]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/regulator/core.c
Merge remote-tracking branch 'regulator/topic/helpers' into regulator-next
[karo-tx-linux.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37
38 #include "dummy.h"
39
40 #define rdev_crit(rdev, fmt, ...)                                       \
41         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_err(rdev, fmt, ...)                                        \
43         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_warn(rdev, fmt, ...)                                       \
45         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_info(rdev, fmt, ...)                                       \
47         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_dbg(rdev, fmt, ...)                                        \
49         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51 static DEFINE_MUTEX(regulator_list_mutex);
52 static LIST_HEAD(regulator_list);
53 static LIST_HEAD(regulator_map_list);
54 static LIST_HEAD(regulator_ena_gpio_list);
55 static bool has_full_constraints;
56 static bool board_wants_dummy_regulator;
57
58 static struct dentry *debugfs_root;
59
60 /*
61  * struct regulator_map
62  *
63  * Used to provide symbolic supply names to devices.
64  */
65 struct regulator_map {
66         struct list_head list;
67         const char *dev_name;   /* The dev_name() for the consumer */
68         const char *supply;
69         struct regulator_dev *regulator;
70 };
71
72 /*
73  * struct regulator_enable_gpio
74  *
75  * Management for shared enable GPIO pin
76  */
77 struct regulator_enable_gpio {
78         struct list_head list;
79         int gpio;
80         u32 enable_count;       /* a number of enabled shared GPIO */
81         u32 request_count;      /* a number of requested shared GPIO */
82         unsigned int ena_gpio_invert:1;
83 };
84
85 /*
86  * struct regulator
87  *
88  * One for each consumer device.
89  */
90 struct regulator {
91         struct device *dev;
92         struct list_head list;
93         unsigned int always_on:1;
94         unsigned int bypass:1;
95         int uA_load;
96         int min_uV;
97         int max_uV;
98         char *supply_name;
99         struct device_attribute dev_attr;
100         struct regulator_dev *rdev;
101         struct dentry *debugfs;
102 };
103
104 static int _regulator_is_enabled(struct regulator_dev *rdev);
105 static int _regulator_disable(struct regulator_dev *rdev);
106 static int _regulator_get_voltage(struct regulator_dev *rdev);
107 static int _regulator_get_current_limit(struct regulator_dev *rdev);
108 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
109 static void _notifier_call_chain(struct regulator_dev *rdev,
110                                   unsigned long event, void *data);
111 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
112                                      int min_uV, int max_uV);
113 static struct regulator *create_regulator(struct regulator_dev *rdev,
114                                           struct device *dev,
115                                           const char *supply_name);
116
117 static const char *rdev_get_name(struct regulator_dev *rdev)
118 {
119         if (rdev->constraints && rdev->constraints->name)
120                 return rdev->constraints->name;
121         else if (rdev->desc->name)
122                 return rdev->desc->name;
123         else
124                 return "";
125 }
126
127 /**
128  * of_get_regulator - get a regulator device node based on supply name
129  * @dev: Device pointer for the consumer (of regulator) device
130  * @supply: regulator supply name
131  *
132  * Extract the regulator device node corresponding to the supply name.
133  * returns the device node corresponding to the regulator if found, else
134  * returns NULL.
135  */
136 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
137 {
138         struct device_node *regnode = NULL;
139         char prop_name[32]; /* 32 is max size of property name */
140
141         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
142
143         snprintf(prop_name, 32, "%s-supply", supply);
144         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
145
146         if (!regnode) {
147                 dev_dbg(dev, "Looking up %s property in node %s failed",
148                                 prop_name, dev->of_node->full_name);
149                 return NULL;
150         }
151         return regnode;
152 }
153
154 static int _regulator_can_change_status(struct regulator_dev *rdev)
155 {
156         if (!rdev->constraints)
157                 return 0;
158
159         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
160                 return 1;
161         else
162                 return 0;
163 }
164
165 /* Platform voltage constraint check */
166 static int regulator_check_voltage(struct regulator_dev *rdev,
167                                    int *min_uV, int *max_uV)
168 {
169         BUG_ON(*min_uV > *max_uV);
170
171         if (!rdev->constraints) {
172                 rdev_err(rdev, "no constraints\n");
173                 return -ENODEV;
174         }
175         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176                 rdev_err(rdev, "operation not allowed\n");
177                 return -EPERM;
178         }
179
180         if (*max_uV > rdev->constraints->max_uV)
181                 *max_uV = rdev->constraints->max_uV;
182         if (*min_uV < rdev->constraints->min_uV)
183                 *min_uV = rdev->constraints->min_uV;
184
185         if (*min_uV > *max_uV) {
186                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187                          *min_uV, *max_uV);
188                 return -EINVAL;
189         }
190
191         return 0;
192 }
193
194 /* Make sure we select a voltage that suits the needs of all
195  * regulator consumers
196  */
197 static int regulator_check_consumers(struct regulator_dev *rdev,
198                                      int *min_uV, int *max_uV)
199 {
200         struct regulator *regulator;
201
202         list_for_each_entry(regulator, &rdev->consumer_list, list) {
203                 /*
204                  * Assume consumers that didn't say anything are OK
205                  * with anything in the constraint range.
206                  */
207                 if (!regulator->min_uV && !regulator->max_uV)
208                         continue;
209
210                 if (*max_uV > regulator->max_uV)
211                         *max_uV = regulator->max_uV;
212                 if (*min_uV < regulator->min_uV)
213                         *min_uV = regulator->min_uV;
214         }
215
216         if (*min_uV > *max_uV) {
217                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
218                         *min_uV, *max_uV);
219                 return -EINVAL;
220         }
221
222         return 0;
223 }
224
225 /* current constraint check */
226 static int regulator_check_current_limit(struct regulator_dev *rdev,
227                                         int *min_uA, int *max_uA)
228 {
229         BUG_ON(*min_uA > *max_uA);
230
231         if (!rdev->constraints) {
232                 rdev_err(rdev, "no constraints\n");
233                 return -ENODEV;
234         }
235         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236                 rdev_err(rdev, "operation not allowed\n");
237                 return -EPERM;
238         }
239
240         if (*max_uA > rdev->constraints->max_uA)
241                 *max_uA = rdev->constraints->max_uA;
242         if (*min_uA < rdev->constraints->min_uA)
243                 *min_uA = rdev->constraints->min_uA;
244
245         if (*min_uA > *max_uA) {
246                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247                          *min_uA, *max_uA);
248                 return -EINVAL;
249         }
250
251         return 0;
252 }
253
254 /* operating mode constraint check */
255 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
256 {
257         switch (*mode) {
258         case REGULATOR_MODE_FAST:
259         case REGULATOR_MODE_NORMAL:
260         case REGULATOR_MODE_IDLE:
261         case REGULATOR_MODE_STANDBY:
262                 break;
263         default:
264                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
265                 return -EINVAL;
266         }
267
268         if (!rdev->constraints) {
269                 rdev_err(rdev, "no constraints\n");
270                 return -ENODEV;
271         }
272         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273                 rdev_err(rdev, "operation not allowed\n");
274                 return -EPERM;
275         }
276
277         /* The modes are bitmasks, the most power hungry modes having
278          * the lowest values. If the requested mode isn't supported
279          * try higher modes. */
280         while (*mode) {
281                 if (rdev->constraints->valid_modes_mask & *mode)
282                         return 0;
283                 *mode /= 2;
284         }
285
286         return -EINVAL;
287 }
288
289 /* dynamic regulator mode switching constraint check */
290 static int regulator_check_drms(struct regulator_dev *rdev)
291 {
292         if (!rdev->constraints) {
293                 rdev_err(rdev, "no constraints\n");
294                 return -ENODEV;
295         }
296         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297                 rdev_err(rdev, "operation not allowed\n");
298                 return -EPERM;
299         }
300         return 0;
301 }
302
303 static ssize_t regulator_uV_show(struct device *dev,
304                                 struct device_attribute *attr, char *buf)
305 {
306         struct regulator_dev *rdev = dev_get_drvdata(dev);
307         ssize_t ret;
308
309         mutex_lock(&rdev->mutex);
310         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311         mutex_unlock(&rdev->mutex);
312
313         return ret;
314 }
315 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
316
317 static ssize_t regulator_uA_show(struct device *dev,
318                                 struct device_attribute *attr, char *buf)
319 {
320         struct regulator_dev *rdev = dev_get_drvdata(dev);
321
322         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
323 }
324 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
325
326 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
327                          char *buf)
328 {
329         struct regulator_dev *rdev = dev_get_drvdata(dev);
330
331         return sprintf(buf, "%s\n", rdev_get_name(rdev));
332 }
333 static DEVICE_ATTR_RO(name);
334
335 static ssize_t regulator_print_opmode(char *buf, int mode)
336 {
337         switch (mode) {
338         case REGULATOR_MODE_FAST:
339                 return sprintf(buf, "fast\n");
340         case REGULATOR_MODE_NORMAL:
341                 return sprintf(buf, "normal\n");
342         case REGULATOR_MODE_IDLE:
343                 return sprintf(buf, "idle\n");
344         case REGULATOR_MODE_STANDBY:
345                 return sprintf(buf, "standby\n");
346         }
347         return sprintf(buf, "unknown\n");
348 }
349
350 static ssize_t regulator_opmode_show(struct device *dev,
351                                     struct device_attribute *attr, char *buf)
352 {
353         struct regulator_dev *rdev = dev_get_drvdata(dev);
354
355         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
356 }
357 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
358
359 static ssize_t regulator_print_state(char *buf, int state)
360 {
361         if (state > 0)
362                 return sprintf(buf, "enabled\n");
363         else if (state == 0)
364                 return sprintf(buf, "disabled\n");
365         else
366                 return sprintf(buf, "unknown\n");
367 }
368
369 static ssize_t regulator_state_show(struct device *dev,
370                                    struct device_attribute *attr, char *buf)
371 {
372         struct regulator_dev *rdev = dev_get_drvdata(dev);
373         ssize_t ret;
374
375         mutex_lock(&rdev->mutex);
376         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
377         mutex_unlock(&rdev->mutex);
378
379         return ret;
380 }
381 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
382
383 static ssize_t regulator_status_show(struct device *dev,
384                                    struct device_attribute *attr, char *buf)
385 {
386         struct regulator_dev *rdev = dev_get_drvdata(dev);
387         int status;
388         char *label;
389
390         status = rdev->desc->ops->get_status(rdev);
391         if (status < 0)
392                 return status;
393
394         switch (status) {
395         case REGULATOR_STATUS_OFF:
396                 label = "off";
397                 break;
398         case REGULATOR_STATUS_ON:
399                 label = "on";
400                 break;
401         case REGULATOR_STATUS_ERROR:
402                 label = "error";
403                 break;
404         case REGULATOR_STATUS_FAST:
405                 label = "fast";
406                 break;
407         case REGULATOR_STATUS_NORMAL:
408                 label = "normal";
409                 break;
410         case REGULATOR_STATUS_IDLE:
411                 label = "idle";
412                 break;
413         case REGULATOR_STATUS_STANDBY:
414                 label = "standby";
415                 break;
416         case REGULATOR_STATUS_BYPASS:
417                 label = "bypass";
418                 break;
419         case REGULATOR_STATUS_UNDEFINED:
420                 label = "undefined";
421                 break;
422         default:
423                 return -ERANGE;
424         }
425
426         return sprintf(buf, "%s\n", label);
427 }
428 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
429
430 static ssize_t regulator_min_uA_show(struct device *dev,
431                                     struct device_attribute *attr, char *buf)
432 {
433         struct regulator_dev *rdev = dev_get_drvdata(dev);
434
435         if (!rdev->constraints)
436                 return sprintf(buf, "constraint not defined\n");
437
438         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
439 }
440 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
441
442 static ssize_t regulator_max_uA_show(struct device *dev,
443                                     struct device_attribute *attr, char *buf)
444 {
445         struct regulator_dev *rdev = dev_get_drvdata(dev);
446
447         if (!rdev->constraints)
448                 return sprintf(buf, "constraint not defined\n");
449
450         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
451 }
452 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
453
454 static ssize_t regulator_min_uV_show(struct device *dev,
455                                     struct device_attribute *attr, char *buf)
456 {
457         struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459         if (!rdev->constraints)
460                 return sprintf(buf, "constraint not defined\n");
461
462         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
463 }
464 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
465
466 static ssize_t regulator_max_uV_show(struct device *dev,
467                                     struct device_attribute *attr, char *buf)
468 {
469         struct regulator_dev *rdev = dev_get_drvdata(dev);
470
471         if (!rdev->constraints)
472                 return sprintf(buf, "constraint not defined\n");
473
474         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
475 }
476 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
477
478 static ssize_t regulator_total_uA_show(struct device *dev,
479                                       struct device_attribute *attr, char *buf)
480 {
481         struct regulator_dev *rdev = dev_get_drvdata(dev);
482         struct regulator *regulator;
483         int uA = 0;
484
485         mutex_lock(&rdev->mutex);
486         list_for_each_entry(regulator, &rdev->consumer_list, list)
487                 uA += regulator->uA_load;
488         mutex_unlock(&rdev->mutex);
489         return sprintf(buf, "%d\n", uA);
490 }
491 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
492
493 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
494                               char *buf)
495 {
496         struct regulator_dev *rdev = dev_get_drvdata(dev);
497         return sprintf(buf, "%d\n", rdev->use_count);
498 }
499 static DEVICE_ATTR_RO(num_users);
500
501 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
502                          char *buf)
503 {
504         struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506         switch (rdev->desc->type) {
507         case REGULATOR_VOLTAGE:
508                 return sprintf(buf, "voltage\n");
509         case REGULATOR_CURRENT:
510                 return sprintf(buf, "current\n");
511         }
512         return sprintf(buf, "unknown\n");
513 }
514 static DEVICE_ATTR_RO(type);
515
516 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
517                                 struct device_attribute *attr, char *buf)
518 {
519         struct regulator_dev *rdev = dev_get_drvdata(dev);
520
521         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
522 }
523 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
524                 regulator_suspend_mem_uV_show, NULL);
525
526 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
527                                 struct device_attribute *attr, char *buf)
528 {
529         struct regulator_dev *rdev = dev_get_drvdata(dev);
530
531         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
532 }
533 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
534                 regulator_suspend_disk_uV_show, NULL);
535
536 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
537                                 struct device_attribute *attr, char *buf)
538 {
539         struct regulator_dev *rdev = dev_get_drvdata(dev);
540
541         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
542 }
543 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
544                 regulator_suspend_standby_uV_show, NULL);
545
546 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
547                                 struct device_attribute *attr, char *buf)
548 {
549         struct regulator_dev *rdev = dev_get_drvdata(dev);
550
551         return regulator_print_opmode(buf,
552                 rdev->constraints->state_mem.mode);
553 }
554 static DEVICE_ATTR(suspend_mem_mode, 0444,
555                 regulator_suspend_mem_mode_show, NULL);
556
557 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
558                                 struct device_attribute *attr, char *buf)
559 {
560         struct regulator_dev *rdev = dev_get_drvdata(dev);
561
562         return regulator_print_opmode(buf,
563                 rdev->constraints->state_disk.mode);
564 }
565 static DEVICE_ATTR(suspend_disk_mode, 0444,
566                 regulator_suspend_disk_mode_show, NULL);
567
568 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
569                                 struct device_attribute *attr, char *buf)
570 {
571         struct regulator_dev *rdev = dev_get_drvdata(dev);
572
573         return regulator_print_opmode(buf,
574                 rdev->constraints->state_standby.mode);
575 }
576 static DEVICE_ATTR(suspend_standby_mode, 0444,
577                 regulator_suspend_standby_mode_show, NULL);
578
579 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
580                                    struct device_attribute *attr, char *buf)
581 {
582         struct regulator_dev *rdev = dev_get_drvdata(dev);
583
584         return regulator_print_state(buf,
585                         rdev->constraints->state_mem.enabled);
586 }
587 static DEVICE_ATTR(suspend_mem_state, 0444,
588                 regulator_suspend_mem_state_show, NULL);
589
590 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
591                                    struct device_attribute *attr, char *buf)
592 {
593         struct regulator_dev *rdev = dev_get_drvdata(dev);
594
595         return regulator_print_state(buf,
596                         rdev->constraints->state_disk.enabled);
597 }
598 static DEVICE_ATTR(suspend_disk_state, 0444,
599                 regulator_suspend_disk_state_show, NULL);
600
601 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
602                                    struct device_attribute *attr, char *buf)
603 {
604         struct regulator_dev *rdev = dev_get_drvdata(dev);
605
606         return regulator_print_state(buf,
607                         rdev->constraints->state_standby.enabled);
608 }
609 static DEVICE_ATTR(suspend_standby_state, 0444,
610                 regulator_suspend_standby_state_show, NULL);
611
612 static ssize_t regulator_bypass_show(struct device *dev,
613                                      struct device_attribute *attr, char *buf)
614 {
615         struct regulator_dev *rdev = dev_get_drvdata(dev);
616         const char *report;
617         bool bypass;
618         int ret;
619
620         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
621
622         if (ret != 0)
623                 report = "unknown";
624         else if (bypass)
625                 report = "enabled";
626         else
627                 report = "disabled";
628
629         return sprintf(buf, "%s\n", report);
630 }
631 static DEVICE_ATTR(bypass, 0444,
632                    regulator_bypass_show, NULL);
633
634 /*
635  * These are the only attributes are present for all regulators.
636  * Other attributes are a function of regulator functionality.
637  */
638 static struct attribute *regulator_dev_attrs[] = {
639         &dev_attr_name.attr,
640         &dev_attr_num_users.attr,
641         &dev_attr_type.attr,
642         NULL,
643 };
644 ATTRIBUTE_GROUPS(regulator_dev);
645
646 static void regulator_dev_release(struct device *dev)
647 {
648         struct regulator_dev *rdev = dev_get_drvdata(dev);
649         kfree(rdev);
650 }
651
652 static struct class regulator_class = {
653         .name = "regulator",
654         .dev_release = regulator_dev_release,
655         .dev_groups = regulator_dev_groups,
656 };
657
658 /* Calculate the new optimum regulator operating mode based on the new total
659  * consumer load. All locks held by caller */
660 static void drms_uA_update(struct regulator_dev *rdev)
661 {
662         struct regulator *sibling;
663         int current_uA = 0, output_uV, input_uV, err;
664         unsigned int mode;
665
666         err = regulator_check_drms(rdev);
667         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
668             (!rdev->desc->ops->get_voltage &&
669              !rdev->desc->ops->get_voltage_sel) ||
670             !rdev->desc->ops->set_mode)
671                 return;
672
673         /* get output voltage */
674         output_uV = _regulator_get_voltage(rdev);
675         if (output_uV <= 0)
676                 return;
677
678         /* get input voltage */
679         input_uV = 0;
680         if (rdev->supply)
681                 input_uV = regulator_get_voltage(rdev->supply);
682         if (input_uV <= 0)
683                 input_uV = rdev->constraints->input_uV;
684         if (input_uV <= 0)
685                 return;
686
687         /* calc total requested load */
688         list_for_each_entry(sibling, &rdev->consumer_list, list)
689                 current_uA += sibling->uA_load;
690
691         /* now get the optimum mode for our new total regulator load */
692         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
693                                                   output_uV, current_uA);
694
695         /* check the new mode is allowed */
696         err = regulator_mode_constrain(rdev, &mode);
697         if (err == 0)
698                 rdev->desc->ops->set_mode(rdev, mode);
699 }
700
701 static int suspend_set_state(struct regulator_dev *rdev,
702         struct regulator_state *rstate)
703 {
704         int ret = 0;
705
706         /* If we have no suspend mode configration don't set anything;
707          * only warn if the driver implements set_suspend_voltage or
708          * set_suspend_mode callback.
709          */
710         if (!rstate->enabled && !rstate->disabled) {
711                 if (rdev->desc->ops->set_suspend_voltage ||
712                     rdev->desc->ops->set_suspend_mode)
713                         rdev_warn(rdev, "No configuration\n");
714                 return 0;
715         }
716
717         if (rstate->enabled && rstate->disabled) {
718                 rdev_err(rdev, "invalid configuration\n");
719                 return -EINVAL;
720         }
721
722         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
723                 ret = rdev->desc->ops->set_suspend_enable(rdev);
724         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
725                 ret = rdev->desc->ops->set_suspend_disable(rdev);
726         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
727                 ret = 0;
728
729         if (ret < 0) {
730                 rdev_err(rdev, "failed to enabled/disable\n");
731                 return ret;
732         }
733
734         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
735                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
736                 if (ret < 0) {
737                         rdev_err(rdev, "failed to set voltage\n");
738                         return ret;
739                 }
740         }
741
742         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
743                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
744                 if (ret < 0) {
745                         rdev_err(rdev, "failed to set mode\n");
746                         return ret;
747                 }
748         }
749         return ret;
750 }
751
752 /* locks held by caller */
753 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
754 {
755         if (!rdev->constraints)
756                 return -EINVAL;
757
758         switch (state) {
759         case PM_SUSPEND_STANDBY:
760                 return suspend_set_state(rdev,
761                         &rdev->constraints->state_standby);
762         case PM_SUSPEND_MEM:
763                 return suspend_set_state(rdev,
764                         &rdev->constraints->state_mem);
765         case PM_SUSPEND_MAX:
766                 return suspend_set_state(rdev,
767                         &rdev->constraints->state_disk);
768         default:
769                 return -EINVAL;
770         }
771 }
772
773 static void print_constraints(struct regulator_dev *rdev)
774 {
775         struct regulation_constraints *constraints = rdev->constraints;
776         char buf[80] = "";
777         int count = 0;
778         int ret;
779
780         if (constraints->min_uV && constraints->max_uV) {
781                 if (constraints->min_uV == constraints->max_uV)
782                         count += sprintf(buf + count, "%d mV ",
783                                          constraints->min_uV / 1000);
784                 else
785                         count += sprintf(buf + count, "%d <--> %d mV ",
786                                          constraints->min_uV / 1000,
787                                          constraints->max_uV / 1000);
788         }
789
790         if (!constraints->min_uV ||
791             constraints->min_uV != constraints->max_uV) {
792                 ret = _regulator_get_voltage(rdev);
793                 if (ret > 0)
794                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
795         }
796
797         if (constraints->uV_offset)
798                 count += sprintf(buf, "%dmV offset ",
799                                  constraints->uV_offset / 1000);
800
801         if (constraints->min_uA && constraints->max_uA) {
802                 if (constraints->min_uA == constraints->max_uA)
803                         count += sprintf(buf + count, "%d mA ",
804                                          constraints->min_uA / 1000);
805                 else
806                         count += sprintf(buf + count, "%d <--> %d mA ",
807                                          constraints->min_uA / 1000,
808                                          constraints->max_uA / 1000);
809         }
810
811         if (!constraints->min_uA ||
812             constraints->min_uA != constraints->max_uA) {
813                 ret = _regulator_get_current_limit(rdev);
814                 if (ret > 0)
815                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
816         }
817
818         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
819                 count += sprintf(buf + count, "fast ");
820         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
821                 count += sprintf(buf + count, "normal ");
822         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
823                 count += sprintf(buf + count, "idle ");
824         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
825                 count += sprintf(buf + count, "standby");
826
827         if (!count)
828                 sprintf(buf, "no parameters");
829
830         rdev_info(rdev, "%s\n", buf);
831
832         if ((constraints->min_uV != constraints->max_uV) &&
833             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
834                 rdev_warn(rdev,
835                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
836 }
837
838 static int machine_constraints_voltage(struct regulator_dev *rdev,
839         struct regulation_constraints *constraints)
840 {
841         struct regulator_ops *ops = rdev->desc->ops;
842         int ret;
843
844         /* do we need to apply the constraint voltage */
845         if (rdev->constraints->apply_uV &&
846             rdev->constraints->min_uV == rdev->constraints->max_uV) {
847                 ret = _regulator_do_set_voltage(rdev,
848                                                 rdev->constraints->min_uV,
849                                                 rdev->constraints->max_uV);
850                 if (ret < 0) {
851                         rdev_err(rdev, "failed to apply %duV constraint\n",
852                                  rdev->constraints->min_uV);
853                         return ret;
854                 }
855         }
856
857         /* constrain machine-level voltage specs to fit
858          * the actual range supported by this regulator.
859          */
860         if (ops->list_voltage && rdev->desc->n_voltages) {
861                 int     count = rdev->desc->n_voltages;
862                 int     i;
863                 int     min_uV = INT_MAX;
864                 int     max_uV = INT_MIN;
865                 int     cmin = constraints->min_uV;
866                 int     cmax = constraints->max_uV;
867
868                 /* it's safe to autoconfigure fixed-voltage supplies
869                    and the constraints are used by list_voltage. */
870                 if (count == 1 && !cmin) {
871                         cmin = 1;
872                         cmax = INT_MAX;
873                         constraints->min_uV = cmin;
874                         constraints->max_uV = cmax;
875                 }
876
877                 /* voltage constraints are optional */
878                 if ((cmin == 0) && (cmax == 0))
879                         return 0;
880
881                 /* else require explicit machine-level constraints */
882                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
883                         rdev_err(rdev, "invalid voltage constraints\n");
884                         return -EINVAL;
885                 }
886
887                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
888                 for (i = 0; i < count; i++) {
889                         int     value;
890
891                         value = ops->list_voltage(rdev, i);
892                         if (value <= 0)
893                                 continue;
894
895                         /* maybe adjust [min_uV..max_uV] */
896                         if (value >= cmin && value < min_uV)
897                                 min_uV = value;
898                         if (value <= cmax && value > max_uV)
899                                 max_uV = value;
900                 }
901
902                 /* final: [min_uV..max_uV] valid iff constraints valid */
903                 if (max_uV < min_uV) {
904                         rdev_err(rdev,
905                                  "unsupportable voltage constraints %u-%uuV\n",
906                                  min_uV, max_uV);
907                         return -EINVAL;
908                 }
909
910                 /* use regulator's subset of machine constraints */
911                 if (constraints->min_uV < min_uV) {
912                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
913                                  constraints->min_uV, min_uV);
914                         constraints->min_uV = min_uV;
915                 }
916                 if (constraints->max_uV > max_uV) {
917                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
918                                  constraints->max_uV, max_uV);
919                         constraints->max_uV = max_uV;
920                 }
921         }
922
923         return 0;
924 }
925
926 /**
927  * set_machine_constraints - sets regulator constraints
928  * @rdev: regulator source
929  * @constraints: constraints to apply
930  *
931  * Allows platform initialisation code to define and constrain
932  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
933  * Constraints *must* be set by platform code in order for some
934  * regulator operations to proceed i.e. set_voltage, set_current_limit,
935  * set_mode.
936  */
937 static int set_machine_constraints(struct regulator_dev *rdev,
938         const struct regulation_constraints *constraints)
939 {
940         int ret = 0;
941         struct regulator_ops *ops = rdev->desc->ops;
942
943         if (constraints)
944                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
945                                             GFP_KERNEL);
946         else
947                 rdev->constraints = kzalloc(sizeof(*constraints),
948                                             GFP_KERNEL);
949         if (!rdev->constraints)
950                 return -ENOMEM;
951
952         ret = machine_constraints_voltage(rdev, rdev->constraints);
953         if (ret != 0)
954                 goto out;
955
956         /* do we need to setup our suspend state */
957         if (rdev->constraints->initial_state) {
958                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
959                 if (ret < 0) {
960                         rdev_err(rdev, "failed to set suspend state\n");
961                         goto out;
962                 }
963         }
964
965         if (rdev->constraints->initial_mode) {
966                 if (!ops->set_mode) {
967                         rdev_err(rdev, "no set_mode operation\n");
968                         ret = -EINVAL;
969                         goto out;
970                 }
971
972                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
973                 if (ret < 0) {
974                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
975                         goto out;
976                 }
977         }
978
979         /* If the constraints say the regulator should be on at this point
980          * and we have control then make sure it is enabled.
981          */
982         if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
983             ops->enable) {
984                 ret = ops->enable(rdev);
985                 if (ret < 0) {
986                         rdev_err(rdev, "failed to enable\n");
987                         goto out;
988                 }
989         }
990
991         if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
992                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
993                 if (ret < 0) {
994                         rdev_err(rdev, "failed to set ramp_delay\n");
995                         goto out;
996                 }
997         }
998
999         print_constraints(rdev);
1000         return 0;
1001 out:
1002         kfree(rdev->constraints);
1003         rdev->constraints = NULL;
1004         return ret;
1005 }
1006
1007 /**
1008  * set_supply - set regulator supply regulator
1009  * @rdev: regulator name
1010  * @supply_rdev: supply regulator name
1011  *
1012  * Called by platform initialisation code to set the supply regulator for this
1013  * regulator. This ensures that a regulators supply will also be enabled by the
1014  * core if it's child is enabled.
1015  */
1016 static int set_supply(struct regulator_dev *rdev,
1017                       struct regulator_dev *supply_rdev)
1018 {
1019         int err;
1020
1021         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1022
1023         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1024         if (rdev->supply == NULL) {
1025                 err = -ENOMEM;
1026                 return err;
1027         }
1028         supply_rdev->open_count++;
1029
1030         return 0;
1031 }
1032
1033 /**
1034  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1035  * @rdev:         regulator source
1036  * @consumer_dev_name: dev_name() string for device supply applies to
1037  * @supply:       symbolic name for supply
1038  *
1039  * Allows platform initialisation code to map physical regulator
1040  * sources to symbolic names for supplies for use by devices.  Devices
1041  * should use these symbolic names to request regulators, avoiding the
1042  * need to provide board-specific regulator names as platform data.
1043  */
1044 static int set_consumer_device_supply(struct regulator_dev *rdev,
1045                                       const char *consumer_dev_name,
1046                                       const char *supply)
1047 {
1048         struct regulator_map *node;
1049         int has_dev;
1050
1051         if (supply == NULL)
1052                 return -EINVAL;
1053
1054         if (consumer_dev_name != NULL)
1055                 has_dev = 1;
1056         else
1057                 has_dev = 0;
1058
1059         list_for_each_entry(node, &regulator_map_list, list) {
1060                 if (node->dev_name && consumer_dev_name) {
1061                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1062                                 continue;
1063                 } else if (node->dev_name || consumer_dev_name) {
1064                         continue;
1065                 }
1066
1067                 if (strcmp(node->supply, supply) != 0)
1068                         continue;
1069
1070                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1071                          consumer_dev_name,
1072                          dev_name(&node->regulator->dev),
1073                          node->regulator->desc->name,
1074                          supply,
1075                          dev_name(&rdev->dev), rdev_get_name(rdev));
1076                 return -EBUSY;
1077         }
1078
1079         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1080         if (node == NULL)
1081                 return -ENOMEM;
1082
1083         node->regulator = rdev;
1084         node->supply = supply;
1085
1086         if (has_dev) {
1087                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1088                 if (node->dev_name == NULL) {
1089                         kfree(node);
1090                         return -ENOMEM;
1091                 }
1092         }
1093
1094         list_add(&node->list, &regulator_map_list);
1095         return 0;
1096 }
1097
1098 static void unset_regulator_supplies(struct regulator_dev *rdev)
1099 {
1100         struct regulator_map *node, *n;
1101
1102         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1103                 if (rdev == node->regulator) {
1104                         list_del(&node->list);
1105                         kfree(node->dev_name);
1106                         kfree(node);
1107                 }
1108         }
1109 }
1110
1111 #define REG_STR_SIZE    64
1112
1113 static struct regulator *create_regulator(struct regulator_dev *rdev,
1114                                           struct device *dev,
1115                                           const char *supply_name)
1116 {
1117         struct regulator *regulator;
1118         char buf[REG_STR_SIZE];
1119         int err, size;
1120
1121         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1122         if (regulator == NULL)
1123                 return NULL;
1124
1125         mutex_lock(&rdev->mutex);
1126         regulator->rdev = rdev;
1127         list_add(&regulator->list, &rdev->consumer_list);
1128
1129         if (dev) {
1130                 regulator->dev = dev;
1131
1132                 /* Add a link to the device sysfs entry */
1133                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1134                                  dev->kobj.name, supply_name);
1135                 if (size >= REG_STR_SIZE)
1136                         goto overflow_err;
1137
1138                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1139                 if (regulator->supply_name == NULL)
1140                         goto overflow_err;
1141
1142                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1143                                         buf);
1144                 if (err) {
1145                         rdev_warn(rdev, "could not add device link %s err %d\n",
1146                                   dev->kobj.name, err);
1147                         /* non-fatal */
1148                 }
1149         } else {
1150                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1151                 if (regulator->supply_name == NULL)
1152                         goto overflow_err;
1153         }
1154
1155         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1156                                                 rdev->debugfs);
1157         if (!regulator->debugfs) {
1158                 rdev_warn(rdev, "Failed to create debugfs directory\n");
1159         } else {
1160                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1161                                    &regulator->uA_load);
1162                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1163                                    &regulator->min_uV);
1164                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1165                                    &regulator->max_uV);
1166         }
1167
1168         /*
1169          * Check now if the regulator is an always on regulator - if
1170          * it is then we don't need to do nearly so much work for
1171          * enable/disable calls.
1172          */
1173         if (!_regulator_can_change_status(rdev) &&
1174             _regulator_is_enabled(rdev))
1175                 regulator->always_on = true;
1176
1177         mutex_unlock(&rdev->mutex);
1178         return regulator;
1179 overflow_err:
1180         list_del(&regulator->list);
1181         kfree(regulator);
1182         mutex_unlock(&rdev->mutex);
1183         return NULL;
1184 }
1185
1186 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1187 {
1188         if (!rdev->desc->ops->enable_time)
1189                 return rdev->desc->enable_time;
1190         return rdev->desc->ops->enable_time(rdev);
1191 }
1192
1193 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1194                                                   const char *supply,
1195                                                   int *ret)
1196 {
1197         struct regulator_dev *r;
1198         struct device_node *node;
1199         struct regulator_map *map;
1200         const char *devname = NULL;
1201
1202         /* first do a dt based lookup */
1203         if (dev && dev->of_node) {
1204                 node = of_get_regulator(dev, supply);
1205                 if (node) {
1206                         list_for_each_entry(r, &regulator_list, list)
1207                                 if (r->dev.parent &&
1208                                         node == r->dev.of_node)
1209                                         return r;
1210                 } else {
1211                         /*
1212                          * If we couldn't even get the node then it's
1213                          * not just that the device didn't register
1214                          * yet, there's no node and we'll never
1215                          * succeed.
1216                          */
1217                         *ret = -ENODEV;
1218                 }
1219         }
1220
1221         /* if not found, try doing it non-dt way */
1222         if (dev)
1223                 devname = dev_name(dev);
1224
1225         list_for_each_entry(r, &regulator_list, list)
1226                 if (strcmp(rdev_get_name(r), supply) == 0)
1227                         return r;
1228
1229         list_for_each_entry(map, &regulator_map_list, list) {
1230                 /* If the mapping has a device set up it must match */
1231                 if (map->dev_name &&
1232                     (!devname || strcmp(map->dev_name, devname)))
1233                         continue;
1234
1235                 if (strcmp(map->supply, supply) == 0)
1236                         return map->regulator;
1237         }
1238
1239
1240         return NULL;
1241 }
1242
1243 /* Internal regulator request function */
1244 static struct regulator *_regulator_get(struct device *dev, const char *id,
1245                                         bool exclusive)
1246 {
1247         struct regulator_dev *rdev;
1248         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1249         const char *devname = NULL;
1250         int ret = 0;
1251
1252         if (id == NULL) {
1253                 pr_err("get() with no identifier\n");
1254                 return regulator;
1255         }
1256
1257         if (dev)
1258                 devname = dev_name(dev);
1259
1260         mutex_lock(&regulator_list_mutex);
1261
1262         rdev = regulator_dev_lookup(dev, id, &ret);
1263         if (rdev)
1264                 goto found;
1265
1266         /*
1267          * If we have return value from dev_lookup fail, we do not expect to
1268          * succeed, so, quit with appropriate error value
1269          */
1270         if (ret) {
1271                 regulator = ERR_PTR(ret);
1272                 goto out;
1273         }
1274
1275         if (board_wants_dummy_regulator) {
1276                 rdev = dummy_regulator_rdev;
1277                 goto found;
1278         }
1279
1280 #ifdef CONFIG_REGULATOR_DUMMY
1281         if (!devname)
1282                 devname = "deviceless";
1283
1284         /* If the board didn't flag that it was fully constrained then
1285          * substitute in a dummy regulator so consumers can continue.
1286          */
1287         if (!has_full_constraints) {
1288                 pr_warn("%s supply %s not found, using dummy regulator\n",
1289                         devname, id);
1290                 rdev = dummy_regulator_rdev;
1291                 goto found;
1292         }
1293 #endif
1294
1295         mutex_unlock(&regulator_list_mutex);
1296         return regulator;
1297
1298 found:
1299         if (rdev->exclusive) {
1300                 regulator = ERR_PTR(-EPERM);
1301                 goto out;
1302         }
1303
1304         if (exclusive && rdev->open_count) {
1305                 regulator = ERR_PTR(-EBUSY);
1306                 goto out;
1307         }
1308
1309         if (!try_module_get(rdev->owner))
1310                 goto out;
1311
1312         regulator = create_regulator(rdev, dev, id);
1313         if (regulator == NULL) {
1314                 regulator = ERR_PTR(-ENOMEM);
1315                 module_put(rdev->owner);
1316                 goto out;
1317         }
1318
1319         rdev->open_count++;
1320         if (exclusive) {
1321                 rdev->exclusive = 1;
1322
1323                 ret = _regulator_is_enabled(rdev);
1324                 if (ret > 0)
1325                         rdev->use_count = 1;
1326                 else
1327                         rdev->use_count = 0;
1328         }
1329
1330 out:
1331         mutex_unlock(&regulator_list_mutex);
1332
1333         return regulator;
1334 }
1335
1336 /**
1337  * regulator_get - lookup and obtain a reference to a regulator.
1338  * @dev: device for regulator "consumer"
1339  * @id: Supply name or regulator ID.
1340  *
1341  * Returns a struct regulator corresponding to the regulator producer,
1342  * or IS_ERR() condition containing errno.
1343  *
1344  * Use of supply names configured via regulator_set_device_supply() is
1345  * strongly encouraged.  It is recommended that the supply name used
1346  * should match the name used for the supply and/or the relevant
1347  * device pins in the datasheet.
1348  */
1349 struct regulator *regulator_get(struct device *dev, const char *id)
1350 {
1351         return _regulator_get(dev, id, false);
1352 }
1353 EXPORT_SYMBOL_GPL(regulator_get);
1354
1355 static void devm_regulator_release(struct device *dev, void *res)
1356 {
1357         regulator_put(*(struct regulator **)res);
1358 }
1359
1360 /**
1361  * devm_regulator_get - Resource managed regulator_get()
1362  * @dev: device for regulator "consumer"
1363  * @id: Supply name or regulator ID.
1364  *
1365  * Managed regulator_get(). Regulators returned from this function are
1366  * automatically regulator_put() on driver detach. See regulator_get() for more
1367  * information.
1368  */
1369 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1370 {
1371         struct regulator **ptr, *regulator;
1372
1373         ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1374         if (!ptr)
1375                 return ERR_PTR(-ENOMEM);
1376
1377         regulator = regulator_get(dev, id);
1378         if (!IS_ERR(regulator)) {
1379                 *ptr = regulator;
1380                 devres_add(dev, ptr);
1381         } else {
1382                 devres_free(ptr);
1383         }
1384
1385         return regulator;
1386 }
1387 EXPORT_SYMBOL_GPL(devm_regulator_get);
1388
1389 /**
1390  * regulator_get_exclusive - obtain exclusive access to a regulator.
1391  * @dev: device for regulator "consumer"
1392  * @id: Supply name or regulator ID.
1393  *
1394  * Returns a struct regulator corresponding to the regulator producer,
1395  * or IS_ERR() condition containing errno.  Other consumers will be
1396  * unable to obtain this reference is held and the use count for the
1397  * regulator will be initialised to reflect the current state of the
1398  * regulator.
1399  *
1400  * This is intended for use by consumers which cannot tolerate shared
1401  * use of the regulator such as those which need to force the
1402  * regulator off for correct operation of the hardware they are
1403  * controlling.
1404  *
1405  * Use of supply names configured via regulator_set_device_supply() is
1406  * strongly encouraged.  It is recommended that the supply name used
1407  * should match the name used for the supply and/or the relevant
1408  * device pins in the datasheet.
1409  */
1410 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1411 {
1412         return _regulator_get(dev, id, true);
1413 }
1414 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1415
1416 /* Locks held by regulator_put() */
1417 static void _regulator_put(struct regulator *regulator)
1418 {
1419         struct regulator_dev *rdev;
1420
1421         if (regulator == NULL || IS_ERR(regulator))
1422                 return;
1423
1424         rdev = regulator->rdev;
1425
1426         debugfs_remove_recursive(regulator->debugfs);
1427
1428         /* remove any sysfs entries */
1429         if (regulator->dev)
1430                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1431         kfree(regulator->supply_name);
1432         list_del(&regulator->list);
1433         kfree(regulator);
1434
1435         rdev->open_count--;
1436         rdev->exclusive = 0;
1437
1438         module_put(rdev->owner);
1439 }
1440
1441 /**
1442  * regulator_put - "free" the regulator source
1443  * @regulator: regulator source
1444  *
1445  * Note: drivers must ensure that all regulator_enable calls made on this
1446  * regulator source are balanced by regulator_disable calls prior to calling
1447  * this function.
1448  */
1449 void regulator_put(struct regulator *regulator)
1450 {
1451         mutex_lock(&regulator_list_mutex);
1452         _regulator_put(regulator);
1453         mutex_unlock(&regulator_list_mutex);
1454 }
1455 EXPORT_SYMBOL_GPL(regulator_put);
1456
1457 static int devm_regulator_match(struct device *dev, void *res, void *data)
1458 {
1459         struct regulator **r = res;
1460         if (!r || !*r) {
1461                 WARN_ON(!r || !*r);
1462                 return 0;
1463         }
1464         return *r == data;
1465 }
1466
1467 /**
1468  * devm_regulator_put - Resource managed regulator_put()
1469  * @regulator: regulator to free
1470  *
1471  * Deallocate a regulator allocated with devm_regulator_get(). Normally
1472  * this function will not need to be called and the resource management
1473  * code will ensure that the resource is freed.
1474  */
1475 void devm_regulator_put(struct regulator *regulator)
1476 {
1477         int rc;
1478
1479         rc = devres_release(regulator->dev, devm_regulator_release,
1480                             devm_regulator_match, regulator);
1481         if (rc != 0)
1482                 WARN_ON(rc);
1483 }
1484 EXPORT_SYMBOL_GPL(devm_regulator_put);
1485
1486 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1487 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1488                                 const struct regulator_config *config)
1489 {
1490         struct regulator_enable_gpio *pin;
1491         int ret;
1492
1493         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1494                 if (pin->gpio == config->ena_gpio) {
1495                         rdev_dbg(rdev, "GPIO %d is already used\n",
1496                                 config->ena_gpio);
1497                         goto update_ena_gpio_to_rdev;
1498                 }
1499         }
1500
1501         ret = gpio_request_one(config->ena_gpio,
1502                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1503                                 rdev_get_name(rdev));
1504         if (ret)
1505                 return ret;
1506
1507         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1508         if (pin == NULL) {
1509                 gpio_free(config->ena_gpio);
1510                 return -ENOMEM;
1511         }
1512
1513         pin->gpio = config->ena_gpio;
1514         pin->ena_gpio_invert = config->ena_gpio_invert;
1515         list_add(&pin->list, &regulator_ena_gpio_list);
1516
1517 update_ena_gpio_to_rdev:
1518         pin->request_count++;
1519         rdev->ena_pin = pin;
1520         return 0;
1521 }
1522
1523 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1524 {
1525         struct regulator_enable_gpio *pin, *n;
1526
1527         if (!rdev->ena_pin)
1528                 return;
1529
1530         /* Free the GPIO only in case of no use */
1531         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1532                 if (pin->gpio == rdev->ena_pin->gpio) {
1533                         if (pin->request_count <= 1) {
1534                                 pin->request_count = 0;
1535                                 gpio_free(pin->gpio);
1536                                 list_del(&pin->list);
1537                                 kfree(pin);
1538                         } else {
1539                                 pin->request_count--;
1540                         }
1541                 }
1542         }
1543 }
1544
1545 /**
1546  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1547  * @rdev: regulator_dev structure
1548  * @enable: enable GPIO at initial use?
1549  *
1550  * GPIO is enabled in case of initial use. (enable_count is 0)
1551  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1552  */
1553 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1554 {
1555         struct regulator_enable_gpio *pin = rdev->ena_pin;
1556
1557         if (!pin)
1558                 return -EINVAL;
1559
1560         if (enable) {
1561                 /* Enable GPIO at initial use */
1562                 if (pin->enable_count == 0)
1563                         gpio_set_value_cansleep(pin->gpio,
1564                                                 !pin->ena_gpio_invert);
1565
1566                 pin->enable_count++;
1567         } else {
1568                 if (pin->enable_count > 1) {
1569                         pin->enable_count--;
1570                         return 0;
1571                 }
1572
1573                 /* Disable GPIO if not used */
1574                 if (pin->enable_count <= 1) {
1575                         gpio_set_value_cansleep(pin->gpio,
1576                                                 pin->ena_gpio_invert);
1577                         pin->enable_count = 0;
1578                 }
1579         }
1580
1581         return 0;
1582 }
1583
1584 static int _regulator_do_enable(struct regulator_dev *rdev)
1585 {
1586         int ret, delay;
1587
1588         /* Query before enabling in case configuration dependent.  */
1589         ret = _regulator_get_enable_time(rdev);
1590         if (ret >= 0) {
1591                 delay = ret;
1592         } else {
1593                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1594                 delay = 0;
1595         }
1596
1597         trace_regulator_enable(rdev_get_name(rdev));
1598
1599         if (rdev->ena_pin) {
1600                 ret = regulator_ena_gpio_ctrl(rdev, true);
1601                 if (ret < 0)
1602                         return ret;
1603                 rdev->ena_gpio_state = 1;
1604         } else if (rdev->desc->ops->enable) {
1605                 ret = rdev->desc->ops->enable(rdev);
1606                 if (ret < 0)
1607                         return ret;
1608         } else {
1609                 return -EINVAL;
1610         }
1611
1612         /* Allow the regulator to ramp; it would be useful to extend
1613          * this for bulk operations so that the regulators can ramp
1614          * together.  */
1615         trace_regulator_enable_delay(rdev_get_name(rdev));
1616
1617         if (delay >= 1000) {
1618                 mdelay(delay / 1000);
1619                 udelay(delay % 1000);
1620         } else if (delay) {
1621                 udelay(delay);
1622         }
1623
1624         trace_regulator_enable_complete(rdev_get_name(rdev));
1625
1626         return 0;
1627 }
1628
1629 /* locks held by regulator_enable() */
1630 static int _regulator_enable(struct regulator_dev *rdev)
1631 {
1632         int ret;
1633
1634         /* check voltage and requested load before enabling */
1635         if (rdev->constraints &&
1636             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1637                 drms_uA_update(rdev);
1638
1639         if (rdev->use_count == 0) {
1640                 /* The regulator may on if it's not switchable or left on */
1641                 ret = _regulator_is_enabled(rdev);
1642                 if (ret == -EINVAL || ret == 0) {
1643                         if (!_regulator_can_change_status(rdev))
1644                                 return -EPERM;
1645
1646                         ret = _regulator_do_enable(rdev);
1647                         if (ret < 0)
1648                                 return ret;
1649
1650                 } else if (ret < 0) {
1651                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1652                         return ret;
1653                 }
1654                 /* Fallthrough on positive return values - already enabled */
1655         }
1656
1657         rdev->use_count++;
1658
1659         return 0;
1660 }
1661
1662 /**
1663  * regulator_enable - enable regulator output
1664  * @regulator: regulator source
1665  *
1666  * Request that the regulator be enabled with the regulator output at
1667  * the predefined voltage or current value.  Calls to regulator_enable()
1668  * must be balanced with calls to regulator_disable().
1669  *
1670  * NOTE: the output value can be set by other drivers, boot loader or may be
1671  * hardwired in the regulator.
1672  */
1673 int regulator_enable(struct regulator *regulator)
1674 {
1675         struct regulator_dev *rdev = regulator->rdev;
1676         int ret = 0;
1677
1678         if (regulator->always_on)
1679                 return 0;
1680
1681         if (rdev->supply) {
1682                 ret = regulator_enable(rdev->supply);
1683                 if (ret != 0)
1684                         return ret;
1685         }
1686
1687         mutex_lock(&rdev->mutex);
1688         ret = _regulator_enable(rdev);
1689         mutex_unlock(&rdev->mutex);
1690
1691         if (ret != 0 && rdev->supply)
1692                 regulator_disable(rdev->supply);
1693
1694         return ret;
1695 }
1696 EXPORT_SYMBOL_GPL(regulator_enable);
1697
1698 static int _regulator_do_disable(struct regulator_dev *rdev)
1699 {
1700         int ret;
1701
1702         trace_regulator_disable(rdev_get_name(rdev));
1703
1704         if (rdev->ena_pin) {
1705                 ret = regulator_ena_gpio_ctrl(rdev, false);
1706                 if (ret < 0)
1707                         return ret;
1708                 rdev->ena_gpio_state = 0;
1709
1710         } else if (rdev->desc->ops->disable) {
1711                 ret = rdev->desc->ops->disable(rdev);
1712                 if (ret != 0)
1713                         return ret;
1714         }
1715
1716         trace_regulator_disable_complete(rdev_get_name(rdev));
1717
1718         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1719                              NULL);
1720         return 0;
1721 }
1722
1723 /* locks held by regulator_disable() */
1724 static int _regulator_disable(struct regulator_dev *rdev)
1725 {
1726         int ret = 0;
1727
1728         if (WARN(rdev->use_count <= 0,
1729                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
1730                 return -EIO;
1731
1732         /* are we the last user and permitted to disable ? */
1733         if (rdev->use_count == 1 &&
1734             (rdev->constraints && !rdev->constraints->always_on)) {
1735
1736                 /* we are last user */
1737                 if (_regulator_can_change_status(rdev)) {
1738                         ret = _regulator_do_disable(rdev);
1739                         if (ret < 0) {
1740                                 rdev_err(rdev, "failed to disable\n");
1741                                 return ret;
1742                         }
1743                 }
1744
1745                 rdev->use_count = 0;
1746         } else if (rdev->use_count > 1) {
1747
1748                 if (rdev->constraints &&
1749                         (rdev->constraints->valid_ops_mask &
1750                         REGULATOR_CHANGE_DRMS))
1751                         drms_uA_update(rdev);
1752
1753                 rdev->use_count--;
1754         }
1755
1756         return ret;
1757 }
1758
1759 /**
1760  * regulator_disable - disable regulator output
1761  * @regulator: regulator source
1762  *
1763  * Disable the regulator output voltage or current.  Calls to
1764  * regulator_enable() must be balanced with calls to
1765  * regulator_disable().
1766  *
1767  * NOTE: this will only disable the regulator output if no other consumer
1768  * devices have it enabled, the regulator device supports disabling and
1769  * machine constraints permit this operation.
1770  */
1771 int regulator_disable(struct regulator *regulator)
1772 {
1773         struct regulator_dev *rdev = regulator->rdev;
1774         int ret = 0;
1775
1776         if (regulator->always_on)
1777                 return 0;
1778
1779         mutex_lock(&rdev->mutex);
1780         ret = _regulator_disable(rdev);
1781         mutex_unlock(&rdev->mutex);
1782
1783         if (ret == 0 && rdev->supply)
1784                 regulator_disable(rdev->supply);
1785
1786         return ret;
1787 }
1788 EXPORT_SYMBOL_GPL(regulator_disable);
1789
1790 /* locks held by regulator_force_disable() */
1791 static int _regulator_force_disable(struct regulator_dev *rdev)
1792 {
1793         int ret = 0;
1794
1795         /* force disable */
1796         if (rdev->desc->ops->disable) {
1797                 /* ah well, who wants to live forever... */
1798                 ret = rdev->desc->ops->disable(rdev);
1799                 if (ret < 0) {
1800                         rdev_err(rdev, "failed to force disable\n");
1801                         return ret;
1802                 }
1803                 /* notify other consumers that power has been forced off */
1804                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1805                         REGULATOR_EVENT_DISABLE, NULL);
1806         }
1807
1808         return ret;
1809 }
1810
1811 /**
1812  * regulator_force_disable - force disable regulator output
1813  * @regulator: regulator source
1814  *
1815  * Forcibly disable the regulator output voltage or current.
1816  * NOTE: this *will* disable the regulator output even if other consumer
1817  * devices have it enabled. This should be used for situations when device
1818  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1819  */
1820 int regulator_force_disable(struct regulator *regulator)
1821 {
1822         struct regulator_dev *rdev = regulator->rdev;
1823         int ret;
1824
1825         mutex_lock(&rdev->mutex);
1826         regulator->uA_load = 0;
1827         ret = _regulator_force_disable(regulator->rdev);
1828         mutex_unlock(&rdev->mutex);
1829
1830         if (rdev->supply)
1831                 while (rdev->open_count--)
1832                         regulator_disable(rdev->supply);
1833
1834         return ret;
1835 }
1836 EXPORT_SYMBOL_GPL(regulator_force_disable);
1837
1838 static void regulator_disable_work(struct work_struct *work)
1839 {
1840         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1841                                                   disable_work.work);
1842         int count, i, ret;
1843
1844         mutex_lock(&rdev->mutex);
1845
1846         BUG_ON(!rdev->deferred_disables);
1847
1848         count = rdev->deferred_disables;
1849         rdev->deferred_disables = 0;
1850
1851         for (i = 0; i < count; i++) {
1852                 ret = _regulator_disable(rdev);
1853                 if (ret != 0)
1854                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1855         }
1856
1857         mutex_unlock(&rdev->mutex);
1858
1859         if (rdev->supply) {
1860                 for (i = 0; i < count; i++) {
1861                         ret = regulator_disable(rdev->supply);
1862                         if (ret != 0) {
1863                                 rdev_err(rdev,
1864                                          "Supply disable failed: %d\n", ret);
1865                         }
1866                 }
1867         }
1868 }
1869
1870 /**
1871  * regulator_disable_deferred - disable regulator output with delay
1872  * @regulator: regulator source
1873  * @ms: miliseconds until the regulator is disabled
1874  *
1875  * Execute regulator_disable() on the regulator after a delay.  This
1876  * is intended for use with devices that require some time to quiesce.
1877  *
1878  * NOTE: this will only disable the regulator output if no other consumer
1879  * devices have it enabled, the regulator device supports disabling and
1880  * machine constraints permit this operation.
1881  */
1882 int regulator_disable_deferred(struct regulator *regulator, int ms)
1883 {
1884         struct regulator_dev *rdev = regulator->rdev;
1885         int ret;
1886
1887         if (regulator->always_on)
1888                 return 0;
1889
1890         if (!ms)
1891                 return regulator_disable(regulator);
1892
1893         mutex_lock(&rdev->mutex);
1894         rdev->deferred_disables++;
1895         mutex_unlock(&rdev->mutex);
1896
1897         ret = queue_delayed_work(system_power_efficient_wq,
1898                                  &rdev->disable_work,
1899                                  msecs_to_jiffies(ms));
1900         if (ret < 0)
1901                 return ret;
1902         else
1903                 return 0;
1904 }
1905 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1906
1907 static int _regulator_is_enabled(struct regulator_dev *rdev)
1908 {
1909         /* A GPIO control always takes precedence */
1910         if (rdev->ena_pin)
1911                 return rdev->ena_gpio_state;
1912
1913         /* If we don't know then assume that the regulator is always on */
1914         if (!rdev->desc->ops->is_enabled)
1915                 return 1;
1916
1917         return rdev->desc->ops->is_enabled(rdev);
1918 }
1919
1920 /**
1921  * regulator_is_enabled - is the regulator output enabled
1922  * @regulator: regulator source
1923  *
1924  * Returns positive if the regulator driver backing the source/client
1925  * has requested that the device be enabled, zero if it hasn't, else a
1926  * negative errno code.
1927  *
1928  * Note that the device backing this regulator handle can have multiple
1929  * users, so it might be enabled even if regulator_enable() was never
1930  * called for this particular source.
1931  */
1932 int regulator_is_enabled(struct regulator *regulator)
1933 {
1934         int ret;
1935
1936         if (regulator->always_on)
1937                 return 1;
1938
1939         mutex_lock(&regulator->rdev->mutex);
1940         ret = _regulator_is_enabled(regulator->rdev);
1941         mutex_unlock(&regulator->rdev->mutex);
1942
1943         return ret;
1944 }
1945 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1946
1947 /**
1948  * regulator_can_change_voltage - check if regulator can change voltage
1949  * @regulator: regulator source
1950  *
1951  * Returns positive if the regulator driver backing the source/client
1952  * can change its voltage, false otherwise. Usefull for detecting fixed
1953  * or dummy regulators and disabling voltage change logic in the client
1954  * driver.
1955  */
1956 int regulator_can_change_voltage(struct regulator *regulator)
1957 {
1958         struct regulator_dev    *rdev = regulator->rdev;
1959
1960         if (rdev->constraints &&
1961             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
1962                 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
1963                         return 1;
1964
1965                 if (rdev->desc->continuous_voltage_range &&
1966                     rdev->constraints->min_uV && rdev->constraints->max_uV &&
1967                     rdev->constraints->min_uV != rdev->constraints->max_uV)
1968                         return 1;
1969         }
1970
1971         return 0;
1972 }
1973 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
1974
1975 /**
1976  * regulator_count_voltages - count regulator_list_voltage() selectors
1977  * @regulator: regulator source
1978  *
1979  * Returns number of selectors, or negative errno.  Selectors are
1980  * numbered starting at zero, and typically correspond to bitfields
1981  * in hardware registers.
1982  */
1983 int regulator_count_voltages(struct regulator *regulator)
1984 {
1985         struct regulator_dev    *rdev = regulator->rdev;
1986
1987         return rdev->desc->n_voltages ? : -EINVAL;
1988 }
1989 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1990
1991 /**
1992  * regulator_list_voltage - enumerate supported voltages
1993  * @regulator: regulator source
1994  * @selector: identify voltage to list
1995  * Context: can sleep
1996  *
1997  * Returns a voltage that can be passed to @regulator_set_voltage(),
1998  * zero if this selector code can't be used on this system, or a
1999  * negative errno.
2000  */
2001 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2002 {
2003         struct regulator_dev    *rdev = regulator->rdev;
2004         struct regulator_ops    *ops = rdev->desc->ops;
2005         int                     ret;
2006
2007         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2008                 return -EINVAL;
2009
2010         mutex_lock(&rdev->mutex);
2011         ret = ops->list_voltage(rdev, selector);
2012         mutex_unlock(&rdev->mutex);
2013
2014         if (ret > 0) {
2015                 if (ret < rdev->constraints->min_uV)
2016                         ret = 0;
2017                 else if (ret > rdev->constraints->max_uV)
2018                         ret = 0;
2019         }
2020
2021         return ret;
2022 }
2023 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2024
2025 /**
2026  * regulator_get_linear_step - return the voltage step size between VSEL values
2027  * @regulator: regulator source
2028  *
2029  * Returns the voltage step size between VSEL values for linear
2030  * regulators, or return 0 if the regulator isn't a linear regulator.
2031  */
2032 unsigned int regulator_get_linear_step(struct regulator *regulator)
2033 {
2034         struct regulator_dev *rdev = regulator->rdev;
2035
2036         return rdev->desc->uV_step;
2037 }
2038 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2039
2040 /**
2041  * regulator_is_supported_voltage - check if a voltage range can be supported
2042  *
2043  * @regulator: Regulator to check.
2044  * @min_uV: Minimum required voltage in uV.
2045  * @max_uV: Maximum required voltage in uV.
2046  *
2047  * Returns a boolean or a negative error code.
2048  */
2049 int regulator_is_supported_voltage(struct regulator *regulator,
2050                                    int min_uV, int max_uV)
2051 {
2052         struct regulator_dev *rdev = regulator->rdev;
2053         int i, voltages, ret;
2054
2055         /* If we can't change voltage check the current voltage */
2056         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2057                 ret = regulator_get_voltage(regulator);
2058                 if (ret >= 0)
2059                         return (min_uV <= ret && ret <= max_uV);
2060                 else
2061                         return ret;
2062         }
2063
2064         /* Any voltage within constrains range is fine? */
2065         if (rdev->desc->continuous_voltage_range)
2066                 return min_uV >= rdev->constraints->min_uV &&
2067                                 max_uV <= rdev->constraints->max_uV;
2068
2069         ret = regulator_count_voltages(regulator);
2070         if (ret < 0)
2071                 return ret;
2072         voltages = ret;
2073
2074         for (i = 0; i < voltages; i++) {
2075                 ret = regulator_list_voltage(regulator, i);
2076
2077                 if (ret >= min_uV && ret <= max_uV)
2078                         return 1;
2079         }
2080
2081         return 0;
2082 }
2083 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2084
2085 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2086                                      int min_uV, int max_uV)
2087 {
2088         int ret;
2089         int delay = 0;
2090         int best_val = 0;
2091         unsigned int selector;
2092         int old_selector = -1;
2093
2094         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2095
2096         min_uV += rdev->constraints->uV_offset;
2097         max_uV += rdev->constraints->uV_offset;
2098
2099         /*
2100          * If we can't obtain the old selector there is not enough
2101          * info to call set_voltage_time_sel().
2102          */
2103         if (_regulator_is_enabled(rdev) &&
2104             rdev->desc->ops->set_voltage_time_sel &&
2105             rdev->desc->ops->get_voltage_sel) {
2106                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2107                 if (old_selector < 0)
2108                         return old_selector;
2109         }
2110
2111         if (rdev->desc->ops->set_voltage) {
2112                 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2113                                                    &selector);
2114
2115                 if (ret >= 0) {
2116                         if (rdev->desc->ops->list_voltage)
2117                                 best_val = rdev->desc->ops->list_voltage(rdev,
2118                                                                          selector);
2119                         else
2120                                 best_val = _regulator_get_voltage(rdev);
2121                 }
2122
2123         } else if (rdev->desc->ops->set_voltage_sel) {
2124                 if (rdev->desc->ops->map_voltage) {
2125                         ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2126                                                            max_uV);
2127                 } else {
2128                         if (rdev->desc->ops->list_voltage ==
2129                             regulator_list_voltage_linear)
2130                                 ret = regulator_map_voltage_linear(rdev,
2131                                                                 min_uV, max_uV);
2132                         else
2133                                 ret = regulator_map_voltage_iterate(rdev,
2134                                                                 min_uV, max_uV);
2135                 }
2136
2137                 if (ret >= 0) {
2138                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2139                         if (min_uV <= best_val && max_uV >= best_val) {
2140                                 selector = ret;
2141                                 if (old_selector == selector)
2142                                         ret = 0;
2143                                 else
2144                                         ret = rdev->desc->ops->set_voltage_sel(
2145                                                                 rdev, ret);
2146                         } else {
2147                                 ret = -EINVAL;
2148                         }
2149                 }
2150         } else {
2151                 ret = -EINVAL;
2152         }
2153
2154         /* Call set_voltage_time_sel if successfully obtained old_selector */
2155         if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2156             old_selector != selector && rdev->desc->ops->set_voltage_time_sel) {
2157
2158                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2159                                                 old_selector, selector);
2160                 if (delay < 0) {
2161                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2162                                   delay);
2163                         delay = 0;
2164                 }
2165
2166                 /* Insert any necessary delays */
2167                 if (delay >= 1000) {
2168                         mdelay(delay / 1000);
2169                         udelay(delay % 1000);
2170                 } else if (delay) {
2171                         udelay(delay);
2172                 }
2173         }
2174
2175         if (ret == 0 && best_val >= 0) {
2176                 unsigned long data = best_val;
2177
2178                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2179                                      (void *)data);
2180         }
2181
2182         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2183
2184         return ret;
2185 }
2186
2187 /**
2188  * regulator_set_voltage - set regulator output voltage
2189  * @regulator: regulator source
2190  * @min_uV: Minimum required voltage in uV
2191  * @max_uV: Maximum acceptable voltage in uV
2192  *
2193  * Sets a voltage regulator to the desired output voltage. This can be set
2194  * during any regulator state. IOW, regulator can be disabled or enabled.
2195  *
2196  * If the regulator is enabled then the voltage will change to the new value
2197  * immediately otherwise if the regulator is disabled the regulator will
2198  * output at the new voltage when enabled.
2199  *
2200  * NOTE: If the regulator is shared between several devices then the lowest
2201  * request voltage that meets the system constraints will be used.
2202  * Regulator system constraints must be set for this regulator before
2203  * calling this function otherwise this call will fail.
2204  */
2205 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2206 {
2207         struct regulator_dev *rdev = regulator->rdev;
2208         int ret = 0;
2209         int old_min_uV, old_max_uV;
2210
2211         mutex_lock(&rdev->mutex);
2212
2213         /* If we're setting the same range as last time the change
2214          * should be a noop (some cpufreq implementations use the same
2215          * voltage for multiple frequencies, for example).
2216          */
2217         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2218                 goto out;
2219
2220         /* sanity check */
2221         if (!rdev->desc->ops->set_voltage &&
2222             !rdev->desc->ops->set_voltage_sel) {
2223                 ret = -EINVAL;
2224                 goto out;
2225         }
2226
2227         /* constraints check */
2228         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2229         if (ret < 0)
2230                 goto out;
2231         
2232         /* restore original values in case of error */
2233         old_min_uV = regulator->min_uV;
2234         old_max_uV = regulator->max_uV;
2235         regulator->min_uV = min_uV;
2236         regulator->max_uV = max_uV;
2237
2238         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2239         if (ret < 0)
2240                 goto out2;
2241
2242         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2243         if (ret < 0)
2244                 goto out2;
2245         
2246 out:
2247         mutex_unlock(&rdev->mutex);
2248         return ret;
2249 out2:
2250         regulator->min_uV = old_min_uV;
2251         regulator->max_uV = old_max_uV;
2252         mutex_unlock(&rdev->mutex);
2253         return ret;
2254 }
2255 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2256
2257 /**
2258  * regulator_set_voltage_time - get raise/fall time
2259  * @regulator: regulator source
2260  * @old_uV: starting voltage in microvolts
2261  * @new_uV: target voltage in microvolts
2262  *
2263  * Provided with the starting and ending voltage, this function attempts to
2264  * calculate the time in microseconds required to rise or fall to this new
2265  * voltage.
2266  */
2267 int regulator_set_voltage_time(struct regulator *regulator,
2268                                int old_uV, int new_uV)
2269 {
2270         struct regulator_dev    *rdev = regulator->rdev;
2271         struct regulator_ops    *ops = rdev->desc->ops;
2272         int old_sel = -1;
2273         int new_sel = -1;
2274         int voltage;
2275         int i;
2276
2277         /* Currently requires operations to do this */
2278         if (!ops->list_voltage || !ops->set_voltage_time_sel
2279             || !rdev->desc->n_voltages)
2280                 return -EINVAL;
2281
2282         for (i = 0; i < rdev->desc->n_voltages; i++) {
2283                 /* We only look for exact voltage matches here */
2284                 voltage = regulator_list_voltage(regulator, i);
2285                 if (voltage < 0)
2286                         return -EINVAL;
2287                 if (voltage == 0)
2288                         continue;
2289                 if (voltage == old_uV)
2290                         old_sel = i;
2291                 if (voltage == new_uV)
2292                         new_sel = i;
2293         }
2294
2295         if (old_sel < 0 || new_sel < 0)
2296                 return -EINVAL;
2297
2298         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2299 }
2300 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2301
2302 /**
2303  * regulator_set_voltage_time_sel - get raise/fall time
2304  * @rdev: regulator source device
2305  * @old_selector: selector for starting voltage
2306  * @new_selector: selector for target voltage
2307  *
2308  * Provided with the starting and target voltage selectors, this function
2309  * returns time in microseconds required to rise or fall to this new voltage
2310  *
2311  * Drivers providing ramp_delay in regulation_constraints can use this as their
2312  * set_voltage_time_sel() operation.
2313  */
2314 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2315                                    unsigned int old_selector,
2316                                    unsigned int new_selector)
2317 {
2318         unsigned int ramp_delay = 0;
2319         int old_volt, new_volt;
2320
2321         if (rdev->constraints->ramp_delay)
2322                 ramp_delay = rdev->constraints->ramp_delay;
2323         else if (rdev->desc->ramp_delay)
2324                 ramp_delay = rdev->desc->ramp_delay;
2325
2326         if (ramp_delay == 0) {
2327                 rdev_warn(rdev, "ramp_delay not set\n");
2328                 return 0;
2329         }
2330
2331         /* sanity check */
2332         if (!rdev->desc->ops->list_voltage)
2333                 return -EINVAL;
2334
2335         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2336         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2337
2338         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2339 }
2340 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2341
2342 /**
2343  * regulator_sync_voltage - re-apply last regulator output voltage
2344  * @regulator: regulator source
2345  *
2346  * Re-apply the last configured voltage.  This is intended to be used
2347  * where some external control source the consumer is cooperating with
2348  * has caused the configured voltage to change.
2349  */
2350 int regulator_sync_voltage(struct regulator *regulator)
2351 {
2352         struct regulator_dev *rdev = regulator->rdev;
2353         int ret, min_uV, max_uV;
2354
2355         mutex_lock(&rdev->mutex);
2356
2357         if (!rdev->desc->ops->set_voltage &&
2358             !rdev->desc->ops->set_voltage_sel) {
2359                 ret = -EINVAL;
2360                 goto out;
2361         }
2362
2363         /* This is only going to work if we've had a voltage configured. */
2364         if (!regulator->min_uV && !regulator->max_uV) {
2365                 ret = -EINVAL;
2366                 goto out;
2367         }
2368
2369         min_uV = regulator->min_uV;
2370         max_uV = regulator->max_uV;
2371
2372         /* This should be a paranoia check... */
2373         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2374         if (ret < 0)
2375                 goto out;
2376
2377         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2378         if (ret < 0)
2379                 goto out;
2380
2381         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2382
2383 out:
2384         mutex_unlock(&rdev->mutex);
2385         return ret;
2386 }
2387 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2388
2389 static int _regulator_get_voltage(struct regulator_dev *rdev)
2390 {
2391         int sel, ret;
2392
2393         if (rdev->desc->ops->get_voltage_sel) {
2394                 sel = rdev->desc->ops->get_voltage_sel(rdev);
2395                 if (sel < 0)
2396                         return sel;
2397                 ret = rdev->desc->ops->list_voltage(rdev, sel);
2398         } else if (rdev->desc->ops->get_voltage) {
2399                 ret = rdev->desc->ops->get_voltage(rdev);
2400         } else if (rdev->desc->ops->list_voltage) {
2401                 ret = rdev->desc->ops->list_voltage(rdev, 0);
2402         } else {
2403                 return -EINVAL;
2404         }
2405
2406         if (ret < 0)
2407                 return ret;
2408         return ret - rdev->constraints->uV_offset;
2409 }
2410
2411 /**
2412  * regulator_get_voltage - get regulator output voltage
2413  * @regulator: regulator source
2414  *
2415  * This returns the current regulator voltage in uV.
2416  *
2417  * NOTE: If the regulator is disabled it will return the voltage value. This
2418  * function should not be used to determine regulator state.
2419  */
2420 int regulator_get_voltage(struct regulator *regulator)
2421 {
2422         int ret;
2423
2424         mutex_lock(&regulator->rdev->mutex);
2425
2426         ret = _regulator_get_voltage(regulator->rdev);
2427
2428         mutex_unlock(&regulator->rdev->mutex);
2429
2430         return ret;
2431 }
2432 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2433
2434 /**
2435  * regulator_set_current_limit - set regulator output current limit
2436  * @regulator: regulator source
2437  * @min_uA: Minimum supported current in uA
2438  * @max_uA: Maximum supported current in uA
2439  *
2440  * Sets current sink to the desired output current. This can be set during
2441  * any regulator state. IOW, regulator can be disabled or enabled.
2442  *
2443  * If the regulator is enabled then the current will change to the new value
2444  * immediately otherwise if the regulator is disabled the regulator will
2445  * output at the new current when enabled.
2446  *
2447  * NOTE: Regulator system constraints must be set for this regulator before
2448  * calling this function otherwise this call will fail.
2449  */
2450 int regulator_set_current_limit(struct regulator *regulator,
2451                                int min_uA, int max_uA)
2452 {
2453         struct regulator_dev *rdev = regulator->rdev;
2454         int ret;
2455
2456         mutex_lock(&rdev->mutex);
2457
2458         /* sanity check */
2459         if (!rdev->desc->ops->set_current_limit) {
2460                 ret = -EINVAL;
2461                 goto out;
2462         }
2463
2464         /* constraints check */
2465         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2466         if (ret < 0)
2467                 goto out;
2468
2469         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2470 out:
2471         mutex_unlock(&rdev->mutex);
2472         return ret;
2473 }
2474 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2475
2476 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2477 {
2478         int ret;
2479
2480         mutex_lock(&rdev->mutex);
2481
2482         /* sanity check */
2483         if (!rdev->desc->ops->get_current_limit) {
2484                 ret = -EINVAL;
2485                 goto out;
2486         }
2487
2488         ret = rdev->desc->ops->get_current_limit(rdev);
2489 out:
2490         mutex_unlock(&rdev->mutex);
2491         return ret;
2492 }
2493
2494 /**
2495  * regulator_get_current_limit - get regulator output current
2496  * @regulator: regulator source
2497  *
2498  * This returns the current supplied by the specified current sink in uA.
2499  *
2500  * NOTE: If the regulator is disabled it will return the current value. This
2501  * function should not be used to determine regulator state.
2502  */
2503 int regulator_get_current_limit(struct regulator *regulator)
2504 {
2505         return _regulator_get_current_limit(regulator->rdev);
2506 }
2507 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2508
2509 /**
2510  * regulator_set_mode - set regulator operating mode
2511  * @regulator: regulator source
2512  * @mode: operating mode - one of the REGULATOR_MODE constants
2513  *
2514  * Set regulator operating mode to increase regulator efficiency or improve
2515  * regulation performance.
2516  *
2517  * NOTE: Regulator system constraints must be set for this regulator before
2518  * calling this function otherwise this call will fail.
2519  */
2520 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2521 {
2522         struct regulator_dev *rdev = regulator->rdev;
2523         int ret;
2524         int regulator_curr_mode;
2525
2526         mutex_lock(&rdev->mutex);
2527
2528         /* sanity check */
2529         if (!rdev->desc->ops->set_mode) {
2530                 ret = -EINVAL;
2531                 goto out;
2532         }
2533
2534         /* return if the same mode is requested */
2535         if (rdev->desc->ops->get_mode) {
2536                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2537                 if (regulator_curr_mode == mode) {
2538                         ret = 0;
2539                         goto out;
2540                 }
2541         }
2542
2543         /* constraints check */
2544         ret = regulator_mode_constrain(rdev, &mode);
2545         if (ret < 0)
2546                 goto out;
2547
2548         ret = rdev->desc->ops->set_mode(rdev, mode);
2549 out:
2550         mutex_unlock(&rdev->mutex);
2551         return ret;
2552 }
2553 EXPORT_SYMBOL_GPL(regulator_set_mode);
2554
2555 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2556 {
2557         int ret;
2558
2559         mutex_lock(&rdev->mutex);
2560
2561         /* sanity check */
2562         if (!rdev->desc->ops->get_mode) {
2563                 ret = -EINVAL;
2564                 goto out;
2565         }
2566
2567         ret = rdev->desc->ops->get_mode(rdev);
2568 out:
2569         mutex_unlock(&rdev->mutex);
2570         return ret;
2571 }
2572
2573 /**
2574  * regulator_get_mode - get regulator operating mode
2575  * @regulator: regulator source
2576  *
2577  * Get the current regulator operating mode.
2578  */
2579 unsigned int regulator_get_mode(struct regulator *regulator)
2580 {
2581         return _regulator_get_mode(regulator->rdev);
2582 }
2583 EXPORT_SYMBOL_GPL(regulator_get_mode);
2584
2585 /**
2586  * regulator_set_optimum_mode - set regulator optimum operating mode
2587  * @regulator: regulator source
2588  * @uA_load: load current
2589  *
2590  * Notifies the regulator core of a new device load. This is then used by
2591  * DRMS (if enabled by constraints) to set the most efficient regulator
2592  * operating mode for the new regulator loading.
2593  *
2594  * Consumer devices notify their supply regulator of the maximum power
2595  * they will require (can be taken from device datasheet in the power
2596  * consumption tables) when they change operational status and hence power
2597  * state. Examples of operational state changes that can affect power
2598  * consumption are :-
2599  *
2600  *    o Device is opened / closed.
2601  *    o Device I/O is about to begin or has just finished.
2602  *    o Device is idling in between work.
2603  *
2604  * This information is also exported via sysfs to userspace.
2605  *
2606  * DRMS will sum the total requested load on the regulator and change
2607  * to the most efficient operating mode if platform constraints allow.
2608  *
2609  * Returns the new regulator mode or error.
2610  */
2611 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2612 {
2613         struct regulator_dev *rdev = regulator->rdev;
2614         struct regulator *consumer;
2615         int ret, output_uV, input_uV = 0, total_uA_load = 0;
2616         unsigned int mode;
2617
2618         if (rdev->supply)
2619                 input_uV = regulator_get_voltage(rdev->supply);
2620
2621         mutex_lock(&rdev->mutex);
2622
2623         /*
2624          * first check to see if we can set modes at all, otherwise just
2625          * tell the consumer everything is OK.
2626          */
2627         regulator->uA_load = uA_load;
2628         ret = regulator_check_drms(rdev);
2629         if (ret < 0) {
2630                 ret = 0;
2631                 goto out;
2632         }
2633
2634         if (!rdev->desc->ops->get_optimum_mode)
2635                 goto out;
2636
2637         /*
2638          * we can actually do this so any errors are indicators of
2639          * potential real failure.
2640          */
2641         ret = -EINVAL;
2642
2643         if (!rdev->desc->ops->set_mode)
2644                 goto out;
2645
2646         /* get output voltage */
2647         output_uV = _regulator_get_voltage(rdev);
2648         if (output_uV <= 0) {
2649                 rdev_err(rdev, "invalid output voltage found\n");
2650                 goto out;
2651         }
2652
2653         /* No supply? Use constraint voltage */
2654         if (input_uV <= 0)
2655                 input_uV = rdev->constraints->input_uV;
2656         if (input_uV <= 0) {
2657                 rdev_err(rdev, "invalid input voltage found\n");
2658                 goto out;
2659         }
2660
2661         /* calc total requested load for this regulator */
2662         list_for_each_entry(consumer, &rdev->consumer_list, list)
2663                 total_uA_load += consumer->uA_load;
2664
2665         mode = rdev->desc->ops->get_optimum_mode(rdev,
2666                                                  input_uV, output_uV,
2667                                                  total_uA_load);
2668         ret = regulator_mode_constrain(rdev, &mode);
2669         if (ret < 0) {
2670                 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2671                          total_uA_load, input_uV, output_uV);
2672                 goto out;
2673         }
2674
2675         ret = rdev->desc->ops->set_mode(rdev, mode);
2676         if (ret < 0) {
2677                 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2678                 goto out;
2679         }
2680         ret = mode;
2681 out:
2682         mutex_unlock(&rdev->mutex);
2683         return ret;
2684 }
2685 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2686
2687 /**
2688  * regulator_allow_bypass - allow the regulator to go into bypass mode
2689  *
2690  * @regulator: Regulator to configure
2691  * @enable: enable or disable bypass mode
2692  *
2693  * Allow the regulator to go into bypass mode if all other consumers
2694  * for the regulator also enable bypass mode and the machine
2695  * constraints allow this.  Bypass mode means that the regulator is
2696  * simply passing the input directly to the output with no regulation.
2697  */
2698 int regulator_allow_bypass(struct regulator *regulator, bool enable)
2699 {
2700         struct regulator_dev *rdev = regulator->rdev;
2701         int ret = 0;
2702
2703         if (!rdev->desc->ops->set_bypass)
2704                 return 0;
2705
2706         if (rdev->constraints &&
2707             !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2708                 return 0;
2709
2710         mutex_lock(&rdev->mutex);
2711
2712         if (enable && !regulator->bypass) {
2713                 rdev->bypass_count++;
2714
2715                 if (rdev->bypass_count == rdev->open_count) {
2716                         ret = rdev->desc->ops->set_bypass(rdev, enable);
2717                         if (ret != 0)
2718                                 rdev->bypass_count--;
2719                 }
2720
2721         } else if (!enable && regulator->bypass) {
2722                 rdev->bypass_count--;
2723
2724                 if (rdev->bypass_count != rdev->open_count) {
2725                         ret = rdev->desc->ops->set_bypass(rdev, enable);
2726                         if (ret != 0)
2727                                 rdev->bypass_count++;
2728                 }
2729         }
2730
2731         if (ret == 0)
2732                 regulator->bypass = enable;
2733
2734         mutex_unlock(&rdev->mutex);
2735
2736         return ret;
2737 }
2738 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2739
2740 /**
2741  * regulator_register_notifier - register regulator event notifier
2742  * @regulator: regulator source
2743  * @nb: notifier block
2744  *
2745  * Register notifier block to receive regulator events.
2746  */
2747 int regulator_register_notifier(struct regulator *regulator,
2748                               struct notifier_block *nb)
2749 {
2750         return blocking_notifier_chain_register(&regulator->rdev->notifier,
2751                                                 nb);
2752 }
2753 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2754
2755 /**
2756  * regulator_unregister_notifier - unregister regulator event notifier
2757  * @regulator: regulator source
2758  * @nb: notifier block
2759  *
2760  * Unregister regulator event notifier block.
2761  */
2762 int regulator_unregister_notifier(struct regulator *regulator,
2763                                 struct notifier_block *nb)
2764 {
2765         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2766                                                   nb);
2767 }
2768 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2769
2770 /* notify regulator consumers and downstream regulator consumers.
2771  * Note mutex must be held by caller.
2772  */
2773 static void _notifier_call_chain(struct regulator_dev *rdev,
2774                                   unsigned long event, void *data)
2775 {
2776         /* call rdev chain first */
2777         blocking_notifier_call_chain(&rdev->notifier, event, data);
2778 }
2779
2780 /**
2781  * regulator_bulk_get - get multiple regulator consumers
2782  *
2783  * @dev:           Device to supply
2784  * @num_consumers: Number of consumers to register
2785  * @consumers:     Configuration of consumers; clients are stored here.
2786  *
2787  * @return 0 on success, an errno on failure.
2788  *
2789  * This helper function allows drivers to get several regulator
2790  * consumers in one operation.  If any of the regulators cannot be
2791  * acquired then any regulators that were allocated will be freed
2792  * before returning to the caller.
2793  */
2794 int regulator_bulk_get(struct device *dev, int num_consumers,
2795                        struct regulator_bulk_data *consumers)
2796 {
2797         int i;
2798         int ret;
2799
2800         for (i = 0; i < num_consumers; i++)
2801                 consumers[i].consumer = NULL;
2802
2803         for (i = 0; i < num_consumers; i++) {
2804                 consumers[i].consumer = regulator_get(dev,
2805                                                       consumers[i].supply);
2806                 if (IS_ERR(consumers[i].consumer)) {
2807                         ret = PTR_ERR(consumers[i].consumer);
2808                         dev_err(dev, "Failed to get supply '%s': %d\n",
2809                                 consumers[i].supply, ret);
2810                         consumers[i].consumer = NULL;
2811                         goto err;
2812                 }
2813         }
2814
2815         return 0;
2816
2817 err:
2818         while (--i >= 0)
2819                 regulator_put(consumers[i].consumer);
2820
2821         return ret;
2822 }
2823 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2824
2825 /**
2826  * devm_regulator_bulk_get - managed get multiple regulator consumers
2827  *
2828  * @dev:           Device to supply
2829  * @num_consumers: Number of consumers to register
2830  * @consumers:     Configuration of consumers; clients are stored here.
2831  *
2832  * @return 0 on success, an errno on failure.
2833  *
2834  * This helper function allows drivers to get several regulator
2835  * consumers in one operation with management, the regulators will
2836  * automatically be freed when the device is unbound.  If any of the
2837  * regulators cannot be acquired then any regulators that were
2838  * allocated will be freed before returning to the caller.
2839  */
2840 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2841                             struct regulator_bulk_data *consumers)
2842 {
2843         int i;
2844         int ret;
2845
2846         for (i = 0; i < num_consumers; i++)
2847                 consumers[i].consumer = NULL;
2848
2849         for (i = 0; i < num_consumers; i++) {
2850                 consumers[i].consumer = devm_regulator_get(dev,
2851                                                            consumers[i].supply);
2852                 if (IS_ERR(consumers[i].consumer)) {
2853                         ret = PTR_ERR(consumers[i].consumer);
2854                         dev_err(dev, "Failed to get supply '%s': %d\n",
2855                                 consumers[i].supply, ret);
2856                         consumers[i].consumer = NULL;
2857                         goto err;
2858                 }
2859         }
2860
2861         return 0;
2862
2863 err:
2864         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2865                 devm_regulator_put(consumers[i].consumer);
2866
2867         return ret;
2868 }
2869 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2870
2871 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2872 {
2873         struct regulator_bulk_data *bulk = data;
2874
2875         bulk->ret = regulator_enable(bulk->consumer);
2876 }
2877
2878 /**
2879  * regulator_bulk_enable - enable multiple regulator consumers
2880  *
2881  * @num_consumers: Number of consumers
2882  * @consumers:     Consumer data; clients are stored here.
2883  * @return         0 on success, an errno on failure
2884  *
2885  * This convenience API allows consumers to enable multiple regulator
2886  * clients in a single API call.  If any consumers cannot be enabled
2887  * then any others that were enabled will be disabled again prior to
2888  * return.
2889  */
2890 int regulator_bulk_enable(int num_consumers,
2891                           struct regulator_bulk_data *consumers)
2892 {
2893         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
2894         int i;
2895         int ret = 0;
2896
2897         for (i = 0; i < num_consumers; i++) {
2898                 if (consumers[i].consumer->always_on)
2899                         consumers[i].ret = 0;
2900                 else
2901                         async_schedule_domain(regulator_bulk_enable_async,
2902                                               &consumers[i], &async_domain);
2903         }
2904
2905         async_synchronize_full_domain(&async_domain);
2906
2907         /* If any consumer failed we need to unwind any that succeeded */
2908         for (i = 0; i < num_consumers; i++) {
2909                 if (consumers[i].ret != 0) {
2910                         ret = consumers[i].ret;
2911                         goto err;
2912                 }
2913         }
2914
2915         return 0;
2916
2917 err:
2918         for (i = 0; i < num_consumers; i++) {
2919                 if (consumers[i].ret < 0)
2920                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
2921                                consumers[i].ret);
2922                 else
2923                         regulator_disable(consumers[i].consumer);
2924         }
2925
2926         return ret;
2927 }
2928 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2929
2930 /**
2931  * regulator_bulk_disable - disable multiple regulator consumers
2932  *
2933  * @num_consumers: Number of consumers
2934  * @consumers:     Consumer data; clients are stored here.
2935  * @return         0 on success, an errno on failure
2936  *
2937  * This convenience API allows consumers to disable multiple regulator
2938  * clients in a single API call.  If any consumers cannot be disabled
2939  * then any others that were disabled will be enabled again prior to
2940  * return.
2941  */
2942 int regulator_bulk_disable(int num_consumers,
2943                            struct regulator_bulk_data *consumers)
2944 {
2945         int i;
2946         int ret, r;
2947
2948         for (i = num_consumers - 1; i >= 0; --i) {
2949                 ret = regulator_disable(consumers[i].consumer);
2950                 if (ret != 0)
2951                         goto err;
2952         }
2953
2954         return 0;
2955
2956 err:
2957         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2958         for (++i; i < num_consumers; ++i) {
2959                 r = regulator_enable(consumers[i].consumer);
2960                 if (r != 0)
2961                         pr_err("Failed to reename %s: %d\n",
2962                                consumers[i].supply, r);
2963         }
2964
2965         return ret;
2966 }
2967 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2968
2969 /**
2970  * regulator_bulk_force_disable - force disable multiple regulator consumers
2971  *
2972  * @num_consumers: Number of consumers
2973  * @consumers:     Consumer data; clients are stored here.
2974  * @return         0 on success, an errno on failure
2975  *
2976  * This convenience API allows consumers to forcibly disable multiple regulator
2977  * clients in a single API call.
2978  * NOTE: This should be used for situations when device damage will
2979  * likely occur if the regulators are not disabled (e.g. over temp).
2980  * Although regulator_force_disable function call for some consumers can
2981  * return error numbers, the function is called for all consumers.
2982  */
2983 int regulator_bulk_force_disable(int num_consumers,
2984                            struct regulator_bulk_data *consumers)
2985 {
2986         int i;
2987         int ret;
2988
2989         for (i = 0; i < num_consumers; i++)
2990                 consumers[i].ret =
2991                             regulator_force_disable(consumers[i].consumer);
2992
2993         for (i = 0; i < num_consumers; i++) {
2994                 if (consumers[i].ret != 0) {
2995                         ret = consumers[i].ret;
2996                         goto out;
2997                 }
2998         }
2999
3000         return 0;
3001 out:
3002         return ret;
3003 }
3004 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3005
3006 /**
3007  * regulator_bulk_free - free multiple regulator consumers
3008  *
3009  * @num_consumers: Number of consumers
3010  * @consumers:     Consumer data; clients are stored here.
3011  *
3012  * This convenience API allows consumers to free multiple regulator
3013  * clients in a single API call.
3014  */
3015 void regulator_bulk_free(int num_consumers,
3016                          struct regulator_bulk_data *consumers)
3017 {
3018         int i;
3019
3020         for (i = 0; i < num_consumers; i++) {
3021                 regulator_put(consumers[i].consumer);
3022                 consumers[i].consumer = NULL;
3023         }
3024 }
3025 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3026
3027 /**
3028  * regulator_notifier_call_chain - call regulator event notifier
3029  * @rdev: regulator source
3030  * @event: notifier block
3031  * @data: callback-specific data.
3032  *
3033  * Called by regulator drivers to notify clients a regulator event has
3034  * occurred. We also notify regulator clients downstream.
3035  * Note lock must be held by caller.
3036  */
3037 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3038                                   unsigned long event, void *data)
3039 {
3040         _notifier_call_chain(rdev, event, data);
3041         return NOTIFY_DONE;
3042
3043 }
3044 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3045
3046 /**
3047  * regulator_mode_to_status - convert a regulator mode into a status
3048  *
3049  * @mode: Mode to convert
3050  *
3051  * Convert a regulator mode into a status.
3052  */
3053 int regulator_mode_to_status(unsigned int mode)
3054 {
3055         switch (mode) {
3056         case REGULATOR_MODE_FAST:
3057                 return REGULATOR_STATUS_FAST;
3058         case REGULATOR_MODE_NORMAL:
3059                 return REGULATOR_STATUS_NORMAL;
3060         case REGULATOR_MODE_IDLE:
3061                 return REGULATOR_STATUS_IDLE;
3062         case REGULATOR_MODE_STANDBY:
3063                 return REGULATOR_STATUS_STANDBY;
3064         default:
3065                 return REGULATOR_STATUS_UNDEFINED;
3066         }
3067 }
3068 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3069
3070 /*
3071  * To avoid cluttering sysfs (and memory) with useless state, only
3072  * create attributes that can be meaningfully displayed.
3073  */
3074 static int add_regulator_attributes(struct regulator_dev *rdev)
3075 {
3076         struct device           *dev = &rdev->dev;
3077         struct regulator_ops    *ops = rdev->desc->ops;
3078         int                     status = 0;
3079
3080         /* some attributes need specific methods to be displayed */
3081         if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3082             (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3083             (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3084                 status = device_create_file(dev, &dev_attr_microvolts);
3085                 if (status < 0)
3086                         return status;
3087         }
3088         if (ops->get_current_limit) {
3089                 status = device_create_file(dev, &dev_attr_microamps);
3090                 if (status < 0)
3091                         return status;
3092         }
3093         if (ops->get_mode) {
3094                 status = device_create_file(dev, &dev_attr_opmode);
3095                 if (status < 0)
3096                         return status;
3097         }
3098         if (rdev->ena_pin || ops->is_enabled) {
3099                 status = device_create_file(dev, &dev_attr_state);
3100                 if (status < 0)
3101                         return status;
3102         }
3103         if (ops->get_status) {
3104                 status = device_create_file(dev, &dev_attr_status);
3105                 if (status < 0)
3106                         return status;
3107         }
3108         if (ops->get_bypass) {
3109                 status = device_create_file(dev, &dev_attr_bypass);
3110                 if (status < 0)
3111                         return status;
3112         }
3113
3114         /* some attributes are type-specific */
3115         if (rdev->desc->type == REGULATOR_CURRENT) {
3116                 status = device_create_file(dev, &dev_attr_requested_microamps);
3117                 if (status < 0)
3118                         return status;
3119         }
3120
3121         /* all the other attributes exist to support constraints;
3122          * don't show them if there are no constraints, or if the
3123          * relevant supporting methods are missing.
3124          */
3125         if (!rdev->constraints)
3126                 return status;
3127
3128         /* constraints need specific supporting methods */
3129         if (ops->set_voltage || ops->set_voltage_sel) {
3130                 status = device_create_file(dev, &dev_attr_min_microvolts);
3131                 if (status < 0)
3132                         return status;
3133                 status = device_create_file(dev, &dev_attr_max_microvolts);
3134                 if (status < 0)
3135                         return status;
3136         }
3137         if (ops->set_current_limit) {
3138                 status = device_create_file(dev, &dev_attr_min_microamps);
3139                 if (status < 0)
3140                         return status;
3141                 status = device_create_file(dev, &dev_attr_max_microamps);
3142                 if (status < 0)
3143                         return status;
3144         }
3145
3146         status = device_create_file(dev, &dev_attr_suspend_standby_state);
3147         if (status < 0)
3148                 return status;
3149         status = device_create_file(dev, &dev_attr_suspend_mem_state);
3150         if (status < 0)
3151                 return status;
3152         status = device_create_file(dev, &dev_attr_suspend_disk_state);
3153         if (status < 0)
3154                 return status;
3155
3156         if (ops->set_suspend_voltage) {
3157                 status = device_create_file(dev,
3158                                 &dev_attr_suspend_standby_microvolts);
3159                 if (status < 0)
3160                         return status;
3161                 status = device_create_file(dev,
3162                                 &dev_attr_suspend_mem_microvolts);
3163                 if (status < 0)
3164                         return status;
3165                 status = device_create_file(dev,
3166                                 &dev_attr_suspend_disk_microvolts);
3167                 if (status < 0)
3168                         return status;
3169         }
3170
3171         if (ops->set_suspend_mode) {
3172                 status = device_create_file(dev,
3173                                 &dev_attr_suspend_standby_mode);
3174                 if (status < 0)
3175                         return status;
3176                 status = device_create_file(dev,
3177                                 &dev_attr_suspend_mem_mode);
3178                 if (status < 0)
3179                         return status;
3180                 status = device_create_file(dev,
3181                                 &dev_attr_suspend_disk_mode);
3182                 if (status < 0)
3183                         return status;
3184         }
3185
3186         return status;
3187 }
3188
3189 static void rdev_init_debugfs(struct regulator_dev *rdev)
3190 {
3191         rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3192         if (!rdev->debugfs) {
3193                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3194                 return;
3195         }
3196
3197         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3198                            &rdev->use_count);
3199         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3200                            &rdev->open_count);
3201         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3202                            &rdev->bypass_count);
3203 }
3204
3205 /**
3206  * regulator_register - register regulator
3207  * @regulator_desc: regulator to register
3208  * @config: runtime configuration for regulator
3209  *
3210  * Called by regulator drivers to register a regulator.
3211  * Returns a valid pointer to struct regulator_dev on success
3212  * or an ERR_PTR() on error.
3213  */
3214 struct regulator_dev *
3215 regulator_register(const struct regulator_desc *regulator_desc,
3216                    const struct regulator_config *config)
3217 {
3218         const struct regulation_constraints *constraints = NULL;
3219         const struct regulator_init_data *init_data;
3220         static atomic_t regulator_no = ATOMIC_INIT(0);
3221         struct regulator_dev *rdev;
3222         struct device *dev;
3223         int ret, i;
3224         const char *supply = NULL;
3225
3226         if (regulator_desc == NULL || config == NULL)
3227                 return ERR_PTR(-EINVAL);
3228
3229         dev = config->dev;
3230         WARN_ON(!dev);
3231
3232         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3233                 return ERR_PTR(-EINVAL);
3234
3235         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3236             regulator_desc->type != REGULATOR_CURRENT)
3237                 return ERR_PTR(-EINVAL);
3238
3239         /* Only one of each should be implemented */
3240         WARN_ON(regulator_desc->ops->get_voltage &&
3241                 regulator_desc->ops->get_voltage_sel);
3242         WARN_ON(regulator_desc->ops->set_voltage &&
3243                 regulator_desc->ops->set_voltage_sel);
3244
3245         /* If we're using selectors we must implement list_voltage. */
3246         if (regulator_desc->ops->get_voltage_sel &&
3247             !regulator_desc->ops->list_voltage) {
3248                 return ERR_PTR(-EINVAL);
3249         }
3250         if (regulator_desc->ops->set_voltage_sel &&
3251             !regulator_desc->ops->list_voltage) {
3252                 return ERR_PTR(-EINVAL);
3253         }
3254
3255         init_data = config->init_data;
3256
3257         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3258         if (rdev == NULL)
3259                 return ERR_PTR(-ENOMEM);
3260
3261         mutex_lock(&regulator_list_mutex);
3262
3263         mutex_init(&rdev->mutex);
3264         rdev->reg_data = config->driver_data;
3265         rdev->owner = regulator_desc->owner;
3266         rdev->desc = regulator_desc;
3267         if (config->regmap)
3268                 rdev->regmap = config->regmap;
3269         else if (dev_get_regmap(dev, NULL))
3270                 rdev->regmap = dev_get_regmap(dev, NULL);
3271         else if (dev->parent)
3272                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3273         INIT_LIST_HEAD(&rdev->consumer_list);
3274         INIT_LIST_HEAD(&rdev->list);
3275         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3276         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3277
3278         /* preform any regulator specific init */
3279         if (init_data && init_data->regulator_init) {
3280                 ret = init_data->regulator_init(rdev->reg_data);
3281                 if (ret < 0)
3282                         goto clean;
3283         }
3284
3285         /* register with sysfs */
3286         rdev->dev.class = &regulator_class;
3287         rdev->dev.of_node = config->of_node;
3288         rdev->dev.parent = dev;
3289         dev_set_name(&rdev->dev, "regulator.%d",
3290                      atomic_inc_return(&regulator_no) - 1);
3291         ret = device_register(&rdev->dev);
3292         if (ret != 0) {
3293                 put_device(&rdev->dev);
3294                 goto clean;
3295         }
3296
3297         dev_set_drvdata(&rdev->dev, rdev);
3298
3299         if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3300                 ret = regulator_ena_gpio_request(rdev, config);
3301                 if (ret != 0) {
3302                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3303                                  config->ena_gpio, ret);
3304                         goto wash;
3305                 }
3306
3307                 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3308                         rdev->ena_gpio_state = 1;
3309
3310                 if (config->ena_gpio_invert)
3311                         rdev->ena_gpio_state = !rdev->ena_gpio_state;
3312         }
3313
3314         /* set regulator constraints */
3315         if (init_data)
3316                 constraints = &init_data->constraints;
3317
3318         ret = set_machine_constraints(rdev, constraints);
3319         if (ret < 0)
3320                 goto scrub;
3321
3322         /* add attributes supported by this regulator */
3323         ret = add_regulator_attributes(rdev);
3324         if (ret < 0)
3325                 goto scrub;
3326
3327         if (init_data && init_data->supply_regulator)
3328                 supply = init_data->supply_regulator;
3329         else if (regulator_desc->supply_name)
3330                 supply = regulator_desc->supply_name;
3331
3332         if (supply) {
3333                 struct regulator_dev *r;
3334
3335                 r = regulator_dev_lookup(dev, supply, &ret);
3336
3337                 if (ret == -ENODEV) {
3338                         /*
3339                          * No supply was specified for this regulator and
3340                          * there will never be one.
3341                          */
3342                         ret = 0;
3343                         goto add_dev;
3344                 } else if (!r) {
3345                         dev_err(dev, "Failed to find supply %s\n", supply);
3346                         ret = -EPROBE_DEFER;
3347                         goto scrub;
3348                 }
3349
3350                 ret = set_supply(rdev, r);
3351                 if (ret < 0)
3352                         goto scrub;
3353
3354                 /* Enable supply if rail is enabled */
3355                 if (_regulator_is_enabled(rdev)) {
3356                         ret = regulator_enable(rdev->supply);
3357                         if (ret < 0)
3358                                 goto scrub;
3359                 }
3360         }
3361
3362 add_dev:
3363         /* add consumers devices */
3364         if (init_data) {
3365                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3366                         ret = set_consumer_device_supply(rdev,
3367                                 init_data->consumer_supplies[i].dev_name,
3368                                 init_data->consumer_supplies[i].supply);
3369                         if (ret < 0) {
3370                                 dev_err(dev, "Failed to set supply %s\n",
3371                                         init_data->consumer_supplies[i].supply);
3372                                 goto unset_supplies;
3373                         }
3374                 }
3375         }
3376
3377         list_add(&rdev->list, &regulator_list);
3378
3379         rdev_init_debugfs(rdev);
3380 out:
3381         mutex_unlock(&regulator_list_mutex);
3382         return rdev;
3383
3384 unset_supplies:
3385         unset_regulator_supplies(rdev);
3386
3387 scrub:
3388         if (rdev->supply)
3389                 _regulator_put(rdev->supply);
3390         regulator_ena_gpio_free(rdev);
3391         kfree(rdev->constraints);
3392 wash:
3393         device_unregister(&rdev->dev);
3394         /* device core frees rdev */
3395         rdev = ERR_PTR(ret);
3396         goto out;
3397
3398 clean:
3399         kfree(rdev);
3400         rdev = ERR_PTR(ret);
3401         goto out;
3402 }
3403 EXPORT_SYMBOL_GPL(regulator_register);
3404
3405 /**
3406  * regulator_unregister - unregister regulator
3407  * @rdev: regulator to unregister
3408  *
3409  * Called by regulator drivers to unregister a regulator.
3410  */
3411 void regulator_unregister(struct regulator_dev *rdev)
3412 {
3413         if (rdev == NULL)
3414                 return;
3415
3416         if (rdev->supply) {
3417                 while (rdev->use_count--)
3418                         regulator_disable(rdev->supply);
3419                 regulator_put(rdev->supply);
3420         }
3421         mutex_lock(&regulator_list_mutex);
3422         debugfs_remove_recursive(rdev->debugfs);
3423         flush_work(&rdev->disable_work.work);
3424         WARN_ON(rdev->open_count);
3425         unset_regulator_supplies(rdev);
3426         list_del(&rdev->list);
3427         kfree(rdev->constraints);
3428         regulator_ena_gpio_free(rdev);
3429         device_unregister(&rdev->dev);
3430         mutex_unlock(&regulator_list_mutex);
3431 }
3432 EXPORT_SYMBOL_GPL(regulator_unregister);
3433
3434 /**
3435  * regulator_suspend_prepare - prepare regulators for system wide suspend
3436  * @state: system suspend state
3437  *
3438  * Configure each regulator with it's suspend operating parameters for state.
3439  * This will usually be called by machine suspend code prior to supending.
3440  */
3441 int regulator_suspend_prepare(suspend_state_t state)
3442 {
3443         struct regulator_dev *rdev;
3444         int ret = 0;
3445
3446         /* ON is handled by regulator active state */
3447         if (state == PM_SUSPEND_ON)
3448                 return -EINVAL;
3449
3450         mutex_lock(&regulator_list_mutex);
3451         list_for_each_entry(rdev, &regulator_list, list) {
3452
3453                 mutex_lock(&rdev->mutex);
3454                 ret = suspend_prepare(rdev, state);
3455                 mutex_unlock(&rdev->mutex);
3456
3457                 if (ret < 0) {
3458                         rdev_err(rdev, "failed to prepare\n");
3459                         goto out;
3460                 }
3461         }
3462 out:
3463         mutex_unlock(&regulator_list_mutex);
3464         return ret;
3465 }
3466 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3467
3468 /**
3469  * regulator_suspend_finish - resume regulators from system wide suspend
3470  *
3471  * Turn on regulators that might be turned off by regulator_suspend_prepare
3472  * and that should be turned on according to the regulators properties.
3473  */
3474 int regulator_suspend_finish(void)
3475 {
3476         struct regulator_dev *rdev;
3477         int ret = 0, error;
3478
3479         mutex_lock(&regulator_list_mutex);
3480         list_for_each_entry(rdev, &regulator_list, list) {
3481                 struct regulator_ops *ops = rdev->desc->ops;
3482
3483                 mutex_lock(&rdev->mutex);
3484                 if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3485                                 ops->enable) {
3486                         error = ops->enable(rdev);
3487                         if (error)
3488                                 ret = error;
3489                 } else {
3490                         if (!has_full_constraints)
3491                                 goto unlock;
3492                         if (!ops->disable)
3493                                 goto unlock;
3494                         if (!_regulator_is_enabled(rdev))
3495                                 goto unlock;
3496
3497                         error = ops->disable(rdev);
3498                         if (error)
3499                                 ret = error;
3500                 }
3501 unlock:
3502                 mutex_unlock(&rdev->mutex);
3503         }
3504         mutex_unlock(&regulator_list_mutex);
3505         return ret;
3506 }
3507 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3508
3509 /**
3510  * regulator_has_full_constraints - the system has fully specified constraints
3511  *
3512  * Calling this function will cause the regulator API to disable all
3513  * regulators which have a zero use count and don't have an always_on
3514  * constraint in a late_initcall.
3515  *
3516  * The intention is that this will become the default behaviour in a
3517  * future kernel release so users are encouraged to use this facility
3518  * now.
3519  */
3520 void regulator_has_full_constraints(void)
3521 {
3522         has_full_constraints = 1;
3523 }
3524 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3525
3526 /**
3527  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3528  *
3529  * Calling this function will cause the regulator API to provide a
3530  * dummy regulator to consumers if no physical regulator is found,
3531  * allowing most consumers to proceed as though a regulator were
3532  * configured.  This allows systems such as those with software
3533  * controllable regulators for the CPU core only to be brought up more
3534  * readily.
3535  */
3536 void regulator_use_dummy_regulator(void)
3537 {
3538         board_wants_dummy_regulator = true;
3539 }
3540 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3541
3542 /**
3543  * rdev_get_drvdata - get rdev regulator driver data
3544  * @rdev: regulator
3545  *
3546  * Get rdev regulator driver private data. This call can be used in the
3547  * regulator driver context.
3548  */
3549 void *rdev_get_drvdata(struct regulator_dev *rdev)
3550 {
3551         return rdev->reg_data;
3552 }
3553 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3554
3555 /**
3556  * regulator_get_drvdata - get regulator driver data
3557  * @regulator: regulator
3558  *
3559  * Get regulator driver private data. This call can be used in the consumer
3560  * driver context when non API regulator specific functions need to be called.
3561  */
3562 void *regulator_get_drvdata(struct regulator *regulator)
3563 {
3564         return regulator->rdev->reg_data;
3565 }
3566 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3567
3568 /**
3569  * regulator_set_drvdata - set regulator driver data
3570  * @regulator: regulator
3571  * @data: data
3572  */
3573 void regulator_set_drvdata(struct regulator *regulator, void *data)
3574 {
3575         regulator->rdev->reg_data = data;
3576 }
3577 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3578
3579 /**
3580  * regulator_get_id - get regulator ID
3581  * @rdev: regulator
3582  */
3583 int rdev_get_id(struct regulator_dev *rdev)
3584 {
3585         return rdev->desc->id;
3586 }
3587 EXPORT_SYMBOL_GPL(rdev_get_id);
3588
3589 struct device *rdev_get_dev(struct regulator_dev *rdev)
3590 {
3591         return &rdev->dev;
3592 }
3593 EXPORT_SYMBOL_GPL(rdev_get_dev);
3594
3595 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3596 {
3597         return reg_init_data->driver_data;
3598 }
3599 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3600
3601 #ifdef CONFIG_DEBUG_FS
3602 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3603                                     size_t count, loff_t *ppos)
3604 {
3605         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3606         ssize_t len, ret = 0;
3607         struct regulator_map *map;
3608
3609         if (!buf)
3610                 return -ENOMEM;
3611
3612         list_for_each_entry(map, &regulator_map_list, list) {
3613                 len = snprintf(buf + ret, PAGE_SIZE - ret,
3614                                "%s -> %s.%s\n",
3615                                rdev_get_name(map->regulator), map->dev_name,
3616                                map->supply);
3617                 if (len >= 0)
3618                         ret += len;
3619                 if (ret > PAGE_SIZE) {
3620                         ret = PAGE_SIZE;
3621                         break;
3622                 }
3623         }
3624
3625         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3626
3627         kfree(buf);
3628
3629         return ret;
3630 }
3631 #endif
3632
3633 static const struct file_operations supply_map_fops = {
3634 #ifdef CONFIG_DEBUG_FS
3635         .read = supply_map_read_file,
3636         .llseek = default_llseek,
3637 #endif
3638 };
3639
3640 static int __init regulator_init(void)
3641 {
3642         int ret;
3643
3644         ret = class_register(&regulator_class);
3645
3646         debugfs_root = debugfs_create_dir("regulator", NULL);
3647         if (!debugfs_root)
3648                 pr_warn("regulator: Failed to create debugfs directory\n");
3649
3650         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3651                             &supply_map_fops);
3652
3653         regulator_dummy_init();
3654
3655         return ret;
3656 }
3657
3658 /* init early to allow our consumers to complete system booting */
3659 core_initcall(regulator_init);
3660
3661 static int __init regulator_init_complete(void)
3662 {
3663         struct regulator_dev *rdev;
3664         struct regulator_ops *ops;
3665         struct regulation_constraints *c;
3666         int enabled, ret;
3667
3668         /*
3669          * Since DT doesn't provide an idiomatic mechanism for
3670          * enabling full constraints and since it's much more natural
3671          * with DT to provide them just assume that a DT enabled
3672          * system has full constraints.
3673          */
3674         if (of_have_populated_dt())
3675                 has_full_constraints = true;
3676
3677         mutex_lock(&regulator_list_mutex);
3678
3679         /* If we have a full configuration then disable any regulators
3680          * which are not in use or always_on.  This will become the
3681          * default behaviour in the future.
3682          */
3683         list_for_each_entry(rdev, &regulator_list, list) {
3684                 ops = rdev->desc->ops;
3685                 c = rdev->constraints;
3686
3687                 if (!ops->disable || (c && c->always_on))
3688                         continue;
3689
3690                 mutex_lock(&rdev->mutex);
3691
3692                 if (rdev->use_count)
3693                         goto unlock;
3694
3695                 /* If we can't read the status assume it's on. */
3696                 if (ops->is_enabled)
3697                         enabled = ops->is_enabled(rdev);
3698                 else
3699                         enabled = 1;
3700
3701                 if (!enabled)
3702                         goto unlock;
3703
3704                 if (has_full_constraints) {
3705                         /* We log since this may kill the system if it
3706                          * goes wrong. */
3707                         rdev_info(rdev, "disabling\n");
3708                         ret = ops->disable(rdev);
3709                         if (ret != 0) {
3710                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
3711                         }
3712                 } else {
3713                         /* The intention is that in future we will
3714                          * assume that full constraints are provided
3715                          * so warn even if we aren't going to do
3716                          * anything here.
3717                          */
3718                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
3719                 }
3720
3721 unlock:
3722                 mutex_unlock(&rdev->mutex);
3723         }
3724
3725         mutex_unlock(&regulator_list_mutex);
3726
3727         return 0;
3728 }
3729 late_initcall(regulator_init_complete);