]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/regulator/core.c
Merge remote-tracking branch 'workqueues/for-next'
[karo-tx-linux.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37
38 #include "dummy.h"
39
40 #define rdev_crit(rdev, fmt, ...)                                       \
41         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_err(rdev, fmt, ...)                                        \
43         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_warn(rdev, fmt, ...)                                       \
45         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_info(rdev, fmt, ...)                                       \
47         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_dbg(rdev, fmt, ...)                                        \
49         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51 static DEFINE_MUTEX(regulator_list_mutex);
52 static LIST_HEAD(regulator_list);
53 static LIST_HEAD(regulator_map_list);
54 static bool has_full_constraints;
55 static bool board_wants_dummy_regulator;
56
57 static struct dentry *debugfs_root;
58
59 /*
60  * struct regulator_map
61  *
62  * Used to provide symbolic supply names to devices.
63  */
64 struct regulator_map {
65         struct list_head list;
66         const char *dev_name;   /* The dev_name() for the consumer */
67         const char *supply;
68         struct regulator_dev *regulator;
69 };
70
71 /*
72  * struct regulator
73  *
74  * One for each consumer device.
75  */
76 struct regulator {
77         struct device *dev;
78         struct list_head list;
79         unsigned int always_on:1;
80         unsigned int bypass:1;
81         int uA_load;
82         int min_uV;
83         int max_uV;
84         char *supply_name;
85         struct device_attribute dev_attr;
86         struct regulator_dev *rdev;
87         struct dentry *debugfs;
88 };
89
90 static int _regulator_is_enabled(struct regulator_dev *rdev);
91 static int _regulator_disable(struct regulator_dev *rdev);
92 static int _regulator_get_voltage(struct regulator_dev *rdev);
93 static int _regulator_get_current_limit(struct regulator_dev *rdev);
94 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
95 static void _notifier_call_chain(struct regulator_dev *rdev,
96                                   unsigned long event, void *data);
97 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
98                                      int min_uV, int max_uV);
99 static struct regulator *create_regulator(struct regulator_dev *rdev,
100                                           struct device *dev,
101                                           const char *supply_name);
102
103 static const char *rdev_get_name(struct regulator_dev *rdev)
104 {
105         if (rdev->constraints && rdev->constraints->name)
106                 return rdev->constraints->name;
107         else if (rdev->desc->name)
108                 return rdev->desc->name;
109         else
110                 return "";
111 }
112
113 /**
114  * of_get_regulator - get a regulator device node based on supply name
115  * @dev: Device pointer for the consumer (of regulator) device
116  * @supply: regulator supply name
117  *
118  * Extract the regulator device node corresponding to the supply name.
119  * retruns the device node corresponding to the regulator if found, else
120  * returns NULL.
121  */
122 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
123 {
124         struct device_node *regnode = NULL;
125         char prop_name[32]; /* 32 is max size of property name */
126
127         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
128
129         snprintf(prop_name, 32, "%s-supply", supply);
130         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
131
132         if (!regnode) {
133                 dev_dbg(dev, "Looking up %s property in node %s failed",
134                                 prop_name, dev->of_node->full_name);
135                 return NULL;
136         }
137         return regnode;
138 }
139
140 static int _regulator_can_change_status(struct regulator_dev *rdev)
141 {
142         if (!rdev->constraints)
143                 return 0;
144
145         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
146                 return 1;
147         else
148                 return 0;
149 }
150
151 /* Platform voltage constraint check */
152 static int regulator_check_voltage(struct regulator_dev *rdev,
153                                    int *min_uV, int *max_uV)
154 {
155         BUG_ON(*min_uV > *max_uV);
156
157         if (!rdev->constraints) {
158                 rdev_err(rdev, "no constraints\n");
159                 return -ENODEV;
160         }
161         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
162                 rdev_err(rdev, "operation not allowed\n");
163                 return -EPERM;
164         }
165
166         if (*max_uV > rdev->constraints->max_uV)
167                 *max_uV = rdev->constraints->max_uV;
168         if (*min_uV < rdev->constraints->min_uV)
169                 *min_uV = rdev->constraints->min_uV;
170
171         if (*min_uV > *max_uV) {
172                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
173                          *min_uV, *max_uV);
174                 return -EINVAL;
175         }
176
177         return 0;
178 }
179
180 /* Make sure we select a voltage that suits the needs of all
181  * regulator consumers
182  */
183 static int regulator_check_consumers(struct regulator_dev *rdev,
184                                      int *min_uV, int *max_uV)
185 {
186         struct regulator *regulator;
187
188         list_for_each_entry(regulator, &rdev->consumer_list, list) {
189                 /*
190                  * Assume consumers that didn't say anything are OK
191                  * with anything in the constraint range.
192                  */
193                 if (!regulator->min_uV && !regulator->max_uV)
194                         continue;
195
196                 if (*max_uV > regulator->max_uV)
197                         *max_uV = regulator->max_uV;
198                 if (*min_uV < regulator->min_uV)
199                         *min_uV = regulator->min_uV;
200         }
201
202         if (*min_uV > *max_uV)
203                 return -EINVAL;
204
205         return 0;
206 }
207
208 /* current constraint check */
209 static int regulator_check_current_limit(struct regulator_dev *rdev,
210                                         int *min_uA, int *max_uA)
211 {
212         BUG_ON(*min_uA > *max_uA);
213
214         if (!rdev->constraints) {
215                 rdev_err(rdev, "no constraints\n");
216                 return -ENODEV;
217         }
218         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
219                 rdev_err(rdev, "operation not allowed\n");
220                 return -EPERM;
221         }
222
223         if (*max_uA > rdev->constraints->max_uA)
224                 *max_uA = rdev->constraints->max_uA;
225         if (*min_uA < rdev->constraints->min_uA)
226                 *min_uA = rdev->constraints->min_uA;
227
228         if (*min_uA > *max_uA) {
229                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
230                          *min_uA, *max_uA);
231                 return -EINVAL;
232         }
233
234         return 0;
235 }
236
237 /* operating mode constraint check */
238 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
239 {
240         switch (*mode) {
241         case REGULATOR_MODE_FAST:
242         case REGULATOR_MODE_NORMAL:
243         case REGULATOR_MODE_IDLE:
244         case REGULATOR_MODE_STANDBY:
245                 break;
246         default:
247                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
248                 return -EINVAL;
249         }
250
251         if (!rdev->constraints) {
252                 rdev_err(rdev, "no constraints\n");
253                 return -ENODEV;
254         }
255         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
256                 rdev_err(rdev, "operation not allowed\n");
257                 return -EPERM;
258         }
259
260         /* The modes are bitmasks, the most power hungry modes having
261          * the lowest values. If the requested mode isn't supported
262          * try higher modes. */
263         while (*mode) {
264                 if (rdev->constraints->valid_modes_mask & *mode)
265                         return 0;
266                 *mode /= 2;
267         }
268
269         return -EINVAL;
270 }
271
272 /* dynamic regulator mode switching constraint check */
273 static int regulator_check_drms(struct regulator_dev *rdev)
274 {
275         if (!rdev->constraints) {
276                 rdev_err(rdev, "no constraints\n");
277                 return -ENODEV;
278         }
279         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
280                 rdev_err(rdev, "operation not allowed\n");
281                 return -EPERM;
282         }
283         return 0;
284 }
285
286 static ssize_t regulator_uV_show(struct device *dev,
287                                 struct device_attribute *attr, char *buf)
288 {
289         struct regulator_dev *rdev = dev_get_drvdata(dev);
290         ssize_t ret;
291
292         mutex_lock(&rdev->mutex);
293         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
294         mutex_unlock(&rdev->mutex);
295
296         return ret;
297 }
298 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
299
300 static ssize_t regulator_uA_show(struct device *dev,
301                                 struct device_attribute *attr, char *buf)
302 {
303         struct regulator_dev *rdev = dev_get_drvdata(dev);
304
305         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
306 }
307 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
308
309 static ssize_t regulator_name_show(struct device *dev,
310                              struct device_attribute *attr, char *buf)
311 {
312         struct regulator_dev *rdev = dev_get_drvdata(dev);
313
314         return sprintf(buf, "%s\n", rdev_get_name(rdev));
315 }
316
317 static ssize_t regulator_print_opmode(char *buf, int mode)
318 {
319         switch (mode) {
320         case REGULATOR_MODE_FAST:
321                 return sprintf(buf, "fast\n");
322         case REGULATOR_MODE_NORMAL:
323                 return sprintf(buf, "normal\n");
324         case REGULATOR_MODE_IDLE:
325                 return sprintf(buf, "idle\n");
326         case REGULATOR_MODE_STANDBY:
327                 return sprintf(buf, "standby\n");
328         }
329         return sprintf(buf, "unknown\n");
330 }
331
332 static ssize_t regulator_opmode_show(struct device *dev,
333                                     struct device_attribute *attr, char *buf)
334 {
335         struct regulator_dev *rdev = dev_get_drvdata(dev);
336
337         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
338 }
339 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
340
341 static ssize_t regulator_print_state(char *buf, int state)
342 {
343         if (state > 0)
344                 return sprintf(buf, "enabled\n");
345         else if (state == 0)
346                 return sprintf(buf, "disabled\n");
347         else
348                 return sprintf(buf, "unknown\n");
349 }
350
351 static ssize_t regulator_state_show(struct device *dev,
352                                    struct device_attribute *attr, char *buf)
353 {
354         struct regulator_dev *rdev = dev_get_drvdata(dev);
355         ssize_t ret;
356
357         mutex_lock(&rdev->mutex);
358         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
359         mutex_unlock(&rdev->mutex);
360
361         return ret;
362 }
363 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
364
365 static ssize_t regulator_status_show(struct device *dev,
366                                    struct device_attribute *attr, char *buf)
367 {
368         struct regulator_dev *rdev = dev_get_drvdata(dev);
369         int status;
370         char *label;
371
372         status = rdev->desc->ops->get_status(rdev);
373         if (status < 0)
374                 return status;
375
376         switch (status) {
377         case REGULATOR_STATUS_OFF:
378                 label = "off";
379                 break;
380         case REGULATOR_STATUS_ON:
381                 label = "on";
382                 break;
383         case REGULATOR_STATUS_ERROR:
384                 label = "error";
385                 break;
386         case REGULATOR_STATUS_FAST:
387                 label = "fast";
388                 break;
389         case REGULATOR_STATUS_NORMAL:
390                 label = "normal";
391                 break;
392         case REGULATOR_STATUS_IDLE:
393                 label = "idle";
394                 break;
395         case REGULATOR_STATUS_STANDBY:
396                 label = "standby";
397                 break;
398         case REGULATOR_STATUS_BYPASS:
399                 label = "bypass";
400                 break;
401         case REGULATOR_STATUS_UNDEFINED:
402                 label = "undefined";
403                 break;
404         default:
405                 return -ERANGE;
406         }
407
408         return sprintf(buf, "%s\n", label);
409 }
410 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
411
412 static ssize_t regulator_min_uA_show(struct device *dev,
413                                     struct device_attribute *attr, char *buf)
414 {
415         struct regulator_dev *rdev = dev_get_drvdata(dev);
416
417         if (!rdev->constraints)
418                 return sprintf(buf, "constraint not defined\n");
419
420         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
421 }
422 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
423
424 static ssize_t regulator_max_uA_show(struct device *dev,
425                                     struct device_attribute *attr, char *buf)
426 {
427         struct regulator_dev *rdev = dev_get_drvdata(dev);
428
429         if (!rdev->constraints)
430                 return sprintf(buf, "constraint not defined\n");
431
432         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
433 }
434 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
435
436 static ssize_t regulator_min_uV_show(struct device *dev,
437                                     struct device_attribute *attr, char *buf)
438 {
439         struct regulator_dev *rdev = dev_get_drvdata(dev);
440
441         if (!rdev->constraints)
442                 return sprintf(buf, "constraint not defined\n");
443
444         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
445 }
446 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
447
448 static ssize_t regulator_max_uV_show(struct device *dev,
449                                     struct device_attribute *attr, char *buf)
450 {
451         struct regulator_dev *rdev = dev_get_drvdata(dev);
452
453         if (!rdev->constraints)
454                 return sprintf(buf, "constraint not defined\n");
455
456         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
457 }
458 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
459
460 static ssize_t regulator_total_uA_show(struct device *dev,
461                                       struct device_attribute *attr, char *buf)
462 {
463         struct regulator_dev *rdev = dev_get_drvdata(dev);
464         struct regulator *regulator;
465         int uA = 0;
466
467         mutex_lock(&rdev->mutex);
468         list_for_each_entry(regulator, &rdev->consumer_list, list)
469                 uA += regulator->uA_load;
470         mutex_unlock(&rdev->mutex);
471         return sprintf(buf, "%d\n", uA);
472 }
473 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
474
475 static ssize_t regulator_num_users_show(struct device *dev,
476                                       struct device_attribute *attr, char *buf)
477 {
478         struct regulator_dev *rdev = dev_get_drvdata(dev);
479         return sprintf(buf, "%d\n", rdev->use_count);
480 }
481
482 static ssize_t regulator_type_show(struct device *dev,
483                                   struct device_attribute *attr, char *buf)
484 {
485         struct regulator_dev *rdev = dev_get_drvdata(dev);
486
487         switch (rdev->desc->type) {
488         case REGULATOR_VOLTAGE:
489                 return sprintf(buf, "voltage\n");
490         case REGULATOR_CURRENT:
491                 return sprintf(buf, "current\n");
492         }
493         return sprintf(buf, "unknown\n");
494 }
495
496 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
497                                 struct device_attribute *attr, char *buf)
498 {
499         struct regulator_dev *rdev = dev_get_drvdata(dev);
500
501         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
502 }
503 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
504                 regulator_suspend_mem_uV_show, NULL);
505
506 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
507                                 struct device_attribute *attr, char *buf)
508 {
509         struct regulator_dev *rdev = dev_get_drvdata(dev);
510
511         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
512 }
513 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
514                 regulator_suspend_disk_uV_show, NULL);
515
516 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
517                                 struct device_attribute *attr, char *buf)
518 {
519         struct regulator_dev *rdev = dev_get_drvdata(dev);
520
521         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
522 }
523 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
524                 regulator_suspend_standby_uV_show, NULL);
525
526 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
527                                 struct device_attribute *attr, char *buf)
528 {
529         struct regulator_dev *rdev = dev_get_drvdata(dev);
530
531         return regulator_print_opmode(buf,
532                 rdev->constraints->state_mem.mode);
533 }
534 static DEVICE_ATTR(suspend_mem_mode, 0444,
535                 regulator_suspend_mem_mode_show, NULL);
536
537 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
538                                 struct device_attribute *attr, char *buf)
539 {
540         struct regulator_dev *rdev = dev_get_drvdata(dev);
541
542         return regulator_print_opmode(buf,
543                 rdev->constraints->state_disk.mode);
544 }
545 static DEVICE_ATTR(suspend_disk_mode, 0444,
546                 regulator_suspend_disk_mode_show, NULL);
547
548 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
549                                 struct device_attribute *attr, char *buf)
550 {
551         struct regulator_dev *rdev = dev_get_drvdata(dev);
552
553         return regulator_print_opmode(buf,
554                 rdev->constraints->state_standby.mode);
555 }
556 static DEVICE_ATTR(suspend_standby_mode, 0444,
557                 regulator_suspend_standby_mode_show, NULL);
558
559 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
560                                    struct device_attribute *attr, char *buf)
561 {
562         struct regulator_dev *rdev = dev_get_drvdata(dev);
563
564         return regulator_print_state(buf,
565                         rdev->constraints->state_mem.enabled);
566 }
567 static DEVICE_ATTR(suspend_mem_state, 0444,
568                 regulator_suspend_mem_state_show, NULL);
569
570 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
571                                    struct device_attribute *attr, char *buf)
572 {
573         struct regulator_dev *rdev = dev_get_drvdata(dev);
574
575         return regulator_print_state(buf,
576                         rdev->constraints->state_disk.enabled);
577 }
578 static DEVICE_ATTR(suspend_disk_state, 0444,
579                 regulator_suspend_disk_state_show, NULL);
580
581 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
582                                    struct device_attribute *attr, char *buf)
583 {
584         struct regulator_dev *rdev = dev_get_drvdata(dev);
585
586         return regulator_print_state(buf,
587                         rdev->constraints->state_standby.enabled);
588 }
589 static DEVICE_ATTR(suspend_standby_state, 0444,
590                 regulator_suspend_standby_state_show, NULL);
591
592 static ssize_t regulator_bypass_show(struct device *dev,
593                                      struct device_attribute *attr, char *buf)
594 {
595         struct regulator_dev *rdev = dev_get_drvdata(dev);
596         const char *report;
597         bool bypass;
598         int ret;
599
600         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
601
602         if (ret != 0)
603                 report = "unknown";
604         else if (bypass)
605                 report = "enabled";
606         else
607                 report = "disabled";
608
609         return sprintf(buf, "%s\n", report);
610 }
611 static DEVICE_ATTR(bypass, 0444,
612                    regulator_bypass_show, NULL);
613
614 /*
615  * These are the only attributes are present for all regulators.
616  * Other attributes are a function of regulator functionality.
617  */
618 static struct device_attribute regulator_dev_attrs[] = {
619         __ATTR(name, 0444, regulator_name_show, NULL),
620         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
621         __ATTR(type, 0444, regulator_type_show, NULL),
622         __ATTR_NULL,
623 };
624
625 static void regulator_dev_release(struct device *dev)
626 {
627         struct regulator_dev *rdev = dev_get_drvdata(dev);
628         kfree(rdev);
629 }
630
631 static struct class regulator_class = {
632         .name = "regulator",
633         .dev_release = regulator_dev_release,
634         .dev_attrs = regulator_dev_attrs,
635 };
636
637 /* Calculate the new optimum regulator operating mode based on the new total
638  * consumer load. All locks held by caller */
639 static void drms_uA_update(struct regulator_dev *rdev)
640 {
641         struct regulator *sibling;
642         int current_uA = 0, output_uV, input_uV, err;
643         unsigned int mode;
644
645         err = regulator_check_drms(rdev);
646         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
647             (!rdev->desc->ops->get_voltage &&
648              !rdev->desc->ops->get_voltage_sel) ||
649             !rdev->desc->ops->set_mode)
650                 return;
651
652         /* get output voltage */
653         output_uV = _regulator_get_voltage(rdev);
654         if (output_uV <= 0)
655                 return;
656
657         /* get input voltage */
658         input_uV = 0;
659         if (rdev->supply)
660                 input_uV = regulator_get_voltage(rdev->supply);
661         if (input_uV <= 0)
662                 input_uV = rdev->constraints->input_uV;
663         if (input_uV <= 0)
664                 return;
665
666         /* calc total requested load */
667         list_for_each_entry(sibling, &rdev->consumer_list, list)
668                 current_uA += sibling->uA_load;
669
670         /* now get the optimum mode for our new total regulator load */
671         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
672                                                   output_uV, current_uA);
673
674         /* check the new mode is allowed */
675         err = regulator_mode_constrain(rdev, &mode);
676         if (err == 0)
677                 rdev->desc->ops->set_mode(rdev, mode);
678 }
679
680 static int suspend_set_state(struct regulator_dev *rdev,
681         struct regulator_state *rstate)
682 {
683         int ret = 0;
684
685         /* If we have no suspend mode configration don't set anything;
686          * only warn if the driver implements set_suspend_voltage or
687          * set_suspend_mode callback.
688          */
689         if (!rstate->enabled && !rstate->disabled) {
690                 if (rdev->desc->ops->set_suspend_voltage ||
691                     rdev->desc->ops->set_suspend_mode)
692                         rdev_warn(rdev, "No configuration\n");
693                 return 0;
694         }
695
696         if (rstate->enabled && rstate->disabled) {
697                 rdev_err(rdev, "invalid configuration\n");
698                 return -EINVAL;
699         }
700
701         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
702                 ret = rdev->desc->ops->set_suspend_enable(rdev);
703         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
704                 ret = rdev->desc->ops->set_suspend_disable(rdev);
705         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
706                 ret = 0;
707
708         if (ret < 0) {
709                 rdev_err(rdev, "failed to enabled/disable\n");
710                 return ret;
711         }
712
713         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
714                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
715                 if (ret < 0) {
716                         rdev_err(rdev, "failed to set voltage\n");
717                         return ret;
718                 }
719         }
720
721         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
722                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
723                 if (ret < 0) {
724                         rdev_err(rdev, "failed to set mode\n");
725                         return ret;
726                 }
727         }
728         return ret;
729 }
730
731 /* locks held by caller */
732 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
733 {
734         if (!rdev->constraints)
735                 return -EINVAL;
736
737         switch (state) {
738         case PM_SUSPEND_STANDBY:
739                 return suspend_set_state(rdev,
740                         &rdev->constraints->state_standby);
741         case PM_SUSPEND_MEM:
742                 return suspend_set_state(rdev,
743                         &rdev->constraints->state_mem);
744         case PM_SUSPEND_MAX:
745                 return suspend_set_state(rdev,
746                         &rdev->constraints->state_disk);
747         default:
748                 return -EINVAL;
749         }
750 }
751
752 static void print_constraints(struct regulator_dev *rdev)
753 {
754         struct regulation_constraints *constraints = rdev->constraints;
755         char buf[80] = "";
756         int count = 0;
757         int ret;
758
759         if (constraints->min_uV && constraints->max_uV) {
760                 if (constraints->min_uV == constraints->max_uV)
761                         count += sprintf(buf + count, "%d mV ",
762                                          constraints->min_uV / 1000);
763                 else
764                         count += sprintf(buf + count, "%d <--> %d mV ",
765                                          constraints->min_uV / 1000,
766                                          constraints->max_uV / 1000);
767         }
768
769         if (!constraints->min_uV ||
770             constraints->min_uV != constraints->max_uV) {
771                 ret = _regulator_get_voltage(rdev);
772                 if (ret > 0)
773                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
774         }
775
776         if (constraints->uV_offset)
777                 count += sprintf(buf, "%dmV offset ",
778                                  constraints->uV_offset / 1000);
779
780         if (constraints->min_uA && constraints->max_uA) {
781                 if (constraints->min_uA == constraints->max_uA)
782                         count += sprintf(buf + count, "%d mA ",
783                                          constraints->min_uA / 1000);
784                 else
785                         count += sprintf(buf + count, "%d <--> %d mA ",
786                                          constraints->min_uA / 1000,
787                                          constraints->max_uA / 1000);
788         }
789
790         if (!constraints->min_uA ||
791             constraints->min_uA != constraints->max_uA) {
792                 ret = _regulator_get_current_limit(rdev);
793                 if (ret > 0)
794                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
795         }
796
797         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
798                 count += sprintf(buf + count, "fast ");
799         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
800                 count += sprintf(buf + count, "normal ");
801         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
802                 count += sprintf(buf + count, "idle ");
803         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
804                 count += sprintf(buf + count, "standby");
805
806         if (!count)
807                 sprintf(buf, "no parameters");
808
809         rdev_info(rdev, "%s\n", buf);
810
811         if ((constraints->min_uV != constraints->max_uV) &&
812             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
813                 rdev_warn(rdev,
814                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
815 }
816
817 static int machine_constraints_voltage(struct regulator_dev *rdev,
818         struct regulation_constraints *constraints)
819 {
820         struct regulator_ops *ops = rdev->desc->ops;
821         int ret;
822
823         /* do we need to apply the constraint voltage */
824         if (rdev->constraints->apply_uV &&
825             rdev->constraints->min_uV == rdev->constraints->max_uV) {
826                 ret = _regulator_do_set_voltage(rdev,
827                                                 rdev->constraints->min_uV,
828                                                 rdev->constraints->max_uV);
829                 if (ret < 0) {
830                         rdev_err(rdev, "failed to apply %duV constraint\n",
831                                  rdev->constraints->min_uV);
832                         return ret;
833                 }
834         }
835
836         /* constrain machine-level voltage specs to fit
837          * the actual range supported by this regulator.
838          */
839         if (ops->list_voltage && rdev->desc->n_voltages) {
840                 int     count = rdev->desc->n_voltages;
841                 int     i;
842                 int     min_uV = INT_MAX;
843                 int     max_uV = INT_MIN;
844                 int     cmin = constraints->min_uV;
845                 int     cmax = constraints->max_uV;
846
847                 /* it's safe to autoconfigure fixed-voltage supplies
848                    and the constraints are used by list_voltage. */
849                 if (count == 1 && !cmin) {
850                         cmin = 1;
851                         cmax = INT_MAX;
852                         constraints->min_uV = cmin;
853                         constraints->max_uV = cmax;
854                 }
855
856                 /* voltage constraints are optional */
857                 if ((cmin == 0) && (cmax == 0))
858                         return 0;
859
860                 /* else require explicit machine-level constraints */
861                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
862                         rdev_err(rdev, "invalid voltage constraints\n");
863                         return -EINVAL;
864                 }
865
866                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
867                 for (i = 0; i < count; i++) {
868                         int     value;
869
870                         value = ops->list_voltage(rdev, i);
871                         if (value <= 0)
872                                 continue;
873
874                         /* maybe adjust [min_uV..max_uV] */
875                         if (value >= cmin && value < min_uV)
876                                 min_uV = value;
877                         if (value <= cmax && value > max_uV)
878                                 max_uV = value;
879                 }
880
881                 /* final: [min_uV..max_uV] valid iff constraints valid */
882                 if (max_uV < min_uV) {
883                         rdev_err(rdev, "unsupportable voltage constraints\n");
884                         return -EINVAL;
885                 }
886
887                 /* use regulator's subset of machine constraints */
888                 if (constraints->min_uV < min_uV) {
889                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
890                                  constraints->min_uV, min_uV);
891                         constraints->min_uV = min_uV;
892                 }
893                 if (constraints->max_uV > max_uV) {
894                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
895                                  constraints->max_uV, max_uV);
896                         constraints->max_uV = max_uV;
897                 }
898         }
899
900         return 0;
901 }
902
903 /**
904  * set_machine_constraints - sets regulator constraints
905  * @rdev: regulator source
906  * @constraints: constraints to apply
907  *
908  * Allows platform initialisation code to define and constrain
909  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
910  * Constraints *must* be set by platform code in order for some
911  * regulator operations to proceed i.e. set_voltage, set_current_limit,
912  * set_mode.
913  */
914 static int set_machine_constraints(struct regulator_dev *rdev,
915         const struct regulation_constraints *constraints)
916 {
917         int ret = 0;
918         struct regulator_ops *ops = rdev->desc->ops;
919
920         if (constraints)
921                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
922                                             GFP_KERNEL);
923         else
924                 rdev->constraints = kzalloc(sizeof(*constraints),
925                                             GFP_KERNEL);
926         if (!rdev->constraints)
927                 return -ENOMEM;
928
929         ret = machine_constraints_voltage(rdev, rdev->constraints);
930         if (ret != 0)
931                 goto out;
932
933         /* do we need to setup our suspend state */
934         if (rdev->constraints->initial_state) {
935                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
936                 if (ret < 0) {
937                         rdev_err(rdev, "failed to set suspend state\n");
938                         goto out;
939                 }
940         }
941
942         if (rdev->constraints->initial_mode) {
943                 if (!ops->set_mode) {
944                         rdev_err(rdev, "no set_mode operation\n");
945                         ret = -EINVAL;
946                         goto out;
947                 }
948
949                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
950                 if (ret < 0) {
951                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
952                         goto out;
953                 }
954         }
955
956         /* If the constraints say the regulator should be on at this point
957          * and we have control then make sure it is enabled.
958          */
959         if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
960             ops->enable) {
961                 ret = ops->enable(rdev);
962                 if (ret < 0) {
963                         rdev_err(rdev, "failed to enable\n");
964                         goto out;
965                 }
966         }
967
968         if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
969                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
970                 if (ret < 0) {
971                         rdev_err(rdev, "failed to set ramp_delay\n");
972                         goto out;
973                 }
974         }
975
976         print_constraints(rdev);
977         return 0;
978 out:
979         kfree(rdev->constraints);
980         rdev->constraints = NULL;
981         return ret;
982 }
983
984 /**
985  * set_supply - set regulator supply regulator
986  * @rdev: regulator name
987  * @supply_rdev: supply regulator name
988  *
989  * Called by platform initialisation code to set the supply regulator for this
990  * regulator. This ensures that a regulators supply will also be enabled by the
991  * core if it's child is enabled.
992  */
993 static int set_supply(struct regulator_dev *rdev,
994                       struct regulator_dev *supply_rdev)
995 {
996         int err;
997
998         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
999
1000         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1001         if (rdev->supply == NULL) {
1002                 err = -ENOMEM;
1003                 return err;
1004         }
1005         supply_rdev->open_count++;
1006
1007         return 0;
1008 }
1009
1010 /**
1011  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1012  * @rdev:         regulator source
1013  * @consumer_dev_name: dev_name() string for device supply applies to
1014  * @supply:       symbolic name for supply
1015  *
1016  * Allows platform initialisation code to map physical regulator
1017  * sources to symbolic names for supplies for use by devices.  Devices
1018  * should use these symbolic names to request regulators, avoiding the
1019  * need to provide board-specific regulator names as platform data.
1020  */
1021 static int set_consumer_device_supply(struct regulator_dev *rdev,
1022                                       const char *consumer_dev_name,
1023                                       const char *supply)
1024 {
1025         struct regulator_map *node;
1026         int has_dev;
1027
1028         if (supply == NULL)
1029                 return -EINVAL;
1030
1031         if (consumer_dev_name != NULL)
1032                 has_dev = 1;
1033         else
1034                 has_dev = 0;
1035
1036         list_for_each_entry(node, &regulator_map_list, list) {
1037                 if (node->dev_name && consumer_dev_name) {
1038                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1039                                 continue;
1040                 } else if (node->dev_name || consumer_dev_name) {
1041                         continue;
1042                 }
1043
1044                 if (strcmp(node->supply, supply) != 0)
1045                         continue;
1046
1047                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1048                          consumer_dev_name,
1049                          dev_name(&node->regulator->dev),
1050                          node->regulator->desc->name,
1051                          supply,
1052                          dev_name(&rdev->dev), rdev_get_name(rdev));
1053                 return -EBUSY;
1054         }
1055
1056         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1057         if (node == NULL)
1058                 return -ENOMEM;
1059
1060         node->regulator = rdev;
1061         node->supply = supply;
1062
1063         if (has_dev) {
1064                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1065                 if (node->dev_name == NULL) {
1066                         kfree(node);
1067                         return -ENOMEM;
1068                 }
1069         }
1070
1071         list_add(&node->list, &regulator_map_list);
1072         return 0;
1073 }
1074
1075 static void unset_regulator_supplies(struct regulator_dev *rdev)
1076 {
1077         struct regulator_map *node, *n;
1078
1079         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1080                 if (rdev == node->regulator) {
1081                         list_del(&node->list);
1082                         kfree(node->dev_name);
1083                         kfree(node);
1084                 }
1085         }
1086 }
1087
1088 #define REG_STR_SIZE    64
1089
1090 static struct regulator *create_regulator(struct regulator_dev *rdev,
1091                                           struct device *dev,
1092                                           const char *supply_name)
1093 {
1094         struct regulator *regulator;
1095         char buf[REG_STR_SIZE];
1096         int err, size;
1097
1098         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1099         if (regulator == NULL)
1100                 return NULL;
1101
1102         mutex_lock(&rdev->mutex);
1103         regulator->rdev = rdev;
1104         list_add(&regulator->list, &rdev->consumer_list);
1105
1106         if (dev) {
1107                 regulator->dev = dev;
1108
1109                 /* Add a link to the device sysfs entry */
1110                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1111                                  dev->kobj.name, supply_name);
1112                 if (size >= REG_STR_SIZE)
1113                         goto overflow_err;
1114
1115                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1116                 if (regulator->supply_name == NULL)
1117                         goto overflow_err;
1118
1119                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1120                                         buf);
1121                 if (err) {
1122                         rdev_warn(rdev, "could not add device link %s err %d\n",
1123                                   dev->kobj.name, err);
1124                         /* non-fatal */
1125                 }
1126         } else {
1127                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1128                 if (regulator->supply_name == NULL)
1129                         goto overflow_err;
1130         }
1131
1132         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1133                                                 rdev->debugfs);
1134         if (!regulator->debugfs) {
1135                 rdev_warn(rdev, "Failed to create debugfs directory\n");
1136         } else {
1137                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1138                                    &regulator->uA_load);
1139                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1140                                    &regulator->min_uV);
1141                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1142                                    &regulator->max_uV);
1143         }
1144
1145         /*
1146          * Check now if the regulator is an always on regulator - if
1147          * it is then we don't need to do nearly so much work for
1148          * enable/disable calls.
1149          */
1150         if (!_regulator_can_change_status(rdev) &&
1151             _regulator_is_enabled(rdev))
1152                 regulator->always_on = true;
1153
1154         mutex_unlock(&rdev->mutex);
1155         return regulator;
1156 overflow_err:
1157         list_del(&regulator->list);
1158         kfree(regulator);
1159         mutex_unlock(&rdev->mutex);
1160         return NULL;
1161 }
1162
1163 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1164 {
1165         if (!rdev->desc->ops->enable_time)
1166                 return rdev->desc->enable_time;
1167         return rdev->desc->ops->enable_time(rdev);
1168 }
1169
1170 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1171                                                   const char *supply,
1172                                                   int *ret)
1173 {
1174         struct regulator_dev *r;
1175         struct device_node *node;
1176         struct regulator_map *map;
1177         const char *devname = NULL;
1178
1179         /* first do a dt based lookup */
1180         if (dev && dev->of_node) {
1181                 node = of_get_regulator(dev, supply);
1182                 if (node) {
1183                         list_for_each_entry(r, &regulator_list, list)
1184                                 if (r->dev.parent &&
1185                                         node == r->dev.of_node)
1186                                         return r;
1187                 } else {
1188                         /*
1189                          * If we couldn't even get the node then it's
1190                          * not just that the device didn't register
1191                          * yet, there's no node and we'll never
1192                          * succeed.
1193                          */
1194                         *ret = -ENODEV;
1195                 }
1196         }
1197
1198         /* if not found, try doing it non-dt way */
1199         if (dev)
1200                 devname = dev_name(dev);
1201
1202         list_for_each_entry(r, &regulator_list, list)
1203                 if (strcmp(rdev_get_name(r), supply) == 0)
1204                         return r;
1205
1206         list_for_each_entry(map, &regulator_map_list, list) {
1207                 /* If the mapping has a device set up it must match */
1208                 if (map->dev_name &&
1209                     (!devname || strcmp(map->dev_name, devname)))
1210                         continue;
1211
1212                 if (strcmp(map->supply, supply) == 0)
1213                         return map->regulator;
1214         }
1215
1216
1217         return NULL;
1218 }
1219
1220 /* Internal regulator request function */
1221 static struct regulator *_regulator_get(struct device *dev, const char *id,
1222                                         int exclusive)
1223 {
1224         struct regulator_dev *rdev;
1225         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1226         const char *devname = NULL;
1227         int ret;
1228
1229         if (id == NULL) {
1230                 pr_err("get() with no identifier\n");
1231                 return regulator;
1232         }
1233
1234         if (dev)
1235                 devname = dev_name(dev);
1236
1237         mutex_lock(&regulator_list_mutex);
1238
1239         rdev = regulator_dev_lookup(dev, id, &ret);
1240         if (rdev)
1241                 goto found;
1242
1243         if (board_wants_dummy_regulator) {
1244                 rdev = dummy_regulator_rdev;
1245                 goto found;
1246         }
1247
1248 #ifdef CONFIG_REGULATOR_DUMMY
1249         if (!devname)
1250                 devname = "deviceless";
1251
1252         /* If the board didn't flag that it was fully constrained then
1253          * substitute in a dummy regulator so consumers can continue.
1254          */
1255         if (!has_full_constraints) {
1256                 pr_warn("%s supply %s not found, using dummy regulator\n",
1257                         devname, id);
1258                 rdev = dummy_regulator_rdev;
1259                 goto found;
1260         }
1261 #endif
1262
1263         mutex_unlock(&regulator_list_mutex);
1264         return regulator;
1265
1266 found:
1267         if (rdev->exclusive) {
1268                 regulator = ERR_PTR(-EPERM);
1269                 goto out;
1270         }
1271
1272         if (exclusive && rdev->open_count) {
1273                 regulator = ERR_PTR(-EBUSY);
1274                 goto out;
1275         }
1276
1277         if (!try_module_get(rdev->owner))
1278                 goto out;
1279
1280         regulator = create_regulator(rdev, dev, id);
1281         if (regulator == NULL) {
1282                 regulator = ERR_PTR(-ENOMEM);
1283                 module_put(rdev->owner);
1284                 goto out;
1285         }
1286
1287         rdev->open_count++;
1288         if (exclusive) {
1289                 rdev->exclusive = 1;
1290
1291                 ret = _regulator_is_enabled(rdev);
1292                 if (ret > 0)
1293                         rdev->use_count = 1;
1294                 else
1295                         rdev->use_count = 0;
1296         }
1297
1298 out:
1299         mutex_unlock(&regulator_list_mutex);
1300
1301         return regulator;
1302 }
1303
1304 /**
1305  * regulator_get - lookup and obtain a reference to a regulator.
1306  * @dev: device for regulator "consumer"
1307  * @id: Supply name or regulator ID.
1308  *
1309  * Returns a struct regulator corresponding to the regulator producer,
1310  * or IS_ERR() condition containing errno.
1311  *
1312  * Use of supply names configured via regulator_set_device_supply() is
1313  * strongly encouraged.  It is recommended that the supply name used
1314  * should match the name used for the supply and/or the relevant
1315  * device pins in the datasheet.
1316  */
1317 struct regulator *regulator_get(struct device *dev, const char *id)
1318 {
1319         return _regulator_get(dev, id, 0);
1320 }
1321 EXPORT_SYMBOL_GPL(regulator_get);
1322
1323 static void devm_regulator_release(struct device *dev, void *res)
1324 {
1325         regulator_put(*(struct regulator **)res);
1326 }
1327
1328 /**
1329  * devm_regulator_get - Resource managed regulator_get()
1330  * @dev: device for regulator "consumer"
1331  * @id: Supply name or regulator ID.
1332  *
1333  * Managed regulator_get(). Regulators returned from this function are
1334  * automatically regulator_put() on driver detach. See regulator_get() for more
1335  * information.
1336  */
1337 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1338 {
1339         struct regulator **ptr, *regulator;
1340
1341         ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1342         if (!ptr)
1343                 return ERR_PTR(-ENOMEM);
1344
1345         regulator = regulator_get(dev, id);
1346         if (!IS_ERR(regulator)) {
1347                 *ptr = regulator;
1348                 devres_add(dev, ptr);
1349         } else {
1350                 devres_free(ptr);
1351         }
1352
1353         return regulator;
1354 }
1355 EXPORT_SYMBOL_GPL(devm_regulator_get);
1356
1357 /**
1358  * regulator_get_exclusive - obtain exclusive access to a regulator.
1359  * @dev: device for regulator "consumer"
1360  * @id: Supply name or regulator ID.
1361  *
1362  * Returns a struct regulator corresponding to the regulator producer,
1363  * or IS_ERR() condition containing errno.  Other consumers will be
1364  * unable to obtain this reference is held and the use count for the
1365  * regulator will be initialised to reflect the current state of the
1366  * regulator.
1367  *
1368  * This is intended for use by consumers which cannot tolerate shared
1369  * use of the regulator such as those which need to force the
1370  * regulator off for correct operation of the hardware they are
1371  * controlling.
1372  *
1373  * Use of supply names configured via regulator_set_device_supply() is
1374  * strongly encouraged.  It is recommended that the supply name used
1375  * should match the name used for the supply and/or the relevant
1376  * device pins in the datasheet.
1377  */
1378 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1379 {
1380         return _regulator_get(dev, id, 1);
1381 }
1382 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1383
1384 /**
1385  * regulator_put - "free" the regulator source
1386  * @regulator: regulator source
1387  *
1388  * Note: drivers must ensure that all regulator_enable calls made on this
1389  * regulator source are balanced by regulator_disable calls prior to calling
1390  * this function.
1391  */
1392 void regulator_put(struct regulator *regulator)
1393 {
1394         struct regulator_dev *rdev;
1395
1396         if (regulator == NULL || IS_ERR(regulator))
1397                 return;
1398
1399         mutex_lock(&regulator_list_mutex);
1400         rdev = regulator->rdev;
1401
1402         debugfs_remove_recursive(regulator->debugfs);
1403
1404         /* remove any sysfs entries */
1405         if (regulator->dev)
1406                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1407         kfree(regulator->supply_name);
1408         list_del(&regulator->list);
1409         kfree(regulator);
1410
1411         rdev->open_count--;
1412         rdev->exclusive = 0;
1413
1414         module_put(rdev->owner);
1415         mutex_unlock(&regulator_list_mutex);
1416 }
1417 EXPORT_SYMBOL_GPL(regulator_put);
1418
1419 static int devm_regulator_match(struct device *dev, void *res, void *data)
1420 {
1421         struct regulator **r = res;
1422         if (!r || !*r) {
1423                 WARN_ON(!r || !*r);
1424                 return 0;
1425         }
1426         return *r == data;
1427 }
1428
1429 /**
1430  * devm_regulator_put - Resource managed regulator_put()
1431  * @regulator: regulator to free
1432  *
1433  * Deallocate a regulator allocated with devm_regulator_get(). Normally
1434  * this function will not need to be called and the resource management
1435  * code will ensure that the resource is freed.
1436  */
1437 void devm_regulator_put(struct regulator *regulator)
1438 {
1439         int rc;
1440
1441         rc = devres_release(regulator->dev, devm_regulator_release,
1442                             devm_regulator_match, regulator);
1443         if (rc != 0)
1444                 WARN_ON(rc);
1445 }
1446 EXPORT_SYMBOL_GPL(devm_regulator_put);
1447
1448 static int _regulator_do_enable(struct regulator_dev *rdev)
1449 {
1450         int ret, delay;
1451
1452         /* Query before enabling in case configuration dependent.  */
1453         ret = _regulator_get_enable_time(rdev);
1454         if (ret >= 0) {
1455                 delay = ret;
1456         } else {
1457                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1458                 delay = 0;
1459         }
1460
1461         trace_regulator_enable(rdev_get_name(rdev));
1462
1463         if (rdev->ena_gpio) {
1464                 gpio_set_value_cansleep(rdev->ena_gpio,
1465                                         !rdev->ena_gpio_invert);
1466                 rdev->ena_gpio_state = 1;
1467         } else if (rdev->desc->ops->enable) {
1468                 ret = rdev->desc->ops->enable(rdev);
1469                 if (ret < 0)
1470                         return ret;
1471         } else {
1472                 return -EINVAL;
1473         }
1474
1475         /* Allow the regulator to ramp; it would be useful to extend
1476          * this for bulk operations so that the regulators can ramp
1477          * together.  */
1478         trace_regulator_enable_delay(rdev_get_name(rdev));
1479
1480         if (delay >= 1000) {
1481                 mdelay(delay / 1000);
1482                 udelay(delay % 1000);
1483         } else if (delay) {
1484                 udelay(delay);
1485         }
1486
1487         trace_regulator_enable_complete(rdev_get_name(rdev));
1488
1489         return 0;
1490 }
1491
1492 /* locks held by regulator_enable() */
1493 static int _regulator_enable(struct regulator_dev *rdev)
1494 {
1495         int ret;
1496
1497         /* check voltage and requested load before enabling */
1498         if (rdev->constraints &&
1499             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1500                 drms_uA_update(rdev);
1501
1502         if (rdev->use_count == 0) {
1503                 /* The regulator may on if it's not switchable or left on */
1504                 ret = _regulator_is_enabled(rdev);
1505                 if (ret == -EINVAL || ret == 0) {
1506                         if (!_regulator_can_change_status(rdev))
1507                                 return -EPERM;
1508
1509                         ret = _regulator_do_enable(rdev);
1510                         if (ret < 0)
1511                                 return ret;
1512
1513                 } else if (ret < 0) {
1514                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1515                         return ret;
1516                 }
1517                 /* Fallthrough on positive return values - already enabled */
1518         }
1519
1520         rdev->use_count++;
1521
1522         return 0;
1523 }
1524
1525 /**
1526  * regulator_enable - enable regulator output
1527  * @regulator: regulator source
1528  *
1529  * Request that the regulator be enabled with the regulator output at
1530  * the predefined voltage or current value.  Calls to regulator_enable()
1531  * must be balanced with calls to regulator_disable().
1532  *
1533  * NOTE: the output value can be set by other drivers, boot loader or may be
1534  * hardwired in the regulator.
1535  */
1536 int regulator_enable(struct regulator *regulator)
1537 {
1538         struct regulator_dev *rdev = regulator->rdev;
1539         int ret = 0;
1540
1541         if (regulator->always_on)
1542                 return 0;
1543
1544         if (rdev->supply) {
1545                 ret = regulator_enable(rdev->supply);
1546                 if (ret != 0)
1547                         return ret;
1548         }
1549
1550         mutex_lock(&rdev->mutex);
1551         ret = _regulator_enable(rdev);
1552         mutex_unlock(&rdev->mutex);
1553
1554         if (ret != 0 && rdev->supply)
1555                 regulator_disable(rdev->supply);
1556
1557         return ret;
1558 }
1559 EXPORT_SYMBOL_GPL(regulator_enable);
1560
1561 static int _regulator_do_disable(struct regulator_dev *rdev)
1562 {
1563         int ret;
1564
1565         trace_regulator_disable(rdev_get_name(rdev));
1566
1567         if (rdev->ena_gpio) {
1568                 gpio_set_value_cansleep(rdev->ena_gpio,
1569                                         rdev->ena_gpio_invert);
1570                 rdev->ena_gpio_state = 0;
1571
1572         } else if (rdev->desc->ops->disable) {
1573                 ret = rdev->desc->ops->disable(rdev);
1574                 if (ret != 0)
1575                         return ret;
1576         }
1577
1578         trace_regulator_disable_complete(rdev_get_name(rdev));
1579
1580         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1581                              NULL);
1582         return 0;
1583 }
1584
1585 /* locks held by regulator_disable() */
1586 static int _regulator_disable(struct regulator_dev *rdev)
1587 {
1588         int ret = 0;
1589
1590         if (WARN(rdev->use_count <= 0,
1591                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
1592                 return -EIO;
1593
1594         /* are we the last user and permitted to disable ? */
1595         if (rdev->use_count == 1 &&
1596             (rdev->constraints && !rdev->constraints->always_on)) {
1597
1598                 /* we are last user */
1599                 if (_regulator_can_change_status(rdev)) {
1600                         ret = _regulator_do_disable(rdev);
1601                         if (ret < 0) {
1602                                 rdev_err(rdev, "failed to disable\n");
1603                                 return ret;
1604                         }
1605                 }
1606
1607                 rdev->use_count = 0;
1608         } else if (rdev->use_count > 1) {
1609
1610                 if (rdev->constraints &&
1611                         (rdev->constraints->valid_ops_mask &
1612                         REGULATOR_CHANGE_DRMS))
1613                         drms_uA_update(rdev);
1614
1615                 rdev->use_count--;
1616         }
1617
1618         return ret;
1619 }
1620
1621 /**
1622  * regulator_disable - disable regulator output
1623  * @regulator: regulator source
1624  *
1625  * Disable the regulator output voltage or current.  Calls to
1626  * regulator_enable() must be balanced with calls to
1627  * regulator_disable().
1628  *
1629  * NOTE: this will only disable the regulator output if no other consumer
1630  * devices have it enabled, the regulator device supports disabling and
1631  * machine constraints permit this operation.
1632  */
1633 int regulator_disable(struct regulator *regulator)
1634 {
1635         struct regulator_dev *rdev = regulator->rdev;
1636         int ret = 0;
1637
1638         if (regulator->always_on)
1639                 return 0;
1640
1641         mutex_lock(&rdev->mutex);
1642         ret = _regulator_disable(rdev);
1643         mutex_unlock(&rdev->mutex);
1644
1645         if (ret == 0 && rdev->supply)
1646                 regulator_disable(rdev->supply);
1647
1648         return ret;
1649 }
1650 EXPORT_SYMBOL_GPL(regulator_disable);
1651
1652 /* locks held by regulator_force_disable() */
1653 static int _regulator_force_disable(struct regulator_dev *rdev)
1654 {
1655         int ret = 0;
1656
1657         /* force disable */
1658         if (rdev->desc->ops->disable) {
1659                 /* ah well, who wants to live forever... */
1660                 ret = rdev->desc->ops->disable(rdev);
1661                 if (ret < 0) {
1662                         rdev_err(rdev, "failed to force disable\n");
1663                         return ret;
1664                 }
1665                 /* notify other consumers that power has been forced off */
1666                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1667                         REGULATOR_EVENT_DISABLE, NULL);
1668         }
1669
1670         return ret;
1671 }
1672
1673 /**
1674  * regulator_force_disable - force disable regulator output
1675  * @regulator: regulator source
1676  *
1677  * Forcibly disable the regulator output voltage or current.
1678  * NOTE: this *will* disable the regulator output even if other consumer
1679  * devices have it enabled. This should be used for situations when device
1680  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1681  */
1682 int regulator_force_disable(struct regulator *regulator)
1683 {
1684         struct regulator_dev *rdev = regulator->rdev;
1685         int ret;
1686
1687         mutex_lock(&rdev->mutex);
1688         regulator->uA_load = 0;
1689         ret = _regulator_force_disable(regulator->rdev);
1690         mutex_unlock(&rdev->mutex);
1691
1692         if (rdev->supply)
1693                 while (rdev->open_count--)
1694                         regulator_disable(rdev->supply);
1695
1696         return ret;
1697 }
1698 EXPORT_SYMBOL_GPL(regulator_force_disable);
1699
1700 static void regulator_disable_work(struct work_struct *work)
1701 {
1702         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1703                                                   disable_work.work);
1704         int count, i, ret;
1705
1706         mutex_lock(&rdev->mutex);
1707
1708         BUG_ON(!rdev->deferred_disables);
1709
1710         count = rdev->deferred_disables;
1711         rdev->deferred_disables = 0;
1712
1713         for (i = 0; i < count; i++) {
1714                 ret = _regulator_disable(rdev);
1715                 if (ret != 0)
1716                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1717         }
1718
1719         mutex_unlock(&rdev->mutex);
1720
1721         if (rdev->supply) {
1722                 for (i = 0; i < count; i++) {
1723                         ret = regulator_disable(rdev->supply);
1724                         if (ret != 0) {
1725                                 rdev_err(rdev,
1726                                          "Supply disable failed: %d\n", ret);
1727                         }
1728                 }
1729         }
1730 }
1731
1732 /**
1733  * regulator_disable_deferred - disable regulator output with delay
1734  * @regulator: regulator source
1735  * @ms: miliseconds until the regulator is disabled
1736  *
1737  * Execute regulator_disable() on the regulator after a delay.  This
1738  * is intended for use with devices that require some time to quiesce.
1739  *
1740  * NOTE: this will only disable the regulator output if no other consumer
1741  * devices have it enabled, the regulator device supports disabling and
1742  * machine constraints permit this operation.
1743  */
1744 int regulator_disable_deferred(struct regulator *regulator, int ms)
1745 {
1746         struct regulator_dev *rdev = regulator->rdev;
1747         int ret;
1748
1749         if (regulator->always_on)
1750                 return 0;
1751
1752         mutex_lock(&rdev->mutex);
1753         rdev->deferred_disables++;
1754         mutex_unlock(&rdev->mutex);
1755
1756         ret = schedule_delayed_work(&rdev->disable_work,
1757                                     msecs_to_jiffies(ms));
1758         if (ret < 0)
1759                 return ret;
1760         else
1761                 return 0;
1762 }
1763 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1764
1765 /**
1766  * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1767  *
1768  * @rdev: regulator to operate on
1769  *
1770  * Regulators that use regmap for their register I/O can set the
1771  * enable_reg and enable_mask fields in their descriptor and then use
1772  * this as their is_enabled operation, saving some code.
1773  */
1774 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1775 {
1776         unsigned int val;
1777         int ret;
1778
1779         ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1780         if (ret != 0)
1781                 return ret;
1782
1783         return (val & rdev->desc->enable_mask) != 0;
1784 }
1785 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1786
1787 /**
1788  * regulator_enable_regmap - standard enable() for regmap users
1789  *
1790  * @rdev: regulator to operate on
1791  *
1792  * Regulators that use regmap for their register I/O can set the
1793  * enable_reg and enable_mask fields in their descriptor and then use
1794  * this as their enable() operation, saving some code.
1795  */
1796 int regulator_enable_regmap(struct regulator_dev *rdev)
1797 {
1798         return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1799                                   rdev->desc->enable_mask,
1800                                   rdev->desc->enable_mask);
1801 }
1802 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1803
1804 /**
1805  * regulator_disable_regmap - standard disable() for regmap users
1806  *
1807  * @rdev: regulator to operate on
1808  *
1809  * Regulators that use regmap for their register I/O can set the
1810  * enable_reg and enable_mask fields in their descriptor and then use
1811  * this as their disable() operation, saving some code.
1812  */
1813 int regulator_disable_regmap(struct regulator_dev *rdev)
1814 {
1815         return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1816                                   rdev->desc->enable_mask, 0);
1817 }
1818 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1819
1820 static int _regulator_is_enabled(struct regulator_dev *rdev)
1821 {
1822         /* A GPIO control always takes precedence */
1823         if (rdev->ena_gpio)
1824                 return rdev->ena_gpio_state;
1825
1826         /* If we don't know then assume that the regulator is always on */
1827         if (!rdev->desc->ops->is_enabled)
1828                 return 1;
1829
1830         return rdev->desc->ops->is_enabled(rdev);
1831 }
1832
1833 /**
1834  * regulator_is_enabled - is the regulator output enabled
1835  * @regulator: regulator source
1836  *
1837  * Returns positive if the regulator driver backing the source/client
1838  * has requested that the device be enabled, zero if it hasn't, else a
1839  * negative errno code.
1840  *
1841  * Note that the device backing this regulator handle can have multiple
1842  * users, so it might be enabled even if regulator_enable() was never
1843  * called for this particular source.
1844  */
1845 int regulator_is_enabled(struct regulator *regulator)
1846 {
1847         int ret;
1848
1849         if (regulator->always_on)
1850                 return 1;
1851
1852         mutex_lock(&regulator->rdev->mutex);
1853         ret = _regulator_is_enabled(regulator->rdev);
1854         mutex_unlock(&regulator->rdev->mutex);
1855
1856         return ret;
1857 }
1858 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1859
1860 /**
1861  * regulator_count_voltages - count regulator_list_voltage() selectors
1862  * @regulator: regulator source
1863  *
1864  * Returns number of selectors, or negative errno.  Selectors are
1865  * numbered starting at zero, and typically correspond to bitfields
1866  * in hardware registers.
1867  */
1868 int regulator_count_voltages(struct regulator *regulator)
1869 {
1870         struct regulator_dev    *rdev = regulator->rdev;
1871
1872         return rdev->desc->n_voltages ? : -EINVAL;
1873 }
1874 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1875
1876 /**
1877  * regulator_list_voltage_linear - List voltages with simple calculation
1878  *
1879  * @rdev: Regulator device
1880  * @selector: Selector to convert into a voltage
1881  *
1882  * Regulators with a simple linear mapping between voltages and
1883  * selectors can set min_uV and uV_step in the regulator descriptor
1884  * and then use this function as their list_voltage() operation,
1885  */
1886 int regulator_list_voltage_linear(struct regulator_dev *rdev,
1887                                   unsigned int selector)
1888 {
1889         if (selector >= rdev->desc->n_voltages)
1890                 return -EINVAL;
1891
1892         return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
1893 }
1894 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
1895
1896 /**
1897  * regulator_list_voltage_table - List voltages with table based mapping
1898  *
1899  * @rdev: Regulator device
1900  * @selector: Selector to convert into a voltage
1901  *
1902  * Regulators with table based mapping between voltages and
1903  * selectors can set volt_table in the regulator descriptor
1904  * and then use this function as their list_voltage() operation.
1905  */
1906 int regulator_list_voltage_table(struct regulator_dev *rdev,
1907                                  unsigned int selector)
1908 {
1909         if (!rdev->desc->volt_table) {
1910                 BUG_ON(!rdev->desc->volt_table);
1911                 return -EINVAL;
1912         }
1913
1914         if (selector >= rdev->desc->n_voltages)
1915                 return -EINVAL;
1916
1917         return rdev->desc->volt_table[selector];
1918 }
1919 EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
1920
1921 /**
1922  * regulator_list_voltage - enumerate supported voltages
1923  * @regulator: regulator source
1924  * @selector: identify voltage to list
1925  * Context: can sleep
1926  *
1927  * Returns a voltage that can be passed to @regulator_set_voltage(),
1928  * zero if this selector code can't be used on this system, or a
1929  * negative errno.
1930  */
1931 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1932 {
1933         struct regulator_dev    *rdev = regulator->rdev;
1934         struct regulator_ops    *ops = rdev->desc->ops;
1935         int                     ret;
1936
1937         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1938                 return -EINVAL;
1939
1940         mutex_lock(&rdev->mutex);
1941         ret = ops->list_voltage(rdev, selector);
1942         mutex_unlock(&rdev->mutex);
1943
1944         if (ret > 0) {
1945                 if (ret < rdev->constraints->min_uV)
1946                         ret = 0;
1947                 else if (ret > rdev->constraints->max_uV)
1948                         ret = 0;
1949         }
1950
1951         return ret;
1952 }
1953 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1954
1955 /**
1956  * regulator_is_supported_voltage - check if a voltage range can be supported
1957  *
1958  * @regulator: Regulator to check.
1959  * @min_uV: Minimum required voltage in uV.
1960  * @max_uV: Maximum required voltage in uV.
1961  *
1962  * Returns a boolean or a negative error code.
1963  */
1964 int regulator_is_supported_voltage(struct regulator *regulator,
1965                                    int min_uV, int max_uV)
1966 {
1967         struct regulator_dev *rdev = regulator->rdev;
1968         int i, voltages, ret;
1969
1970         /* If we can't change voltage check the current voltage */
1971         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
1972                 ret = regulator_get_voltage(regulator);
1973                 if (ret >= 0)
1974                         return (min_uV >= ret && ret <= max_uV);
1975                 else
1976                         return ret;
1977         }
1978
1979         ret = regulator_count_voltages(regulator);
1980         if (ret < 0)
1981                 return ret;
1982         voltages = ret;
1983
1984         for (i = 0; i < voltages; i++) {
1985                 ret = regulator_list_voltage(regulator, i);
1986
1987                 if (ret >= min_uV && ret <= max_uV)
1988                         return 1;
1989         }
1990
1991         return 0;
1992 }
1993 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1994
1995 /**
1996  * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
1997  *
1998  * @rdev: regulator to operate on
1999  *
2000  * Regulators that use regmap for their register I/O can set the
2001  * vsel_reg and vsel_mask fields in their descriptor and then use this
2002  * as their get_voltage_vsel operation, saving some code.
2003  */
2004 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
2005 {
2006         unsigned int val;
2007         int ret;
2008
2009         ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
2010         if (ret != 0)
2011                 return ret;
2012
2013         val &= rdev->desc->vsel_mask;
2014         val >>= ffs(rdev->desc->vsel_mask) - 1;
2015
2016         return val;
2017 }
2018 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
2019
2020 /**
2021  * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
2022  *
2023  * @rdev: regulator to operate on
2024  * @sel: Selector to set
2025  *
2026  * Regulators that use regmap for their register I/O can set the
2027  * vsel_reg and vsel_mask fields in their descriptor and then use this
2028  * as their set_voltage_vsel operation, saving some code.
2029  */
2030 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2031 {
2032         sel <<= ffs(rdev->desc->vsel_mask) - 1;
2033
2034         return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2035                                   rdev->desc->vsel_mask, sel);
2036 }
2037 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2038
2039 /**
2040  * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2041  *
2042  * @rdev: Regulator to operate on
2043  * @min_uV: Lower bound for voltage
2044  * @max_uV: Upper bound for voltage
2045  *
2046  * Drivers implementing set_voltage_sel() and list_voltage() can use
2047  * this as their map_voltage() operation.  It will find a suitable
2048  * voltage by calling list_voltage() until it gets something in bounds
2049  * for the requested voltages.
2050  */
2051 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2052                                   int min_uV, int max_uV)
2053 {
2054         int best_val = INT_MAX;
2055         int selector = 0;
2056         int i, ret;
2057
2058         /* Find the smallest voltage that falls within the specified
2059          * range.
2060          */
2061         for (i = 0; i < rdev->desc->n_voltages; i++) {
2062                 ret = rdev->desc->ops->list_voltage(rdev, i);
2063                 if (ret < 0)
2064                         continue;
2065
2066                 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2067                         best_val = ret;
2068                         selector = i;
2069                 }
2070         }
2071
2072         if (best_val != INT_MAX)
2073                 return selector;
2074         else
2075                 return -EINVAL;
2076 }
2077 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2078
2079 /**
2080  * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2081  *
2082  * @rdev: Regulator to operate on
2083  * @min_uV: Lower bound for voltage
2084  * @max_uV: Upper bound for voltage
2085  *
2086  * Drivers providing min_uV and uV_step in their regulator_desc can
2087  * use this as their map_voltage() operation.
2088  */
2089 int regulator_map_voltage_linear(struct regulator_dev *rdev,
2090                                  int min_uV, int max_uV)
2091 {
2092         int ret, voltage;
2093
2094         /* Allow uV_step to be 0 for fixed voltage */
2095         if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2096                 if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2097                         return 0;
2098                 else
2099                         return -EINVAL;
2100         }
2101
2102         if (!rdev->desc->uV_step) {
2103                 BUG_ON(!rdev->desc->uV_step);
2104                 return -EINVAL;
2105         }
2106
2107         if (min_uV < rdev->desc->min_uV)
2108                 min_uV = rdev->desc->min_uV;
2109
2110         ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2111         if (ret < 0)
2112                 return ret;
2113
2114         /* Map back into a voltage to verify we're still in bounds */
2115         voltage = rdev->desc->ops->list_voltage(rdev, ret);
2116         if (voltage < min_uV || voltage > max_uV)
2117                 return -EINVAL;
2118
2119         return ret;
2120 }
2121 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2122
2123 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2124                                      int min_uV, int max_uV)
2125 {
2126         int ret;
2127         int delay = 0;
2128         int best_val = 0;
2129         unsigned int selector;
2130         int old_selector = -1;
2131
2132         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2133
2134         min_uV += rdev->constraints->uV_offset;
2135         max_uV += rdev->constraints->uV_offset;
2136
2137         /*
2138          * If we can't obtain the old selector there is not enough
2139          * info to call set_voltage_time_sel().
2140          */
2141         if (_regulator_is_enabled(rdev) &&
2142             rdev->desc->ops->set_voltage_time_sel &&
2143             rdev->desc->ops->get_voltage_sel) {
2144                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2145                 if (old_selector < 0)
2146                         return old_selector;
2147         }
2148
2149         if (rdev->desc->ops->set_voltage) {
2150                 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2151                                                    &selector);
2152
2153                 if (ret >= 0) {
2154                         if (rdev->desc->ops->list_voltage)
2155                                 best_val = rdev->desc->ops->list_voltage(rdev,
2156                                                                          selector);
2157                         else
2158                                 best_val = _regulator_get_voltage(rdev);
2159                 }
2160
2161         } else if (rdev->desc->ops->set_voltage_sel) {
2162                 if (rdev->desc->ops->map_voltage) {
2163                         ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2164                                                            max_uV);
2165                 } else {
2166                         if (rdev->desc->ops->list_voltage ==
2167                             regulator_list_voltage_linear)
2168                                 ret = regulator_map_voltage_linear(rdev,
2169                                                                 min_uV, max_uV);
2170                         else
2171                                 ret = regulator_map_voltage_iterate(rdev,
2172                                                                 min_uV, max_uV);
2173                 }
2174
2175                 if (ret >= 0) {
2176                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2177                         if (min_uV <= best_val && max_uV >= best_val) {
2178                                 selector = ret;
2179                                 ret = rdev->desc->ops->set_voltage_sel(rdev,
2180                                                                        ret);
2181                         } else {
2182                                 ret = -EINVAL;
2183                         }
2184                 }
2185         } else {
2186                 ret = -EINVAL;
2187         }
2188
2189         /* Call set_voltage_time_sel if successfully obtained old_selector */
2190         if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2191             rdev->desc->ops->set_voltage_time_sel) {
2192
2193                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2194                                                 old_selector, selector);
2195                 if (delay < 0) {
2196                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2197                                   delay);
2198                         delay = 0;
2199                 }
2200
2201                 /* Insert any necessary delays */
2202                 if (delay >= 1000) {
2203                         mdelay(delay / 1000);
2204                         udelay(delay % 1000);
2205                 } else if (delay) {
2206                         udelay(delay);
2207                 }
2208         }
2209
2210         if (ret == 0 && best_val >= 0) {
2211                 unsigned long data = best_val;
2212
2213                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2214                                      (void *)data);
2215         }
2216
2217         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2218
2219         return ret;
2220 }
2221
2222 /**
2223  * regulator_set_voltage - set regulator output voltage
2224  * @regulator: regulator source
2225  * @min_uV: Minimum required voltage in uV
2226  * @max_uV: Maximum acceptable voltage in uV
2227  *
2228  * Sets a voltage regulator to the desired output voltage. This can be set
2229  * during any regulator state. IOW, regulator can be disabled or enabled.
2230  *
2231  * If the regulator is enabled then the voltage will change to the new value
2232  * immediately otherwise if the regulator is disabled the regulator will
2233  * output at the new voltage when enabled.
2234  *
2235  * NOTE: If the regulator is shared between several devices then the lowest
2236  * request voltage that meets the system constraints will be used.
2237  * Regulator system constraints must be set for this regulator before
2238  * calling this function otherwise this call will fail.
2239  */
2240 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2241 {
2242         struct regulator_dev *rdev = regulator->rdev;
2243         int ret = 0;
2244
2245         mutex_lock(&rdev->mutex);
2246
2247         /* If we're setting the same range as last time the change
2248          * should be a noop (some cpufreq implementations use the same
2249          * voltage for multiple frequencies, for example).
2250          */
2251         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2252                 goto out;
2253
2254         /* sanity check */
2255         if (!rdev->desc->ops->set_voltage &&
2256             !rdev->desc->ops->set_voltage_sel) {
2257                 ret = -EINVAL;
2258                 goto out;
2259         }
2260
2261         /* constraints check */
2262         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2263         if (ret < 0)
2264                 goto out;
2265         regulator->min_uV = min_uV;
2266         regulator->max_uV = max_uV;
2267
2268         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2269         if (ret < 0)
2270                 goto out;
2271
2272         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2273
2274 out:
2275         mutex_unlock(&rdev->mutex);
2276         return ret;
2277 }
2278 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2279
2280 /**
2281  * regulator_set_voltage_time - get raise/fall time
2282  * @regulator: regulator source
2283  * @old_uV: starting voltage in microvolts
2284  * @new_uV: target voltage in microvolts
2285  *
2286  * Provided with the starting and ending voltage, this function attempts to
2287  * calculate the time in microseconds required to rise or fall to this new
2288  * voltage.
2289  */
2290 int regulator_set_voltage_time(struct regulator *regulator,
2291                                int old_uV, int new_uV)
2292 {
2293         struct regulator_dev    *rdev = regulator->rdev;
2294         struct regulator_ops    *ops = rdev->desc->ops;
2295         int old_sel = -1;
2296         int new_sel = -1;
2297         int voltage;
2298         int i;
2299
2300         /* Currently requires operations to do this */
2301         if (!ops->list_voltage || !ops->set_voltage_time_sel
2302             || !rdev->desc->n_voltages)
2303                 return -EINVAL;
2304
2305         for (i = 0; i < rdev->desc->n_voltages; i++) {
2306                 /* We only look for exact voltage matches here */
2307                 voltage = regulator_list_voltage(regulator, i);
2308                 if (voltage < 0)
2309                         return -EINVAL;
2310                 if (voltage == 0)
2311                         continue;
2312                 if (voltage == old_uV)
2313                         old_sel = i;
2314                 if (voltage == new_uV)
2315                         new_sel = i;
2316         }
2317
2318         if (old_sel < 0 || new_sel < 0)
2319                 return -EINVAL;
2320
2321         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2322 }
2323 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2324
2325 /**
2326  * regulator_set_voltage_time_sel - get raise/fall time
2327  * @rdev: regulator source device
2328  * @old_selector: selector for starting voltage
2329  * @new_selector: selector for target voltage
2330  *
2331  * Provided with the starting and target voltage selectors, this function
2332  * returns time in microseconds required to rise or fall to this new voltage
2333  *
2334  * Drivers providing ramp_delay in regulation_constraints can use this as their
2335  * set_voltage_time_sel() operation.
2336  */
2337 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2338                                    unsigned int old_selector,
2339                                    unsigned int new_selector)
2340 {
2341         unsigned int ramp_delay = 0;
2342         int old_volt, new_volt;
2343
2344         if (rdev->constraints->ramp_delay)
2345                 ramp_delay = rdev->constraints->ramp_delay;
2346         else if (rdev->desc->ramp_delay)
2347                 ramp_delay = rdev->desc->ramp_delay;
2348
2349         if (ramp_delay == 0) {
2350                 rdev_warn(rdev, "ramp_delay not set\n");
2351                 return 0;
2352         }
2353
2354         /* sanity check */
2355         if (!rdev->desc->ops->list_voltage)
2356                 return -EINVAL;
2357
2358         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2359         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2360
2361         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2362 }
2363 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2364
2365 /**
2366  * regulator_sync_voltage - re-apply last regulator output voltage
2367  * @regulator: regulator source
2368  *
2369  * Re-apply the last configured voltage.  This is intended to be used
2370  * where some external control source the consumer is cooperating with
2371  * has caused the configured voltage to change.
2372  */
2373 int regulator_sync_voltage(struct regulator *regulator)
2374 {
2375         struct regulator_dev *rdev = regulator->rdev;
2376         int ret, min_uV, max_uV;
2377
2378         mutex_lock(&rdev->mutex);
2379
2380         if (!rdev->desc->ops->set_voltage &&
2381             !rdev->desc->ops->set_voltage_sel) {
2382                 ret = -EINVAL;
2383                 goto out;
2384         }
2385
2386         /* This is only going to work if we've had a voltage configured. */
2387         if (!regulator->min_uV && !regulator->max_uV) {
2388                 ret = -EINVAL;
2389                 goto out;
2390         }
2391
2392         min_uV = regulator->min_uV;
2393         max_uV = regulator->max_uV;
2394
2395         /* This should be a paranoia check... */
2396         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2397         if (ret < 0)
2398                 goto out;
2399
2400         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2401         if (ret < 0)
2402                 goto out;
2403
2404         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2405
2406 out:
2407         mutex_unlock(&rdev->mutex);
2408         return ret;
2409 }
2410 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2411
2412 static int _regulator_get_voltage(struct regulator_dev *rdev)
2413 {
2414         int sel, ret;
2415
2416         if (rdev->desc->ops->get_voltage_sel) {
2417                 sel = rdev->desc->ops->get_voltage_sel(rdev);
2418                 if (sel < 0)
2419                         return sel;
2420                 ret = rdev->desc->ops->list_voltage(rdev, sel);
2421         } else if (rdev->desc->ops->get_voltage) {
2422                 ret = rdev->desc->ops->get_voltage(rdev);
2423         } else if (rdev->desc->ops->list_voltage) {
2424                 ret = rdev->desc->ops->list_voltage(rdev, 0);
2425         } else {
2426                 return -EINVAL;
2427         }
2428
2429         if (ret < 0)
2430                 return ret;
2431         return ret - rdev->constraints->uV_offset;
2432 }
2433
2434 /**
2435  * regulator_get_voltage - get regulator output voltage
2436  * @regulator: regulator source
2437  *
2438  * This returns the current regulator voltage in uV.
2439  *
2440  * NOTE: If the regulator is disabled it will return the voltage value. This
2441  * function should not be used to determine regulator state.
2442  */
2443 int regulator_get_voltage(struct regulator *regulator)
2444 {
2445         int ret;
2446
2447         mutex_lock(&regulator->rdev->mutex);
2448
2449         ret = _regulator_get_voltage(regulator->rdev);
2450
2451         mutex_unlock(&regulator->rdev->mutex);
2452
2453         return ret;
2454 }
2455 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2456
2457 /**
2458  * regulator_set_current_limit - set regulator output current limit
2459  * @regulator: regulator source
2460  * @min_uA: Minimuum supported current in uA
2461  * @max_uA: Maximum supported current in uA
2462  *
2463  * Sets current sink to the desired output current. This can be set during
2464  * any regulator state. IOW, regulator can be disabled or enabled.
2465  *
2466  * If the regulator is enabled then the current will change to the new value
2467  * immediately otherwise if the regulator is disabled the regulator will
2468  * output at the new current when enabled.
2469  *
2470  * NOTE: Regulator system constraints must be set for this regulator before
2471  * calling this function otherwise this call will fail.
2472  */
2473 int regulator_set_current_limit(struct regulator *regulator,
2474                                int min_uA, int max_uA)
2475 {
2476         struct regulator_dev *rdev = regulator->rdev;
2477         int ret;
2478
2479         mutex_lock(&rdev->mutex);
2480
2481         /* sanity check */
2482         if (!rdev->desc->ops->set_current_limit) {
2483                 ret = -EINVAL;
2484                 goto out;
2485         }
2486
2487         /* constraints check */
2488         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2489         if (ret < 0)
2490                 goto out;
2491
2492         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2493 out:
2494         mutex_unlock(&rdev->mutex);
2495         return ret;
2496 }
2497 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2498
2499 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2500 {
2501         int ret;
2502
2503         mutex_lock(&rdev->mutex);
2504
2505         /* sanity check */
2506         if (!rdev->desc->ops->get_current_limit) {
2507                 ret = -EINVAL;
2508                 goto out;
2509         }
2510
2511         ret = rdev->desc->ops->get_current_limit(rdev);
2512 out:
2513         mutex_unlock(&rdev->mutex);
2514         return ret;
2515 }
2516
2517 /**
2518  * regulator_get_current_limit - get regulator output current
2519  * @regulator: regulator source
2520  *
2521  * This returns the current supplied by the specified current sink in uA.
2522  *
2523  * NOTE: If the regulator is disabled it will return the current value. This
2524  * function should not be used to determine regulator state.
2525  */
2526 int regulator_get_current_limit(struct regulator *regulator)
2527 {
2528         return _regulator_get_current_limit(regulator->rdev);
2529 }
2530 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2531
2532 /**
2533  * regulator_set_mode - set regulator operating mode
2534  * @regulator: regulator source
2535  * @mode: operating mode - one of the REGULATOR_MODE constants
2536  *
2537  * Set regulator operating mode to increase regulator efficiency or improve
2538  * regulation performance.
2539  *
2540  * NOTE: Regulator system constraints must be set for this regulator before
2541  * calling this function otherwise this call will fail.
2542  */
2543 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2544 {
2545         struct regulator_dev *rdev = regulator->rdev;
2546         int ret;
2547         int regulator_curr_mode;
2548
2549         mutex_lock(&rdev->mutex);
2550
2551         /* sanity check */
2552         if (!rdev->desc->ops->set_mode) {
2553                 ret = -EINVAL;
2554                 goto out;
2555         }
2556
2557         /* return if the same mode is requested */
2558         if (rdev->desc->ops->get_mode) {
2559                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2560                 if (regulator_curr_mode == mode) {
2561                         ret = 0;
2562                         goto out;
2563                 }
2564         }
2565
2566         /* constraints check */
2567         ret = regulator_mode_constrain(rdev, &mode);
2568         if (ret < 0)
2569                 goto out;
2570
2571         ret = rdev->desc->ops->set_mode(rdev, mode);
2572 out:
2573         mutex_unlock(&rdev->mutex);
2574         return ret;
2575 }
2576 EXPORT_SYMBOL_GPL(regulator_set_mode);
2577
2578 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2579 {
2580         int ret;
2581
2582         mutex_lock(&rdev->mutex);
2583
2584         /* sanity check */
2585         if (!rdev->desc->ops->get_mode) {
2586                 ret = -EINVAL;
2587                 goto out;
2588         }
2589
2590         ret = rdev->desc->ops->get_mode(rdev);
2591 out:
2592         mutex_unlock(&rdev->mutex);
2593         return ret;
2594 }
2595
2596 /**
2597  * regulator_get_mode - get regulator operating mode
2598  * @regulator: regulator source
2599  *
2600  * Get the current regulator operating mode.
2601  */
2602 unsigned int regulator_get_mode(struct regulator *regulator)
2603 {
2604         return _regulator_get_mode(regulator->rdev);
2605 }
2606 EXPORT_SYMBOL_GPL(regulator_get_mode);
2607
2608 /**
2609  * regulator_set_optimum_mode - set regulator optimum operating mode
2610  * @regulator: regulator source
2611  * @uA_load: load current
2612  *
2613  * Notifies the regulator core of a new device load. This is then used by
2614  * DRMS (if enabled by constraints) to set the most efficient regulator
2615  * operating mode for the new regulator loading.
2616  *
2617  * Consumer devices notify their supply regulator of the maximum power
2618  * they will require (can be taken from device datasheet in the power
2619  * consumption tables) when they change operational status and hence power
2620  * state. Examples of operational state changes that can affect power
2621  * consumption are :-
2622  *
2623  *    o Device is opened / closed.
2624  *    o Device I/O is about to begin or has just finished.
2625  *    o Device is idling in between work.
2626  *
2627  * This information is also exported via sysfs to userspace.
2628  *
2629  * DRMS will sum the total requested load on the regulator and change
2630  * to the most efficient operating mode if platform constraints allow.
2631  *
2632  * Returns the new regulator mode or error.
2633  */
2634 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2635 {
2636         struct regulator_dev *rdev = regulator->rdev;
2637         struct regulator *consumer;
2638         int ret, output_uV, input_uV = 0, total_uA_load = 0;
2639         unsigned int mode;
2640
2641         if (rdev->supply)
2642                 input_uV = regulator_get_voltage(rdev->supply);
2643
2644         mutex_lock(&rdev->mutex);
2645
2646         /*
2647          * first check to see if we can set modes at all, otherwise just
2648          * tell the consumer everything is OK.
2649          */
2650         regulator->uA_load = uA_load;
2651         ret = regulator_check_drms(rdev);
2652         if (ret < 0) {
2653                 ret = 0;
2654                 goto out;
2655         }
2656
2657         if (!rdev->desc->ops->get_optimum_mode)
2658                 goto out;
2659
2660         /*
2661          * we can actually do this so any errors are indicators of
2662          * potential real failure.
2663          */
2664         ret = -EINVAL;
2665
2666         if (!rdev->desc->ops->set_mode)
2667                 goto out;
2668
2669         /* get output voltage */
2670         output_uV = _regulator_get_voltage(rdev);
2671         if (output_uV <= 0) {
2672                 rdev_err(rdev, "invalid output voltage found\n");
2673                 goto out;
2674         }
2675
2676         /* No supply? Use constraint voltage */
2677         if (input_uV <= 0)
2678                 input_uV = rdev->constraints->input_uV;
2679         if (input_uV <= 0) {
2680                 rdev_err(rdev, "invalid input voltage found\n");
2681                 goto out;
2682         }
2683
2684         /* calc total requested load for this regulator */
2685         list_for_each_entry(consumer, &rdev->consumer_list, list)
2686                 total_uA_load += consumer->uA_load;
2687
2688         mode = rdev->desc->ops->get_optimum_mode(rdev,
2689                                                  input_uV, output_uV,
2690                                                  total_uA_load);
2691         ret = regulator_mode_constrain(rdev, &mode);
2692         if (ret < 0) {
2693                 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2694                          total_uA_load, input_uV, output_uV);
2695                 goto out;
2696         }
2697
2698         ret = rdev->desc->ops->set_mode(rdev, mode);
2699         if (ret < 0) {
2700                 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2701                 goto out;
2702         }
2703         ret = mode;
2704 out:
2705         mutex_unlock(&rdev->mutex);
2706         return ret;
2707 }
2708 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2709
2710 /**
2711  * regulator_set_bypass_regmap - Default set_bypass() using regmap
2712  *
2713  * @rdev: device to operate on.
2714  * @enable: state to set.
2715  */
2716 int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
2717 {
2718         unsigned int val;
2719
2720         if (enable)
2721                 val = rdev->desc->bypass_mask;
2722         else
2723                 val = 0;
2724
2725         return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
2726                                   rdev->desc->bypass_mask, val);
2727 }
2728 EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
2729
2730 /**
2731  * regulator_get_bypass_regmap - Default get_bypass() using regmap
2732  *
2733  * @rdev: device to operate on.
2734  * @enable: current state.
2735  */
2736 int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
2737 {
2738         unsigned int val;
2739         int ret;
2740
2741         ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
2742         if (ret != 0)
2743                 return ret;
2744
2745         *enable = val & rdev->desc->bypass_mask;
2746
2747         return 0;
2748 }
2749 EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
2750
2751 /**
2752  * regulator_allow_bypass - allow the regulator to go into bypass mode
2753  *
2754  * @regulator: Regulator to configure
2755  * @allow: enable or disable bypass mode
2756  *
2757  * Allow the regulator to go into bypass mode if all other consumers
2758  * for the regulator also enable bypass mode and the machine
2759  * constraints allow this.  Bypass mode means that the regulator is
2760  * simply passing the input directly to the output with no regulation.
2761  */
2762 int regulator_allow_bypass(struct regulator *regulator, bool enable)
2763 {
2764         struct regulator_dev *rdev = regulator->rdev;
2765         int ret = 0;
2766
2767         if (!rdev->desc->ops->set_bypass)
2768                 return 0;
2769
2770         if (rdev->constraints &&
2771             !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2772                 return 0;
2773
2774         mutex_lock(&rdev->mutex);
2775
2776         if (enable && !regulator->bypass) {
2777                 rdev->bypass_count++;
2778
2779                 if (rdev->bypass_count == rdev->open_count) {
2780                         ret = rdev->desc->ops->set_bypass(rdev, enable);
2781                         if (ret != 0)
2782                                 rdev->bypass_count--;
2783                 }
2784
2785         } else if (!enable && regulator->bypass) {
2786                 rdev->bypass_count--;
2787
2788                 if (rdev->bypass_count != rdev->open_count) {
2789                         ret = rdev->desc->ops->set_bypass(rdev, enable);
2790                         if (ret != 0)
2791                                 rdev->bypass_count++;
2792                 }
2793         }
2794
2795         if (ret == 0)
2796                 regulator->bypass = enable;
2797
2798         mutex_unlock(&rdev->mutex);
2799
2800         return ret;
2801 }
2802
2803 /**
2804  * regulator_register_notifier - register regulator event notifier
2805  * @regulator: regulator source
2806  * @nb: notifier block
2807  *
2808  * Register notifier block to receive regulator events.
2809  */
2810 int regulator_register_notifier(struct regulator *regulator,
2811                               struct notifier_block *nb)
2812 {
2813         return blocking_notifier_chain_register(&regulator->rdev->notifier,
2814                                                 nb);
2815 }
2816 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2817
2818 /**
2819  * regulator_unregister_notifier - unregister regulator event notifier
2820  * @regulator: regulator source
2821  * @nb: notifier block
2822  *
2823  * Unregister regulator event notifier block.
2824  */
2825 int regulator_unregister_notifier(struct regulator *regulator,
2826                                 struct notifier_block *nb)
2827 {
2828         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2829                                                   nb);
2830 }
2831 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2832
2833 /* notify regulator consumers and downstream regulator consumers.
2834  * Note mutex must be held by caller.
2835  */
2836 static void _notifier_call_chain(struct regulator_dev *rdev,
2837                                   unsigned long event, void *data)
2838 {
2839         /* call rdev chain first */
2840         blocking_notifier_call_chain(&rdev->notifier, event, data);
2841 }
2842
2843 /**
2844  * regulator_bulk_get - get multiple regulator consumers
2845  *
2846  * @dev:           Device to supply
2847  * @num_consumers: Number of consumers to register
2848  * @consumers:     Configuration of consumers; clients are stored here.
2849  *
2850  * @return 0 on success, an errno on failure.
2851  *
2852  * This helper function allows drivers to get several regulator
2853  * consumers in one operation.  If any of the regulators cannot be
2854  * acquired then any regulators that were allocated will be freed
2855  * before returning to the caller.
2856  */
2857 int regulator_bulk_get(struct device *dev, int num_consumers,
2858                        struct regulator_bulk_data *consumers)
2859 {
2860         int i;
2861         int ret;
2862
2863         for (i = 0; i < num_consumers; i++)
2864                 consumers[i].consumer = NULL;
2865
2866         for (i = 0; i < num_consumers; i++) {
2867                 consumers[i].consumer = regulator_get(dev,
2868                                                       consumers[i].supply);
2869                 if (IS_ERR(consumers[i].consumer)) {
2870                         ret = PTR_ERR(consumers[i].consumer);
2871                         dev_err(dev, "Failed to get supply '%s': %d\n",
2872                                 consumers[i].supply, ret);
2873                         consumers[i].consumer = NULL;
2874                         goto err;
2875                 }
2876         }
2877
2878         return 0;
2879
2880 err:
2881         while (--i >= 0)
2882                 regulator_put(consumers[i].consumer);
2883
2884         return ret;
2885 }
2886 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2887
2888 /**
2889  * devm_regulator_bulk_get - managed get multiple regulator consumers
2890  *
2891  * @dev:           Device to supply
2892  * @num_consumers: Number of consumers to register
2893  * @consumers:     Configuration of consumers; clients are stored here.
2894  *
2895  * @return 0 on success, an errno on failure.
2896  *
2897  * This helper function allows drivers to get several regulator
2898  * consumers in one operation with management, the regulators will
2899  * automatically be freed when the device is unbound.  If any of the
2900  * regulators cannot be acquired then any regulators that were
2901  * allocated will be freed before returning to the caller.
2902  */
2903 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2904                             struct regulator_bulk_data *consumers)
2905 {
2906         int i;
2907         int ret;
2908
2909         for (i = 0; i < num_consumers; i++)
2910                 consumers[i].consumer = NULL;
2911
2912         for (i = 0; i < num_consumers; i++) {
2913                 consumers[i].consumer = devm_regulator_get(dev,
2914                                                            consumers[i].supply);
2915                 if (IS_ERR(consumers[i].consumer)) {
2916                         ret = PTR_ERR(consumers[i].consumer);
2917                         dev_err(dev, "Failed to get supply '%s': %d\n",
2918                                 consumers[i].supply, ret);
2919                         consumers[i].consumer = NULL;
2920                         goto err;
2921                 }
2922         }
2923
2924         return 0;
2925
2926 err:
2927         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2928                 devm_regulator_put(consumers[i].consumer);
2929
2930         return ret;
2931 }
2932 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2933
2934 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2935 {
2936         struct regulator_bulk_data *bulk = data;
2937
2938         bulk->ret = regulator_enable(bulk->consumer);
2939 }
2940
2941 /**
2942  * regulator_bulk_enable - enable multiple regulator consumers
2943  *
2944  * @num_consumers: Number of consumers
2945  * @consumers:     Consumer data; clients are stored here.
2946  * @return         0 on success, an errno on failure
2947  *
2948  * This convenience API allows consumers to enable multiple regulator
2949  * clients in a single API call.  If any consumers cannot be enabled
2950  * then any others that were enabled will be disabled again prior to
2951  * return.
2952  */
2953 int regulator_bulk_enable(int num_consumers,
2954                           struct regulator_bulk_data *consumers)
2955 {
2956         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
2957         int i;
2958         int ret = 0;
2959
2960         for (i = 0; i < num_consumers; i++) {
2961                 if (consumers[i].consumer->always_on)
2962                         consumers[i].ret = 0;
2963                 else
2964                         async_schedule_domain(regulator_bulk_enable_async,
2965                                               &consumers[i], &async_domain);
2966         }
2967
2968         async_synchronize_full_domain(&async_domain);
2969
2970         /* If any consumer failed we need to unwind any that succeeded */
2971         for (i = 0; i < num_consumers; i++) {
2972                 if (consumers[i].ret != 0) {
2973                         ret = consumers[i].ret;
2974                         goto err;
2975                 }
2976         }
2977
2978         return 0;
2979
2980 err:
2981         pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2982         while (--i >= 0)
2983                 regulator_disable(consumers[i].consumer);
2984
2985         return ret;
2986 }
2987 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2988
2989 /**
2990  * regulator_bulk_disable - disable multiple regulator consumers
2991  *
2992  * @num_consumers: Number of consumers
2993  * @consumers:     Consumer data; clients are stored here.
2994  * @return         0 on success, an errno on failure
2995  *
2996  * This convenience API allows consumers to disable multiple regulator
2997  * clients in a single API call.  If any consumers cannot be disabled
2998  * then any others that were disabled will be enabled again prior to
2999  * return.
3000  */
3001 int regulator_bulk_disable(int num_consumers,
3002                            struct regulator_bulk_data *consumers)
3003 {
3004         int i;
3005         int ret, r;
3006
3007         for (i = num_consumers - 1; i >= 0; --i) {
3008                 ret = regulator_disable(consumers[i].consumer);
3009                 if (ret != 0)
3010                         goto err;
3011         }
3012
3013         return 0;
3014
3015 err:
3016         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3017         for (++i; i < num_consumers; ++i) {
3018                 r = regulator_enable(consumers[i].consumer);
3019                 if (r != 0)
3020                         pr_err("Failed to reename %s: %d\n",
3021                                consumers[i].supply, r);
3022         }
3023
3024         return ret;
3025 }
3026 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3027
3028 /**
3029  * regulator_bulk_force_disable - force disable multiple regulator consumers
3030  *
3031  * @num_consumers: Number of consumers
3032  * @consumers:     Consumer data; clients are stored here.
3033  * @return         0 on success, an errno on failure
3034  *
3035  * This convenience API allows consumers to forcibly disable multiple regulator
3036  * clients in a single API call.
3037  * NOTE: This should be used for situations when device damage will
3038  * likely occur if the regulators are not disabled (e.g. over temp).
3039  * Although regulator_force_disable function call for some consumers can
3040  * return error numbers, the function is called for all consumers.
3041  */
3042 int regulator_bulk_force_disable(int num_consumers,
3043                            struct regulator_bulk_data *consumers)
3044 {
3045         int i;
3046         int ret;
3047
3048         for (i = 0; i < num_consumers; i++)
3049                 consumers[i].ret =
3050                             regulator_force_disable(consumers[i].consumer);
3051
3052         for (i = 0; i < num_consumers; i++) {
3053                 if (consumers[i].ret != 0) {
3054                         ret = consumers[i].ret;
3055                         goto out;
3056                 }
3057         }
3058
3059         return 0;
3060 out:
3061         return ret;
3062 }
3063 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3064
3065 /**
3066  * regulator_bulk_free - free multiple regulator consumers
3067  *
3068  * @num_consumers: Number of consumers
3069  * @consumers:     Consumer data; clients are stored here.
3070  *
3071  * This convenience API allows consumers to free multiple regulator
3072  * clients in a single API call.
3073  */
3074 void regulator_bulk_free(int num_consumers,
3075                          struct regulator_bulk_data *consumers)
3076 {
3077         int i;
3078
3079         for (i = 0; i < num_consumers; i++) {
3080                 regulator_put(consumers[i].consumer);
3081                 consumers[i].consumer = NULL;
3082         }
3083 }
3084 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3085
3086 /**
3087  * regulator_notifier_call_chain - call regulator event notifier
3088  * @rdev: regulator source
3089  * @event: notifier block
3090  * @data: callback-specific data.
3091  *
3092  * Called by regulator drivers to notify clients a regulator event has
3093  * occurred. We also notify regulator clients downstream.
3094  * Note lock must be held by caller.
3095  */
3096 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3097                                   unsigned long event, void *data)
3098 {
3099         _notifier_call_chain(rdev, event, data);
3100         return NOTIFY_DONE;
3101
3102 }
3103 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3104
3105 /**
3106  * regulator_mode_to_status - convert a regulator mode into a status
3107  *
3108  * @mode: Mode to convert
3109  *
3110  * Convert a regulator mode into a status.
3111  */
3112 int regulator_mode_to_status(unsigned int mode)
3113 {
3114         switch (mode) {
3115         case REGULATOR_MODE_FAST:
3116                 return REGULATOR_STATUS_FAST;
3117         case REGULATOR_MODE_NORMAL:
3118                 return REGULATOR_STATUS_NORMAL;
3119         case REGULATOR_MODE_IDLE:
3120                 return REGULATOR_STATUS_IDLE;
3121         case REGULATOR_MODE_STANDBY:
3122                 return REGULATOR_STATUS_STANDBY;
3123         default:
3124                 return REGULATOR_STATUS_UNDEFINED;
3125         }
3126 }
3127 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3128
3129 /*
3130  * To avoid cluttering sysfs (and memory) with useless state, only
3131  * create attributes that can be meaningfully displayed.
3132  */
3133 static int add_regulator_attributes(struct regulator_dev *rdev)
3134 {
3135         struct device           *dev = &rdev->dev;
3136         struct regulator_ops    *ops = rdev->desc->ops;
3137         int                     status = 0;
3138
3139         /* some attributes need specific methods to be displayed */
3140         if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3141             (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
3142                 status = device_create_file(dev, &dev_attr_microvolts);
3143                 if (status < 0)
3144                         return status;
3145         }
3146         if (ops->get_current_limit) {
3147                 status = device_create_file(dev, &dev_attr_microamps);
3148                 if (status < 0)
3149                         return status;
3150         }
3151         if (ops->get_mode) {
3152                 status = device_create_file(dev, &dev_attr_opmode);
3153                 if (status < 0)
3154                         return status;
3155         }
3156         if (ops->is_enabled) {
3157                 status = device_create_file(dev, &dev_attr_state);
3158                 if (status < 0)
3159                         return status;
3160         }
3161         if (ops->get_status) {
3162                 status = device_create_file(dev, &dev_attr_status);
3163                 if (status < 0)
3164                         return status;
3165         }
3166         if (ops->get_bypass) {
3167                 status = device_create_file(dev, &dev_attr_bypass);
3168                 if (status < 0)
3169                         return status;
3170         }
3171
3172         /* some attributes are type-specific */
3173         if (rdev->desc->type == REGULATOR_CURRENT) {
3174                 status = device_create_file(dev, &dev_attr_requested_microamps);
3175                 if (status < 0)
3176                         return status;
3177         }
3178
3179         /* all the other attributes exist to support constraints;
3180          * don't show them if there are no constraints, or if the
3181          * relevant supporting methods are missing.
3182          */
3183         if (!rdev->constraints)
3184                 return status;
3185
3186         /* constraints need specific supporting methods */
3187         if (ops->set_voltage || ops->set_voltage_sel) {
3188                 status = device_create_file(dev, &dev_attr_min_microvolts);
3189                 if (status < 0)
3190                         return status;
3191                 status = device_create_file(dev, &dev_attr_max_microvolts);
3192                 if (status < 0)
3193                         return status;
3194         }
3195         if (ops->set_current_limit) {
3196                 status = device_create_file(dev, &dev_attr_min_microamps);
3197                 if (status < 0)
3198                         return status;
3199                 status = device_create_file(dev, &dev_attr_max_microamps);
3200                 if (status < 0)
3201                         return status;
3202         }
3203
3204         status = device_create_file(dev, &dev_attr_suspend_standby_state);
3205         if (status < 0)
3206                 return status;
3207         status = device_create_file(dev, &dev_attr_suspend_mem_state);
3208         if (status < 0)
3209                 return status;
3210         status = device_create_file(dev, &dev_attr_suspend_disk_state);
3211         if (status < 0)
3212                 return status;
3213
3214         if (ops->set_suspend_voltage) {
3215                 status = device_create_file(dev,
3216                                 &dev_attr_suspend_standby_microvolts);
3217                 if (status < 0)
3218                         return status;
3219                 status = device_create_file(dev,
3220                                 &dev_attr_suspend_mem_microvolts);
3221                 if (status < 0)
3222                         return status;
3223                 status = device_create_file(dev,
3224                                 &dev_attr_suspend_disk_microvolts);
3225                 if (status < 0)
3226                         return status;
3227         }
3228
3229         if (ops->set_suspend_mode) {
3230                 status = device_create_file(dev,
3231                                 &dev_attr_suspend_standby_mode);
3232                 if (status < 0)
3233                         return status;
3234                 status = device_create_file(dev,
3235                                 &dev_attr_suspend_mem_mode);
3236                 if (status < 0)
3237                         return status;
3238                 status = device_create_file(dev,
3239                                 &dev_attr_suspend_disk_mode);
3240                 if (status < 0)
3241                         return status;
3242         }
3243
3244         return status;
3245 }
3246
3247 static void rdev_init_debugfs(struct regulator_dev *rdev)
3248 {
3249         rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3250         if (!rdev->debugfs) {
3251                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3252                 return;
3253         }
3254
3255         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3256                            &rdev->use_count);
3257         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3258                            &rdev->open_count);
3259         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3260                            &rdev->bypass_count);
3261 }
3262
3263 /**
3264  * regulator_register - register regulator
3265  * @regulator_desc: regulator to register
3266  * @config: runtime configuration for regulator
3267  *
3268  * Called by regulator drivers to register a regulator.
3269  * Returns 0 on success.
3270  */
3271 struct regulator_dev *
3272 regulator_register(const struct regulator_desc *regulator_desc,
3273                    const struct regulator_config *config)
3274 {
3275         const struct regulation_constraints *constraints = NULL;
3276         const struct regulator_init_data *init_data;
3277         static atomic_t regulator_no = ATOMIC_INIT(0);
3278         struct regulator_dev *rdev;
3279         struct device *dev;
3280         int ret, i;
3281         const char *supply = NULL;
3282
3283         if (regulator_desc == NULL || config == NULL)
3284                 return ERR_PTR(-EINVAL);
3285
3286         dev = config->dev;
3287         WARN_ON(!dev);
3288
3289         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3290                 return ERR_PTR(-EINVAL);
3291
3292         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3293             regulator_desc->type != REGULATOR_CURRENT)
3294                 return ERR_PTR(-EINVAL);
3295
3296         /* Only one of each should be implemented */
3297         WARN_ON(regulator_desc->ops->get_voltage &&
3298                 regulator_desc->ops->get_voltage_sel);
3299         WARN_ON(regulator_desc->ops->set_voltage &&
3300                 regulator_desc->ops->set_voltage_sel);
3301
3302         /* If we're using selectors we must implement list_voltage. */
3303         if (regulator_desc->ops->get_voltage_sel &&
3304             !regulator_desc->ops->list_voltage) {
3305                 return ERR_PTR(-EINVAL);
3306         }
3307         if (regulator_desc->ops->set_voltage_sel &&
3308             !regulator_desc->ops->list_voltage) {
3309                 return ERR_PTR(-EINVAL);
3310         }
3311
3312         init_data = config->init_data;
3313
3314         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3315         if (rdev == NULL)
3316                 return ERR_PTR(-ENOMEM);
3317
3318         mutex_lock(&regulator_list_mutex);
3319
3320         mutex_init(&rdev->mutex);
3321         rdev->reg_data = config->driver_data;
3322         rdev->owner = regulator_desc->owner;
3323         rdev->desc = regulator_desc;
3324         if (config->regmap)
3325                 rdev->regmap = config->regmap;
3326         else
3327                 rdev->regmap = dev_get_regmap(dev, NULL);
3328         INIT_LIST_HEAD(&rdev->consumer_list);
3329         INIT_LIST_HEAD(&rdev->list);
3330         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3331         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3332
3333         /* preform any regulator specific init */
3334         if (init_data && init_data->regulator_init) {
3335                 ret = init_data->regulator_init(rdev->reg_data);
3336                 if (ret < 0)
3337                         goto clean;
3338         }
3339
3340         /* register with sysfs */
3341         rdev->dev.class = &regulator_class;
3342         rdev->dev.of_node = config->of_node;
3343         rdev->dev.parent = dev;
3344         dev_set_name(&rdev->dev, "regulator.%d",
3345                      atomic_inc_return(&regulator_no) - 1);
3346         ret = device_register(&rdev->dev);
3347         if (ret != 0) {
3348                 put_device(&rdev->dev);
3349                 goto clean;
3350         }
3351
3352         dev_set_drvdata(&rdev->dev, rdev);
3353
3354         if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3355                 ret = gpio_request_one(config->ena_gpio,
3356                                        GPIOF_DIR_OUT | config->ena_gpio_flags,
3357                                        rdev_get_name(rdev));
3358                 if (ret != 0) {
3359                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3360                                  config->ena_gpio, ret);
3361                         goto clean;
3362                 }
3363
3364                 rdev->ena_gpio = config->ena_gpio;
3365                 rdev->ena_gpio_invert = config->ena_gpio_invert;
3366
3367                 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3368                         rdev->ena_gpio_state = 1;
3369
3370                 if (rdev->ena_gpio_invert)
3371                         rdev->ena_gpio_state = !rdev->ena_gpio_state;
3372         }
3373
3374         /* set regulator constraints */
3375         if (init_data)
3376                 constraints = &init_data->constraints;
3377
3378         ret = set_machine_constraints(rdev, constraints);
3379         if (ret < 0)
3380                 goto scrub;
3381
3382         /* add attributes supported by this regulator */
3383         ret = add_regulator_attributes(rdev);
3384         if (ret < 0)
3385                 goto scrub;
3386
3387         if (init_data && init_data->supply_regulator)
3388                 supply = init_data->supply_regulator;
3389         else if (regulator_desc->supply_name)
3390                 supply = regulator_desc->supply_name;
3391
3392         if (supply) {
3393                 struct regulator_dev *r;
3394
3395                 r = regulator_dev_lookup(dev, supply, &ret);
3396
3397                 if (!r) {
3398                         dev_err(dev, "Failed to find supply %s\n", supply);
3399                         ret = -EPROBE_DEFER;
3400                         goto scrub;
3401                 }
3402
3403                 ret = set_supply(rdev, r);
3404                 if (ret < 0)
3405                         goto scrub;
3406
3407                 /* Enable supply if rail is enabled */
3408                 if (_regulator_is_enabled(rdev)) {
3409                         ret = regulator_enable(rdev->supply);
3410                         if (ret < 0)
3411                                 goto scrub;
3412                 }
3413         }
3414
3415         /* add consumers devices */
3416         if (init_data) {
3417                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3418                         ret = set_consumer_device_supply(rdev,
3419                                 init_data->consumer_supplies[i].dev_name,
3420                                 init_data->consumer_supplies[i].supply);
3421                         if (ret < 0) {
3422                                 dev_err(dev, "Failed to set supply %s\n",
3423                                         init_data->consumer_supplies[i].supply);
3424                                 goto unset_supplies;
3425                         }
3426                 }
3427         }
3428
3429         list_add(&rdev->list, &regulator_list);
3430
3431         rdev_init_debugfs(rdev);
3432 out:
3433         mutex_unlock(&regulator_list_mutex);
3434         return rdev;
3435
3436 unset_supplies:
3437         unset_regulator_supplies(rdev);
3438
3439 scrub:
3440         if (rdev->supply)
3441                 regulator_put(rdev->supply);
3442         if (rdev->ena_gpio)
3443                 gpio_free(rdev->ena_gpio);
3444         kfree(rdev->constraints);
3445         device_unregister(&rdev->dev);
3446         /* device core frees rdev */
3447         rdev = ERR_PTR(ret);
3448         goto out;
3449
3450 clean:
3451         kfree(rdev);
3452         rdev = ERR_PTR(ret);
3453         goto out;
3454 }
3455 EXPORT_SYMBOL_GPL(regulator_register);
3456
3457 /**
3458  * regulator_unregister - unregister regulator
3459  * @rdev: regulator to unregister
3460  *
3461  * Called by regulator drivers to unregister a regulator.
3462  */
3463 void regulator_unregister(struct regulator_dev *rdev)
3464 {
3465         if (rdev == NULL)
3466                 return;
3467
3468         if (rdev->supply)
3469                 regulator_put(rdev->supply);
3470         mutex_lock(&regulator_list_mutex);
3471         debugfs_remove_recursive(rdev->debugfs);
3472         flush_work(&rdev->disable_work.work);
3473         WARN_ON(rdev->open_count);
3474         unset_regulator_supplies(rdev);
3475         list_del(&rdev->list);
3476         kfree(rdev->constraints);
3477         if (rdev->ena_gpio)
3478                 gpio_free(rdev->ena_gpio);
3479         device_unregister(&rdev->dev);
3480         mutex_unlock(&regulator_list_mutex);
3481 }
3482 EXPORT_SYMBOL_GPL(regulator_unregister);
3483
3484 /**
3485  * regulator_suspend_prepare - prepare regulators for system wide suspend
3486  * @state: system suspend state
3487  *
3488  * Configure each regulator with it's suspend operating parameters for state.
3489  * This will usually be called by machine suspend code prior to supending.
3490  */
3491 int regulator_suspend_prepare(suspend_state_t state)
3492 {
3493         struct regulator_dev *rdev;
3494         int ret = 0;
3495
3496         /* ON is handled by regulator active state */
3497         if (state == PM_SUSPEND_ON)
3498                 return -EINVAL;
3499
3500         mutex_lock(&regulator_list_mutex);
3501         list_for_each_entry(rdev, &regulator_list, list) {
3502
3503                 mutex_lock(&rdev->mutex);
3504                 ret = suspend_prepare(rdev, state);
3505                 mutex_unlock(&rdev->mutex);
3506
3507                 if (ret < 0) {
3508                         rdev_err(rdev, "failed to prepare\n");
3509                         goto out;
3510                 }
3511         }
3512 out:
3513         mutex_unlock(&regulator_list_mutex);
3514         return ret;
3515 }
3516 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3517
3518 /**
3519  * regulator_suspend_finish - resume regulators from system wide suspend
3520  *
3521  * Turn on regulators that might be turned off by regulator_suspend_prepare
3522  * and that should be turned on according to the regulators properties.
3523  */
3524 int regulator_suspend_finish(void)
3525 {
3526         struct regulator_dev *rdev;
3527         int ret = 0, error;
3528
3529         mutex_lock(&regulator_list_mutex);
3530         list_for_each_entry(rdev, &regulator_list, list) {
3531                 struct regulator_ops *ops = rdev->desc->ops;
3532
3533                 mutex_lock(&rdev->mutex);
3534                 if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3535                                 ops->enable) {
3536                         error = ops->enable(rdev);
3537                         if (error)
3538                                 ret = error;
3539                 } else {
3540                         if (!has_full_constraints)
3541                                 goto unlock;
3542                         if (!ops->disable)
3543                                 goto unlock;
3544                         if (!_regulator_is_enabled(rdev))
3545                                 goto unlock;
3546
3547                         error = ops->disable(rdev);
3548                         if (error)
3549                                 ret = error;
3550                 }
3551 unlock:
3552                 mutex_unlock(&rdev->mutex);
3553         }
3554         mutex_unlock(&regulator_list_mutex);
3555         return ret;
3556 }
3557 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3558
3559 /**
3560  * regulator_has_full_constraints - the system has fully specified constraints
3561  *
3562  * Calling this function will cause the regulator API to disable all
3563  * regulators which have a zero use count and don't have an always_on
3564  * constraint in a late_initcall.
3565  *
3566  * The intention is that this will become the default behaviour in a
3567  * future kernel release so users are encouraged to use this facility
3568  * now.
3569  */
3570 void regulator_has_full_constraints(void)
3571 {
3572         has_full_constraints = 1;
3573 }
3574 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3575
3576 /**
3577  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3578  *
3579  * Calling this function will cause the regulator API to provide a
3580  * dummy regulator to consumers if no physical regulator is found,
3581  * allowing most consumers to proceed as though a regulator were
3582  * configured.  This allows systems such as those with software
3583  * controllable regulators for the CPU core only to be brought up more
3584  * readily.
3585  */
3586 void regulator_use_dummy_regulator(void)
3587 {
3588         board_wants_dummy_regulator = true;
3589 }
3590 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3591
3592 /**
3593  * rdev_get_drvdata - get rdev regulator driver data
3594  * @rdev: regulator
3595  *
3596  * Get rdev regulator driver private data. This call can be used in the
3597  * regulator driver context.
3598  */
3599 void *rdev_get_drvdata(struct regulator_dev *rdev)
3600 {
3601         return rdev->reg_data;
3602 }
3603 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3604
3605 /**
3606  * regulator_get_drvdata - get regulator driver data
3607  * @regulator: regulator
3608  *
3609  * Get regulator driver private data. This call can be used in the consumer
3610  * driver context when non API regulator specific functions need to be called.
3611  */
3612 void *regulator_get_drvdata(struct regulator *regulator)
3613 {
3614         return regulator->rdev->reg_data;
3615 }
3616 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3617
3618 /**
3619  * regulator_set_drvdata - set regulator driver data
3620  * @regulator: regulator
3621  * @data: data
3622  */
3623 void regulator_set_drvdata(struct regulator *regulator, void *data)
3624 {
3625         regulator->rdev->reg_data = data;
3626 }
3627 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3628
3629 /**
3630  * regulator_get_id - get regulator ID
3631  * @rdev: regulator
3632  */
3633 int rdev_get_id(struct regulator_dev *rdev)
3634 {
3635         return rdev->desc->id;
3636 }
3637 EXPORT_SYMBOL_GPL(rdev_get_id);
3638
3639 struct device *rdev_get_dev(struct regulator_dev *rdev)
3640 {
3641         return &rdev->dev;
3642 }
3643 EXPORT_SYMBOL_GPL(rdev_get_dev);
3644
3645 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3646 {
3647         return reg_init_data->driver_data;
3648 }
3649 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3650
3651 #ifdef CONFIG_DEBUG_FS
3652 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3653                                     size_t count, loff_t *ppos)
3654 {
3655         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3656         ssize_t len, ret = 0;
3657         struct regulator_map *map;
3658
3659         if (!buf)
3660                 return -ENOMEM;
3661
3662         list_for_each_entry(map, &regulator_map_list, list) {
3663                 len = snprintf(buf + ret, PAGE_SIZE - ret,
3664                                "%s -> %s.%s\n",
3665                                rdev_get_name(map->regulator), map->dev_name,
3666                                map->supply);
3667                 if (len >= 0)
3668                         ret += len;
3669                 if (ret > PAGE_SIZE) {
3670                         ret = PAGE_SIZE;
3671                         break;
3672                 }
3673         }
3674
3675         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3676
3677         kfree(buf);
3678
3679         return ret;
3680 }
3681 #endif
3682
3683 static const struct file_operations supply_map_fops = {
3684 #ifdef CONFIG_DEBUG_FS
3685         .read = supply_map_read_file,
3686         .llseek = default_llseek,
3687 #endif
3688 };
3689
3690 static int __init regulator_init(void)
3691 {
3692         int ret;
3693
3694         ret = class_register(&regulator_class);
3695
3696         debugfs_root = debugfs_create_dir("regulator", NULL);
3697         if (!debugfs_root)
3698                 pr_warn("regulator: Failed to create debugfs directory\n");
3699
3700         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3701                             &supply_map_fops);
3702
3703         regulator_dummy_init();
3704
3705         return ret;
3706 }
3707
3708 /* init early to allow our consumers to complete system booting */
3709 core_initcall(regulator_init);
3710
3711 static int __init regulator_init_complete(void)
3712 {
3713         struct regulator_dev *rdev;
3714         struct regulator_ops *ops;
3715         struct regulation_constraints *c;
3716         int enabled, ret;
3717
3718         /*
3719          * Since DT doesn't provide an idiomatic mechanism for
3720          * enabling full constraints and since it's much more natural
3721          * with DT to provide them just assume that a DT enabled
3722          * system has full constraints.
3723          */
3724         if (of_have_populated_dt())
3725                 has_full_constraints = true;
3726
3727         mutex_lock(&regulator_list_mutex);
3728
3729         /* If we have a full configuration then disable any regulators
3730          * which are not in use or always_on.  This will become the
3731          * default behaviour in the future.
3732          */
3733         list_for_each_entry(rdev, &regulator_list, list) {
3734                 ops = rdev->desc->ops;
3735                 c = rdev->constraints;
3736
3737                 if (!ops->disable || (c && c->always_on))
3738                         continue;
3739
3740                 mutex_lock(&rdev->mutex);
3741
3742                 if (rdev->use_count)
3743                         goto unlock;
3744
3745                 /* If we can't read the status assume it's on. */
3746                 if (ops->is_enabled)
3747                         enabled = ops->is_enabled(rdev);
3748                 else
3749                         enabled = 1;
3750
3751                 if (!enabled)
3752                         goto unlock;
3753
3754                 if (has_full_constraints) {
3755                         /* We log since this may kill the system if it
3756                          * goes wrong. */
3757                         rdev_info(rdev, "disabling\n");
3758                         ret = ops->disable(rdev);
3759                         if (ret != 0) {
3760                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
3761                         }
3762                 } else {
3763                         /* The intention is that in future we will
3764                          * assume that full constraints are provided
3765                          * so warn even if we aren't going to do
3766                          * anything here.
3767                          */
3768                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
3769                 }
3770
3771 unlock:
3772                 mutex_unlock(&rdev->mutex);
3773         }
3774
3775         mutex_unlock(&regulator_list_mutex);
3776
3777         return 0;
3778 }
3779 late_initcall(regulator_init_complete);