]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/regulator/core.c
c62563322969732d5ccba7fa457ac11718c1dd27
[karo-tx-linux.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/slab.h>
20 #include <linux/err.h>
21 #include <linux/mutex.h>
22 #include <linux/suspend.h>
23 #include <linux/delay.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/driver.h>
26 #include <linux/regulator/machine.h>
27
28 #include "dummy.h"
29
30 #define REGULATOR_VERSION "0.5"
31
32 static DEFINE_MUTEX(regulator_list_mutex);
33 static LIST_HEAD(regulator_list);
34 static LIST_HEAD(regulator_map_list);
35 static int has_full_constraints;
36 static bool board_wants_dummy_regulator;
37
38 /*
39  * struct regulator_map
40  *
41  * Used to provide symbolic supply names to devices.
42  */
43 struct regulator_map {
44         struct list_head list;
45         const char *dev_name;   /* The dev_name() for the consumer */
46         const char *supply;
47         struct regulator_dev *regulator;
48 };
49
50 /*
51  * struct regulator
52  *
53  * One for each consumer device.
54  */
55 struct regulator {
56         struct device *dev;
57         struct list_head list;
58         int uA_load;
59         int min_uV;
60         int max_uV;
61         char *supply_name;
62         struct device_attribute dev_attr;
63         struct regulator_dev *rdev;
64 };
65
66 static int _regulator_is_enabled(struct regulator_dev *rdev);
67 static int _regulator_disable(struct regulator_dev *rdev,
68                 struct regulator_dev **supply_rdev_ptr);
69 static int _regulator_get_voltage(struct regulator_dev *rdev);
70 static int _regulator_get_current_limit(struct regulator_dev *rdev);
71 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
72 static void _notifier_call_chain(struct regulator_dev *rdev,
73                                   unsigned long event, void *data);
74
75 static const char *rdev_get_name(struct regulator_dev *rdev)
76 {
77         if (rdev->constraints && rdev->constraints->name)
78                 return rdev->constraints->name;
79         else if (rdev->desc->name)
80                 return rdev->desc->name;
81         else
82                 return "";
83 }
84
85 /* gets the regulator for a given consumer device */
86 static struct regulator *get_device_regulator(struct device *dev)
87 {
88         struct regulator *regulator = NULL;
89         struct regulator_dev *rdev;
90
91         mutex_lock(&regulator_list_mutex);
92         list_for_each_entry(rdev, &regulator_list, list) {
93                 mutex_lock(&rdev->mutex);
94                 list_for_each_entry(regulator, &rdev->consumer_list, list) {
95                         if (regulator->dev == dev) {
96                                 mutex_unlock(&rdev->mutex);
97                                 mutex_unlock(&regulator_list_mutex);
98                                 return regulator;
99                         }
100                 }
101                 mutex_unlock(&rdev->mutex);
102         }
103         mutex_unlock(&regulator_list_mutex);
104         return NULL;
105 }
106
107 /* Platform voltage constraint check */
108 static int regulator_check_voltage(struct regulator_dev *rdev,
109                                    int *min_uV, int *max_uV)
110 {
111         BUG_ON(*min_uV > *max_uV);
112
113         if (!rdev->constraints) {
114                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
115                        rdev_get_name(rdev));
116                 return -ENODEV;
117         }
118         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
119                 printk(KERN_ERR "%s: operation not allowed for %s\n",
120                        __func__, rdev_get_name(rdev));
121                 return -EPERM;
122         }
123
124         if (*max_uV > rdev->constraints->max_uV)
125                 *max_uV = rdev->constraints->max_uV;
126         if (*min_uV < rdev->constraints->min_uV)
127                 *min_uV = rdev->constraints->min_uV;
128
129         if (*min_uV > *max_uV)
130                 return -EINVAL;
131
132         return 0;
133 }
134
135 /* current constraint check */
136 static int regulator_check_current_limit(struct regulator_dev *rdev,
137                                         int *min_uA, int *max_uA)
138 {
139         BUG_ON(*min_uA > *max_uA);
140
141         if (!rdev->constraints) {
142                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
143                        rdev_get_name(rdev));
144                 return -ENODEV;
145         }
146         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
147                 printk(KERN_ERR "%s: operation not allowed for %s\n",
148                        __func__, rdev_get_name(rdev));
149                 return -EPERM;
150         }
151
152         if (*max_uA > rdev->constraints->max_uA)
153                 *max_uA = rdev->constraints->max_uA;
154         if (*min_uA < rdev->constraints->min_uA)
155                 *min_uA = rdev->constraints->min_uA;
156
157         if (*min_uA > *max_uA)
158                 return -EINVAL;
159
160         return 0;
161 }
162
163 /* operating mode constraint check */
164 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
165 {
166         switch (mode) {
167         case REGULATOR_MODE_FAST:
168         case REGULATOR_MODE_NORMAL:
169         case REGULATOR_MODE_IDLE:
170         case REGULATOR_MODE_STANDBY:
171                 break;
172         default:
173                 return -EINVAL;
174         }
175
176         if (!rdev->constraints) {
177                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
178                        rdev_get_name(rdev));
179                 return -ENODEV;
180         }
181         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
182                 printk(KERN_ERR "%s: operation not allowed for %s\n",
183                        __func__, rdev_get_name(rdev));
184                 return -EPERM;
185         }
186         if (!(rdev->constraints->valid_modes_mask & mode)) {
187                 printk(KERN_ERR "%s: invalid mode %x for %s\n",
188                        __func__, mode, rdev_get_name(rdev));
189                 return -EINVAL;
190         }
191         return 0;
192 }
193
194 /* dynamic regulator mode switching constraint check */
195 static int regulator_check_drms(struct regulator_dev *rdev)
196 {
197         if (!rdev->constraints) {
198                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
199                        rdev_get_name(rdev));
200                 return -ENODEV;
201         }
202         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
203                 printk(KERN_ERR "%s: operation not allowed for %s\n",
204                        __func__, rdev_get_name(rdev));
205                 return -EPERM;
206         }
207         return 0;
208 }
209
210 static ssize_t device_requested_uA_show(struct device *dev,
211                              struct device_attribute *attr, char *buf)
212 {
213         struct regulator *regulator;
214
215         regulator = get_device_regulator(dev);
216         if (regulator == NULL)
217                 return 0;
218
219         return sprintf(buf, "%d\n", regulator->uA_load);
220 }
221
222 static ssize_t regulator_uV_show(struct device *dev,
223                                 struct device_attribute *attr, char *buf)
224 {
225         struct regulator_dev *rdev = dev_get_drvdata(dev);
226         ssize_t ret;
227
228         mutex_lock(&rdev->mutex);
229         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
230         mutex_unlock(&rdev->mutex);
231
232         return ret;
233 }
234 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
235
236 static ssize_t regulator_uA_show(struct device *dev,
237                                 struct device_attribute *attr, char *buf)
238 {
239         struct regulator_dev *rdev = dev_get_drvdata(dev);
240
241         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
242 }
243 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
244
245 static ssize_t regulator_name_show(struct device *dev,
246                              struct device_attribute *attr, char *buf)
247 {
248         struct regulator_dev *rdev = dev_get_drvdata(dev);
249
250         return sprintf(buf, "%s\n", rdev_get_name(rdev));
251 }
252
253 static ssize_t regulator_print_opmode(char *buf, int mode)
254 {
255         switch (mode) {
256         case REGULATOR_MODE_FAST:
257                 return sprintf(buf, "fast\n");
258         case REGULATOR_MODE_NORMAL:
259                 return sprintf(buf, "normal\n");
260         case REGULATOR_MODE_IDLE:
261                 return sprintf(buf, "idle\n");
262         case REGULATOR_MODE_STANDBY:
263                 return sprintf(buf, "standby\n");
264         }
265         return sprintf(buf, "unknown\n");
266 }
267
268 static ssize_t regulator_opmode_show(struct device *dev,
269                                     struct device_attribute *attr, char *buf)
270 {
271         struct regulator_dev *rdev = dev_get_drvdata(dev);
272
273         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
274 }
275 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
276
277 static ssize_t regulator_print_state(char *buf, int state)
278 {
279         if (state > 0)
280                 return sprintf(buf, "enabled\n");
281         else if (state == 0)
282                 return sprintf(buf, "disabled\n");
283         else
284                 return sprintf(buf, "unknown\n");
285 }
286
287 static ssize_t regulator_state_show(struct device *dev,
288                                    struct device_attribute *attr, char *buf)
289 {
290         struct regulator_dev *rdev = dev_get_drvdata(dev);
291         ssize_t ret;
292
293         mutex_lock(&rdev->mutex);
294         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
295         mutex_unlock(&rdev->mutex);
296
297         return ret;
298 }
299 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
300
301 static ssize_t regulator_status_show(struct device *dev,
302                                    struct device_attribute *attr, char *buf)
303 {
304         struct regulator_dev *rdev = dev_get_drvdata(dev);
305         int status;
306         char *label;
307
308         status = rdev->desc->ops->get_status(rdev);
309         if (status < 0)
310                 return status;
311
312         switch (status) {
313         case REGULATOR_STATUS_OFF:
314                 label = "off";
315                 break;
316         case REGULATOR_STATUS_ON:
317                 label = "on";
318                 break;
319         case REGULATOR_STATUS_ERROR:
320                 label = "error";
321                 break;
322         case REGULATOR_STATUS_FAST:
323                 label = "fast";
324                 break;
325         case REGULATOR_STATUS_NORMAL:
326                 label = "normal";
327                 break;
328         case REGULATOR_STATUS_IDLE:
329                 label = "idle";
330                 break;
331         case REGULATOR_STATUS_STANDBY:
332                 label = "standby";
333                 break;
334         default:
335                 return -ERANGE;
336         }
337
338         return sprintf(buf, "%s\n", label);
339 }
340 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
341
342 static ssize_t regulator_min_uA_show(struct device *dev,
343                                     struct device_attribute *attr, char *buf)
344 {
345         struct regulator_dev *rdev = dev_get_drvdata(dev);
346
347         if (!rdev->constraints)
348                 return sprintf(buf, "constraint not defined\n");
349
350         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
351 }
352 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
353
354 static ssize_t regulator_max_uA_show(struct device *dev,
355                                     struct device_attribute *attr, char *buf)
356 {
357         struct regulator_dev *rdev = dev_get_drvdata(dev);
358
359         if (!rdev->constraints)
360                 return sprintf(buf, "constraint not defined\n");
361
362         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
363 }
364 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
365
366 static ssize_t regulator_min_uV_show(struct device *dev,
367                                     struct device_attribute *attr, char *buf)
368 {
369         struct regulator_dev *rdev = dev_get_drvdata(dev);
370
371         if (!rdev->constraints)
372                 return sprintf(buf, "constraint not defined\n");
373
374         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
375 }
376 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
377
378 static ssize_t regulator_max_uV_show(struct device *dev,
379                                     struct device_attribute *attr, char *buf)
380 {
381         struct regulator_dev *rdev = dev_get_drvdata(dev);
382
383         if (!rdev->constraints)
384                 return sprintf(buf, "constraint not defined\n");
385
386         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
387 }
388 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
389
390 static ssize_t regulator_total_uA_show(struct device *dev,
391                                       struct device_attribute *attr, char *buf)
392 {
393         struct regulator_dev *rdev = dev_get_drvdata(dev);
394         struct regulator *regulator;
395         int uA = 0;
396
397         mutex_lock(&rdev->mutex);
398         list_for_each_entry(regulator, &rdev->consumer_list, list)
399                 uA += regulator->uA_load;
400         mutex_unlock(&rdev->mutex);
401         return sprintf(buf, "%d\n", uA);
402 }
403 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
404
405 static ssize_t regulator_num_users_show(struct device *dev,
406                                       struct device_attribute *attr, char *buf)
407 {
408         struct regulator_dev *rdev = dev_get_drvdata(dev);
409         return sprintf(buf, "%d\n", rdev->use_count);
410 }
411
412 static ssize_t regulator_type_show(struct device *dev,
413                                   struct device_attribute *attr, char *buf)
414 {
415         struct regulator_dev *rdev = dev_get_drvdata(dev);
416
417         switch (rdev->desc->type) {
418         case REGULATOR_VOLTAGE:
419                 return sprintf(buf, "voltage\n");
420         case REGULATOR_CURRENT:
421                 return sprintf(buf, "current\n");
422         }
423         return sprintf(buf, "unknown\n");
424 }
425
426 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
427                                 struct device_attribute *attr, char *buf)
428 {
429         struct regulator_dev *rdev = dev_get_drvdata(dev);
430
431         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
432 }
433 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
434                 regulator_suspend_mem_uV_show, NULL);
435
436 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
437                                 struct device_attribute *attr, char *buf)
438 {
439         struct regulator_dev *rdev = dev_get_drvdata(dev);
440
441         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
442 }
443 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
444                 regulator_suspend_disk_uV_show, NULL);
445
446 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
447                                 struct device_attribute *attr, char *buf)
448 {
449         struct regulator_dev *rdev = dev_get_drvdata(dev);
450
451         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
452 }
453 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
454                 regulator_suspend_standby_uV_show, NULL);
455
456 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
457                                 struct device_attribute *attr, char *buf)
458 {
459         struct regulator_dev *rdev = dev_get_drvdata(dev);
460
461         return regulator_print_opmode(buf,
462                 rdev->constraints->state_mem.mode);
463 }
464 static DEVICE_ATTR(suspend_mem_mode, 0444,
465                 regulator_suspend_mem_mode_show, NULL);
466
467 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
468                                 struct device_attribute *attr, char *buf)
469 {
470         struct regulator_dev *rdev = dev_get_drvdata(dev);
471
472         return regulator_print_opmode(buf,
473                 rdev->constraints->state_disk.mode);
474 }
475 static DEVICE_ATTR(suspend_disk_mode, 0444,
476                 regulator_suspend_disk_mode_show, NULL);
477
478 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
479                                 struct device_attribute *attr, char *buf)
480 {
481         struct regulator_dev *rdev = dev_get_drvdata(dev);
482
483         return regulator_print_opmode(buf,
484                 rdev->constraints->state_standby.mode);
485 }
486 static DEVICE_ATTR(suspend_standby_mode, 0444,
487                 regulator_suspend_standby_mode_show, NULL);
488
489 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
490                                    struct device_attribute *attr, char *buf)
491 {
492         struct regulator_dev *rdev = dev_get_drvdata(dev);
493
494         return regulator_print_state(buf,
495                         rdev->constraints->state_mem.enabled);
496 }
497 static DEVICE_ATTR(suspend_mem_state, 0444,
498                 regulator_suspend_mem_state_show, NULL);
499
500 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
501                                    struct device_attribute *attr, char *buf)
502 {
503         struct regulator_dev *rdev = dev_get_drvdata(dev);
504
505         return regulator_print_state(buf,
506                         rdev->constraints->state_disk.enabled);
507 }
508 static DEVICE_ATTR(suspend_disk_state, 0444,
509                 regulator_suspend_disk_state_show, NULL);
510
511 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
512                                    struct device_attribute *attr, char *buf)
513 {
514         struct regulator_dev *rdev = dev_get_drvdata(dev);
515
516         return regulator_print_state(buf,
517                         rdev->constraints->state_standby.enabled);
518 }
519 static DEVICE_ATTR(suspend_standby_state, 0444,
520                 regulator_suspend_standby_state_show, NULL);
521
522
523 /*
524  * These are the only attributes are present for all regulators.
525  * Other attributes are a function of regulator functionality.
526  */
527 static struct device_attribute regulator_dev_attrs[] = {
528         __ATTR(name, 0444, regulator_name_show, NULL),
529         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
530         __ATTR(type, 0444, regulator_type_show, NULL),
531         __ATTR_NULL,
532 };
533
534 static void regulator_dev_release(struct device *dev)
535 {
536         struct regulator_dev *rdev = dev_get_drvdata(dev);
537         kfree(rdev);
538 }
539
540 static struct class regulator_class = {
541         .name = "regulator",
542         .dev_release = regulator_dev_release,
543         .dev_attrs = regulator_dev_attrs,
544 };
545
546 /* Calculate the new optimum regulator operating mode based on the new total
547  * consumer load. All locks held by caller */
548 static void drms_uA_update(struct regulator_dev *rdev)
549 {
550         struct regulator *sibling;
551         int current_uA = 0, output_uV, input_uV, err;
552         unsigned int mode;
553
554         err = regulator_check_drms(rdev);
555         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
556             !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
557                 return;
558
559         /* get output voltage */
560         output_uV = rdev->desc->ops->get_voltage(rdev);
561         if (output_uV <= 0)
562                 return;
563
564         /* get input voltage */
565         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
566                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
567         else
568                 input_uV = rdev->constraints->input_uV;
569         if (input_uV <= 0)
570                 return;
571
572         /* calc total requested load */
573         list_for_each_entry(sibling, &rdev->consumer_list, list)
574                 current_uA += sibling->uA_load;
575
576         /* now get the optimum mode for our new total regulator load */
577         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
578                                                   output_uV, current_uA);
579
580         /* check the new mode is allowed */
581         err = regulator_check_mode(rdev, mode);
582         if (err == 0)
583                 rdev->desc->ops->set_mode(rdev, mode);
584 }
585
586 static int suspend_set_state(struct regulator_dev *rdev,
587         struct regulator_state *rstate)
588 {
589         int ret = 0;
590         bool can_set_state;
591
592         can_set_state = rdev->desc->ops->set_suspend_enable &&
593                 rdev->desc->ops->set_suspend_disable;
594
595         /* If we have no suspend mode configration don't set anything;
596          * only warn if the driver actually makes the suspend mode
597          * configurable.
598          */
599         if (!rstate->enabled && !rstate->disabled) {
600                 if (can_set_state)
601                         printk(KERN_WARNING "%s: No configuration for %s\n",
602                                __func__, rdev_get_name(rdev));
603                 return 0;
604         }
605
606         if (rstate->enabled && rstate->disabled) {
607                 printk(KERN_ERR "%s: invalid configuration for %s\n",
608                        __func__, rdev_get_name(rdev));
609                 return -EINVAL;
610         }
611
612         if (!can_set_state) {
613                 printk(KERN_ERR "%s: no way to set suspend state\n",
614                         __func__);
615                 return -EINVAL;
616         }
617
618         if (rstate->enabled)
619                 ret = rdev->desc->ops->set_suspend_enable(rdev);
620         else
621                 ret = rdev->desc->ops->set_suspend_disable(rdev);
622         if (ret < 0) {
623                 printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
624                 return ret;
625         }
626
627         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
628                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
629                 if (ret < 0) {
630                         printk(KERN_ERR "%s: failed to set voltage\n",
631                                 __func__);
632                         return ret;
633                 }
634         }
635
636         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
637                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
638                 if (ret < 0) {
639                         printk(KERN_ERR "%s: failed to set mode\n", __func__);
640                         return ret;
641                 }
642         }
643         return ret;
644 }
645
646 /* locks held by caller */
647 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
648 {
649         if (!rdev->constraints)
650                 return -EINVAL;
651
652         switch (state) {
653         case PM_SUSPEND_STANDBY:
654                 return suspend_set_state(rdev,
655                         &rdev->constraints->state_standby);
656         case PM_SUSPEND_MEM:
657                 return suspend_set_state(rdev,
658                         &rdev->constraints->state_mem);
659         case PM_SUSPEND_MAX:
660                 return suspend_set_state(rdev,
661                         &rdev->constraints->state_disk);
662         default:
663                 return -EINVAL;
664         }
665 }
666
667 static void print_constraints(struct regulator_dev *rdev)
668 {
669         struct regulation_constraints *constraints = rdev->constraints;
670         char buf[80] = "";
671         int count = 0;
672         int ret;
673
674         if (constraints->min_uV && constraints->max_uV) {
675                 if (constraints->min_uV == constraints->max_uV)
676                         count += sprintf(buf + count, "%d mV ",
677                                          constraints->min_uV / 1000);
678                 else
679                         count += sprintf(buf + count, "%d <--> %d mV ",
680                                          constraints->min_uV / 1000,
681                                          constraints->max_uV / 1000);
682         }
683
684         if (!constraints->min_uV ||
685             constraints->min_uV != constraints->max_uV) {
686                 ret = _regulator_get_voltage(rdev);
687                 if (ret > 0)
688                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
689         }
690
691         if (constraints->min_uA && constraints->max_uA) {
692                 if (constraints->min_uA == constraints->max_uA)
693                         count += sprintf(buf + count, "%d mA ",
694                                          constraints->min_uA / 1000);
695                 else
696                         count += sprintf(buf + count, "%d <--> %d mA ",
697                                          constraints->min_uA / 1000,
698                                          constraints->max_uA / 1000);
699         }
700
701         if (!constraints->min_uA ||
702             constraints->min_uA != constraints->max_uA) {
703                 ret = _regulator_get_current_limit(rdev);
704                 if (ret > 0)
705                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
706         }
707
708         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
709                 count += sprintf(buf + count, "fast ");
710         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
711                 count += sprintf(buf + count, "normal ");
712         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
713                 count += sprintf(buf + count, "idle ");
714         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
715                 count += sprintf(buf + count, "standby");
716
717         printk(KERN_INFO "regulator: %s: %s\n", rdev_get_name(rdev), buf);
718 }
719
720 static int machine_constraints_voltage(struct regulator_dev *rdev,
721         struct regulation_constraints *constraints)
722 {
723         struct regulator_ops *ops = rdev->desc->ops;
724         const char *name = rdev_get_name(rdev);
725         int ret;
726
727         /* do we need to apply the constraint voltage */
728         if (rdev->constraints->apply_uV &&
729                 rdev->constraints->min_uV == rdev->constraints->max_uV &&
730                 ops->set_voltage) {
731                 ret = ops->set_voltage(rdev,
732                         rdev->constraints->min_uV, rdev->constraints->max_uV);
733                         if (ret < 0) {
734                                 printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
735                                        __func__,
736                                        rdev->constraints->min_uV, name);
737                                 rdev->constraints = NULL;
738                                 return ret;
739                         }
740         }
741
742         /* constrain machine-level voltage specs to fit
743          * the actual range supported by this regulator.
744          */
745         if (ops->list_voltage && rdev->desc->n_voltages) {
746                 int     count = rdev->desc->n_voltages;
747                 int     i;
748                 int     min_uV = INT_MAX;
749                 int     max_uV = INT_MIN;
750                 int     cmin = constraints->min_uV;
751                 int     cmax = constraints->max_uV;
752
753                 /* it's safe to autoconfigure fixed-voltage supplies
754                    and the constraints are used by list_voltage. */
755                 if (count == 1 && !cmin) {
756                         cmin = 1;
757                         cmax = INT_MAX;
758                         constraints->min_uV = cmin;
759                         constraints->max_uV = cmax;
760                 }
761
762                 /* voltage constraints are optional */
763                 if ((cmin == 0) && (cmax == 0))
764                         return 0;
765
766                 /* else require explicit machine-level constraints */
767                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
768                         pr_err("%s: %s '%s' voltage constraints\n",
769                                        __func__, "invalid", name);
770                         return -EINVAL;
771                 }
772
773                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
774                 for (i = 0; i < count; i++) {
775                         int     value;
776
777                         value = ops->list_voltage(rdev, i);
778                         if (value <= 0)
779                                 continue;
780
781                         /* maybe adjust [min_uV..max_uV] */
782                         if (value >= cmin && value < min_uV)
783                                 min_uV = value;
784                         if (value <= cmax && value > max_uV)
785                                 max_uV = value;
786                 }
787
788                 /* final: [min_uV..max_uV] valid iff constraints valid */
789                 if (max_uV < min_uV) {
790                         pr_err("%s: %s '%s' voltage constraints\n",
791                                        __func__, "unsupportable", name);
792                         return -EINVAL;
793                 }
794
795                 /* use regulator's subset of machine constraints */
796                 if (constraints->min_uV < min_uV) {
797                         pr_debug("%s: override '%s' %s, %d -> %d\n",
798                                        __func__, name, "min_uV",
799                                         constraints->min_uV, min_uV);
800                         constraints->min_uV = min_uV;
801                 }
802                 if (constraints->max_uV > max_uV) {
803                         pr_debug("%s: override '%s' %s, %d -> %d\n",
804                                        __func__, name, "max_uV",
805                                         constraints->max_uV, max_uV);
806                         constraints->max_uV = max_uV;
807                 }
808         }
809
810         return 0;
811 }
812
813 /**
814  * set_machine_constraints - sets regulator constraints
815  * @rdev: regulator source
816  * @constraints: constraints to apply
817  *
818  * Allows platform initialisation code to define and constrain
819  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
820  * Constraints *must* be set by platform code in order for some
821  * regulator operations to proceed i.e. set_voltage, set_current_limit,
822  * set_mode.
823  */
824 static int set_machine_constraints(struct regulator_dev *rdev,
825         struct regulation_constraints *constraints)
826 {
827         int ret = 0;
828         const char *name;
829         struct regulator_ops *ops = rdev->desc->ops;
830
831         rdev->constraints = constraints;
832
833         name = rdev_get_name(rdev);
834
835         ret = machine_constraints_voltage(rdev, constraints);
836         if (ret != 0)
837                 goto out;
838
839         /* do we need to setup our suspend state */
840         if (constraints->initial_state) {
841                 ret = suspend_prepare(rdev, constraints->initial_state);
842                 if (ret < 0) {
843                         printk(KERN_ERR "%s: failed to set suspend state for %s\n",
844                                __func__, name);
845                         rdev->constraints = NULL;
846                         goto out;
847                 }
848         }
849
850         if (constraints->initial_mode) {
851                 if (!ops->set_mode) {
852                         printk(KERN_ERR "%s: no set_mode operation for %s\n",
853                                __func__, name);
854                         ret = -EINVAL;
855                         goto out;
856                 }
857
858                 ret = ops->set_mode(rdev, constraints->initial_mode);
859                 if (ret < 0) {
860                         printk(KERN_ERR
861                                "%s: failed to set initial mode for %s: %d\n",
862                                __func__, name, ret);
863                         goto out;
864                 }
865         }
866
867         /* If the constraints say the regulator should be on at this point
868          * and we have control then make sure it is enabled.
869          */
870         if ((constraints->always_on || constraints->boot_on) && ops->enable) {
871                 ret = ops->enable(rdev);
872                 if (ret < 0) {
873                         printk(KERN_ERR "%s: failed to enable %s\n",
874                                __func__, name);
875                         rdev->constraints = NULL;
876                         goto out;
877                 }
878         }
879
880         print_constraints(rdev);
881 out:
882         return ret;
883 }
884
885 /**
886  * set_supply - set regulator supply regulator
887  * @rdev: regulator name
888  * @supply_rdev: supply regulator name
889  *
890  * Called by platform initialisation code to set the supply regulator for this
891  * regulator. This ensures that a regulators supply will also be enabled by the
892  * core if it's child is enabled.
893  */
894 static int set_supply(struct regulator_dev *rdev,
895         struct regulator_dev *supply_rdev)
896 {
897         int err;
898
899         err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
900                                 "supply");
901         if (err) {
902                 printk(KERN_ERR
903                        "%s: could not add device link %s err %d\n",
904                        __func__, supply_rdev->dev.kobj.name, err);
905                        goto out;
906         }
907         rdev->supply = supply_rdev;
908         list_add(&rdev->slist, &supply_rdev->supply_list);
909 out:
910         return err;
911 }
912
913 /**
914  * set_consumer_device_supply: Bind a regulator to a symbolic supply
915  * @rdev:         regulator source
916  * @consumer_dev: device the supply applies to
917  * @consumer_dev_name: dev_name() string for device supply applies to
918  * @supply:       symbolic name for supply
919  *
920  * Allows platform initialisation code to map physical regulator
921  * sources to symbolic names for supplies for use by devices.  Devices
922  * should use these symbolic names to request regulators, avoiding the
923  * need to provide board-specific regulator names as platform data.
924  *
925  * Only one of consumer_dev and consumer_dev_name may be specified.
926  */
927 static int set_consumer_device_supply(struct regulator_dev *rdev,
928         struct device *consumer_dev, const char *consumer_dev_name,
929         const char *supply)
930 {
931         struct regulator_map *node;
932         int has_dev;
933
934         if (consumer_dev && consumer_dev_name)
935                 return -EINVAL;
936
937         if (!consumer_dev_name && consumer_dev)
938                 consumer_dev_name = dev_name(consumer_dev);
939
940         if (supply == NULL)
941                 return -EINVAL;
942
943         if (consumer_dev_name != NULL)
944                 has_dev = 1;
945         else
946                 has_dev = 0;
947
948         list_for_each_entry(node, &regulator_map_list, list) {
949                 if (node->dev_name && consumer_dev_name) {
950                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
951                                 continue;
952                 } else if (node->dev_name || consumer_dev_name) {
953                         continue;
954                 }
955
956                 if (strcmp(node->supply, supply) != 0)
957                         continue;
958
959                 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
960                                 dev_name(&node->regulator->dev),
961                                 node->regulator->desc->name,
962                                 supply,
963                                 dev_name(&rdev->dev), rdev_get_name(rdev));
964                 return -EBUSY;
965         }
966
967         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
968         if (node == NULL)
969                 return -ENOMEM;
970
971         node->regulator = rdev;
972         node->supply = supply;
973
974         if (has_dev) {
975                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
976                 if (node->dev_name == NULL) {
977                         kfree(node);
978                         return -ENOMEM;
979                 }
980         }
981
982         list_add(&node->list, &regulator_map_list);
983         return 0;
984 }
985
986 static void unset_regulator_supplies(struct regulator_dev *rdev)
987 {
988         struct regulator_map *node, *n;
989
990         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
991                 if (rdev == node->regulator) {
992                         list_del(&node->list);
993                         kfree(node->dev_name);
994                         kfree(node);
995                 }
996         }
997 }
998
999 #define REG_STR_SIZE    32
1000
1001 static struct regulator *create_regulator(struct regulator_dev *rdev,
1002                                           struct device *dev,
1003                                           const char *supply_name)
1004 {
1005         struct regulator *regulator;
1006         char buf[REG_STR_SIZE];
1007         int err, size;
1008
1009         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1010         if (regulator == NULL)
1011                 return NULL;
1012
1013         mutex_lock(&rdev->mutex);
1014         regulator->rdev = rdev;
1015         list_add(&regulator->list, &rdev->consumer_list);
1016
1017         if (dev) {
1018                 /* create a 'requested_microamps_name' sysfs entry */
1019                 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1020                         supply_name);
1021                 if (size >= REG_STR_SIZE)
1022                         goto overflow_err;
1023
1024                 regulator->dev = dev;
1025                 sysfs_attr_init(&regulator->dev_attr.attr);
1026                 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1027                 if (regulator->dev_attr.attr.name == NULL)
1028                         goto attr_name_err;
1029
1030                 regulator->dev_attr.attr.mode = 0444;
1031                 regulator->dev_attr.show = device_requested_uA_show;
1032                 err = device_create_file(dev, &regulator->dev_attr);
1033                 if (err < 0) {
1034                         printk(KERN_WARNING "%s: could not add regulator_dev"
1035                                 " load sysfs\n", __func__);
1036                         goto attr_name_err;
1037                 }
1038
1039                 /* also add a link to the device sysfs entry */
1040                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1041                                  dev->kobj.name, supply_name);
1042                 if (size >= REG_STR_SIZE)
1043                         goto attr_err;
1044
1045                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1046                 if (regulator->supply_name == NULL)
1047                         goto attr_err;
1048
1049                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1050                                         buf);
1051                 if (err) {
1052                         printk(KERN_WARNING
1053                                "%s: could not add device link %s err %d\n",
1054                                __func__, dev->kobj.name, err);
1055                         device_remove_file(dev, &regulator->dev_attr);
1056                         goto link_name_err;
1057                 }
1058         }
1059         mutex_unlock(&rdev->mutex);
1060         return regulator;
1061 link_name_err:
1062         kfree(regulator->supply_name);
1063 attr_err:
1064         device_remove_file(regulator->dev, &regulator->dev_attr);
1065 attr_name_err:
1066         kfree(regulator->dev_attr.attr.name);
1067 overflow_err:
1068         list_del(&regulator->list);
1069         kfree(regulator);
1070         mutex_unlock(&rdev->mutex);
1071         return NULL;
1072 }
1073
1074 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1075 {
1076         if (!rdev->desc->ops->enable_time)
1077                 return 0;
1078         return rdev->desc->ops->enable_time(rdev);
1079 }
1080
1081 /* Internal regulator request function */
1082 static struct regulator *_regulator_get(struct device *dev, const char *id,
1083                                         int exclusive)
1084 {
1085         struct regulator_dev *rdev;
1086         struct regulator_map *map;
1087         struct regulator *regulator = ERR_PTR(-ENODEV);
1088         const char *devname = NULL;
1089         int ret;
1090
1091         if (id == NULL) {
1092                 printk(KERN_ERR "regulator: get() with no identifier\n");
1093                 return regulator;
1094         }
1095
1096         if (dev)
1097                 devname = dev_name(dev);
1098
1099         mutex_lock(&regulator_list_mutex);
1100
1101         list_for_each_entry(map, &regulator_map_list, list) {
1102                 /* If the mapping has a device set up it must match */
1103                 if (map->dev_name &&
1104                     (!devname || strcmp(map->dev_name, devname)))
1105                         continue;
1106
1107                 if (strcmp(map->supply, id) == 0) {
1108                         rdev = map->regulator;
1109                         goto found;
1110                 }
1111         }
1112
1113         if (board_wants_dummy_regulator) {
1114                 rdev = dummy_regulator_rdev;
1115                 goto found;
1116         }
1117
1118 #ifdef CONFIG_REGULATOR_DUMMY
1119         if (!devname)
1120                 devname = "deviceless";
1121
1122         /* If the board didn't flag that it was fully constrained then
1123          * substitute in a dummy regulator so consumers can continue.
1124          */
1125         if (!has_full_constraints) {
1126                 pr_warning("%s supply %s not found, using dummy regulator\n",
1127                            devname, id);
1128                 rdev = dummy_regulator_rdev;
1129                 goto found;
1130         }
1131 #endif
1132
1133         mutex_unlock(&regulator_list_mutex);
1134         return regulator;
1135
1136 found:
1137         if (rdev->exclusive) {
1138                 regulator = ERR_PTR(-EPERM);
1139                 goto out;
1140         }
1141
1142         if (exclusive && rdev->open_count) {
1143                 regulator = ERR_PTR(-EBUSY);
1144                 goto out;
1145         }
1146
1147         if (!try_module_get(rdev->owner))
1148                 goto out;
1149
1150         regulator = create_regulator(rdev, dev, id);
1151         if (regulator == NULL) {
1152                 regulator = ERR_PTR(-ENOMEM);
1153                 module_put(rdev->owner);
1154         }
1155
1156         rdev->open_count++;
1157         if (exclusive) {
1158                 rdev->exclusive = 1;
1159
1160                 ret = _regulator_is_enabled(rdev);
1161                 if (ret > 0)
1162                         rdev->use_count = 1;
1163                 else
1164                         rdev->use_count = 0;
1165         }
1166
1167 out:
1168         mutex_unlock(&regulator_list_mutex);
1169
1170         return regulator;
1171 }
1172
1173 /**
1174  * regulator_get - lookup and obtain a reference to a regulator.
1175  * @dev: device for regulator "consumer"
1176  * @id: Supply name or regulator ID.
1177  *
1178  * Returns a struct regulator corresponding to the regulator producer,
1179  * or IS_ERR() condition containing errno.
1180  *
1181  * Use of supply names configured via regulator_set_device_supply() is
1182  * strongly encouraged.  It is recommended that the supply name used
1183  * should match the name used for the supply and/or the relevant
1184  * device pins in the datasheet.
1185  */
1186 struct regulator *regulator_get(struct device *dev, const char *id)
1187 {
1188         return _regulator_get(dev, id, 0);
1189 }
1190 EXPORT_SYMBOL_GPL(regulator_get);
1191
1192 /**
1193  * regulator_get_exclusive - obtain exclusive access to a regulator.
1194  * @dev: device for regulator "consumer"
1195  * @id: Supply name or regulator ID.
1196  *
1197  * Returns a struct regulator corresponding to the regulator producer,
1198  * or IS_ERR() condition containing errno.  Other consumers will be
1199  * unable to obtain this reference is held and the use count for the
1200  * regulator will be initialised to reflect the current state of the
1201  * regulator.
1202  *
1203  * This is intended for use by consumers which cannot tolerate shared
1204  * use of the regulator such as those which need to force the
1205  * regulator off for correct operation of the hardware they are
1206  * controlling.
1207  *
1208  * Use of supply names configured via regulator_set_device_supply() is
1209  * strongly encouraged.  It is recommended that the supply name used
1210  * should match the name used for the supply and/or the relevant
1211  * device pins in the datasheet.
1212  */
1213 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1214 {
1215         return _regulator_get(dev, id, 1);
1216 }
1217 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1218
1219 /**
1220  * regulator_put - "free" the regulator source
1221  * @regulator: regulator source
1222  *
1223  * Note: drivers must ensure that all regulator_enable calls made on this
1224  * regulator source are balanced by regulator_disable calls prior to calling
1225  * this function.
1226  */
1227 void regulator_put(struct regulator *regulator)
1228 {
1229         struct regulator_dev *rdev;
1230
1231         if (regulator == NULL || IS_ERR(regulator))
1232                 return;
1233
1234         mutex_lock(&regulator_list_mutex);
1235         rdev = regulator->rdev;
1236
1237         /* remove any sysfs entries */
1238         if (regulator->dev) {
1239                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1240                 kfree(regulator->supply_name);
1241                 device_remove_file(regulator->dev, &regulator->dev_attr);
1242                 kfree(regulator->dev_attr.attr.name);
1243         }
1244         list_del(&regulator->list);
1245         kfree(regulator);
1246
1247         rdev->open_count--;
1248         rdev->exclusive = 0;
1249
1250         module_put(rdev->owner);
1251         mutex_unlock(&regulator_list_mutex);
1252 }
1253 EXPORT_SYMBOL_GPL(regulator_put);
1254
1255 static int _regulator_can_change_status(struct regulator_dev *rdev)
1256 {
1257         if (!rdev->constraints)
1258                 return 0;
1259
1260         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1261                 return 1;
1262         else
1263                 return 0;
1264 }
1265
1266 /* locks held by regulator_enable() */
1267 static int _regulator_enable(struct regulator_dev *rdev)
1268 {
1269         int ret, delay;
1270
1271         /* do we need to enable the supply regulator first */
1272         if (rdev->supply) {
1273                 ret = _regulator_enable(rdev->supply);
1274                 if (ret < 0) {
1275                         printk(KERN_ERR "%s: failed to enable %s: %d\n",
1276                                __func__, rdev_get_name(rdev), ret);
1277                         return ret;
1278                 }
1279         }
1280
1281         /* check voltage and requested load before enabling */
1282         if (rdev->constraints &&
1283             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1284                 drms_uA_update(rdev);
1285
1286         if (rdev->use_count == 0) {
1287                 /* The regulator may on if it's not switchable or left on */
1288                 ret = _regulator_is_enabled(rdev);
1289                 if (ret == -EINVAL || ret == 0) {
1290                         if (!_regulator_can_change_status(rdev))
1291                                 return -EPERM;
1292
1293                         if (!rdev->desc->ops->enable)
1294                                 return -EINVAL;
1295
1296                         /* Query before enabling in case configuration
1297                          * dependant.  */
1298                         ret = _regulator_get_enable_time(rdev);
1299                         if (ret >= 0) {
1300                                 delay = ret;
1301                         } else {
1302                                 printk(KERN_WARNING
1303                                         "%s: enable_time() failed for %s: %d\n",
1304                                         __func__, rdev_get_name(rdev),
1305                                         ret);
1306                                 delay = 0;
1307                         }
1308
1309                         /* Allow the regulator to ramp; it would be useful
1310                          * to extend this for bulk operations so that the
1311                          * regulators can ramp together.  */
1312                         ret = rdev->desc->ops->enable(rdev);
1313                         if (ret < 0)
1314                                 return ret;
1315
1316                         if (delay >= 1000)
1317                                 mdelay(delay / 1000);
1318                         else if (delay)
1319                                 udelay(delay);
1320
1321                 } else if (ret < 0) {
1322                         printk(KERN_ERR "%s: is_enabled() failed for %s: %d\n",
1323                                __func__, rdev_get_name(rdev), ret);
1324                         return ret;
1325                 }
1326                 /* Fallthrough on positive return values - already enabled */
1327         }
1328
1329         rdev->use_count++;
1330
1331         return 0;
1332 }
1333
1334 /**
1335  * regulator_enable - enable regulator output
1336  * @regulator: regulator source
1337  *
1338  * Request that the regulator be enabled with the regulator output at
1339  * the predefined voltage or current value.  Calls to regulator_enable()
1340  * must be balanced with calls to regulator_disable().
1341  *
1342  * NOTE: the output value can be set by other drivers, boot loader or may be
1343  * hardwired in the regulator.
1344  */
1345 int regulator_enable(struct regulator *regulator)
1346 {
1347         struct regulator_dev *rdev = regulator->rdev;
1348         int ret = 0;
1349
1350         mutex_lock(&rdev->mutex);
1351         ret = _regulator_enable(rdev);
1352         mutex_unlock(&rdev->mutex);
1353         return ret;
1354 }
1355 EXPORT_SYMBOL_GPL(regulator_enable);
1356
1357 /* locks held by regulator_disable() */
1358 static int _regulator_disable(struct regulator_dev *rdev,
1359                 struct regulator_dev **supply_rdev_ptr)
1360 {
1361         int ret = 0;
1362         *supply_rdev_ptr = NULL;
1363
1364         if (WARN(rdev->use_count <= 0,
1365                         "unbalanced disables for %s\n",
1366                         rdev_get_name(rdev)))
1367                 return -EIO;
1368
1369         /* are we the last user and permitted to disable ? */
1370         if (rdev->use_count == 1 &&
1371             (rdev->constraints && !rdev->constraints->always_on)) {
1372
1373                 /* we are last user */
1374                 if (_regulator_can_change_status(rdev) &&
1375                     rdev->desc->ops->disable) {
1376                         ret = rdev->desc->ops->disable(rdev);
1377                         if (ret < 0) {
1378                                 printk(KERN_ERR "%s: failed to disable %s\n",
1379                                        __func__, rdev_get_name(rdev));
1380                                 return ret;
1381                         }
1382
1383                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1384                                              NULL);
1385                 }
1386
1387                 /* decrease our supplies ref count and disable if required */
1388                 *supply_rdev_ptr = rdev->supply;
1389
1390                 rdev->use_count = 0;
1391         } else if (rdev->use_count > 1) {
1392
1393                 if (rdev->constraints &&
1394                         (rdev->constraints->valid_ops_mask &
1395                         REGULATOR_CHANGE_DRMS))
1396                         drms_uA_update(rdev);
1397
1398                 rdev->use_count--;
1399         }
1400         return ret;
1401 }
1402
1403 /**
1404  * regulator_disable - disable regulator output
1405  * @regulator: regulator source
1406  *
1407  * Disable the regulator output voltage or current.  Calls to
1408  * regulator_enable() must be balanced with calls to
1409  * regulator_disable().
1410  *
1411  * NOTE: this will only disable the regulator output if no other consumer
1412  * devices have it enabled, the regulator device supports disabling and
1413  * machine constraints permit this operation.
1414  */
1415 int regulator_disable(struct regulator *regulator)
1416 {
1417         struct regulator_dev *rdev = regulator->rdev;
1418         struct regulator_dev *supply_rdev = NULL;
1419         int ret = 0;
1420
1421         mutex_lock(&rdev->mutex);
1422         ret = _regulator_disable(rdev, &supply_rdev);
1423         mutex_unlock(&rdev->mutex);
1424
1425         /* decrease our supplies ref count and disable if required */
1426         while (supply_rdev != NULL) {
1427                 rdev = supply_rdev;
1428
1429                 mutex_lock(&rdev->mutex);
1430                 _regulator_disable(rdev, &supply_rdev);
1431                 mutex_unlock(&rdev->mutex);
1432         }
1433
1434         return ret;
1435 }
1436 EXPORT_SYMBOL_GPL(regulator_disable);
1437
1438 /* locks held by regulator_force_disable() */
1439 static int _regulator_force_disable(struct regulator_dev *rdev,
1440                 struct regulator_dev **supply_rdev_ptr)
1441 {
1442         int ret = 0;
1443
1444         /* force disable */
1445         if (rdev->desc->ops->disable) {
1446                 /* ah well, who wants to live forever... */
1447                 ret = rdev->desc->ops->disable(rdev);
1448                 if (ret < 0) {
1449                         printk(KERN_ERR "%s: failed to force disable %s\n",
1450                                __func__, rdev_get_name(rdev));
1451                         return ret;
1452                 }
1453                 /* notify other consumers that power has been forced off */
1454                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1455                         REGULATOR_EVENT_DISABLE, NULL);
1456         }
1457
1458         /* decrease our supplies ref count and disable if required */
1459         *supply_rdev_ptr = rdev->supply;
1460
1461         rdev->use_count = 0;
1462         return ret;
1463 }
1464
1465 /**
1466  * regulator_force_disable - force disable regulator output
1467  * @regulator: regulator source
1468  *
1469  * Forcibly disable the regulator output voltage or current.
1470  * NOTE: this *will* disable the regulator output even if other consumer
1471  * devices have it enabled. This should be used for situations when device
1472  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1473  */
1474 int regulator_force_disable(struct regulator *regulator)
1475 {
1476         struct regulator_dev *supply_rdev = NULL;
1477         int ret;
1478
1479         mutex_lock(&regulator->rdev->mutex);
1480         regulator->uA_load = 0;
1481         ret = _regulator_force_disable(regulator->rdev, &supply_rdev);
1482         mutex_unlock(&regulator->rdev->mutex);
1483
1484         if (supply_rdev)
1485                 regulator_disable(get_device_regulator(rdev_get_dev(supply_rdev)));
1486
1487         return ret;
1488 }
1489 EXPORT_SYMBOL_GPL(regulator_force_disable);
1490
1491 static int _regulator_is_enabled(struct regulator_dev *rdev)
1492 {
1493         /* If we don't know then assume that the regulator is always on */
1494         if (!rdev->desc->ops->is_enabled)
1495                 return 1;
1496
1497         return rdev->desc->ops->is_enabled(rdev);
1498 }
1499
1500 /**
1501  * regulator_is_enabled - is the regulator output enabled
1502  * @regulator: regulator source
1503  *
1504  * Returns positive if the regulator driver backing the source/client
1505  * has requested that the device be enabled, zero if it hasn't, else a
1506  * negative errno code.
1507  *
1508  * Note that the device backing this regulator handle can have multiple
1509  * users, so it might be enabled even if regulator_enable() was never
1510  * called for this particular source.
1511  */
1512 int regulator_is_enabled(struct regulator *regulator)
1513 {
1514         int ret;
1515
1516         mutex_lock(&regulator->rdev->mutex);
1517         ret = _regulator_is_enabled(regulator->rdev);
1518         mutex_unlock(&regulator->rdev->mutex);
1519
1520         return ret;
1521 }
1522 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1523
1524 /**
1525  * regulator_count_voltages - count regulator_list_voltage() selectors
1526  * @regulator: regulator source
1527  *
1528  * Returns number of selectors, or negative errno.  Selectors are
1529  * numbered starting at zero, and typically correspond to bitfields
1530  * in hardware registers.
1531  */
1532 int regulator_count_voltages(struct regulator *regulator)
1533 {
1534         struct regulator_dev    *rdev = regulator->rdev;
1535
1536         return rdev->desc->n_voltages ? : -EINVAL;
1537 }
1538 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1539
1540 /**
1541  * regulator_list_voltage - enumerate supported voltages
1542  * @regulator: regulator source
1543  * @selector: identify voltage to list
1544  * Context: can sleep
1545  *
1546  * Returns a voltage that can be passed to @regulator_set_voltage(),
1547  * zero if this selector code can't be used on this system, or a
1548  * negative errno.
1549  */
1550 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1551 {
1552         struct regulator_dev    *rdev = regulator->rdev;
1553         struct regulator_ops    *ops = rdev->desc->ops;
1554         int                     ret;
1555
1556         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1557                 return -EINVAL;
1558
1559         mutex_lock(&rdev->mutex);
1560         ret = ops->list_voltage(rdev, selector);
1561         mutex_unlock(&rdev->mutex);
1562
1563         if (ret > 0) {
1564                 if (ret < rdev->constraints->min_uV)
1565                         ret = 0;
1566                 else if (ret > rdev->constraints->max_uV)
1567                         ret = 0;
1568         }
1569
1570         return ret;
1571 }
1572 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1573
1574 /**
1575  * regulator_is_supported_voltage - check if a voltage range can be supported
1576  *
1577  * @regulator: Regulator to check.
1578  * @min_uV: Minimum required voltage in uV.
1579  * @max_uV: Maximum required voltage in uV.
1580  *
1581  * Returns a boolean or a negative error code.
1582  */
1583 int regulator_is_supported_voltage(struct regulator *regulator,
1584                                    int min_uV, int max_uV)
1585 {
1586         int i, voltages, ret;
1587
1588         ret = regulator_count_voltages(regulator);
1589         if (ret < 0)
1590                 return ret;
1591         voltages = ret;
1592
1593         for (i = 0; i < voltages; i++) {
1594                 ret = regulator_list_voltage(regulator, i);
1595
1596                 if (ret >= min_uV && ret <= max_uV)
1597                         return 1;
1598         }
1599
1600         return 0;
1601 }
1602
1603 /**
1604  * regulator_set_voltage - set regulator output voltage
1605  * @regulator: regulator source
1606  * @min_uV: Minimum required voltage in uV
1607  * @max_uV: Maximum acceptable voltage in uV
1608  *
1609  * Sets a voltage regulator to the desired output voltage. This can be set
1610  * during any regulator state. IOW, regulator can be disabled or enabled.
1611  *
1612  * If the regulator is enabled then the voltage will change to the new value
1613  * immediately otherwise if the regulator is disabled the regulator will
1614  * output at the new voltage when enabled.
1615  *
1616  * NOTE: If the regulator is shared between several devices then the lowest
1617  * request voltage that meets the system constraints will be used.
1618  * Regulator system constraints must be set for this regulator before
1619  * calling this function otherwise this call will fail.
1620  */
1621 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1622 {
1623         struct regulator_dev *rdev = regulator->rdev;
1624         int ret;
1625
1626         mutex_lock(&rdev->mutex);
1627
1628         /* sanity check */
1629         if (!rdev->desc->ops->set_voltage) {
1630                 ret = -EINVAL;
1631                 goto out;
1632         }
1633
1634         /* constraints check */
1635         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1636         if (ret < 0)
1637                 goto out;
1638         regulator->min_uV = min_uV;
1639         regulator->max_uV = max_uV;
1640         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1641
1642 out:
1643         _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1644         mutex_unlock(&rdev->mutex);
1645         return ret;
1646 }
1647 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1648
1649 static int _regulator_get_voltage(struct regulator_dev *rdev)
1650 {
1651         /* sanity check */
1652         if (rdev->desc->ops->get_voltage)
1653                 return rdev->desc->ops->get_voltage(rdev);
1654         else
1655                 return -EINVAL;
1656 }
1657
1658 /**
1659  * regulator_get_voltage - get regulator output voltage
1660  * @regulator: regulator source
1661  *
1662  * This returns the current regulator voltage in uV.
1663  *
1664  * NOTE: If the regulator is disabled it will return the voltage value. This
1665  * function should not be used to determine regulator state.
1666  */
1667 int regulator_get_voltage(struct regulator *regulator)
1668 {
1669         int ret;
1670
1671         mutex_lock(&regulator->rdev->mutex);
1672
1673         ret = _regulator_get_voltage(regulator->rdev);
1674
1675         mutex_unlock(&regulator->rdev->mutex);
1676
1677         return ret;
1678 }
1679 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1680
1681 /**
1682  * regulator_set_current_limit - set regulator output current limit
1683  * @regulator: regulator source
1684  * @min_uA: Minimuum supported current in uA
1685  * @max_uA: Maximum supported current in uA
1686  *
1687  * Sets current sink to the desired output current. This can be set during
1688  * any regulator state. IOW, regulator can be disabled or enabled.
1689  *
1690  * If the regulator is enabled then the current will change to the new value
1691  * immediately otherwise if the regulator is disabled the regulator will
1692  * output at the new current when enabled.
1693  *
1694  * NOTE: Regulator system constraints must be set for this regulator before
1695  * calling this function otherwise this call will fail.
1696  */
1697 int regulator_set_current_limit(struct regulator *regulator,
1698                                int min_uA, int max_uA)
1699 {
1700         struct regulator_dev *rdev = regulator->rdev;
1701         int ret;
1702
1703         mutex_lock(&rdev->mutex);
1704
1705         /* sanity check */
1706         if (!rdev->desc->ops->set_current_limit) {
1707                 ret = -EINVAL;
1708                 goto out;
1709         }
1710
1711         /* constraints check */
1712         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1713         if (ret < 0)
1714                 goto out;
1715
1716         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1717 out:
1718         mutex_unlock(&rdev->mutex);
1719         return ret;
1720 }
1721 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1722
1723 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1724 {
1725         int ret;
1726
1727         mutex_lock(&rdev->mutex);
1728
1729         /* sanity check */
1730         if (!rdev->desc->ops->get_current_limit) {
1731                 ret = -EINVAL;
1732                 goto out;
1733         }
1734
1735         ret = rdev->desc->ops->get_current_limit(rdev);
1736 out:
1737         mutex_unlock(&rdev->mutex);
1738         return ret;
1739 }
1740
1741 /**
1742  * regulator_get_current_limit - get regulator output current
1743  * @regulator: regulator source
1744  *
1745  * This returns the current supplied by the specified current sink in uA.
1746  *
1747  * NOTE: If the regulator is disabled it will return the current value. This
1748  * function should not be used to determine regulator state.
1749  */
1750 int regulator_get_current_limit(struct regulator *regulator)
1751 {
1752         return _regulator_get_current_limit(regulator->rdev);
1753 }
1754 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1755
1756 /**
1757  * regulator_set_mode - set regulator operating mode
1758  * @regulator: regulator source
1759  * @mode: operating mode - one of the REGULATOR_MODE constants
1760  *
1761  * Set regulator operating mode to increase regulator efficiency or improve
1762  * regulation performance.
1763  *
1764  * NOTE: Regulator system constraints must be set for this regulator before
1765  * calling this function otherwise this call will fail.
1766  */
1767 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1768 {
1769         struct regulator_dev *rdev = regulator->rdev;
1770         int ret;
1771         int regulator_curr_mode;
1772
1773         mutex_lock(&rdev->mutex);
1774
1775         /* sanity check */
1776         if (!rdev->desc->ops->set_mode) {
1777                 ret = -EINVAL;
1778                 goto out;
1779         }
1780
1781         /* return if the same mode is requested */
1782         if (rdev->desc->ops->get_mode) {
1783                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
1784                 if (regulator_curr_mode == mode) {
1785                         ret = 0;
1786                         goto out;
1787                 }
1788         }
1789
1790         /* constraints check */
1791         ret = regulator_check_mode(rdev, mode);
1792         if (ret < 0)
1793                 goto out;
1794
1795         ret = rdev->desc->ops->set_mode(rdev, mode);
1796 out:
1797         mutex_unlock(&rdev->mutex);
1798         return ret;
1799 }
1800 EXPORT_SYMBOL_GPL(regulator_set_mode);
1801
1802 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1803 {
1804         int ret;
1805
1806         mutex_lock(&rdev->mutex);
1807
1808         /* sanity check */
1809         if (!rdev->desc->ops->get_mode) {
1810                 ret = -EINVAL;
1811                 goto out;
1812         }
1813
1814         ret = rdev->desc->ops->get_mode(rdev);
1815 out:
1816         mutex_unlock(&rdev->mutex);
1817         return ret;
1818 }
1819
1820 /**
1821  * regulator_get_mode - get regulator operating mode
1822  * @regulator: regulator source
1823  *
1824  * Get the current regulator operating mode.
1825  */
1826 unsigned int regulator_get_mode(struct regulator *regulator)
1827 {
1828         return _regulator_get_mode(regulator->rdev);
1829 }
1830 EXPORT_SYMBOL_GPL(regulator_get_mode);
1831
1832 /**
1833  * regulator_set_optimum_mode - set regulator optimum operating mode
1834  * @regulator: regulator source
1835  * @uA_load: load current
1836  *
1837  * Notifies the regulator core of a new device load. This is then used by
1838  * DRMS (if enabled by constraints) to set the most efficient regulator
1839  * operating mode for the new regulator loading.
1840  *
1841  * Consumer devices notify their supply regulator of the maximum power
1842  * they will require (can be taken from device datasheet in the power
1843  * consumption tables) when they change operational status and hence power
1844  * state. Examples of operational state changes that can affect power
1845  * consumption are :-
1846  *
1847  *    o Device is opened / closed.
1848  *    o Device I/O is about to begin or has just finished.
1849  *    o Device is idling in between work.
1850  *
1851  * This information is also exported via sysfs to userspace.
1852  *
1853  * DRMS will sum the total requested load on the regulator and change
1854  * to the most efficient operating mode if platform constraints allow.
1855  *
1856  * Returns the new regulator mode or error.
1857  */
1858 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1859 {
1860         struct regulator_dev *rdev = regulator->rdev;
1861         struct regulator *consumer;
1862         int ret, output_uV, input_uV, total_uA_load = 0;
1863         unsigned int mode;
1864
1865         mutex_lock(&rdev->mutex);
1866
1867         regulator->uA_load = uA_load;
1868         ret = regulator_check_drms(rdev);
1869         if (ret < 0)
1870                 goto out;
1871         ret = -EINVAL;
1872
1873         /* sanity check */
1874         if (!rdev->desc->ops->get_optimum_mode)
1875                 goto out;
1876
1877         /* get output voltage */
1878         output_uV = rdev->desc->ops->get_voltage(rdev);
1879         if (output_uV <= 0) {
1880                 printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1881                         __func__, rdev_get_name(rdev));
1882                 goto out;
1883         }
1884
1885         /* get input voltage */
1886         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1887                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1888         else
1889                 input_uV = rdev->constraints->input_uV;
1890         if (input_uV <= 0) {
1891                 printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1892                         __func__, rdev_get_name(rdev));
1893                 goto out;
1894         }
1895
1896         /* calc total requested load for this regulator */
1897         list_for_each_entry(consumer, &rdev->consumer_list, list)
1898                 total_uA_load += consumer->uA_load;
1899
1900         mode = rdev->desc->ops->get_optimum_mode(rdev,
1901                                                  input_uV, output_uV,
1902                                                  total_uA_load);
1903         ret = regulator_check_mode(rdev, mode);
1904         if (ret < 0) {
1905                 printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1906                         " %d uA %d -> %d uV\n", __func__, rdev_get_name(rdev),
1907                         total_uA_load, input_uV, output_uV);
1908                 goto out;
1909         }
1910
1911         ret = rdev->desc->ops->set_mode(rdev, mode);
1912         if (ret < 0) {
1913                 printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1914                         __func__, mode, rdev_get_name(rdev));
1915                 goto out;
1916         }
1917         ret = mode;
1918 out:
1919         mutex_unlock(&rdev->mutex);
1920         return ret;
1921 }
1922 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1923
1924 /**
1925  * regulator_register_notifier - register regulator event notifier
1926  * @regulator: regulator source
1927  * @nb: notifier block
1928  *
1929  * Register notifier block to receive regulator events.
1930  */
1931 int regulator_register_notifier(struct regulator *regulator,
1932                               struct notifier_block *nb)
1933 {
1934         return blocking_notifier_chain_register(&regulator->rdev->notifier,
1935                                                 nb);
1936 }
1937 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1938
1939 /**
1940  * regulator_unregister_notifier - unregister regulator event notifier
1941  * @regulator: regulator source
1942  * @nb: notifier block
1943  *
1944  * Unregister regulator event notifier block.
1945  */
1946 int regulator_unregister_notifier(struct regulator *regulator,
1947                                 struct notifier_block *nb)
1948 {
1949         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1950                                                   nb);
1951 }
1952 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1953
1954 /* notify regulator consumers and downstream regulator consumers.
1955  * Note mutex must be held by caller.
1956  */
1957 static void _notifier_call_chain(struct regulator_dev *rdev,
1958                                   unsigned long event, void *data)
1959 {
1960         struct regulator_dev *_rdev;
1961
1962         /* call rdev chain first */
1963         blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1964
1965         /* now notify regulator we supply */
1966         list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1967                 mutex_lock(&_rdev->mutex);
1968                 _notifier_call_chain(_rdev, event, data);
1969                 mutex_unlock(&_rdev->mutex);
1970         }
1971 }
1972
1973 /**
1974  * regulator_bulk_get - get multiple regulator consumers
1975  *
1976  * @dev:           Device to supply
1977  * @num_consumers: Number of consumers to register
1978  * @consumers:     Configuration of consumers; clients are stored here.
1979  *
1980  * @return 0 on success, an errno on failure.
1981  *
1982  * This helper function allows drivers to get several regulator
1983  * consumers in one operation.  If any of the regulators cannot be
1984  * acquired then any regulators that were allocated will be freed
1985  * before returning to the caller.
1986  */
1987 int regulator_bulk_get(struct device *dev, int num_consumers,
1988                        struct regulator_bulk_data *consumers)
1989 {
1990         int i;
1991         int ret;
1992
1993         for (i = 0; i < num_consumers; i++)
1994                 consumers[i].consumer = NULL;
1995
1996         for (i = 0; i < num_consumers; i++) {
1997                 consumers[i].consumer = regulator_get(dev,
1998                                                       consumers[i].supply);
1999                 if (IS_ERR(consumers[i].consumer)) {
2000                         ret = PTR_ERR(consumers[i].consumer);
2001                         dev_err(dev, "Failed to get supply '%s': %d\n",
2002                                 consumers[i].supply, ret);
2003                         consumers[i].consumer = NULL;
2004                         goto err;
2005                 }
2006         }
2007
2008         return 0;
2009
2010 err:
2011         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2012                 regulator_put(consumers[i].consumer);
2013
2014         return ret;
2015 }
2016 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2017
2018 /**
2019  * regulator_bulk_enable - enable multiple regulator consumers
2020  *
2021  * @num_consumers: Number of consumers
2022  * @consumers:     Consumer data; clients are stored here.
2023  * @return         0 on success, an errno on failure
2024  *
2025  * This convenience API allows consumers to enable multiple regulator
2026  * clients in a single API call.  If any consumers cannot be enabled
2027  * then any others that were enabled will be disabled again prior to
2028  * return.
2029  */
2030 int regulator_bulk_enable(int num_consumers,
2031                           struct regulator_bulk_data *consumers)
2032 {
2033         int i;
2034         int ret;
2035
2036         for (i = 0; i < num_consumers; i++) {
2037                 ret = regulator_enable(consumers[i].consumer);
2038                 if (ret != 0)
2039                         goto err;
2040         }
2041
2042         return 0;
2043
2044 err:
2045         printk(KERN_ERR "Failed to enable %s: %d\n", consumers[i].supply, ret);
2046         for (--i; i >= 0; --i)
2047                 regulator_disable(consumers[i].consumer);
2048
2049         return ret;
2050 }
2051 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2052
2053 /**
2054  * regulator_bulk_disable - disable multiple regulator consumers
2055  *
2056  * @num_consumers: Number of consumers
2057  * @consumers:     Consumer data; clients are stored here.
2058  * @return         0 on success, an errno on failure
2059  *
2060  * This convenience API allows consumers to disable multiple regulator
2061  * clients in a single API call.  If any consumers cannot be enabled
2062  * then any others that were disabled will be disabled again prior to
2063  * return.
2064  */
2065 int regulator_bulk_disable(int num_consumers,
2066                            struct regulator_bulk_data *consumers)
2067 {
2068         int i;
2069         int ret;
2070
2071         for (i = 0; i < num_consumers; i++) {
2072                 ret = regulator_disable(consumers[i].consumer);
2073                 if (ret != 0)
2074                         goto err;
2075         }
2076
2077         return 0;
2078
2079 err:
2080         printk(KERN_ERR "Failed to disable %s: %d\n", consumers[i].supply,
2081                ret);
2082         for (--i; i >= 0; --i)
2083                 regulator_enable(consumers[i].consumer);
2084
2085         return ret;
2086 }
2087 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2088
2089 /**
2090  * regulator_bulk_free - free multiple regulator consumers
2091  *
2092  * @num_consumers: Number of consumers
2093  * @consumers:     Consumer data; clients are stored here.
2094  *
2095  * This convenience API allows consumers to free multiple regulator
2096  * clients in a single API call.
2097  */
2098 void regulator_bulk_free(int num_consumers,
2099                          struct regulator_bulk_data *consumers)
2100 {
2101         int i;
2102
2103         for (i = 0; i < num_consumers; i++) {
2104                 regulator_put(consumers[i].consumer);
2105                 consumers[i].consumer = NULL;
2106         }
2107 }
2108 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2109
2110 /**
2111  * regulator_notifier_call_chain - call regulator event notifier
2112  * @rdev: regulator source
2113  * @event: notifier block
2114  * @data: callback-specific data.
2115  *
2116  * Called by regulator drivers to notify clients a regulator event has
2117  * occurred. We also notify regulator clients downstream.
2118  * Note lock must be held by caller.
2119  */
2120 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2121                                   unsigned long event, void *data)
2122 {
2123         _notifier_call_chain(rdev, event, data);
2124         return NOTIFY_DONE;
2125
2126 }
2127 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2128
2129 /**
2130  * regulator_mode_to_status - convert a regulator mode into a status
2131  *
2132  * @mode: Mode to convert
2133  *
2134  * Convert a regulator mode into a status.
2135  */
2136 int regulator_mode_to_status(unsigned int mode)
2137 {
2138         switch (mode) {
2139         case REGULATOR_MODE_FAST:
2140                 return REGULATOR_STATUS_FAST;
2141         case REGULATOR_MODE_NORMAL:
2142                 return REGULATOR_STATUS_NORMAL;
2143         case REGULATOR_MODE_IDLE:
2144                 return REGULATOR_STATUS_IDLE;
2145         case REGULATOR_STATUS_STANDBY:
2146                 return REGULATOR_STATUS_STANDBY;
2147         default:
2148                 return 0;
2149         }
2150 }
2151 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2152
2153 /*
2154  * To avoid cluttering sysfs (and memory) with useless state, only
2155  * create attributes that can be meaningfully displayed.
2156  */
2157 static int add_regulator_attributes(struct regulator_dev *rdev)
2158 {
2159         struct device           *dev = &rdev->dev;
2160         struct regulator_ops    *ops = rdev->desc->ops;
2161         int                     status = 0;
2162
2163         /* some attributes need specific methods to be displayed */
2164         if (ops->get_voltage) {
2165                 status = device_create_file(dev, &dev_attr_microvolts);
2166                 if (status < 0)
2167                         return status;
2168         }
2169         if (ops->get_current_limit) {
2170                 status = device_create_file(dev, &dev_attr_microamps);
2171                 if (status < 0)
2172                         return status;
2173         }
2174         if (ops->get_mode) {
2175                 status = device_create_file(dev, &dev_attr_opmode);
2176                 if (status < 0)
2177                         return status;
2178         }
2179         if (ops->is_enabled) {
2180                 status = device_create_file(dev, &dev_attr_state);
2181                 if (status < 0)
2182                         return status;
2183         }
2184         if (ops->get_status) {
2185                 status = device_create_file(dev, &dev_attr_status);
2186                 if (status < 0)
2187                         return status;
2188         }
2189
2190         /* some attributes are type-specific */
2191         if (rdev->desc->type == REGULATOR_CURRENT) {
2192                 status = device_create_file(dev, &dev_attr_requested_microamps);
2193                 if (status < 0)
2194                         return status;
2195         }
2196
2197         /* all the other attributes exist to support constraints;
2198          * don't show them if there are no constraints, or if the
2199          * relevant supporting methods are missing.
2200          */
2201         if (!rdev->constraints)
2202                 return status;
2203
2204         /* constraints need specific supporting methods */
2205         if (ops->set_voltage) {
2206                 status = device_create_file(dev, &dev_attr_min_microvolts);
2207                 if (status < 0)
2208                         return status;
2209                 status = device_create_file(dev, &dev_attr_max_microvolts);
2210                 if (status < 0)
2211                         return status;
2212         }
2213         if (ops->set_current_limit) {
2214                 status = device_create_file(dev, &dev_attr_min_microamps);
2215                 if (status < 0)
2216                         return status;
2217                 status = device_create_file(dev, &dev_attr_max_microamps);
2218                 if (status < 0)
2219                         return status;
2220         }
2221
2222         /* suspend mode constraints need multiple supporting methods */
2223         if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2224                 return status;
2225
2226         status = device_create_file(dev, &dev_attr_suspend_standby_state);
2227         if (status < 0)
2228                 return status;
2229         status = device_create_file(dev, &dev_attr_suspend_mem_state);
2230         if (status < 0)
2231                 return status;
2232         status = device_create_file(dev, &dev_attr_suspend_disk_state);
2233         if (status < 0)
2234                 return status;
2235
2236         if (ops->set_suspend_voltage) {
2237                 status = device_create_file(dev,
2238                                 &dev_attr_suspend_standby_microvolts);
2239                 if (status < 0)
2240                         return status;
2241                 status = device_create_file(dev,
2242                                 &dev_attr_suspend_mem_microvolts);
2243                 if (status < 0)
2244                         return status;
2245                 status = device_create_file(dev,
2246                                 &dev_attr_suspend_disk_microvolts);
2247                 if (status < 0)
2248                         return status;
2249         }
2250
2251         if (ops->set_suspend_mode) {
2252                 status = device_create_file(dev,
2253                                 &dev_attr_suspend_standby_mode);
2254                 if (status < 0)
2255                         return status;
2256                 status = device_create_file(dev,
2257                                 &dev_attr_suspend_mem_mode);
2258                 if (status < 0)
2259                         return status;
2260                 status = device_create_file(dev,
2261                                 &dev_attr_suspend_disk_mode);
2262                 if (status < 0)
2263                         return status;
2264         }
2265
2266         return status;
2267 }
2268
2269 /**
2270  * regulator_register - register regulator
2271  * @regulator_desc: regulator to register
2272  * @dev: struct device for the regulator
2273  * @init_data: platform provided init data, passed through by driver
2274  * @driver_data: private regulator data
2275  *
2276  * Called by regulator drivers to register a regulator.
2277  * Returns 0 on success.
2278  */
2279 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2280         struct device *dev, struct regulator_init_data *init_data,
2281         void *driver_data)
2282 {
2283         static atomic_t regulator_no = ATOMIC_INIT(0);
2284         struct regulator_dev *rdev;
2285         int ret, i;
2286
2287         if (regulator_desc == NULL)
2288                 return ERR_PTR(-EINVAL);
2289
2290         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2291                 return ERR_PTR(-EINVAL);
2292
2293         if (regulator_desc->type != REGULATOR_VOLTAGE &&
2294             regulator_desc->type != REGULATOR_CURRENT)
2295                 return ERR_PTR(-EINVAL);
2296
2297         if (!init_data)
2298                 return ERR_PTR(-EINVAL);
2299
2300         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2301         if (rdev == NULL)
2302                 return ERR_PTR(-ENOMEM);
2303
2304         mutex_lock(&regulator_list_mutex);
2305
2306         mutex_init(&rdev->mutex);
2307         rdev->reg_data = driver_data;
2308         rdev->owner = regulator_desc->owner;
2309         rdev->desc = regulator_desc;
2310         INIT_LIST_HEAD(&rdev->consumer_list);
2311         INIT_LIST_HEAD(&rdev->supply_list);
2312         INIT_LIST_HEAD(&rdev->list);
2313         INIT_LIST_HEAD(&rdev->slist);
2314         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2315
2316         /* preform any regulator specific init */
2317         if (init_data->regulator_init) {
2318                 ret = init_data->regulator_init(rdev->reg_data);
2319                 if (ret < 0)
2320                         goto clean;
2321         }
2322
2323         /* register with sysfs */
2324         rdev->dev.class = &regulator_class;
2325         rdev->dev.parent = dev;
2326         dev_set_name(&rdev->dev, "regulator.%d",
2327                      atomic_inc_return(&regulator_no) - 1);
2328         ret = device_register(&rdev->dev);
2329         if (ret != 0) {
2330                 put_device(&rdev->dev);
2331                 goto clean;
2332         }
2333
2334         dev_set_drvdata(&rdev->dev, rdev);
2335
2336         /* set regulator constraints */
2337         ret = set_machine_constraints(rdev, &init_data->constraints);
2338         if (ret < 0)
2339                 goto scrub;
2340
2341         /* add attributes supported by this regulator */
2342         ret = add_regulator_attributes(rdev);
2343         if (ret < 0)
2344                 goto scrub;
2345
2346         /* set supply regulator if it exists */
2347         if (init_data->supply_regulator && init_data->supply_regulator_dev) {
2348                 dev_err(dev,
2349                         "Supply regulator specified by both name and dev\n");
2350                 goto scrub;
2351         }
2352
2353         if (init_data->supply_regulator) {
2354                 struct regulator_dev *r;
2355                 int found = 0;
2356
2357                 list_for_each_entry(r, &regulator_list, list) {
2358                         if (strcmp(rdev_get_name(r),
2359                                    init_data->supply_regulator) == 0) {
2360                                 found = 1;
2361                                 break;
2362                         }
2363                 }
2364
2365                 if (!found) {
2366                         dev_err(dev, "Failed to find supply %s\n",
2367                                 init_data->supply_regulator);
2368                         goto scrub;
2369                 }
2370
2371                 ret = set_supply(rdev, r);
2372                 if (ret < 0)
2373                         goto scrub;
2374         }
2375
2376         if (init_data->supply_regulator_dev) {
2377                 dev_warn(dev, "Uses supply_regulator_dev instead of regulator_supply\n");
2378                 ret = set_supply(rdev,
2379                         dev_get_drvdata(init_data->supply_regulator_dev));
2380                 if (ret < 0)
2381                         goto scrub;
2382         }
2383
2384         /* add consumers devices */
2385         for (i = 0; i < init_data->num_consumer_supplies; i++) {
2386                 ret = set_consumer_device_supply(rdev,
2387                         init_data->consumer_supplies[i].dev,
2388                         init_data->consumer_supplies[i].dev_name,
2389                         init_data->consumer_supplies[i].supply);
2390                 if (ret < 0)
2391                         goto unset_supplies;
2392         }
2393
2394         list_add(&rdev->list, &regulator_list);
2395 out:
2396         mutex_unlock(&regulator_list_mutex);
2397         return rdev;
2398
2399 unset_supplies:
2400         unset_regulator_supplies(rdev);
2401
2402 scrub:
2403         device_unregister(&rdev->dev);
2404         /* device core frees rdev */
2405         rdev = ERR_PTR(ret);
2406         goto out;
2407
2408 clean:
2409         kfree(rdev);
2410         rdev = ERR_PTR(ret);
2411         goto out;
2412 }
2413 EXPORT_SYMBOL_GPL(regulator_register);
2414
2415 /**
2416  * regulator_unregister - unregister regulator
2417  * @rdev: regulator to unregister
2418  *
2419  * Called by regulator drivers to unregister a regulator.
2420  */
2421 void regulator_unregister(struct regulator_dev *rdev)
2422 {
2423         if (rdev == NULL)
2424                 return;
2425
2426         mutex_lock(&regulator_list_mutex);
2427         WARN_ON(rdev->open_count);
2428         unset_regulator_supplies(rdev);
2429         list_del(&rdev->list);
2430         if (rdev->supply)
2431                 sysfs_remove_link(&rdev->dev.kobj, "supply");
2432         device_unregister(&rdev->dev);
2433         mutex_unlock(&regulator_list_mutex);
2434 }
2435 EXPORT_SYMBOL_GPL(regulator_unregister);
2436
2437 /**
2438  * regulator_suspend_prepare - prepare regulators for system wide suspend
2439  * @state: system suspend state
2440  *
2441  * Configure each regulator with it's suspend operating parameters for state.
2442  * This will usually be called by machine suspend code prior to supending.
2443  */
2444 int regulator_suspend_prepare(suspend_state_t state)
2445 {
2446         struct regulator_dev *rdev;
2447         int ret = 0;
2448
2449         /* ON is handled by regulator active state */
2450         if (state == PM_SUSPEND_ON)
2451                 return -EINVAL;
2452
2453         mutex_lock(&regulator_list_mutex);
2454         list_for_each_entry(rdev, &regulator_list, list) {
2455
2456                 mutex_lock(&rdev->mutex);
2457                 ret = suspend_prepare(rdev, state);
2458                 mutex_unlock(&rdev->mutex);
2459
2460                 if (ret < 0) {
2461                         printk(KERN_ERR "%s: failed to prepare %s\n",
2462                                 __func__, rdev_get_name(rdev));
2463                         goto out;
2464                 }
2465         }
2466 out:
2467         mutex_unlock(&regulator_list_mutex);
2468         return ret;
2469 }
2470 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2471
2472 /**
2473  * regulator_has_full_constraints - the system has fully specified constraints
2474  *
2475  * Calling this function will cause the regulator API to disable all
2476  * regulators which have a zero use count and don't have an always_on
2477  * constraint in a late_initcall.
2478  *
2479  * The intention is that this will become the default behaviour in a
2480  * future kernel release so users are encouraged to use this facility
2481  * now.
2482  */
2483 void regulator_has_full_constraints(void)
2484 {
2485         has_full_constraints = 1;
2486 }
2487 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2488
2489 /**
2490  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2491  *
2492  * Calling this function will cause the regulator API to provide a
2493  * dummy regulator to consumers if no physical regulator is found,
2494  * allowing most consumers to proceed as though a regulator were
2495  * configured.  This allows systems such as those with software
2496  * controllable regulators for the CPU core only to be brought up more
2497  * readily.
2498  */
2499 void regulator_use_dummy_regulator(void)
2500 {
2501         board_wants_dummy_regulator = true;
2502 }
2503 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2504
2505 /**
2506  * rdev_get_drvdata - get rdev regulator driver data
2507  * @rdev: regulator
2508  *
2509  * Get rdev regulator driver private data. This call can be used in the
2510  * regulator driver context.
2511  */
2512 void *rdev_get_drvdata(struct regulator_dev *rdev)
2513 {
2514         return rdev->reg_data;
2515 }
2516 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2517
2518 /**
2519  * regulator_get_drvdata - get regulator driver data
2520  * @regulator: regulator
2521  *
2522  * Get regulator driver private data. This call can be used in the consumer
2523  * driver context when non API regulator specific functions need to be called.
2524  */
2525 void *regulator_get_drvdata(struct regulator *regulator)
2526 {
2527         return regulator->rdev->reg_data;
2528 }
2529 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2530
2531 /**
2532  * regulator_set_drvdata - set regulator driver data
2533  * @regulator: regulator
2534  * @data: data
2535  */
2536 void regulator_set_drvdata(struct regulator *regulator, void *data)
2537 {
2538         regulator->rdev->reg_data = data;
2539 }
2540 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2541
2542 /**
2543  * regulator_get_id - get regulator ID
2544  * @rdev: regulator
2545  */
2546 int rdev_get_id(struct regulator_dev *rdev)
2547 {
2548         return rdev->desc->id;
2549 }
2550 EXPORT_SYMBOL_GPL(rdev_get_id);
2551
2552 struct device *rdev_get_dev(struct regulator_dev *rdev)
2553 {
2554         return &rdev->dev;
2555 }
2556 EXPORT_SYMBOL_GPL(rdev_get_dev);
2557
2558 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2559 {
2560         return reg_init_data->driver_data;
2561 }
2562 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2563
2564 static int __init regulator_init(void)
2565 {
2566         int ret;
2567
2568         printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2569
2570         ret = class_register(&regulator_class);
2571
2572         regulator_dummy_init();
2573
2574         return ret;
2575 }
2576
2577 /* init early to allow our consumers to complete system booting */
2578 core_initcall(regulator_init);
2579
2580 static int __init regulator_init_complete(void)
2581 {
2582         struct regulator_dev *rdev;
2583         struct regulator_ops *ops;
2584         struct regulation_constraints *c;
2585         int enabled, ret;
2586         const char *name;
2587
2588         mutex_lock(&regulator_list_mutex);
2589
2590         /* If we have a full configuration then disable any regulators
2591          * which are not in use or always_on.  This will become the
2592          * default behaviour in the future.
2593          */
2594         list_for_each_entry(rdev, &regulator_list, list) {
2595                 ops = rdev->desc->ops;
2596                 c = rdev->constraints;
2597
2598                 name = rdev_get_name(rdev);
2599
2600                 if (!ops->disable || (c && c->always_on))
2601                         continue;
2602
2603                 mutex_lock(&rdev->mutex);
2604
2605                 if (rdev->use_count)
2606                         goto unlock;
2607
2608                 /* If we can't read the status assume it's on. */
2609                 if (ops->is_enabled)
2610                         enabled = ops->is_enabled(rdev);
2611                 else
2612                         enabled = 1;
2613
2614                 if (!enabled)
2615                         goto unlock;
2616
2617                 if (has_full_constraints) {
2618                         /* We log since this may kill the system if it
2619                          * goes wrong. */
2620                         printk(KERN_INFO "%s: disabling %s\n",
2621                                __func__, name);
2622                         ret = ops->disable(rdev);
2623                         if (ret != 0) {
2624                                 printk(KERN_ERR
2625                                        "%s: couldn't disable %s: %d\n",
2626                                        __func__, name, ret);
2627                         }
2628                 } else {
2629                         /* The intention is that in future we will
2630                          * assume that full constraints are provided
2631                          * so warn even if we aren't going to do
2632                          * anything here.
2633                          */
2634                         printk(KERN_WARNING
2635                                "%s: incomplete constraints, leaving %s on\n",
2636                                __func__, name);
2637                 }
2638
2639 unlock:
2640                 mutex_unlock(&rdev->mutex);
2641         }
2642
2643         mutex_unlock(&regulator_list_mutex);
2644
2645         return 0;
2646 }
2647 late_initcall(regulator_init_complete);