_regulator_dev) {
2378                 dev_warn(dev, "Uses supply_regulator_dev instead of regulator_supply\n");
2379                 ret = set_supply(rdev,
2380                         dev_get_drvdata(init_data->supply_regulator_dev));
2381                 if (ret < 0)
2382                         goto scrub;
2383         }
2384
2385         /* add consumers devices */
2386         for (i = 0; i < init_data->num_consumer_supplies; i++) {
2387                 ret = set_consumer_device_supply(rdev,
2388                         init_data->consumer_supplies[i].dev,
2389                         init_data->consumer_supplies[i].dev_name,
2390                         init_data->consumer_supplies[i].supply);
2391                 if (ret < 0)
2392                         goto unset_supplies;
2393         }
2394
2395         list_add(&rdev->list, &regulator_list);
2396 out:
2397         mutex_unlock(&regulator_list_mutex);
2398         return rdev;
2399
2400 unset_supplies:
2401         unset_regulator_supplies(rdev);
2402
2403 scrub:
2404         device_unregister(&rdev->dev);
2405         /* device core frees rdev */
2406         rdev = ERR_PTR(ret);
2407         goto out;
2408
2409 clean:
2410         kfree(rdev);
2411         rdev = ERR_PTR(ret);
2412         goto out;
2413 }
2414 EXPORT_SYMBOL_GPL(regulator_register);
2415
2416 /**
2417  * regulator_unregister - unregister regulator
2418  * @rdev: regulator to unregister
2419  *
2420  * Called by regulator drivers to unregister a regulator.
2421  */
2422 void regulator_unregister(struct regulator_dev *rdev)
2423 {
2424         if (rdev == NULL)
2425                 return;
2426
2427         mutex_lock(&regulator_list_mutex);
2428         WARN_ON(rdev->open_count);
2429         unset_regulator_supplies(rdev);
2430         list_del(&rdev->list);
2431         if (rdev->supply)
2432                 sysfs_remove_link(&rdev->dev.kobj, "supply");
2433         device_unregister(&rdev->dev);
2434         mutex_unlock(&regulator_list_mutex);
2435 }
2436 EXPORT_SYMBOL_GPL(regulator_unregister);
2437
2438 /**
2439  * regulator_suspend_prepare - prepare regulators for system wide suspend
2440  * @state: system suspend state
2441  *
2442  * Configure each regulator with it's suspend operating parameters for state.
2443  * This will usually be called by machine suspend code prior to supending.
2444  */
2445 int regulator_suspend_prepare(suspend_state_t state)
2446 {
2447         struct regulator_dev *rdev;
2448         int ret = 0;
2449
2450         /* ON is handled by regulator active state */
2451         if (state == PM_SUSPEND_ON)
2452                 return -EINVAL;
2453
2454         mutex_lock(&regulator_list_mutex);
2455         list_for_each_entry(rdev, &regulator_list, list) {
2456
2457                 mutex_lock(&rdev->mutex);
2458                 ret = suspend_prepare(rdev, state);
2459                 mutex_unlock(&rdev->mutex);
2460
2461                 if (ret < 0) {
2462                         printk(KERN_ERR "%s: failed to prepare %s\n",
2463                                 __func__, rdev_get_name(rdev));
2464                         goto out;
2465                 }
2466         }
2467 out:
2468         mutex_unlock(&regulator_list_mutex);
2469         return ret;
2470 }
2471 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2472
2473 /**
2474  * regulator_has_full_constraints - the system has fully specified constraints
2475  *
2476  * Calling this function will cause the regulator API to disable all
2477  * regulators which have a zero use count and don't have an always_on
2478  * constraint in a late_initcall.
2479  *
2480  * The intention is that this will become the default behaviour in a
2481  * future kernel release so users are encouraged to use this facility
2482  * now.
2483  */
2484 void regulator_has_full_constraints(void)
2485 {
2486         has_full_constraints = 1;
2487 }
2488 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2489
2490 /**
2491  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2492  *
2493  * Calling this function will cause the regulator API to provide a
2494  * dummy regulator to consumers if no physical regulator is found,
2495  * allowing most consumers to proceed as though a regulator were
2496  * configured.  This allows systems such as those with software
2497  * controllable regulators for the CPU core only to be brought up more
2498  * readily.
2499  */
2500 void regulator_use_dummy_regulator(void)
2501 {
2502         board_wants_dummy_regulator = true;
2503 }
2504 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2505
2506 /**
2507  * rdev_get_drvdata - get rdev regulator driver data
2508  * @rdev: regulator
2509  *
2510  * Get rdev regulator driver private data. This call can be used in the
2511  * regulator driver context.
2512  */
2513 void *rdev_get_drvdata(struct regulator_dev *rdev)
2514 {
2515         return rdev->reg_data;
2516 }
2517 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2518
2519 /**
2520  * regulator_get_drvdata - get regulator driver data
2521  * @regulator: regulator
2522  *
2523  * Get regulator driver private data. This call can be used in the consumer
2524  * driver context when non API regulator specific functions need to be called.
2525  */
2526 void *regulator_get_drvdata(struct regulator *regulator)
2527 {
2528         return regulator->rdev->reg_data;
2529 }
2530 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2531
2532 /**
2533  * regulator_set_drvdata - set regulator driver data
2534  * @regulator: regulator
2535  * @data: data
2536  */
2537 void regulator_set_drvdata(struct regulator *regulator, void *data)
2538 {
2539         regulator->rdev->reg_data = data;
2540 }
2541 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2542
2543 /**
2544  * regulator_get_id - get regulator ID
2545  * @rdev: regulator
2546  */
2547 int rdev_get_id(struct regulator_dev *rdev)
2548 {
2549         return rdev->desc->id;
2550 }
2551 EXPORT_SYMBOL_GPL(rdev_get_id);
2552
2553 struct device *rdev_get_dev(struct regulator_dev *rdev)
2554 {
2555         return &rdev->dev;
2556 }
2557 EXPORT_SYMBOL_GPL(rdev_get_dev);
2558
2559 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2560 {
2561         return reg_init_data->driver_data;
2562 }
2563 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2564
2565 static int __init regulator_init(void)
2566 {
2567         int ret;
2568
2569         printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2570
2571         ret = class_register(&regulator_class);
2572
2573         regulator_dummy_init();
2574
2575         return ret;
2576 }
2577
2578 /* init early to allow our consumers to complete system booting */
2579 core_initcall(regulator_init);
2580
2581 static int __init regulator_init_complete(void)
2582 {
2583         struct regulator_dev *rdev;
2584         struct regulator_ops *ops;
2585         struct regulation_constraints *c;
2586         int enabled, ret;
2587         const char *name;
2588
2589         mutex_lock(&regulator_list_mutex);
2590
2591         /* If we have a full configuration then disable any regulators
2592          * which are not in use or always_on.  This will become the
2593          * default behaviour in the future.
2594          */
2595         list_for_each_entry(rdev, &regulator_list, list) {
2596                 ops = rdev->desc->ops;
2597                 c = rdev->constraints;
2598
2599                 name = rdev_get_name(rdev);
2600
2601                 if (!ops->disable || (c && c->always_on))
2602                         continue;
2603
2604                 mutex_lock(&rdev->mutex);
2605
2606                 if (rdev->use_count)
2607                         goto unlock;
2608
2609                 /* If we can't read the status assume it's on. */
2610                 if (ops->is_enabled)
2611                         enabled = ops->is_enabled(rdev);
2612                 else
2613                         enabled = 1;
2614
2615                 if (!enabled)
2616                         goto unlock;
2617
2618                 if (has_full_constraints) {
2619                         /* We log since this may kill the system if it
2620                          * goes wrong. */
2621                         printk(KERN_INFO "%s: disabling %s\n",
2622                                __func__, name);
2623                         ret = ops->disable(rdev);
2624                         if (ret != 0) {
2625                                 printk(KERN_ERR
2626                                        "%s: couldn't disable %s: %d\n",
2627                                        __func__, name, ret);
2628                         }
2629                 } else {
2630                         /* The intention is that in future we will
2631                          * assume that full constraints are provided
2632                          * so warn even if we aren't going to do
2633                          * anything here.
2634                          */
2635                         printk(KERN_WARNING
2636                                "%s: incomplete constraints, leaving %s on\n",
2637                                __func__, name);
2638                 }
2639
2640 unlock:
2641                 mutex_unlock(&rdev->mutex);
2642         }
2643
2644         mutex_unlock(&regulator_list_mutex);
2645
2646         return 0;
2647 }
2648 late_initcall(regulator_init_complete);