]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/regulator/core.c
regulator: core: Fix regualtor_ena_gpio_free not to access pin after freeing
[karo-tx-linux.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...)                                       \
43         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)                                        \
45         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)                                       \
47         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)                                       \
49         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)                                        \
51         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_list);
55 static LIST_HEAD(regulator_map_list);
56 static LIST_HEAD(regulator_ena_gpio_list);
57 static LIST_HEAD(regulator_supply_alias_list);
58 static bool has_full_constraints;
59
60 static struct dentry *debugfs_root;
61
62 /*
63  * struct regulator_map
64  *
65  * Used to provide symbolic supply names to devices.
66  */
67 struct regulator_map {
68         struct list_head list;
69         const char *dev_name;   /* The dev_name() for the consumer */
70         const char *supply;
71         struct regulator_dev *regulator;
72 };
73
74 /*
75  * struct regulator_enable_gpio
76  *
77  * Management for shared enable GPIO pin
78  */
79 struct regulator_enable_gpio {
80         struct list_head list;
81         struct gpio_desc *gpiod;
82         u32 enable_count;       /* a number of enabled shared GPIO */
83         u32 request_count;      /* a number of requested shared GPIO */
84         unsigned int ena_gpio_invert:1;
85 };
86
87 /*
88  * struct regulator_supply_alias
89  *
90  * Used to map lookups for a supply onto an alternative device.
91  */
92 struct regulator_supply_alias {
93         struct list_head list;
94         struct device *src_dev;
95         const char *src_supply;
96         struct device *alias_dev;
97         const char *alias_supply;
98 };
99
100 static int _regulator_is_enabled(struct regulator_dev *rdev);
101 static int _regulator_disable(struct regulator_dev *rdev);
102 static int _regulator_get_voltage(struct regulator_dev *rdev);
103 static int _regulator_get_current_limit(struct regulator_dev *rdev);
104 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
105 static int _notifier_call_chain(struct regulator_dev *rdev,
106                                   unsigned long event, void *data);
107 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
108                                      int min_uV, int max_uV);
109 static struct regulator *create_regulator(struct regulator_dev *rdev,
110                                           struct device *dev,
111                                           const char *supply_name);
112
113 static const char *rdev_get_name(struct regulator_dev *rdev)
114 {
115         if (rdev->constraints && rdev->constraints->name)
116                 return rdev->constraints->name;
117         else if (rdev->desc->name)
118                 return rdev->desc->name;
119         else
120                 return "";
121 }
122
123 static bool have_full_constraints(void)
124 {
125         return has_full_constraints || of_have_populated_dt();
126 }
127
128 /**
129  * of_get_regulator - get a regulator device node based on supply name
130  * @dev: Device pointer for the consumer (of regulator) device
131  * @supply: regulator supply name
132  *
133  * Extract the regulator device node corresponding to the supply name.
134  * returns the device node corresponding to the regulator if found, else
135  * returns NULL.
136  */
137 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
138 {
139         struct device_node *regnode = NULL;
140         char prop_name[32]; /* 32 is max size of property name */
141
142         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
143
144         snprintf(prop_name, 32, "%s-supply", supply);
145         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
146
147         if (!regnode) {
148                 dev_dbg(dev, "Looking up %s property in node %s failed",
149                                 prop_name, dev->of_node->full_name);
150                 return NULL;
151         }
152         return regnode;
153 }
154
155 static int _regulator_can_change_status(struct regulator_dev *rdev)
156 {
157         if (!rdev->constraints)
158                 return 0;
159
160         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
161                 return 1;
162         else
163                 return 0;
164 }
165
166 /* Platform voltage constraint check */
167 static int regulator_check_voltage(struct regulator_dev *rdev,
168                                    int *min_uV, int *max_uV)
169 {
170         BUG_ON(*min_uV > *max_uV);
171
172         if (!rdev->constraints) {
173                 rdev_err(rdev, "no constraints\n");
174                 return -ENODEV;
175         }
176         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
177                 rdev_err(rdev, "operation not allowed\n");
178                 return -EPERM;
179         }
180
181         if (*max_uV > rdev->constraints->max_uV)
182                 *max_uV = rdev->constraints->max_uV;
183         if (*min_uV < rdev->constraints->min_uV)
184                 *min_uV = rdev->constraints->min_uV;
185
186         if (*min_uV > *max_uV) {
187                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
188                          *min_uV, *max_uV);
189                 return -EINVAL;
190         }
191
192         return 0;
193 }
194
195 /* Make sure we select a voltage that suits the needs of all
196  * regulator consumers
197  */
198 static int regulator_check_consumers(struct regulator_dev *rdev,
199                                      int *min_uV, int *max_uV)
200 {
201         struct regulator *regulator;
202
203         list_for_each_entry(regulator, &rdev->consumer_list, list) {
204                 /*
205                  * Assume consumers that didn't say anything are OK
206                  * with anything in the constraint range.
207                  */
208                 if (!regulator->min_uV && !regulator->max_uV)
209                         continue;
210
211                 if (*max_uV > regulator->max_uV)
212                         *max_uV = regulator->max_uV;
213                 if (*min_uV < regulator->min_uV)
214                         *min_uV = regulator->min_uV;
215         }
216
217         if (*min_uV > *max_uV) {
218                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
219                         *min_uV, *max_uV);
220                 return -EINVAL;
221         }
222
223         return 0;
224 }
225
226 /* current constraint check */
227 static int regulator_check_current_limit(struct regulator_dev *rdev,
228                                         int *min_uA, int *max_uA)
229 {
230         BUG_ON(*min_uA > *max_uA);
231
232         if (!rdev->constraints) {
233                 rdev_err(rdev, "no constraints\n");
234                 return -ENODEV;
235         }
236         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
237                 rdev_err(rdev, "operation not allowed\n");
238                 return -EPERM;
239         }
240
241         if (*max_uA > rdev->constraints->max_uA)
242                 *max_uA = rdev->constraints->max_uA;
243         if (*min_uA < rdev->constraints->min_uA)
244                 *min_uA = rdev->constraints->min_uA;
245
246         if (*min_uA > *max_uA) {
247                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
248                          *min_uA, *max_uA);
249                 return -EINVAL;
250         }
251
252         return 0;
253 }
254
255 /* operating mode constraint check */
256 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
257 {
258         switch (*mode) {
259         case REGULATOR_MODE_FAST:
260         case REGULATOR_MODE_NORMAL:
261         case REGULATOR_MODE_IDLE:
262         case REGULATOR_MODE_STANDBY:
263                 break;
264         default:
265                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
266                 return -EINVAL;
267         }
268
269         if (!rdev->constraints) {
270                 rdev_err(rdev, "no constraints\n");
271                 return -ENODEV;
272         }
273         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
274                 rdev_err(rdev, "operation not allowed\n");
275                 return -EPERM;
276         }
277
278         /* The modes are bitmasks, the most power hungry modes having
279          * the lowest values. If the requested mode isn't supported
280          * try higher modes. */
281         while (*mode) {
282                 if (rdev->constraints->valid_modes_mask & *mode)
283                         return 0;
284                 *mode /= 2;
285         }
286
287         return -EINVAL;
288 }
289
290 /* dynamic regulator mode switching constraint check */
291 static int regulator_check_drms(struct regulator_dev *rdev)
292 {
293         if (!rdev->constraints) {
294                 rdev_err(rdev, "no constraints\n");
295                 return -ENODEV;
296         }
297         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
298                 rdev_err(rdev, "operation not allowed\n");
299                 return -EPERM;
300         }
301         return 0;
302 }
303
304 static ssize_t regulator_uV_show(struct device *dev,
305                                 struct device_attribute *attr, char *buf)
306 {
307         struct regulator_dev *rdev = dev_get_drvdata(dev);
308         ssize_t ret;
309
310         mutex_lock(&rdev->mutex);
311         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
312         mutex_unlock(&rdev->mutex);
313
314         return ret;
315 }
316 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
317
318 static ssize_t regulator_uA_show(struct device *dev,
319                                 struct device_attribute *attr, char *buf)
320 {
321         struct regulator_dev *rdev = dev_get_drvdata(dev);
322
323         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
324 }
325 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
326
327 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
328                          char *buf)
329 {
330         struct regulator_dev *rdev = dev_get_drvdata(dev);
331
332         return sprintf(buf, "%s\n", rdev_get_name(rdev));
333 }
334 static DEVICE_ATTR_RO(name);
335
336 static ssize_t regulator_print_opmode(char *buf, int mode)
337 {
338         switch (mode) {
339         case REGULATOR_MODE_FAST:
340                 return sprintf(buf, "fast\n");
341         case REGULATOR_MODE_NORMAL:
342                 return sprintf(buf, "normal\n");
343         case REGULATOR_MODE_IDLE:
344                 return sprintf(buf, "idle\n");
345         case REGULATOR_MODE_STANDBY:
346                 return sprintf(buf, "standby\n");
347         }
348         return sprintf(buf, "unknown\n");
349 }
350
351 static ssize_t regulator_opmode_show(struct device *dev,
352                                     struct device_attribute *attr, char *buf)
353 {
354         struct regulator_dev *rdev = dev_get_drvdata(dev);
355
356         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
357 }
358 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
359
360 static ssize_t regulator_print_state(char *buf, int state)
361 {
362         if (state > 0)
363                 return sprintf(buf, "enabled\n");
364         else if (state == 0)
365                 return sprintf(buf, "disabled\n");
366         else
367                 return sprintf(buf, "unknown\n");
368 }
369
370 static ssize_t regulator_state_show(struct device *dev,
371                                    struct device_attribute *attr, char *buf)
372 {
373         struct regulator_dev *rdev = dev_get_drvdata(dev);
374         ssize_t ret;
375
376         mutex_lock(&rdev->mutex);
377         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
378         mutex_unlock(&rdev->mutex);
379
380         return ret;
381 }
382 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
383
384 static ssize_t regulator_status_show(struct device *dev,
385                                    struct device_attribute *attr, char *buf)
386 {
387         struct regulator_dev *rdev = dev_get_drvdata(dev);
388         int status;
389         char *label;
390
391         status = rdev->desc->ops->get_status(rdev);
392         if (status < 0)
393                 return status;
394
395         switch (status) {
396         case REGULATOR_STATUS_OFF:
397                 label = "off";
398                 break;
399         case REGULATOR_STATUS_ON:
400                 label = "on";
401                 break;
402         case REGULATOR_STATUS_ERROR:
403                 label = "error";
404                 break;
405         case REGULATOR_STATUS_FAST:
406                 label = "fast";
407                 break;
408         case REGULATOR_STATUS_NORMAL:
409                 label = "normal";
410                 break;
411         case REGULATOR_STATUS_IDLE:
412                 label = "idle";
413                 break;
414         case REGULATOR_STATUS_STANDBY:
415                 label = "standby";
416                 break;
417         case REGULATOR_STATUS_BYPASS:
418                 label = "bypass";
419                 break;
420         case REGULATOR_STATUS_UNDEFINED:
421                 label = "undefined";
422                 break;
423         default:
424                 return -ERANGE;
425         }
426
427         return sprintf(buf, "%s\n", label);
428 }
429 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
430
431 static ssize_t regulator_min_uA_show(struct device *dev,
432                                     struct device_attribute *attr, char *buf)
433 {
434         struct regulator_dev *rdev = dev_get_drvdata(dev);
435
436         if (!rdev->constraints)
437                 return sprintf(buf, "constraint not defined\n");
438
439         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
440 }
441 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442
443 static ssize_t regulator_max_uA_show(struct device *dev,
444                                     struct device_attribute *attr, char *buf)
445 {
446         struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448         if (!rdev->constraints)
449                 return sprintf(buf, "constraint not defined\n");
450
451         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
452 }
453 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454
455 static ssize_t regulator_min_uV_show(struct device *dev,
456                                     struct device_attribute *attr, char *buf)
457 {
458         struct regulator_dev *rdev = dev_get_drvdata(dev);
459
460         if (!rdev->constraints)
461                 return sprintf(buf, "constraint not defined\n");
462
463         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
464 }
465 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466
467 static ssize_t regulator_max_uV_show(struct device *dev,
468                                     struct device_attribute *attr, char *buf)
469 {
470         struct regulator_dev *rdev = dev_get_drvdata(dev);
471
472         if (!rdev->constraints)
473                 return sprintf(buf, "constraint not defined\n");
474
475         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
476 }
477 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478
479 static ssize_t regulator_total_uA_show(struct device *dev,
480                                       struct device_attribute *attr, char *buf)
481 {
482         struct regulator_dev *rdev = dev_get_drvdata(dev);
483         struct regulator *regulator;
484         int uA = 0;
485
486         mutex_lock(&rdev->mutex);
487         list_for_each_entry(regulator, &rdev->consumer_list, list)
488                 uA += regulator->uA_load;
489         mutex_unlock(&rdev->mutex);
490         return sprintf(buf, "%d\n", uA);
491 }
492 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493
494 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
495                               char *buf)
496 {
497         struct regulator_dev *rdev = dev_get_drvdata(dev);
498         return sprintf(buf, "%d\n", rdev->use_count);
499 }
500 static DEVICE_ATTR_RO(num_users);
501
502 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
503                          char *buf)
504 {
505         struct regulator_dev *rdev = dev_get_drvdata(dev);
506
507         switch (rdev->desc->type) {
508         case REGULATOR_VOLTAGE:
509                 return sprintf(buf, "voltage\n");
510         case REGULATOR_CURRENT:
511                 return sprintf(buf, "current\n");
512         }
513         return sprintf(buf, "unknown\n");
514 }
515 static DEVICE_ATTR_RO(type);
516
517 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
518                                 struct device_attribute *attr, char *buf)
519 {
520         struct regulator_dev *rdev = dev_get_drvdata(dev);
521
522         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
523 }
524 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
525                 regulator_suspend_mem_uV_show, NULL);
526
527 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
528                                 struct device_attribute *attr, char *buf)
529 {
530         struct regulator_dev *rdev = dev_get_drvdata(dev);
531
532         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
533 }
534 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
535                 regulator_suspend_disk_uV_show, NULL);
536
537 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
538                                 struct device_attribute *attr, char *buf)
539 {
540         struct regulator_dev *rdev = dev_get_drvdata(dev);
541
542         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
543 }
544 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
545                 regulator_suspend_standby_uV_show, NULL);
546
547 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
548                                 struct device_attribute *attr, char *buf)
549 {
550         struct regulator_dev *rdev = dev_get_drvdata(dev);
551
552         return regulator_print_opmode(buf,
553                 rdev->constraints->state_mem.mode);
554 }
555 static DEVICE_ATTR(suspend_mem_mode, 0444,
556                 regulator_suspend_mem_mode_show, NULL);
557
558 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
559                                 struct device_attribute *attr, char *buf)
560 {
561         struct regulator_dev *rdev = dev_get_drvdata(dev);
562
563         return regulator_print_opmode(buf,
564                 rdev->constraints->state_disk.mode);
565 }
566 static DEVICE_ATTR(suspend_disk_mode, 0444,
567                 regulator_suspend_disk_mode_show, NULL);
568
569 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
570                                 struct device_attribute *attr, char *buf)
571 {
572         struct regulator_dev *rdev = dev_get_drvdata(dev);
573
574         return regulator_print_opmode(buf,
575                 rdev->constraints->state_standby.mode);
576 }
577 static DEVICE_ATTR(suspend_standby_mode, 0444,
578                 regulator_suspend_standby_mode_show, NULL);
579
580 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
581                                    struct device_attribute *attr, char *buf)
582 {
583         struct regulator_dev *rdev = dev_get_drvdata(dev);
584
585         return regulator_print_state(buf,
586                         rdev->constraints->state_mem.enabled);
587 }
588 static DEVICE_ATTR(suspend_mem_state, 0444,
589                 regulator_suspend_mem_state_show, NULL);
590
591 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
592                                    struct device_attribute *attr, char *buf)
593 {
594         struct regulator_dev *rdev = dev_get_drvdata(dev);
595
596         return regulator_print_state(buf,
597                         rdev->constraints->state_disk.enabled);
598 }
599 static DEVICE_ATTR(suspend_disk_state, 0444,
600                 regulator_suspend_disk_state_show, NULL);
601
602 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
603                                    struct device_attribute *attr, char *buf)
604 {
605         struct regulator_dev *rdev = dev_get_drvdata(dev);
606
607         return regulator_print_state(buf,
608                         rdev->constraints->state_standby.enabled);
609 }
610 static DEVICE_ATTR(suspend_standby_state, 0444,
611                 regulator_suspend_standby_state_show, NULL);
612
613 static ssize_t regulator_bypass_show(struct device *dev,
614                                      struct device_attribute *attr, char *buf)
615 {
616         struct regulator_dev *rdev = dev_get_drvdata(dev);
617         const char *report;
618         bool bypass;
619         int ret;
620
621         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
622
623         if (ret != 0)
624                 report = "unknown";
625         else if (bypass)
626                 report = "enabled";
627         else
628                 report = "disabled";
629
630         return sprintf(buf, "%s\n", report);
631 }
632 static DEVICE_ATTR(bypass, 0444,
633                    regulator_bypass_show, NULL);
634
635 /*
636  * These are the only attributes are present for all regulators.
637  * Other attributes are a function of regulator functionality.
638  */
639 static struct attribute *regulator_dev_attrs[] = {
640         &dev_attr_name.attr,
641         &dev_attr_num_users.attr,
642         &dev_attr_type.attr,
643         NULL,
644 };
645 ATTRIBUTE_GROUPS(regulator_dev);
646
647 static void regulator_dev_release(struct device *dev)
648 {
649         struct regulator_dev *rdev = dev_get_drvdata(dev);
650         kfree(rdev);
651 }
652
653 static struct class regulator_class = {
654         .name = "regulator",
655         .dev_release = regulator_dev_release,
656         .dev_groups = regulator_dev_groups,
657 };
658
659 /* Calculate the new optimum regulator operating mode based on the new total
660  * consumer load. All locks held by caller */
661 static void drms_uA_update(struct regulator_dev *rdev)
662 {
663         struct regulator *sibling;
664         int current_uA = 0, output_uV, input_uV, err;
665         unsigned int mode;
666
667         err = regulator_check_drms(rdev);
668         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
669             (!rdev->desc->ops->get_voltage &&
670              !rdev->desc->ops->get_voltage_sel) ||
671             !rdev->desc->ops->set_mode)
672                 return;
673
674         /* get output voltage */
675         output_uV = _regulator_get_voltage(rdev);
676         if (output_uV <= 0)
677                 return;
678
679         /* get input voltage */
680         input_uV = 0;
681         if (rdev->supply)
682                 input_uV = regulator_get_voltage(rdev->supply);
683         if (input_uV <= 0)
684                 input_uV = rdev->constraints->input_uV;
685         if (input_uV <= 0)
686                 return;
687
688         /* calc total requested load */
689         list_for_each_entry(sibling, &rdev->consumer_list, list)
690                 current_uA += sibling->uA_load;
691
692         /* now get the optimum mode for our new total regulator load */
693         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
694                                                   output_uV, current_uA);
695
696         /* check the new mode is allowed */
697         err = regulator_mode_constrain(rdev, &mode);
698         if (err == 0)
699                 rdev->desc->ops->set_mode(rdev, mode);
700 }
701
702 static int suspend_set_state(struct regulator_dev *rdev,
703         struct regulator_state *rstate)
704 {
705         int ret = 0;
706
707         /* If we have no suspend mode configration don't set anything;
708          * only warn if the driver implements set_suspend_voltage or
709          * set_suspend_mode callback.
710          */
711         if (!rstate->enabled && !rstate->disabled) {
712                 if (rdev->desc->ops->set_suspend_voltage ||
713                     rdev->desc->ops->set_suspend_mode)
714                         rdev_warn(rdev, "No configuration\n");
715                 return 0;
716         }
717
718         if (rstate->enabled && rstate->disabled) {
719                 rdev_err(rdev, "invalid configuration\n");
720                 return -EINVAL;
721         }
722
723         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
724                 ret = rdev->desc->ops->set_suspend_enable(rdev);
725         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
726                 ret = rdev->desc->ops->set_suspend_disable(rdev);
727         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
728                 ret = 0;
729
730         if (ret < 0) {
731                 rdev_err(rdev, "failed to enabled/disable\n");
732                 return ret;
733         }
734
735         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
736                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
737                 if (ret < 0) {
738                         rdev_err(rdev, "failed to set voltage\n");
739                         return ret;
740                 }
741         }
742
743         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
744                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
745                 if (ret < 0) {
746                         rdev_err(rdev, "failed to set mode\n");
747                         return ret;
748                 }
749         }
750         return ret;
751 }
752
753 /* locks held by caller */
754 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
755 {
756         if (!rdev->constraints)
757                 return -EINVAL;
758
759         switch (state) {
760         case PM_SUSPEND_STANDBY:
761                 return suspend_set_state(rdev,
762                         &rdev->constraints->state_standby);
763         case PM_SUSPEND_MEM:
764                 return suspend_set_state(rdev,
765                         &rdev->constraints->state_mem);
766         case PM_SUSPEND_MAX:
767                 return suspend_set_state(rdev,
768                         &rdev->constraints->state_disk);
769         default:
770                 return -EINVAL;
771         }
772 }
773
774 static void print_constraints(struct regulator_dev *rdev)
775 {
776         struct regulation_constraints *constraints = rdev->constraints;
777         char buf[80] = "";
778         int count = 0;
779         int ret;
780
781         if (constraints->min_uV && constraints->max_uV) {
782                 if (constraints->min_uV == constraints->max_uV)
783                         count += sprintf(buf + count, "%d mV ",
784                                          constraints->min_uV / 1000);
785                 else
786                         count += sprintf(buf + count, "%d <--> %d mV ",
787                                          constraints->min_uV / 1000,
788                                          constraints->max_uV / 1000);
789         }
790
791         if (!constraints->min_uV ||
792             constraints->min_uV != constraints->max_uV) {
793                 ret = _regulator_get_voltage(rdev);
794                 if (ret > 0)
795                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
796         }
797
798         if (constraints->uV_offset)
799                 count += sprintf(buf, "%dmV offset ",
800                                  constraints->uV_offset / 1000);
801
802         if (constraints->min_uA && constraints->max_uA) {
803                 if (constraints->min_uA == constraints->max_uA)
804                         count += sprintf(buf + count, "%d mA ",
805                                          constraints->min_uA / 1000);
806                 else
807                         count += sprintf(buf + count, "%d <--> %d mA ",
808                                          constraints->min_uA / 1000,
809                                          constraints->max_uA / 1000);
810         }
811
812         if (!constraints->min_uA ||
813             constraints->min_uA != constraints->max_uA) {
814                 ret = _regulator_get_current_limit(rdev);
815                 if (ret > 0)
816                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
817         }
818
819         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
820                 count += sprintf(buf + count, "fast ");
821         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
822                 count += sprintf(buf + count, "normal ");
823         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
824                 count += sprintf(buf + count, "idle ");
825         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
826                 count += sprintf(buf + count, "standby");
827
828         if (!count)
829                 sprintf(buf, "no parameters");
830
831         rdev_dbg(rdev, "%s\n", buf);
832
833         if ((constraints->min_uV != constraints->max_uV) &&
834             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
835                 rdev_warn(rdev,
836                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
837 }
838
839 static int machine_constraints_voltage(struct regulator_dev *rdev,
840         struct regulation_constraints *constraints)
841 {
842         const struct regulator_ops *ops = rdev->desc->ops;
843         int ret;
844
845         /* do we need to apply the constraint voltage */
846         if (rdev->constraints->apply_uV &&
847             rdev->constraints->min_uV == rdev->constraints->max_uV) {
848                 int current_uV = _regulator_get_voltage(rdev);
849                 if (current_uV < 0) {
850                         rdev_err(rdev,
851                                  "failed to get the current voltage(%d)\n",
852                                  current_uV);
853                         return current_uV;
854                 }
855                 if (current_uV < rdev->constraints->min_uV ||
856                     current_uV > rdev->constraints->max_uV) {
857                         ret = _regulator_do_set_voltage(
858                                 rdev, rdev->constraints->min_uV,
859                                 rdev->constraints->max_uV);
860                         if (ret < 0) {
861                                 rdev_err(rdev,
862                                         "failed to apply %duV constraint(%d)\n",
863                                         rdev->constraints->min_uV, ret);
864                                 return ret;
865                         }
866                 }
867         }
868
869         /* constrain machine-level voltage specs to fit
870          * the actual range supported by this regulator.
871          */
872         if (ops->list_voltage && rdev->desc->n_voltages) {
873                 int     count = rdev->desc->n_voltages;
874                 int     i;
875                 int     min_uV = INT_MAX;
876                 int     max_uV = INT_MIN;
877                 int     cmin = constraints->min_uV;
878                 int     cmax = constraints->max_uV;
879
880                 /* it's safe to autoconfigure fixed-voltage supplies
881                    and the constraints are used by list_voltage. */
882                 if (count == 1 && !cmin) {
883                         cmin = 1;
884                         cmax = INT_MAX;
885                         constraints->min_uV = cmin;
886                         constraints->max_uV = cmax;
887                 }
888
889                 /* voltage constraints are optional */
890                 if ((cmin == 0) && (cmax == 0))
891                         return 0;
892
893                 /* else require explicit machine-level constraints */
894                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
895                         rdev_err(rdev, "invalid voltage constraints\n");
896                         return -EINVAL;
897                 }
898
899                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
900                 for (i = 0; i < count; i++) {
901                         int     value;
902
903                         value = ops->list_voltage(rdev, i);
904                         if (value <= 0)
905                                 continue;
906
907                         /* maybe adjust [min_uV..max_uV] */
908                         if (value >= cmin && value < min_uV)
909                                 min_uV = value;
910                         if (value <= cmax && value > max_uV)
911                                 max_uV = value;
912                 }
913
914                 /* final: [min_uV..max_uV] valid iff constraints valid */
915                 if (max_uV < min_uV) {
916                         rdev_err(rdev,
917                                  "unsupportable voltage constraints %u-%uuV\n",
918                                  min_uV, max_uV);
919                         return -EINVAL;
920                 }
921
922                 /* use regulator's subset of machine constraints */
923                 if (constraints->min_uV < min_uV) {
924                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
925                                  constraints->min_uV, min_uV);
926                         constraints->min_uV = min_uV;
927                 }
928                 if (constraints->max_uV > max_uV) {
929                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
930                                  constraints->max_uV, max_uV);
931                         constraints->max_uV = max_uV;
932                 }
933         }
934
935         return 0;
936 }
937
938 static int machine_constraints_current(struct regulator_dev *rdev,
939         struct regulation_constraints *constraints)
940 {
941         const struct regulator_ops *ops = rdev->desc->ops;
942         int ret;
943
944         if (!constraints->min_uA && !constraints->max_uA)
945                 return 0;
946
947         if (constraints->min_uA > constraints->max_uA) {
948                 rdev_err(rdev, "Invalid current constraints\n");
949                 return -EINVAL;
950         }
951
952         if (!ops->set_current_limit || !ops->get_current_limit) {
953                 rdev_warn(rdev, "Operation of current configuration missing\n");
954                 return 0;
955         }
956
957         /* Set regulator current in constraints range */
958         ret = ops->set_current_limit(rdev, constraints->min_uA,
959                         constraints->max_uA);
960         if (ret < 0) {
961                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
962                 return ret;
963         }
964
965         return 0;
966 }
967
968 static int _regulator_do_enable(struct regulator_dev *rdev);
969
970 /**
971  * set_machine_constraints - sets regulator constraints
972  * @rdev: regulator source
973  * @constraints: constraints to apply
974  *
975  * Allows platform initialisation code to define and constrain
976  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
977  * Constraints *must* be set by platform code in order for some
978  * regulator operations to proceed i.e. set_voltage, set_current_limit,
979  * set_mode.
980  */
981 static int set_machine_constraints(struct regulator_dev *rdev,
982         const struct regulation_constraints *constraints)
983 {
984         int ret = 0;
985         const struct regulator_ops *ops = rdev->desc->ops;
986
987         if (constraints)
988                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
989                                             GFP_KERNEL);
990         else
991                 rdev->constraints = kzalloc(sizeof(*constraints),
992                                             GFP_KERNEL);
993         if (!rdev->constraints)
994                 return -ENOMEM;
995
996         ret = machine_constraints_voltage(rdev, rdev->constraints);
997         if (ret != 0)
998                 goto out;
999
1000         ret = machine_constraints_current(rdev, rdev->constraints);
1001         if (ret != 0)
1002                 goto out;
1003
1004         /* do we need to setup our suspend state */
1005         if (rdev->constraints->initial_state) {
1006                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1007                 if (ret < 0) {
1008                         rdev_err(rdev, "failed to set suspend state\n");
1009                         goto out;
1010                 }
1011         }
1012
1013         if (rdev->constraints->initial_mode) {
1014                 if (!ops->set_mode) {
1015                         rdev_err(rdev, "no set_mode operation\n");
1016                         ret = -EINVAL;
1017                         goto out;
1018                 }
1019
1020                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1021                 if (ret < 0) {
1022                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1023                         goto out;
1024                 }
1025         }
1026
1027         /* If the constraints say the regulator should be on at this point
1028          * and we have control then make sure it is enabled.
1029          */
1030         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1031                 ret = _regulator_do_enable(rdev);
1032                 if (ret < 0 && ret != -EINVAL) {
1033                         rdev_err(rdev, "failed to enable\n");
1034                         goto out;
1035                 }
1036         }
1037
1038         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1039                 && ops->set_ramp_delay) {
1040                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1041                 if (ret < 0) {
1042                         rdev_err(rdev, "failed to set ramp_delay\n");
1043                         goto out;
1044                 }
1045         }
1046
1047         print_constraints(rdev);
1048         return 0;
1049 out:
1050         kfree(rdev->constraints);
1051         rdev->constraints = NULL;
1052         return ret;
1053 }
1054
1055 /**
1056  * set_supply - set regulator supply regulator
1057  * @rdev: regulator name
1058  * @supply_rdev: supply regulator name
1059  *
1060  * Called by platform initialisation code to set the supply regulator for this
1061  * regulator. This ensures that a regulators supply will also be enabled by the
1062  * core if it's child is enabled.
1063  */
1064 static int set_supply(struct regulator_dev *rdev,
1065                       struct regulator_dev *supply_rdev)
1066 {
1067         int err;
1068
1069         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1070
1071         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1072         if (rdev->supply == NULL) {
1073                 err = -ENOMEM;
1074                 return err;
1075         }
1076         supply_rdev->open_count++;
1077
1078         return 0;
1079 }
1080
1081 /**
1082  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1083  * @rdev:         regulator source
1084  * @consumer_dev_name: dev_name() string for device supply applies to
1085  * @supply:       symbolic name for supply
1086  *
1087  * Allows platform initialisation code to map physical regulator
1088  * sources to symbolic names for supplies for use by devices.  Devices
1089  * should use these symbolic names to request regulators, avoiding the
1090  * need to provide board-specific regulator names as platform data.
1091  */
1092 static int set_consumer_device_supply(struct regulator_dev *rdev,
1093                                       const char *consumer_dev_name,
1094                                       const char *supply)
1095 {
1096         struct regulator_map *node;
1097         int has_dev;
1098
1099         if (supply == NULL)
1100                 return -EINVAL;
1101
1102         if (consumer_dev_name != NULL)
1103                 has_dev = 1;
1104         else
1105                 has_dev = 0;
1106
1107         list_for_each_entry(node, &regulator_map_list, list) {
1108                 if (node->dev_name && consumer_dev_name) {
1109                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1110                                 continue;
1111                 } else if (node->dev_name || consumer_dev_name) {
1112                         continue;
1113                 }
1114
1115                 if (strcmp(node->supply, supply) != 0)
1116                         continue;
1117
1118                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1119                          consumer_dev_name,
1120                          dev_name(&node->regulator->dev),
1121                          node->regulator->desc->name,
1122                          supply,
1123                          dev_name(&rdev->dev), rdev_get_name(rdev));
1124                 return -EBUSY;
1125         }
1126
1127         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1128         if (node == NULL)
1129                 return -ENOMEM;
1130
1131         node->regulator = rdev;
1132         node->supply = supply;
1133
1134         if (has_dev) {
1135                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1136                 if (node->dev_name == NULL) {
1137                         kfree(node);
1138                         return -ENOMEM;
1139                 }
1140         }
1141
1142         list_add(&node->list, &regulator_map_list);
1143         return 0;
1144 }
1145
1146 static void unset_regulator_supplies(struct regulator_dev *rdev)
1147 {
1148         struct regulator_map *node, *n;
1149
1150         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1151                 if (rdev == node->regulator) {
1152                         list_del(&node->list);
1153                         kfree(node->dev_name);
1154                         kfree(node);
1155                 }
1156         }
1157 }
1158
1159 #define REG_STR_SIZE    64
1160
1161 static struct regulator *create_regulator(struct regulator_dev *rdev,
1162                                           struct device *dev,
1163                                           const char *supply_name)
1164 {
1165         struct regulator *regulator;
1166         char buf[REG_STR_SIZE];
1167         int err, size;
1168
1169         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1170         if (regulator == NULL)
1171                 return NULL;
1172
1173         mutex_lock(&rdev->mutex);
1174         regulator->rdev = rdev;
1175         list_add(&regulator->list, &rdev->consumer_list);
1176
1177         if (dev) {
1178                 regulator->dev = dev;
1179
1180                 /* Add a link to the device sysfs entry */
1181                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1182                                  dev->kobj.name, supply_name);
1183                 if (size >= REG_STR_SIZE)
1184                         goto overflow_err;
1185
1186                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1187                 if (regulator->supply_name == NULL)
1188                         goto overflow_err;
1189
1190                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1191                                         buf);
1192                 if (err) {
1193                         rdev_warn(rdev, "could not add device link %s err %d\n",
1194                                   dev->kobj.name, err);
1195                         /* non-fatal */
1196                 }
1197         } else {
1198                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1199                 if (regulator->supply_name == NULL)
1200                         goto overflow_err;
1201         }
1202
1203         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1204                                                 rdev->debugfs);
1205         if (!regulator->debugfs) {
1206                 rdev_warn(rdev, "Failed to create debugfs directory\n");
1207         } else {
1208                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1209                                    &regulator->uA_load);
1210                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1211                                    &regulator->min_uV);
1212                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1213                                    &regulator->max_uV);
1214         }
1215
1216         /*
1217          * Check now if the regulator is an always on regulator - if
1218          * it is then we don't need to do nearly so much work for
1219          * enable/disable calls.
1220          */
1221         if (!_regulator_can_change_status(rdev) &&
1222             _regulator_is_enabled(rdev))
1223                 regulator->always_on = true;
1224
1225         mutex_unlock(&rdev->mutex);
1226         return regulator;
1227 overflow_err:
1228         list_del(&regulator->list);
1229         kfree(regulator);
1230         mutex_unlock(&rdev->mutex);
1231         return NULL;
1232 }
1233
1234 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1235 {
1236         if (rdev->constraints && rdev->constraints->enable_time)
1237                 return rdev->constraints->enable_time;
1238         if (!rdev->desc->ops->enable_time)
1239                 return rdev->desc->enable_time;
1240         return rdev->desc->ops->enable_time(rdev);
1241 }
1242
1243 static struct regulator_supply_alias *regulator_find_supply_alias(
1244                 struct device *dev, const char *supply)
1245 {
1246         struct regulator_supply_alias *map;
1247
1248         list_for_each_entry(map, &regulator_supply_alias_list, list)
1249                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1250                         return map;
1251
1252         return NULL;
1253 }
1254
1255 static void regulator_supply_alias(struct device **dev, const char **supply)
1256 {
1257         struct regulator_supply_alias *map;
1258
1259         map = regulator_find_supply_alias(*dev, *supply);
1260         if (map) {
1261                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1262                                 *supply, map->alias_supply,
1263                                 dev_name(map->alias_dev));
1264                 *dev = map->alias_dev;
1265                 *supply = map->alias_supply;
1266         }
1267 }
1268
1269 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1270                                                   const char *supply,
1271                                                   int *ret)
1272 {
1273         struct regulator_dev *r;
1274         struct device_node *node;
1275         struct regulator_map *map;
1276         const char *devname = NULL;
1277
1278         regulator_supply_alias(&dev, &supply);
1279
1280         /* first do a dt based lookup */
1281         if (dev && dev->of_node) {
1282                 node = of_get_regulator(dev, supply);
1283                 if (node) {
1284                         list_for_each_entry(r, &regulator_list, list)
1285                                 if (r->dev.parent &&
1286                                         node == r->dev.of_node)
1287                                         return r;
1288                         *ret = -EPROBE_DEFER;
1289                         return NULL;
1290                 } else {
1291                         /*
1292                          * If we couldn't even get the node then it's
1293                          * not just that the device didn't register
1294                          * yet, there's no node and we'll never
1295                          * succeed.
1296                          */
1297                         *ret = -ENODEV;
1298                 }
1299         }
1300
1301         /* if not found, try doing it non-dt way */
1302         if (dev)
1303                 devname = dev_name(dev);
1304
1305         list_for_each_entry(r, &regulator_list, list)
1306                 if (strcmp(rdev_get_name(r), supply) == 0)
1307                         return r;
1308
1309         list_for_each_entry(map, &regulator_map_list, list) {
1310                 /* If the mapping has a device set up it must match */
1311                 if (map->dev_name &&
1312                     (!devname || strcmp(map->dev_name, devname)))
1313                         continue;
1314
1315                 if (strcmp(map->supply, supply) == 0)
1316                         return map->regulator;
1317         }
1318
1319
1320         return NULL;
1321 }
1322
1323 /* Internal regulator request function */
1324 static struct regulator *_regulator_get(struct device *dev, const char *id,
1325                                         bool exclusive, bool allow_dummy)
1326 {
1327         struct regulator_dev *rdev;
1328         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1329         const char *devname = NULL;
1330         int ret;
1331
1332         if (id == NULL) {
1333                 pr_err("get() with no identifier\n");
1334                 return ERR_PTR(-EINVAL);
1335         }
1336
1337         if (dev)
1338                 devname = dev_name(dev);
1339
1340         if (have_full_constraints())
1341                 ret = -ENODEV;
1342         else
1343                 ret = -EPROBE_DEFER;
1344
1345         mutex_lock(&regulator_list_mutex);
1346
1347         rdev = regulator_dev_lookup(dev, id, &ret);
1348         if (rdev)
1349                 goto found;
1350
1351         regulator = ERR_PTR(ret);
1352
1353         /*
1354          * If we have return value from dev_lookup fail, we do not expect to
1355          * succeed, so, quit with appropriate error value
1356          */
1357         if (ret && ret != -ENODEV)
1358                 goto out;
1359
1360         if (!devname)
1361                 devname = "deviceless";
1362
1363         /*
1364          * Assume that a regulator is physically present and enabled
1365          * even if it isn't hooked up and just provide a dummy.
1366          */
1367         if (have_full_constraints() && allow_dummy) {
1368                 pr_warn("%s supply %s not found, using dummy regulator\n",
1369                         devname, id);
1370
1371                 rdev = dummy_regulator_rdev;
1372                 goto found;
1373         /* Don't log an error when called from regulator_get_optional() */
1374         } else if (!have_full_constraints() || exclusive) {
1375                 dev_warn(dev, "dummy supplies not allowed\n");
1376         }
1377
1378         mutex_unlock(&regulator_list_mutex);
1379         return regulator;
1380
1381 found:
1382         if (rdev->exclusive) {
1383                 regulator = ERR_PTR(-EPERM);
1384                 goto out;
1385         }
1386
1387         if (exclusive && rdev->open_count) {
1388                 regulator = ERR_PTR(-EBUSY);
1389                 goto out;
1390         }
1391
1392         if (!try_module_get(rdev->owner))
1393                 goto out;
1394
1395         regulator = create_regulator(rdev, dev, id);
1396         if (regulator == NULL) {
1397                 regulator = ERR_PTR(-ENOMEM);
1398                 module_put(rdev->owner);
1399                 goto out;
1400         }
1401
1402         rdev->open_count++;
1403         if (exclusive) {
1404                 rdev->exclusive = 1;
1405
1406                 ret = _regulator_is_enabled(rdev);
1407                 if (ret > 0)
1408                         rdev->use_count = 1;
1409                 else
1410                         rdev->use_count = 0;
1411         }
1412
1413 out:
1414         mutex_unlock(&regulator_list_mutex);
1415
1416         return regulator;
1417 }
1418
1419 /**
1420  * regulator_get - lookup and obtain a reference to a regulator.
1421  * @dev: device for regulator "consumer"
1422  * @id: Supply name or regulator ID.
1423  *
1424  * Returns a struct regulator corresponding to the regulator producer,
1425  * or IS_ERR() condition containing errno.
1426  *
1427  * Use of supply names configured via regulator_set_device_supply() is
1428  * strongly encouraged.  It is recommended that the supply name used
1429  * should match the name used for the supply and/or the relevant
1430  * device pins in the datasheet.
1431  */
1432 struct regulator *regulator_get(struct device *dev, const char *id)
1433 {
1434         return _regulator_get(dev, id, false, true);
1435 }
1436 EXPORT_SYMBOL_GPL(regulator_get);
1437
1438 /**
1439  * regulator_get_exclusive - obtain exclusive access to a regulator.
1440  * @dev: device for regulator "consumer"
1441  * @id: Supply name or regulator ID.
1442  *
1443  * Returns a struct regulator corresponding to the regulator producer,
1444  * or IS_ERR() condition containing errno.  Other consumers will be
1445  * unable to obtain this regulator while this reference is held and the
1446  * use count for the regulator will be initialised to reflect the current
1447  * state of the regulator.
1448  *
1449  * This is intended for use by consumers which cannot tolerate shared
1450  * use of the regulator such as those which need to force the
1451  * regulator off for correct operation of the hardware they are
1452  * controlling.
1453  *
1454  * Use of supply names configured via regulator_set_device_supply() is
1455  * strongly encouraged.  It is recommended that the supply name used
1456  * should match the name used for the supply and/or the relevant
1457  * device pins in the datasheet.
1458  */
1459 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1460 {
1461         return _regulator_get(dev, id, true, false);
1462 }
1463 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1464
1465 /**
1466  * regulator_get_optional - obtain optional access to a regulator.
1467  * @dev: device for regulator "consumer"
1468  * @id: Supply name or regulator ID.
1469  *
1470  * Returns a struct regulator corresponding to the regulator producer,
1471  * or IS_ERR() condition containing errno.
1472  *
1473  * This is intended for use by consumers for devices which can have
1474  * some supplies unconnected in normal use, such as some MMC devices.
1475  * It can allow the regulator core to provide stub supplies for other
1476  * supplies requested using normal regulator_get() calls without
1477  * disrupting the operation of drivers that can handle absent
1478  * supplies.
1479  *
1480  * Use of supply names configured via regulator_set_device_supply() is
1481  * strongly encouraged.  It is recommended that the supply name used
1482  * should match the name used for the supply and/or the relevant
1483  * device pins in the datasheet.
1484  */
1485 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1486 {
1487         return _regulator_get(dev, id, false, false);
1488 }
1489 EXPORT_SYMBOL_GPL(regulator_get_optional);
1490
1491 /* Locks held by regulator_put() */
1492 static void _regulator_put(struct regulator *regulator)
1493 {
1494         struct regulator_dev *rdev;
1495
1496         if (regulator == NULL || IS_ERR(regulator))
1497                 return;
1498
1499         rdev = regulator->rdev;
1500
1501         debugfs_remove_recursive(regulator->debugfs);
1502
1503         /* remove any sysfs entries */
1504         if (regulator->dev)
1505                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1506         kfree(regulator->supply_name);
1507         list_del(&regulator->list);
1508         kfree(regulator);
1509
1510         rdev->open_count--;
1511         rdev->exclusive = 0;
1512
1513         module_put(rdev->owner);
1514 }
1515
1516 /**
1517  * regulator_put - "free" the regulator source
1518  * @regulator: regulator source
1519  *
1520  * Note: drivers must ensure that all regulator_enable calls made on this
1521  * regulator source are balanced by regulator_disable calls prior to calling
1522  * this function.
1523  */
1524 void regulator_put(struct regulator *regulator)
1525 {
1526         mutex_lock(&regulator_list_mutex);
1527         _regulator_put(regulator);
1528         mutex_unlock(&regulator_list_mutex);
1529 }
1530 EXPORT_SYMBOL_GPL(regulator_put);
1531
1532 /**
1533  * regulator_register_supply_alias - Provide device alias for supply lookup
1534  *
1535  * @dev: device that will be given as the regulator "consumer"
1536  * @id: Supply name or regulator ID
1537  * @alias_dev: device that should be used to lookup the supply
1538  * @alias_id: Supply name or regulator ID that should be used to lookup the
1539  * supply
1540  *
1541  * All lookups for id on dev will instead be conducted for alias_id on
1542  * alias_dev.
1543  */
1544 int regulator_register_supply_alias(struct device *dev, const char *id,
1545                                     struct device *alias_dev,
1546                                     const char *alias_id)
1547 {
1548         struct regulator_supply_alias *map;
1549
1550         map = regulator_find_supply_alias(dev, id);
1551         if (map)
1552                 return -EEXIST;
1553
1554         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1555         if (!map)
1556                 return -ENOMEM;
1557
1558         map->src_dev = dev;
1559         map->src_supply = id;
1560         map->alias_dev = alias_dev;
1561         map->alias_supply = alias_id;
1562
1563         list_add(&map->list, &regulator_supply_alias_list);
1564
1565         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1566                 id, dev_name(dev), alias_id, dev_name(alias_dev));
1567
1568         return 0;
1569 }
1570 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1571
1572 /**
1573  * regulator_unregister_supply_alias - Remove device alias
1574  *
1575  * @dev: device that will be given as the regulator "consumer"
1576  * @id: Supply name or regulator ID
1577  *
1578  * Remove a lookup alias if one exists for id on dev.
1579  */
1580 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1581 {
1582         struct regulator_supply_alias *map;
1583
1584         map = regulator_find_supply_alias(dev, id);
1585         if (map) {
1586                 list_del(&map->list);
1587                 kfree(map);
1588         }
1589 }
1590 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1591
1592 /**
1593  * regulator_bulk_register_supply_alias - register multiple aliases
1594  *
1595  * @dev: device that will be given as the regulator "consumer"
1596  * @id: List of supply names or regulator IDs
1597  * @alias_dev: device that should be used to lookup the supply
1598  * @alias_id: List of supply names or regulator IDs that should be used to
1599  * lookup the supply
1600  * @num_id: Number of aliases to register
1601  *
1602  * @return 0 on success, an errno on failure.
1603  *
1604  * This helper function allows drivers to register several supply
1605  * aliases in one operation.  If any of the aliases cannot be
1606  * registered any aliases that were registered will be removed
1607  * before returning to the caller.
1608  */
1609 int regulator_bulk_register_supply_alias(struct device *dev,
1610                                          const char *const *id,
1611                                          struct device *alias_dev,
1612                                          const char *const *alias_id,
1613                                          int num_id)
1614 {
1615         int i;
1616         int ret;
1617
1618         for (i = 0; i < num_id; ++i) {
1619                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1620                                                       alias_id[i]);
1621                 if (ret < 0)
1622                         goto err;
1623         }
1624
1625         return 0;
1626
1627 err:
1628         dev_err(dev,
1629                 "Failed to create supply alias %s,%s -> %s,%s\n",
1630                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1631
1632         while (--i >= 0)
1633                 regulator_unregister_supply_alias(dev, id[i]);
1634
1635         return ret;
1636 }
1637 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1638
1639 /**
1640  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1641  *
1642  * @dev: device that will be given as the regulator "consumer"
1643  * @id: List of supply names or regulator IDs
1644  * @num_id: Number of aliases to unregister
1645  *
1646  * This helper function allows drivers to unregister several supply
1647  * aliases in one operation.
1648  */
1649 void regulator_bulk_unregister_supply_alias(struct device *dev,
1650                                             const char *const *id,
1651                                             int num_id)
1652 {
1653         int i;
1654
1655         for (i = 0; i < num_id; ++i)
1656                 regulator_unregister_supply_alias(dev, id[i]);
1657 }
1658 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1659
1660
1661 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1662 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1663                                 const struct regulator_config *config)
1664 {
1665         struct regulator_enable_gpio *pin;
1666         struct gpio_desc *gpiod;
1667         int ret;
1668
1669         gpiod = gpio_to_desc(config->ena_gpio);
1670
1671         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1672                 if (pin->gpiod == gpiod) {
1673                         rdev_dbg(rdev, "GPIO %d is already used\n",
1674                                 config->ena_gpio);
1675                         goto update_ena_gpio_to_rdev;
1676                 }
1677         }
1678
1679         ret = gpio_request_one(config->ena_gpio,
1680                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1681                                 rdev_get_name(rdev));
1682         if (ret)
1683                 return ret;
1684
1685         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1686         if (pin == NULL) {
1687                 gpio_free(config->ena_gpio);
1688                 return -ENOMEM;
1689         }
1690
1691         pin->gpiod = gpiod;
1692         pin->ena_gpio_invert = config->ena_gpio_invert;
1693         list_add(&pin->list, &regulator_ena_gpio_list);
1694
1695 update_ena_gpio_to_rdev:
1696         pin->request_count++;
1697         rdev->ena_pin = pin;
1698         return 0;
1699 }
1700
1701 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1702 {
1703         struct regulator_enable_gpio *pin, *n;
1704
1705         if (!rdev->ena_pin)
1706                 return;
1707
1708         /* Free the GPIO only in case of no use */
1709         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1710                 if (pin->gpiod == rdev->ena_pin->gpiod) {
1711                         if (pin->request_count <= 1) {
1712                                 pin->request_count = 0;
1713                                 gpiod_put(pin->gpiod);
1714                                 list_del(&pin->list);
1715                                 kfree(pin);
1716                                 rdev->ena_pin = NULL;
1717                                 return;
1718                         } else {
1719                                 pin->request_count--;
1720                         }
1721                 }
1722         }
1723 }
1724
1725 /**
1726  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1727  * @rdev: regulator_dev structure
1728  * @enable: enable GPIO at initial use?
1729  *
1730  * GPIO is enabled in case of initial use. (enable_count is 0)
1731  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1732  */
1733 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1734 {
1735         struct regulator_enable_gpio *pin = rdev->ena_pin;
1736
1737         if (!pin)
1738                 return -EINVAL;
1739
1740         if (enable) {
1741                 /* Enable GPIO at initial use */
1742                 if (pin->enable_count == 0)
1743                         gpiod_set_value_cansleep(pin->gpiod,
1744                                                  !pin->ena_gpio_invert);
1745
1746                 pin->enable_count++;
1747         } else {
1748                 if (pin->enable_count > 1) {
1749                         pin->enable_count--;
1750                         return 0;
1751                 }
1752
1753                 /* Disable GPIO if not used */
1754                 if (pin->enable_count <= 1) {
1755                         gpiod_set_value_cansleep(pin->gpiod,
1756                                                  pin->ena_gpio_invert);
1757                         pin->enable_count = 0;
1758                 }
1759         }
1760
1761         return 0;
1762 }
1763
1764 /**
1765  * _regulator_enable_delay - a delay helper function
1766  * @delay: time to delay in microseconds
1767  *
1768  * Delay for the requested amount of time as per the guidelines in:
1769  *
1770  *     Documentation/timers/timers-howto.txt
1771  *
1772  * The assumption here is that regulators will never be enabled in
1773  * atomic context and therefore sleeping functions can be used.
1774  */
1775 static void _regulator_enable_delay(unsigned int delay)
1776 {
1777         unsigned int ms = delay / 1000;
1778         unsigned int us = delay % 1000;
1779
1780         if (ms > 0) {
1781                 /*
1782                  * For small enough values, handle super-millisecond
1783                  * delays in the usleep_range() call below.
1784                  */
1785                 if (ms < 20)
1786                         us += ms * 1000;
1787                 else
1788                         msleep(ms);
1789         }
1790
1791         /*
1792          * Give the scheduler some room to coalesce with any other
1793          * wakeup sources. For delays shorter than 10 us, don't even
1794          * bother setting up high-resolution timers and just busy-
1795          * loop.
1796          */
1797         if (us >= 10)
1798                 usleep_range(us, us + 100);
1799         else
1800                 udelay(us);
1801 }
1802
1803 static int _regulator_do_enable(struct regulator_dev *rdev)
1804 {
1805         int ret, delay;
1806
1807         /* Query before enabling in case configuration dependent.  */
1808         ret = _regulator_get_enable_time(rdev);
1809         if (ret >= 0) {
1810                 delay = ret;
1811         } else {
1812                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1813                 delay = 0;
1814         }
1815
1816         trace_regulator_enable(rdev_get_name(rdev));
1817
1818         if (rdev->desc->off_on_delay) {
1819                 /* if needed, keep a distance of off_on_delay from last time
1820                  * this regulator was disabled.
1821                  */
1822                 unsigned long start_jiffy = jiffies;
1823                 unsigned long intended, max_delay, remaining;
1824
1825                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
1826                 intended = rdev->last_off_jiffy + max_delay;
1827
1828                 if (time_before(start_jiffy, intended)) {
1829                         /* calc remaining jiffies to deal with one-time
1830                          * timer wrapping.
1831                          * in case of multiple timer wrapping, either it can be
1832                          * detected by out-of-range remaining, or it cannot be
1833                          * detected and we gets a panelty of
1834                          * _regulator_enable_delay().
1835                          */
1836                         remaining = intended - start_jiffy;
1837                         if (remaining <= max_delay)
1838                                 _regulator_enable_delay(
1839                                                 jiffies_to_usecs(remaining));
1840                 }
1841         }
1842
1843         if (rdev->ena_pin) {
1844                 ret = regulator_ena_gpio_ctrl(rdev, true);
1845                 if (ret < 0)
1846                         return ret;
1847                 rdev->ena_gpio_state = 1;
1848         } else if (rdev->desc->ops->enable) {
1849                 ret = rdev->desc->ops->enable(rdev);
1850                 if (ret < 0)
1851                         return ret;
1852         } else {
1853                 return -EINVAL;
1854         }
1855
1856         /* Allow the regulator to ramp; it would be useful to extend
1857          * this for bulk operations so that the regulators can ramp
1858          * together.  */
1859         trace_regulator_enable_delay(rdev_get_name(rdev));
1860
1861         _regulator_enable_delay(delay);
1862
1863         trace_regulator_enable_complete(rdev_get_name(rdev));
1864
1865         return 0;
1866 }
1867
1868 /* locks held by regulator_enable() */
1869 static int _regulator_enable(struct regulator_dev *rdev)
1870 {
1871         int ret;
1872
1873         /* check voltage and requested load before enabling */
1874         if (rdev->constraints &&
1875             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1876                 drms_uA_update(rdev);
1877
1878         if (rdev->use_count == 0) {
1879                 /* The regulator may on if it's not switchable or left on */
1880                 ret = _regulator_is_enabled(rdev);
1881                 if (ret == -EINVAL || ret == 0) {
1882                         if (!_regulator_can_change_status(rdev))
1883                                 return -EPERM;
1884
1885                         ret = _regulator_do_enable(rdev);
1886                         if (ret < 0)
1887                                 return ret;
1888
1889                 } else if (ret < 0) {
1890                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1891                         return ret;
1892                 }
1893                 /* Fallthrough on positive return values - already enabled */
1894         }
1895
1896         rdev->use_count++;
1897
1898         return 0;
1899 }
1900
1901 /**
1902  * regulator_enable - enable regulator output
1903  * @regulator: regulator source
1904  *
1905  * Request that the regulator be enabled with the regulator output at
1906  * the predefined voltage or current value.  Calls to regulator_enable()
1907  * must be balanced with calls to regulator_disable().
1908  *
1909  * NOTE: the output value can be set by other drivers, boot loader or may be
1910  * hardwired in the regulator.
1911  */
1912 int regulator_enable(struct regulator *regulator)
1913 {
1914         struct regulator_dev *rdev = regulator->rdev;
1915         int ret = 0;
1916
1917         if (regulator->always_on)
1918                 return 0;
1919
1920         if (rdev->supply) {
1921                 ret = regulator_enable(rdev->supply);
1922                 if (ret != 0)
1923                         return ret;
1924         }
1925
1926         mutex_lock(&rdev->mutex);
1927         ret = _regulator_enable(rdev);
1928         mutex_unlock(&rdev->mutex);
1929
1930         if (ret != 0 && rdev->supply)
1931                 regulator_disable(rdev->supply);
1932
1933         return ret;
1934 }
1935 EXPORT_SYMBOL_GPL(regulator_enable);
1936
1937 static int _regulator_do_disable(struct regulator_dev *rdev)
1938 {
1939         int ret;
1940
1941         trace_regulator_disable(rdev_get_name(rdev));
1942
1943         if (rdev->ena_pin) {
1944                 ret = regulator_ena_gpio_ctrl(rdev, false);
1945                 if (ret < 0)
1946                         return ret;
1947                 rdev->ena_gpio_state = 0;
1948
1949         } else if (rdev->desc->ops->disable) {
1950                 ret = rdev->desc->ops->disable(rdev);
1951                 if (ret != 0)
1952                         return ret;
1953         }
1954
1955         /* cares about last_off_jiffy only if off_on_delay is required by
1956          * device.
1957          */
1958         if (rdev->desc->off_on_delay)
1959                 rdev->last_off_jiffy = jiffies;
1960
1961         trace_regulator_disable_complete(rdev_get_name(rdev));
1962
1963         return 0;
1964 }
1965
1966 /* locks held by regulator_disable() */
1967 static int _regulator_disable(struct regulator_dev *rdev)
1968 {
1969         int ret = 0;
1970
1971         if (WARN(rdev->use_count <= 0,
1972                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
1973                 return -EIO;
1974
1975         /* are we the last user and permitted to disable ? */
1976         if (rdev->use_count == 1 &&
1977             (rdev->constraints && !rdev->constraints->always_on)) {
1978
1979                 /* we are last user */
1980                 if (_regulator_can_change_status(rdev)) {
1981                         ret = _regulator_do_disable(rdev);
1982                         if (ret < 0) {
1983                                 rdev_err(rdev, "failed to disable\n");
1984                                 return ret;
1985                         }
1986                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1987                                         NULL);
1988                 }
1989
1990                 rdev->use_count = 0;
1991         } else if (rdev->use_count > 1) {
1992
1993                 if (rdev->constraints &&
1994                         (rdev->constraints->valid_ops_mask &
1995                         REGULATOR_CHANGE_DRMS))
1996                         drms_uA_update(rdev);
1997
1998                 rdev->use_count--;
1999         }
2000
2001         return ret;
2002 }
2003
2004 /**
2005  * regulator_disable - disable regulator output
2006  * @regulator: regulator source
2007  *
2008  * Disable the regulator output voltage or current.  Calls to
2009  * regulator_enable() must be balanced with calls to
2010  * regulator_disable().
2011  *
2012  * NOTE: this will only disable the regulator output if no other consumer
2013  * devices have it enabled, the regulator device supports disabling and
2014  * machine constraints permit this operation.
2015  */
2016 int regulator_disable(struct regulator *regulator)
2017 {
2018         struct regulator_dev *rdev = regulator->rdev;
2019         int ret = 0;
2020
2021         if (regulator->always_on)
2022                 return 0;
2023
2024         mutex_lock(&rdev->mutex);
2025         ret = _regulator_disable(rdev);
2026         mutex_unlock(&rdev->mutex);
2027
2028         if (ret == 0 && rdev->supply)
2029                 regulator_disable(rdev->supply);
2030
2031         return ret;
2032 }
2033 EXPORT_SYMBOL_GPL(regulator_disable);
2034
2035 /* locks held by regulator_force_disable() */
2036 static int _regulator_force_disable(struct regulator_dev *rdev)
2037 {
2038         int ret = 0;
2039
2040         ret = _regulator_do_disable(rdev);
2041         if (ret < 0) {
2042                 rdev_err(rdev, "failed to force disable\n");
2043                 return ret;
2044         }
2045
2046         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2047                         REGULATOR_EVENT_DISABLE, NULL);
2048
2049         return 0;
2050 }
2051
2052 /**
2053  * regulator_force_disable - force disable regulator output
2054  * @regulator: regulator source
2055  *
2056  * Forcibly disable the regulator output voltage or current.
2057  * NOTE: this *will* disable the regulator output even if other consumer
2058  * devices have it enabled. This should be used for situations when device
2059  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2060  */
2061 int regulator_force_disable(struct regulator *regulator)
2062 {
2063         struct regulator_dev *rdev = regulator->rdev;
2064         int ret;
2065
2066         mutex_lock(&rdev->mutex);
2067         regulator->uA_load = 0;
2068         ret = _regulator_force_disable(regulator->rdev);
2069         mutex_unlock(&rdev->mutex);
2070
2071         if (rdev->supply)
2072                 while (rdev->open_count--)
2073                         regulator_disable(rdev->supply);
2074
2075         return ret;
2076 }
2077 EXPORT_SYMBOL_GPL(regulator_force_disable);
2078
2079 static void regulator_disable_work(struct work_struct *work)
2080 {
2081         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2082                                                   disable_work.work);
2083         int count, i, ret;
2084
2085         mutex_lock(&rdev->mutex);
2086
2087         BUG_ON(!rdev->deferred_disables);
2088
2089         count = rdev->deferred_disables;
2090         rdev->deferred_disables = 0;
2091
2092         for (i = 0; i < count; i++) {
2093                 ret = _regulator_disable(rdev);
2094                 if (ret != 0)
2095                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2096         }
2097
2098         mutex_unlock(&rdev->mutex);
2099
2100         if (rdev->supply) {
2101                 for (i = 0; i < count; i++) {
2102                         ret = regulator_disable(rdev->supply);
2103                         if (ret != 0) {
2104                                 rdev_err(rdev,
2105                                          "Supply disable failed: %d\n", ret);
2106                         }
2107                 }
2108         }
2109 }
2110
2111 /**
2112  * regulator_disable_deferred - disable regulator output with delay
2113  * @regulator: regulator source
2114  * @ms: miliseconds until the regulator is disabled
2115  *
2116  * Execute regulator_disable() on the regulator after a delay.  This
2117  * is intended for use with devices that require some time to quiesce.
2118  *
2119  * NOTE: this will only disable the regulator output if no other consumer
2120  * devices have it enabled, the regulator device supports disabling and
2121  * machine constraints permit this operation.
2122  */
2123 int regulator_disable_deferred(struct regulator *regulator, int ms)
2124 {
2125         struct regulator_dev *rdev = regulator->rdev;
2126         int ret;
2127
2128         if (regulator->always_on)
2129                 return 0;
2130
2131         if (!ms)
2132                 return regulator_disable(regulator);
2133
2134         mutex_lock(&rdev->mutex);
2135         rdev->deferred_disables++;
2136         mutex_unlock(&rdev->mutex);
2137
2138         ret = queue_delayed_work(system_power_efficient_wq,
2139                                  &rdev->disable_work,
2140                                  msecs_to_jiffies(ms));
2141         if (ret < 0)
2142                 return ret;
2143         else
2144                 return 0;
2145 }
2146 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2147
2148 static int _regulator_is_enabled(struct regulator_dev *rdev)
2149 {
2150         /* A GPIO control always takes precedence */
2151         if (rdev->ena_pin)
2152                 return rdev->ena_gpio_state;
2153
2154         /* If we don't know then assume that the regulator is always on */
2155         if (!rdev->desc->ops->is_enabled)
2156                 return 1;
2157
2158         return rdev->desc->ops->is_enabled(rdev);
2159 }
2160
2161 /**
2162  * regulator_is_enabled - is the regulator output enabled
2163  * @regulator: regulator source
2164  *
2165  * Returns positive if the regulator driver backing the source/client
2166  * has requested that the device be enabled, zero if it hasn't, else a
2167  * negative errno code.
2168  *
2169  * Note that the device backing this regulator handle can have multiple
2170  * users, so it might be enabled even if regulator_enable() was never
2171  * called for this particular source.
2172  */
2173 int regulator_is_enabled(struct regulator *regulator)
2174 {
2175         int ret;
2176
2177         if (regulator->always_on)
2178                 return 1;
2179
2180         mutex_lock(&regulator->rdev->mutex);
2181         ret = _regulator_is_enabled(regulator->rdev);
2182         mutex_unlock(&regulator->rdev->mutex);
2183
2184         return ret;
2185 }
2186 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2187
2188 /**
2189  * regulator_can_change_voltage - check if regulator can change voltage
2190  * @regulator: regulator source
2191  *
2192  * Returns positive if the regulator driver backing the source/client
2193  * can change its voltage, false otherwise. Useful for detecting fixed
2194  * or dummy regulators and disabling voltage change logic in the client
2195  * driver.
2196  */
2197 int regulator_can_change_voltage(struct regulator *regulator)
2198 {
2199         struct regulator_dev    *rdev = regulator->rdev;
2200
2201         if (rdev->constraints &&
2202             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2203                 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2204                         return 1;
2205
2206                 if (rdev->desc->continuous_voltage_range &&
2207                     rdev->constraints->min_uV && rdev->constraints->max_uV &&
2208                     rdev->constraints->min_uV != rdev->constraints->max_uV)
2209                         return 1;
2210         }
2211
2212         return 0;
2213 }
2214 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2215
2216 /**
2217  * regulator_count_voltages - count regulator_list_voltage() selectors
2218  * @regulator: regulator source
2219  *
2220  * Returns number of selectors, or negative errno.  Selectors are
2221  * numbered starting at zero, and typically correspond to bitfields
2222  * in hardware registers.
2223  */
2224 int regulator_count_voltages(struct regulator *regulator)
2225 {
2226         struct regulator_dev    *rdev = regulator->rdev;
2227
2228         if (rdev->desc->n_voltages)
2229                 return rdev->desc->n_voltages;
2230
2231         if (!rdev->supply)
2232                 return -EINVAL;
2233
2234         return regulator_count_voltages(rdev->supply);
2235 }
2236 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2237
2238 /**
2239  * regulator_list_voltage - enumerate supported voltages
2240  * @regulator: regulator source
2241  * @selector: identify voltage to list
2242  * Context: can sleep
2243  *
2244  * Returns a voltage that can be passed to @regulator_set_voltage(),
2245  * zero if this selector code can't be used on this system, or a
2246  * negative errno.
2247  */
2248 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2249 {
2250         struct regulator_dev *rdev = regulator->rdev;
2251         const struct regulator_ops *ops = rdev->desc->ops;
2252         int ret;
2253
2254         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2255                 return rdev->desc->fixed_uV;
2256
2257         if (ops->list_voltage) {
2258                 if (selector >= rdev->desc->n_voltages)
2259                         return -EINVAL;
2260                 mutex_lock(&rdev->mutex);
2261                 ret = ops->list_voltage(rdev, selector);
2262                 mutex_unlock(&rdev->mutex);
2263         } else if (rdev->supply) {
2264                 ret = regulator_list_voltage(rdev->supply, selector);
2265         } else {
2266                 return -EINVAL;
2267         }
2268
2269         if (ret > 0) {
2270                 if (ret < rdev->constraints->min_uV)
2271                         ret = 0;
2272                 else if (ret > rdev->constraints->max_uV)
2273                         ret = 0;
2274         }
2275
2276         return ret;
2277 }
2278 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2279
2280 /**
2281  * regulator_get_regmap - get the regulator's register map
2282  * @regulator: regulator source
2283  *
2284  * Returns the register map for the given regulator, or an ERR_PTR value
2285  * if the regulator doesn't use regmap.
2286  */
2287 struct regmap *regulator_get_regmap(struct regulator *regulator)
2288 {
2289         struct regmap *map = regulator->rdev->regmap;
2290
2291         return map ? map : ERR_PTR(-EOPNOTSUPP);
2292 }
2293
2294 /**
2295  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2296  * @regulator: regulator source
2297  * @vsel_reg: voltage selector register, output parameter
2298  * @vsel_mask: mask for voltage selector bitfield, output parameter
2299  *
2300  * Returns the hardware register offset and bitmask used for setting the
2301  * regulator voltage. This might be useful when configuring voltage-scaling
2302  * hardware or firmware that can make I2C requests behind the kernel's back,
2303  * for example.
2304  *
2305  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2306  * and 0 is returned, otherwise a negative errno is returned.
2307  */
2308 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2309                                          unsigned *vsel_reg,
2310                                          unsigned *vsel_mask)
2311 {
2312         struct regulator_dev *rdev = regulator->rdev;
2313         const struct regulator_ops *ops = rdev->desc->ops;
2314
2315         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2316                 return -EOPNOTSUPP;
2317
2318          *vsel_reg = rdev->desc->vsel_reg;
2319          *vsel_mask = rdev->desc->vsel_mask;
2320
2321          return 0;
2322 }
2323 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2324
2325 /**
2326  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2327  * @regulator: regulator source
2328  * @selector: identify voltage to list
2329  *
2330  * Converts the selector to a hardware-specific voltage selector that can be
2331  * directly written to the regulator registers. The address of the voltage
2332  * register can be determined by calling @regulator_get_hardware_vsel_register.
2333  *
2334  * On error a negative errno is returned.
2335  */
2336 int regulator_list_hardware_vsel(struct regulator *regulator,
2337                                  unsigned selector)
2338 {
2339         struct regulator_dev *rdev = regulator->rdev;
2340         const struct regulator_ops *ops = rdev->desc->ops;
2341
2342         if (selector >= rdev->desc->n_voltages)
2343                 return -EINVAL;
2344         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2345                 return -EOPNOTSUPP;
2346
2347         return selector;
2348 }
2349 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2350
2351 /**
2352  * regulator_get_linear_step - return the voltage step size between VSEL values
2353  * @regulator: regulator source
2354  *
2355  * Returns the voltage step size between VSEL values for linear
2356  * regulators, or return 0 if the regulator isn't a linear regulator.
2357  */
2358 unsigned int regulator_get_linear_step(struct regulator *regulator)
2359 {
2360         struct regulator_dev *rdev = regulator->rdev;
2361
2362         return rdev->desc->uV_step;
2363 }
2364 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2365
2366 /**
2367  * regulator_is_supported_voltage - check if a voltage range can be supported
2368  *
2369  * @regulator: Regulator to check.
2370  * @min_uV: Minimum required voltage in uV.
2371  * @max_uV: Maximum required voltage in uV.
2372  *
2373  * Returns a boolean or a negative error code.
2374  */
2375 int regulator_is_supported_voltage(struct regulator *regulator,
2376                                    int min_uV, int max_uV)
2377 {
2378         struct regulator_dev *rdev = regulator->rdev;
2379         int i, voltages, ret;
2380
2381         /* If we can't change voltage check the current voltage */
2382         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2383                 ret = regulator_get_voltage(regulator);
2384                 if (ret >= 0)
2385                         return min_uV <= ret && ret <= max_uV;
2386                 else
2387                         return ret;
2388         }
2389
2390         /* Any voltage within constrains range is fine? */
2391         if (rdev->desc->continuous_voltage_range)
2392                 return min_uV >= rdev->constraints->min_uV &&
2393                                 max_uV <= rdev->constraints->max_uV;
2394
2395         ret = regulator_count_voltages(regulator);
2396         if (ret < 0)
2397                 return ret;
2398         voltages = ret;
2399
2400         for (i = 0; i < voltages; i++) {
2401                 ret = regulator_list_voltage(regulator, i);
2402
2403                 if (ret >= min_uV && ret <= max_uV)
2404                         return 1;
2405         }
2406
2407         return 0;
2408 }
2409 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2410
2411 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2412                                        int min_uV, int max_uV,
2413                                        unsigned *selector)
2414 {
2415         struct pre_voltage_change_data data;
2416         int ret;
2417
2418         data.old_uV = _regulator_get_voltage(rdev);
2419         data.min_uV = min_uV;
2420         data.max_uV = max_uV;
2421         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2422                                    &data);
2423         if (ret & NOTIFY_STOP_MASK)
2424                 return -EINVAL;
2425
2426         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2427         if (ret >= 0)
2428                 return ret;
2429
2430         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2431                              (void *)data.old_uV);
2432
2433         return ret;
2434 }
2435
2436 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2437                                            int uV, unsigned selector)
2438 {
2439         struct pre_voltage_change_data data;
2440         int ret;
2441
2442         data.old_uV = _regulator_get_voltage(rdev);
2443         data.min_uV = uV;
2444         data.max_uV = uV;
2445         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2446                                    &data);
2447         if (ret & NOTIFY_STOP_MASK)
2448                 return -EINVAL;
2449
2450         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2451         if (ret >= 0)
2452                 return ret;
2453
2454         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2455                              (void *)data.old_uV);
2456
2457         return ret;
2458 }
2459
2460 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2461                                      int min_uV, int max_uV)
2462 {
2463         int ret;
2464         int delay = 0;
2465         int best_val = 0;
2466         unsigned int selector;
2467         int old_selector = -1;
2468
2469         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2470
2471         min_uV += rdev->constraints->uV_offset;
2472         max_uV += rdev->constraints->uV_offset;
2473
2474         /*
2475          * If we can't obtain the old selector there is not enough
2476          * info to call set_voltage_time_sel().
2477          */
2478         if (_regulator_is_enabled(rdev) &&
2479             rdev->desc->ops->set_voltage_time_sel &&
2480             rdev->desc->ops->get_voltage_sel) {
2481                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2482                 if (old_selector < 0)
2483                         return old_selector;
2484         }
2485
2486         if (rdev->desc->ops->set_voltage) {
2487                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2488                                                   &selector);
2489
2490                 if (ret >= 0) {
2491                         if (rdev->desc->ops->list_voltage)
2492                                 best_val = rdev->desc->ops->list_voltage(rdev,
2493                                                                          selector);
2494                         else
2495                                 best_val = _regulator_get_voltage(rdev);
2496                 }
2497
2498         } else if (rdev->desc->ops->set_voltage_sel) {
2499                 if (rdev->desc->ops->map_voltage) {
2500                         ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2501                                                            max_uV);
2502                 } else {
2503                         if (rdev->desc->ops->list_voltage ==
2504                             regulator_list_voltage_linear)
2505                                 ret = regulator_map_voltage_linear(rdev,
2506                                                                 min_uV, max_uV);
2507                         else if (rdev->desc->ops->list_voltage ==
2508                                  regulator_list_voltage_linear_range)
2509                                 ret = regulator_map_voltage_linear_range(rdev,
2510                                                                 min_uV, max_uV);
2511                         else
2512                                 ret = regulator_map_voltage_iterate(rdev,
2513                                                                 min_uV, max_uV);
2514                 }
2515
2516                 if (ret >= 0) {
2517                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2518                         if (min_uV <= best_val && max_uV >= best_val) {
2519                                 selector = ret;
2520                                 if (old_selector == selector)
2521                                         ret = 0;
2522                                 else
2523                                         ret = _regulator_call_set_voltage_sel(
2524                                                 rdev, best_val, selector);
2525                         } else {
2526                                 ret = -EINVAL;
2527                         }
2528                 }
2529         } else {
2530                 ret = -EINVAL;
2531         }
2532
2533         /* Call set_voltage_time_sel if successfully obtained old_selector */
2534         if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2535                 && old_selector != selector) {
2536
2537                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2538                                                 old_selector, selector);
2539                 if (delay < 0) {
2540                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2541                                   delay);
2542                         delay = 0;
2543                 }
2544
2545                 /* Insert any necessary delays */
2546                 if (delay >= 1000) {
2547                         mdelay(delay / 1000);
2548                         udelay(delay % 1000);
2549                 } else if (delay) {
2550                         udelay(delay);
2551                 }
2552         }
2553
2554         if (ret == 0 && best_val >= 0) {
2555                 unsigned long data = best_val;
2556
2557                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2558                                      (void *)data);
2559         }
2560
2561         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2562
2563         return ret;
2564 }
2565
2566 /**
2567  * regulator_set_voltage - set regulator output voltage
2568  * @regulator: regulator source
2569  * @min_uV: Minimum required voltage in uV
2570  * @max_uV: Maximum acceptable voltage in uV
2571  *
2572  * Sets a voltage regulator to the desired output voltage. This can be set
2573  * during any regulator state. IOW, regulator can be disabled or enabled.
2574  *
2575  * If the regulator is enabled then the voltage will change to the new value
2576  * immediately otherwise if the regulator is disabled the regulator will
2577  * output at the new voltage when enabled.
2578  *
2579  * NOTE: If the regulator is shared between several devices then the lowest
2580  * request voltage that meets the system constraints will be used.
2581  * Regulator system constraints must be set for this regulator before
2582  * calling this function otherwise this call will fail.
2583  */
2584 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2585 {
2586         struct regulator_dev *rdev = regulator->rdev;
2587         int ret = 0;
2588         int old_min_uV, old_max_uV;
2589         int current_uV;
2590
2591         mutex_lock(&rdev->mutex);
2592
2593         /* If we're setting the same range as last time the change
2594          * should be a noop (some cpufreq implementations use the same
2595          * voltage for multiple frequencies, for example).
2596          */
2597         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2598                 goto out;
2599
2600         /* If we're trying to set a range that overlaps the current voltage,
2601          * return succesfully even though the regulator does not support
2602          * changing the voltage.
2603          */
2604         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2605                 current_uV = _regulator_get_voltage(rdev);
2606                 if (min_uV <= current_uV && current_uV <= max_uV) {
2607                         regulator->min_uV = min_uV;
2608                         regulator->max_uV = max_uV;
2609                         goto out;
2610                 }
2611         }
2612
2613         /* sanity check */
2614         if (!rdev->desc->ops->set_voltage &&
2615             !rdev->desc->ops->set_voltage_sel) {
2616                 ret = -EINVAL;
2617                 goto out;
2618         }
2619
2620         /* constraints check */
2621         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2622         if (ret < 0)
2623                 goto out;
2624
2625         /* restore original values in case of error */
2626         old_min_uV = regulator->min_uV;
2627         old_max_uV = regulator->max_uV;
2628         regulator->min_uV = min_uV;
2629         regulator->max_uV = max_uV;
2630
2631         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2632         if (ret < 0)
2633                 goto out2;
2634
2635         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2636         if (ret < 0)
2637                 goto out2;
2638
2639 out:
2640         mutex_unlock(&rdev->mutex);
2641         return ret;
2642 out2:
2643         regulator->min_uV = old_min_uV;
2644         regulator->max_uV = old_max_uV;
2645         mutex_unlock(&rdev->mutex);
2646         return ret;
2647 }
2648 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2649
2650 /**
2651  * regulator_set_voltage_time - get raise/fall time
2652  * @regulator: regulator source
2653  * @old_uV: starting voltage in microvolts
2654  * @new_uV: target voltage in microvolts
2655  *
2656  * Provided with the starting and ending voltage, this function attempts to
2657  * calculate the time in microseconds required to rise or fall to this new
2658  * voltage.
2659  */
2660 int regulator_set_voltage_time(struct regulator *regulator,
2661                                int old_uV, int new_uV)
2662 {
2663         struct regulator_dev *rdev = regulator->rdev;
2664         const struct regulator_ops *ops = rdev->desc->ops;
2665         int old_sel = -1;
2666         int new_sel = -1;
2667         int voltage;
2668         int i;
2669
2670         /* Currently requires operations to do this */
2671         if (!ops->list_voltage || !ops->set_voltage_time_sel
2672             || !rdev->desc->n_voltages)
2673                 return -EINVAL;
2674
2675         for (i = 0; i < rdev->desc->n_voltages; i++) {
2676                 /* We only look for exact voltage matches here */
2677                 voltage = regulator_list_voltage(regulator, i);
2678                 if (voltage < 0)
2679                         return -EINVAL;
2680                 if (voltage == 0)
2681                         continue;
2682                 if (voltage == old_uV)
2683                         old_sel = i;
2684                 if (voltage == new_uV)
2685                         new_sel = i;
2686         }
2687
2688         if (old_sel < 0 || new_sel < 0)
2689                 return -EINVAL;
2690
2691         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2692 }
2693 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2694
2695 /**
2696  * regulator_set_voltage_time_sel - get raise/fall time
2697  * @rdev: regulator source device
2698  * @old_selector: selector for starting voltage
2699  * @new_selector: selector for target voltage
2700  *
2701  * Provided with the starting and target voltage selectors, this function
2702  * returns time in microseconds required to rise or fall to this new voltage
2703  *
2704  * Drivers providing ramp_delay in regulation_constraints can use this as their
2705  * set_voltage_time_sel() operation.
2706  */
2707 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2708                                    unsigned int old_selector,
2709                                    unsigned int new_selector)
2710 {
2711         unsigned int ramp_delay = 0;
2712         int old_volt, new_volt;
2713
2714         if (rdev->constraints->ramp_delay)
2715                 ramp_delay = rdev->constraints->ramp_delay;
2716         else if (rdev->desc->ramp_delay)
2717                 ramp_delay = rdev->desc->ramp_delay;
2718
2719         if (ramp_delay == 0) {
2720                 rdev_warn(rdev, "ramp_delay not set\n");
2721                 return 0;
2722         }
2723
2724         /* sanity check */
2725         if (!rdev->desc->ops->list_voltage)
2726                 return -EINVAL;
2727
2728         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2729         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2730
2731         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2732 }
2733 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2734
2735 /**
2736  * regulator_sync_voltage - re-apply last regulator output voltage
2737  * @regulator: regulator source
2738  *
2739  * Re-apply the last configured voltage.  This is intended to be used
2740  * where some external control source the consumer is cooperating with
2741  * has caused the configured voltage to change.
2742  */
2743 int regulator_sync_voltage(struct regulator *regulator)
2744 {
2745         struct regulator_dev *rdev = regulator->rdev;
2746         int ret, min_uV, max_uV;
2747
2748         mutex_lock(&rdev->mutex);
2749
2750         if (!rdev->desc->ops->set_voltage &&
2751             !rdev->desc->ops->set_voltage_sel) {
2752                 ret = -EINVAL;
2753                 goto out;
2754         }
2755
2756         /* This is only going to work if we've had a voltage configured. */
2757         if (!regulator->min_uV && !regulator->max_uV) {
2758                 ret = -EINVAL;
2759                 goto out;
2760         }
2761
2762         min_uV = regulator->min_uV;
2763         max_uV = regulator->max_uV;
2764
2765         /* This should be a paranoia check... */
2766         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2767         if (ret < 0)
2768                 goto out;
2769
2770         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2771         if (ret < 0)
2772                 goto out;
2773
2774         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2775
2776 out:
2777         mutex_unlock(&rdev->mutex);
2778         return ret;
2779 }
2780 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2781
2782 static int _regulator_get_voltage(struct regulator_dev *rdev)
2783 {
2784         int sel, ret;
2785
2786         if (rdev->desc->ops->get_voltage_sel) {
2787                 sel = rdev->desc->ops->get_voltage_sel(rdev);
2788                 if (sel < 0)
2789                         return sel;
2790                 ret = rdev->desc->ops->list_voltage(rdev, sel);
2791         } else if (rdev->desc->ops->get_voltage) {
2792                 ret = rdev->desc->ops->get_voltage(rdev);
2793         } else if (rdev->desc->ops->list_voltage) {
2794                 ret = rdev->desc->ops->list_voltage(rdev, 0);
2795         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2796                 ret = rdev->desc->fixed_uV;
2797         } else if (rdev->supply) {
2798                 ret = regulator_get_voltage(rdev->supply);
2799         } else {
2800                 return -EINVAL;
2801         }
2802
2803         if (ret < 0)
2804                 return ret;
2805         return ret - rdev->constraints->uV_offset;
2806 }
2807
2808 /**
2809  * regulator_get_voltage - get regulator output voltage
2810  * @regulator: regulator source
2811  *
2812  * This returns the current regulator voltage in uV.
2813  *
2814  * NOTE: If the regulator is disabled it will return the voltage value. This
2815  * function should not be used to determine regulator state.
2816  */
2817 int regulator_get_voltage(struct regulator *regulator)
2818 {
2819         int ret;
2820
2821         mutex_lock(&regulator->rdev->mutex);
2822
2823         ret = _regulator_get_voltage(regulator->rdev);
2824
2825         mutex_unlock(&regulator->rdev->mutex);
2826
2827         return ret;
2828 }
2829 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2830
2831 /**
2832  * regulator_set_current_limit - set regulator output current limit
2833  * @regulator: regulator source
2834  * @min_uA: Minimum supported current in uA
2835  * @max_uA: Maximum supported current in uA
2836  *
2837  * Sets current sink to the desired output current. This can be set during
2838  * any regulator state. IOW, regulator can be disabled or enabled.
2839  *
2840  * If the regulator is enabled then the current will change to the new value
2841  * immediately otherwise if the regulator is disabled the regulator will
2842  * output at the new current when enabled.
2843  *
2844  * NOTE: Regulator system constraints must be set for this regulator before
2845  * calling this function otherwise this call will fail.
2846  */
2847 int regulator_set_current_limit(struct regulator *regulator,
2848                                int min_uA, int max_uA)
2849 {
2850         struct regulator_dev *rdev = regulator->rdev;
2851         int ret;
2852
2853         mutex_lock(&rdev->mutex);
2854
2855         /* sanity check */
2856         if (!rdev->desc->ops->set_current_limit) {
2857                 ret = -EINVAL;
2858                 goto out;
2859         }
2860
2861         /* constraints check */
2862         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2863         if (ret < 0)
2864                 goto out;
2865
2866         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2867 out:
2868         mutex_unlock(&rdev->mutex);
2869         return ret;
2870 }
2871 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2872
2873 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2874 {
2875         int ret;
2876
2877         mutex_lock(&rdev->mutex);
2878
2879         /* sanity check */
2880         if (!rdev->desc->ops->get_current_limit) {
2881                 ret = -EINVAL;
2882                 goto out;
2883         }
2884
2885         ret = rdev->desc->ops->get_current_limit(rdev);
2886 out:
2887         mutex_unlock(&rdev->mutex);
2888         return ret;
2889 }
2890
2891 /**
2892  * regulator_get_current_limit - get regulator output current
2893  * @regulator: regulator source
2894  *
2895  * This returns the current supplied by the specified current sink in uA.
2896  *
2897  * NOTE: If the regulator is disabled it will return the current value. This
2898  * function should not be used to determine regulator state.
2899  */
2900 int regulator_get_current_limit(struct regulator *regulator)
2901 {
2902         return _regulator_get_current_limit(regulator->rdev);
2903 }
2904 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2905
2906 /**
2907  * regulator_set_mode - set regulator operating mode
2908  * @regulator: regulator source
2909  * @mode: operating mode - one of the REGULATOR_MODE constants
2910  *
2911  * Set regulator operating mode to increase regulator efficiency or improve
2912  * regulation performance.
2913  *
2914  * NOTE: Regulator system constraints must be set for this regulator before
2915  * calling this function otherwise this call will fail.
2916  */
2917 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2918 {
2919         struct regulator_dev *rdev = regulator->rdev;
2920         int ret;
2921         int regulator_curr_mode;
2922
2923         mutex_lock(&rdev->mutex);
2924
2925         /* sanity check */
2926         if (!rdev->desc->ops->set_mode) {
2927                 ret = -EINVAL;
2928                 goto out;
2929         }
2930
2931         /* return if the same mode is requested */
2932         if (rdev->desc->ops->get_mode) {
2933                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2934                 if (regulator_curr_mode == mode) {
2935                         ret = 0;
2936                         goto out;
2937                 }
2938         }
2939
2940         /* constraints check */
2941         ret = regulator_mode_constrain(rdev, &mode);
2942         if (ret < 0)
2943                 goto out;
2944
2945         ret = rdev->desc->ops->set_mode(rdev, mode);
2946 out:
2947         mutex_unlock(&rdev->mutex);
2948         return ret;
2949 }
2950 EXPORT_SYMBOL_GPL(regulator_set_mode);
2951
2952 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2953 {
2954         int ret;
2955
2956         mutex_lock(&rdev->mutex);
2957
2958         /* sanity check */
2959         if (!rdev->desc->ops->get_mode) {
2960                 ret = -EINVAL;
2961                 goto out;
2962         }
2963
2964         ret = rdev->desc->ops->get_mode(rdev);
2965 out:
2966         mutex_unlock(&rdev->mutex);
2967         return ret;
2968 }
2969
2970 /**
2971  * regulator_get_mode - get regulator operating mode
2972  * @regulator: regulator source
2973  *
2974  * Get the current regulator operating mode.
2975  */
2976 unsigned int regulator_get_mode(struct regulator *regulator)
2977 {
2978         return _regulator_get_mode(regulator->rdev);
2979 }
2980 EXPORT_SYMBOL_GPL(regulator_get_mode);
2981
2982 /**
2983  * regulator_set_optimum_mode - set regulator optimum operating mode
2984  * @regulator: regulator source
2985  * @uA_load: load current
2986  *
2987  * Notifies the regulator core of a new device load. This is then used by
2988  * DRMS (if enabled by constraints) to set the most efficient regulator
2989  * operating mode for the new regulator loading.
2990  *
2991  * Consumer devices notify their supply regulator of the maximum power
2992  * they will require (can be taken from device datasheet in the power
2993  * consumption tables) when they change operational status and hence power
2994  * state. Examples of operational state changes that can affect power
2995  * consumption are :-
2996  *
2997  *    o Device is opened / closed.
2998  *    o Device I/O is about to begin or has just finished.
2999  *    o Device is idling in between work.
3000  *
3001  * This information is also exported via sysfs to userspace.
3002  *
3003  * DRMS will sum the total requested load on the regulator and change
3004  * to the most efficient operating mode if platform constraints allow.
3005  *
3006  * Returns the new regulator mode or error.
3007  */
3008 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
3009 {
3010         struct regulator_dev *rdev = regulator->rdev;
3011         struct regulator *consumer;
3012         int ret, output_uV, input_uV = 0, total_uA_load = 0;
3013         unsigned int mode;
3014
3015         if (rdev->supply)
3016                 input_uV = regulator_get_voltage(rdev->supply);
3017
3018         mutex_lock(&rdev->mutex);
3019
3020         /*
3021          * first check to see if we can set modes at all, otherwise just
3022          * tell the consumer everything is OK.
3023          */
3024         regulator->uA_load = uA_load;
3025         ret = regulator_check_drms(rdev);
3026         if (ret < 0) {
3027                 ret = 0;
3028                 goto out;
3029         }
3030
3031         if (!rdev->desc->ops->get_optimum_mode)
3032                 goto out;
3033
3034         /*
3035          * we can actually do this so any errors are indicators of
3036          * potential real failure.
3037          */
3038         ret = -EINVAL;
3039
3040         if (!rdev->desc->ops->set_mode)
3041                 goto out;
3042
3043         /* get output voltage */
3044         output_uV = _regulator_get_voltage(rdev);
3045         if (output_uV <= 0) {
3046                 rdev_err(rdev, "invalid output voltage found\n");
3047                 goto out;
3048         }
3049
3050         /* No supply? Use constraint voltage */
3051         if (input_uV <= 0)
3052                 input_uV = rdev->constraints->input_uV;
3053         if (input_uV <= 0) {
3054                 rdev_err(rdev, "invalid input voltage found\n");
3055                 goto out;
3056         }
3057
3058         /* calc total requested load for this regulator */
3059         list_for_each_entry(consumer, &rdev->consumer_list, list)
3060                 total_uA_load += consumer->uA_load;
3061
3062         mode = rdev->desc->ops->get_optimum_mode(rdev,
3063                                                  input_uV, output_uV,
3064                                                  total_uA_load);
3065         ret = regulator_mode_constrain(rdev, &mode);
3066         if (ret < 0) {
3067                 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
3068                          total_uA_load, input_uV, output_uV);
3069                 goto out;
3070         }
3071
3072         ret = rdev->desc->ops->set_mode(rdev, mode);
3073         if (ret < 0) {
3074                 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
3075                 goto out;
3076         }
3077         ret = mode;
3078 out:
3079         mutex_unlock(&rdev->mutex);
3080         return ret;
3081 }
3082 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
3083
3084 /**
3085  * regulator_allow_bypass - allow the regulator to go into bypass mode
3086  *
3087  * @regulator: Regulator to configure
3088  * @enable: enable or disable bypass mode
3089  *
3090  * Allow the regulator to go into bypass mode if all other consumers
3091  * for the regulator also enable bypass mode and the machine
3092  * constraints allow this.  Bypass mode means that the regulator is
3093  * simply passing the input directly to the output with no regulation.
3094  */
3095 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3096 {
3097         struct regulator_dev *rdev = regulator->rdev;
3098         int ret = 0;
3099
3100         if (!rdev->desc->ops->set_bypass)
3101                 return 0;
3102
3103         if (rdev->constraints &&
3104             !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3105                 return 0;
3106
3107         mutex_lock(&rdev->mutex);
3108
3109         if (enable && !regulator->bypass) {
3110                 rdev->bypass_count++;
3111
3112                 if (rdev->bypass_count == rdev->open_count) {
3113                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3114                         if (ret != 0)
3115                                 rdev->bypass_count--;
3116                 }
3117
3118         } else if (!enable && regulator->bypass) {
3119                 rdev->bypass_count--;
3120
3121                 if (rdev->bypass_count != rdev->open_count) {
3122                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3123                         if (ret != 0)
3124                                 rdev->bypass_count++;
3125                 }
3126         }
3127
3128         if (ret == 0)
3129                 regulator->bypass = enable;
3130
3131         mutex_unlock(&rdev->mutex);
3132
3133         return ret;
3134 }
3135 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3136
3137 /**
3138  * regulator_register_notifier - register regulator event notifier
3139  * @regulator: regulator source
3140  * @nb: notifier block
3141  *
3142  * Register notifier block to receive regulator events.
3143  */
3144 int regulator_register_notifier(struct regulator *regulator,
3145                               struct notifier_block *nb)
3146 {
3147         return blocking_notifier_chain_register(&regulator->rdev->notifier,
3148                                                 nb);
3149 }
3150 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3151
3152 /**
3153  * regulator_unregister_notifier - unregister regulator event notifier
3154  * @regulator: regulator source
3155  * @nb: notifier block
3156  *
3157  * Unregister regulator event notifier block.
3158  */
3159 int regulator_unregister_notifier(struct regulator *regulator,
3160                                 struct notifier_block *nb)
3161 {
3162         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3163                                                   nb);
3164 }
3165 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3166
3167 /* notify regulator consumers and downstream regulator consumers.
3168  * Note mutex must be held by caller.
3169  */
3170 static int _notifier_call_chain(struct regulator_dev *rdev,
3171                                   unsigned long event, void *data)
3172 {
3173         /* call rdev chain first */
3174         return blocking_notifier_call_chain(&rdev->notifier, event, data);
3175 }
3176
3177 /**
3178  * regulator_bulk_get - get multiple regulator consumers
3179  *
3180  * @dev:           Device to supply
3181  * @num_consumers: Number of consumers to register
3182  * @consumers:     Configuration of consumers; clients are stored here.
3183  *
3184  * @return 0 on success, an errno on failure.
3185  *
3186  * This helper function allows drivers to get several regulator
3187  * consumers in one operation.  If any of the regulators cannot be
3188  * acquired then any regulators that were allocated will be freed
3189  * before returning to the caller.
3190  */
3191 int regulator_bulk_get(struct device *dev, int num_consumers,
3192                        struct regulator_bulk_data *consumers)
3193 {
3194         int i;
3195         int ret;
3196
3197         for (i = 0; i < num_consumers; i++)
3198                 consumers[i].consumer = NULL;
3199
3200         for (i = 0; i < num_consumers; i++) {
3201                 consumers[i].consumer = regulator_get(dev,
3202                                                       consumers[i].supply);
3203                 if (IS_ERR(consumers[i].consumer)) {
3204                         ret = PTR_ERR(consumers[i].consumer);
3205                         dev_err(dev, "Failed to get supply '%s': %d\n",
3206                                 consumers[i].supply, ret);
3207                         consumers[i].consumer = NULL;
3208                         goto err;
3209                 }
3210         }
3211
3212         return 0;
3213
3214 err:
3215         while (--i >= 0)
3216                 regulator_put(consumers[i].consumer);
3217
3218         return ret;
3219 }
3220 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3221
3222 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3223 {
3224         struct regulator_bulk_data *bulk = data;
3225
3226         bulk->ret = regulator_enable(bulk->consumer);
3227 }
3228
3229 /**
3230  * regulator_bulk_enable - enable multiple regulator consumers
3231  *
3232  * @num_consumers: Number of consumers
3233  * @consumers:     Consumer data; clients are stored here.
3234  * @return         0 on success, an errno on failure
3235  *
3236  * This convenience API allows consumers to enable multiple regulator
3237  * clients in a single API call.  If any consumers cannot be enabled
3238  * then any others that were enabled will be disabled again prior to
3239  * return.
3240  */
3241 int regulator_bulk_enable(int num_consumers,
3242                           struct regulator_bulk_data *consumers)
3243 {
3244         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3245         int i;
3246         int ret = 0;
3247
3248         for (i = 0; i < num_consumers; i++) {
3249                 if (consumers[i].consumer->always_on)
3250                         consumers[i].ret = 0;
3251                 else
3252                         async_schedule_domain(regulator_bulk_enable_async,
3253                                               &consumers[i], &async_domain);
3254         }
3255
3256         async_synchronize_full_domain(&async_domain);
3257
3258         /* If any consumer failed we need to unwind any that succeeded */
3259         for (i = 0; i < num_consumers; i++) {
3260                 if (consumers[i].ret != 0) {
3261                         ret = consumers[i].ret;
3262                         goto err;
3263                 }
3264         }
3265
3266         return 0;
3267
3268 err:
3269         for (i = 0; i < num_consumers; i++) {
3270                 if (consumers[i].ret < 0)
3271                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3272                                consumers[i].ret);
3273                 else
3274                         regulator_disable(consumers[i].consumer);
3275         }
3276
3277         return ret;
3278 }
3279 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3280
3281 /**
3282  * regulator_bulk_disable - disable multiple regulator consumers
3283  *
3284  * @num_consumers: Number of consumers
3285  * @consumers:     Consumer data; clients are stored here.
3286  * @return         0 on success, an errno on failure
3287  *
3288  * This convenience API allows consumers to disable multiple regulator
3289  * clients in a single API call.  If any consumers cannot be disabled
3290  * then any others that were disabled will be enabled again prior to
3291  * return.
3292  */
3293 int regulator_bulk_disable(int num_consumers,
3294                            struct regulator_bulk_data *consumers)
3295 {
3296         int i;
3297         int ret, r;
3298
3299         for (i = num_consumers - 1; i >= 0; --i) {
3300                 ret = regulator_disable(consumers[i].consumer);
3301                 if (ret != 0)
3302                         goto err;
3303         }
3304
3305         return 0;
3306
3307 err:
3308         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3309         for (++i; i < num_consumers; ++i) {
3310                 r = regulator_enable(consumers[i].consumer);
3311                 if (r != 0)
3312                         pr_err("Failed to reename %s: %d\n",
3313                                consumers[i].supply, r);
3314         }
3315
3316         return ret;
3317 }
3318 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3319
3320 /**
3321  * regulator_bulk_force_disable - force disable multiple regulator consumers
3322  *
3323  * @num_consumers: Number of consumers
3324  * @consumers:     Consumer data; clients are stored here.
3325  * @return         0 on success, an errno on failure
3326  *
3327  * This convenience API allows consumers to forcibly disable multiple regulator
3328  * clients in a single API call.
3329  * NOTE: This should be used for situations when device damage will
3330  * likely occur if the regulators are not disabled (e.g. over temp).
3331  * Although regulator_force_disable function call for some consumers can
3332  * return error numbers, the function is called for all consumers.
3333  */
3334 int regulator_bulk_force_disable(int num_consumers,
3335                            struct regulator_bulk_data *consumers)
3336 {
3337         int i;
3338         int ret;
3339
3340         for (i = 0; i < num_consumers; i++)
3341                 consumers[i].ret =
3342                             regulator_force_disable(consumers[i].consumer);
3343
3344         for (i = 0; i < num_consumers; i++) {
3345                 if (consumers[i].ret != 0) {
3346                         ret = consumers[i].ret;
3347                         goto out;
3348                 }
3349         }
3350
3351         return 0;
3352 out:
3353         return ret;
3354 }
3355 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3356
3357 /**
3358  * regulator_bulk_free - free multiple regulator consumers
3359  *
3360  * @num_consumers: Number of consumers
3361  * @consumers:     Consumer data; clients are stored here.
3362  *
3363  * This convenience API allows consumers to free multiple regulator
3364  * clients in a single API call.
3365  */
3366 void regulator_bulk_free(int num_consumers,
3367                          struct regulator_bulk_data *consumers)
3368 {
3369         int i;
3370
3371         for (i = 0; i < num_consumers; i++) {
3372                 regulator_put(consumers[i].consumer);
3373                 consumers[i].consumer = NULL;
3374         }
3375 }
3376 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3377
3378 /**
3379  * regulator_notifier_call_chain - call regulator event notifier
3380  * @rdev: regulator source
3381  * @event: notifier block
3382  * @data: callback-specific data.
3383  *
3384  * Called by regulator drivers to notify clients a regulator event has
3385  * occurred. We also notify regulator clients downstream.
3386  * Note lock must be held by caller.
3387  */
3388 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3389                                   unsigned long event, void *data)
3390 {
3391         _notifier_call_chain(rdev, event, data);
3392         return NOTIFY_DONE;
3393
3394 }
3395 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3396
3397 /**
3398  * regulator_mode_to_status - convert a regulator mode into a status
3399  *
3400  * @mode: Mode to convert
3401  *
3402  * Convert a regulator mode into a status.
3403  */
3404 int regulator_mode_to_status(unsigned int mode)
3405 {
3406         switch (mode) {
3407         case REGULATOR_MODE_FAST:
3408                 return REGULATOR_STATUS_FAST;
3409         case REGULATOR_MODE_NORMAL:
3410                 return REGULATOR_STATUS_NORMAL;
3411         case REGULATOR_MODE_IDLE:
3412                 return REGULATOR_STATUS_IDLE;
3413         case REGULATOR_MODE_STANDBY:
3414                 return REGULATOR_STATUS_STANDBY;
3415         default:
3416                 return REGULATOR_STATUS_UNDEFINED;
3417         }
3418 }
3419 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3420
3421 /*
3422  * To avoid cluttering sysfs (and memory) with useless state, only
3423  * create attributes that can be meaningfully displayed.
3424  */
3425 static int add_regulator_attributes(struct regulator_dev *rdev)
3426 {
3427         struct device *dev = &rdev->dev;
3428         const struct regulator_ops *ops = rdev->desc->ops;
3429         int status = 0;
3430
3431         /* some attributes need specific methods to be displayed */
3432         if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3433             (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3434             (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3435                 (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) {
3436                 status = device_create_file(dev, &dev_attr_microvolts);
3437                 if (status < 0)
3438                         return status;
3439         }
3440         if (ops->get_current_limit) {
3441                 status = device_create_file(dev, &dev_attr_microamps);
3442                 if (status < 0)
3443                         return status;
3444         }
3445         if (ops->get_mode) {
3446                 status = device_create_file(dev, &dev_attr_opmode);
3447                 if (status < 0)
3448                         return status;
3449         }
3450         if (rdev->ena_pin || ops->is_enabled) {
3451                 status = device_create_file(dev, &dev_attr_state);
3452                 if (status < 0)
3453                         return status;
3454         }
3455         if (ops->get_status) {
3456                 status = device_create_file(dev, &dev_attr_status);
3457                 if (status < 0)
3458                         return status;
3459         }
3460         if (ops->get_bypass) {
3461                 status = device_create_file(dev, &dev_attr_bypass);
3462                 if (status < 0)
3463                         return status;
3464         }
3465
3466         /* some attributes are type-specific */
3467         if (rdev->desc->type == REGULATOR_CURRENT) {
3468                 status = device_create_file(dev, &dev_attr_requested_microamps);
3469                 if (status < 0)
3470                         return status;
3471         }
3472
3473         /* all the other attributes exist to support constraints;
3474          * don't show them if there are no constraints, or if the
3475          * relevant supporting methods are missing.
3476          */
3477         if (!rdev->constraints)
3478                 return status;
3479
3480         /* constraints need specific supporting methods */
3481         if (ops->set_voltage || ops->set_voltage_sel) {
3482                 status = device_create_file(dev, &dev_attr_min_microvolts);
3483                 if (status < 0)
3484                         return status;
3485                 status = device_create_file(dev, &dev_attr_max_microvolts);
3486                 if (status < 0)
3487                         return status;
3488         }
3489         if (ops->set_current_limit) {
3490                 status = device_create_file(dev, &dev_attr_min_microamps);
3491                 if (status < 0)
3492                         return status;
3493                 status = device_create_file(dev, &dev_attr_max_microamps);
3494                 if (status < 0)
3495                         return status;
3496         }
3497
3498         status = device_create_file(dev, &dev_attr_suspend_standby_state);
3499         if (status < 0)
3500                 return status;
3501         status = device_create_file(dev, &dev_attr_suspend_mem_state);
3502         if (status < 0)
3503                 return status;
3504         status = device_create_file(dev, &dev_attr_suspend_disk_state);
3505         if (status < 0)
3506                 return status;
3507
3508         if (ops->set_suspend_voltage) {
3509                 status = device_create_file(dev,
3510                                 &dev_attr_suspend_standby_microvolts);
3511                 if (status < 0)
3512                         return status;
3513                 status = device_create_file(dev,
3514                                 &dev_attr_suspend_mem_microvolts);
3515                 if (status < 0)
3516                         return status;
3517                 status = device_create_file(dev,
3518                                 &dev_attr_suspend_disk_microvolts);
3519                 if (status < 0)
3520                         return status;
3521         }
3522
3523         if (ops->set_suspend_mode) {
3524                 status = device_create_file(dev,
3525                                 &dev_attr_suspend_standby_mode);
3526                 if (status < 0)
3527                         return status;
3528                 status = device_create_file(dev,
3529                                 &dev_attr_suspend_mem_mode);
3530                 if (status < 0)
3531                         return status;
3532                 status = device_create_file(dev,
3533                                 &dev_attr_suspend_disk_mode);
3534                 if (status < 0)
3535                         return status;
3536         }
3537
3538         return status;
3539 }
3540
3541 static void rdev_init_debugfs(struct regulator_dev *rdev)
3542 {
3543         rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3544         if (!rdev->debugfs) {
3545                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3546                 return;
3547         }
3548
3549         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3550                            &rdev->use_count);
3551         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3552                            &rdev->open_count);
3553         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3554                            &rdev->bypass_count);
3555 }
3556
3557 /**
3558  * regulator_register - register regulator
3559  * @regulator_desc: regulator to register
3560  * @config: runtime configuration for regulator
3561  *
3562  * Called by regulator drivers to register a regulator.
3563  * Returns a valid pointer to struct regulator_dev on success
3564  * or an ERR_PTR() on error.
3565  */
3566 struct regulator_dev *
3567 regulator_register(const struct regulator_desc *regulator_desc,
3568                    const struct regulator_config *config)
3569 {
3570         const struct regulation_constraints *constraints = NULL;
3571         const struct regulator_init_data *init_data;
3572         static atomic_t regulator_no = ATOMIC_INIT(0);
3573         struct regulator_dev *rdev;
3574         struct device *dev;
3575         int ret, i;
3576         const char *supply = NULL;
3577
3578         if (regulator_desc == NULL || config == NULL)
3579                 return ERR_PTR(-EINVAL);
3580
3581         dev = config->dev;
3582         WARN_ON(!dev);
3583
3584         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3585                 return ERR_PTR(-EINVAL);
3586
3587         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3588             regulator_desc->type != REGULATOR_CURRENT)
3589                 return ERR_PTR(-EINVAL);
3590
3591         /* Only one of each should be implemented */
3592         WARN_ON(regulator_desc->ops->get_voltage &&
3593                 regulator_desc->ops->get_voltage_sel);
3594         WARN_ON(regulator_desc->ops->set_voltage &&
3595                 regulator_desc->ops->set_voltage_sel);
3596
3597         /* If we're using selectors we must implement list_voltage. */
3598         if (regulator_desc->ops->get_voltage_sel &&
3599             !regulator_desc->ops->list_voltage) {
3600                 return ERR_PTR(-EINVAL);
3601         }
3602         if (regulator_desc->ops->set_voltage_sel &&
3603             !regulator_desc->ops->list_voltage) {
3604                 return ERR_PTR(-EINVAL);
3605         }
3606
3607         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3608         if (rdev == NULL)
3609                 return ERR_PTR(-ENOMEM);
3610
3611         init_data = regulator_of_get_init_data(dev, regulator_desc,
3612                                                &rdev->dev.of_node);
3613         if (!init_data) {
3614                 init_data = config->init_data;
3615                 rdev->dev.of_node = of_node_get(config->of_node);
3616         }
3617
3618         mutex_lock(&regulator_list_mutex);
3619
3620         mutex_init(&rdev->mutex);
3621         rdev->reg_data = config->driver_data;
3622         rdev->owner = regulator_desc->owner;
3623         rdev->desc = regulator_desc;
3624         if (config->regmap)
3625                 rdev->regmap = config->regmap;
3626         else if (dev_get_regmap(dev, NULL))
3627                 rdev->regmap = dev_get_regmap(dev, NULL);
3628         else if (dev->parent)
3629                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3630         INIT_LIST_HEAD(&rdev->consumer_list);
3631         INIT_LIST_HEAD(&rdev->list);
3632         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3633         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3634
3635         /* preform any regulator specific init */
3636         if (init_data && init_data->regulator_init) {
3637                 ret = init_data->regulator_init(rdev->reg_data);
3638                 if (ret < 0)
3639                         goto clean;
3640         }
3641
3642         /* register with sysfs */
3643         rdev->dev.class = &regulator_class;
3644         rdev->dev.parent = dev;
3645         dev_set_name(&rdev->dev, "regulator.%d",
3646                      atomic_inc_return(&regulator_no) - 1);
3647         ret = device_register(&rdev->dev);
3648         if (ret != 0) {
3649                 put_device(&rdev->dev);
3650                 goto clean;
3651         }
3652
3653         dev_set_drvdata(&rdev->dev, rdev);
3654
3655         if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3656                 ret = regulator_ena_gpio_request(rdev, config);
3657                 if (ret != 0) {
3658                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3659                                  config->ena_gpio, ret);
3660                         goto wash;
3661                 }
3662
3663                 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3664                         rdev->ena_gpio_state = 1;
3665
3666                 if (config->ena_gpio_invert)
3667                         rdev->ena_gpio_state = !rdev->ena_gpio_state;
3668         }
3669
3670         /* set regulator constraints */
3671         if (init_data)
3672                 constraints = &init_data->constraints;
3673
3674         ret = set_machine_constraints(rdev, constraints);
3675         if (ret < 0)
3676                 goto scrub;
3677
3678         /* add attributes supported by this regulator */
3679         ret = add_regulator_attributes(rdev);
3680         if (ret < 0)
3681                 goto scrub;
3682
3683         if (init_data && init_data->supply_regulator)
3684                 supply = init_data->supply_regulator;
3685         else if (regulator_desc->supply_name)
3686                 supply = regulator_desc->supply_name;
3687
3688         if (supply) {
3689                 struct regulator_dev *r;
3690
3691                 r = regulator_dev_lookup(dev, supply, &ret);
3692
3693                 if (ret == -ENODEV) {
3694                         /*
3695                          * No supply was specified for this regulator and
3696                          * there will never be one.
3697                          */
3698                         ret = 0;
3699                         goto add_dev;
3700                 } else if (!r) {
3701                         dev_err(dev, "Failed to find supply %s\n", supply);
3702                         ret = -EPROBE_DEFER;
3703                         goto scrub;
3704                 }
3705
3706                 ret = set_supply(rdev, r);
3707                 if (ret < 0)
3708                         goto scrub;
3709
3710                 /* Enable supply if rail is enabled */
3711                 if (_regulator_is_enabled(rdev)) {
3712                         ret = regulator_enable(rdev->supply);
3713                         if (ret < 0)
3714                                 goto scrub;
3715                 }
3716         }
3717
3718 add_dev:
3719         /* add consumers devices */
3720         if (init_data) {
3721                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3722                         ret = set_consumer_device_supply(rdev,
3723                                 init_data->consumer_supplies[i].dev_name,
3724                                 init_data->consumer_supplies[i].supply);
3725                         if (ret < 0) {
3726                                 dev_err(dev, "Failed to set supply %s\n",
3727                                         init_data->consumer_supplies[i].supply);
3728                                 goto unset_supplies;
3729                         }
3730                 }
3731         }
3732
3733         list_add(&rdev->list, &regulator_list);
3734
3735         rdev_init_debugfs(rdev);
3736 out:
3737         mutex_unlock(&regulator_list_mutex);
3738         return rdev;
3739
3740 unset_supplies:
3741         unset_regulator_supplies(rdev);
3742
3743 scrub:
3744         if (rdev->supply)
3745                 _regulator_put(rdev->supply);
3746         regulator_ena_gpio_free(rdev);
3747         kfree(rdev->constraints);
3748 wash:
3749         device_unregister(&rdev->dev);
3750         /* device core frees rdev */
3751         rdev = ERR_PTR(ret);
3752         goto out;
3753
3754 clean:
3755         kfree(rdev);
3756         rdev = ERR_PTR(ret);
3757         goto out;
3758 }
3759 EXPORT_SYMBOL_GPL(regulator_register);
3760
3761 /**
3762  * regulator_unregister - unregister regulator
3763  * @rdev: regulator to unregister
3764  *
3765  * Called by regulator drivers to unregister a regulator.
3766  */
3767 void regulator_unregister(struct regulator_dev *rdev)
3768 {
3769         if (rdev == NULL)
3770                 return;
3771
3772         if (rdev->supply) {
3773                 while (rdev->use_count--)
3774                         regulator_disable(rdev->supply);
3775                 regulator_put(rdev->supply);
3776         }
3777         mutex_lock(&regulator_list_mutex);
3778         debugfs_remove_recursive(rdev->debugfs);
3779         flush_work(&rdev->disable_work.work);
3780         WARN_ON(rdev->open_count);
3781         unset_regulator_supplies(rdev);
3782         list_del(&rdev->list);
3783         kfree(rdev->constraints);
3784         regulator_ena_gpio_free(rdev);
3785         of_node_put(rdev->dev.of_node);
3786         device_unregister(&rdev->dev);
3787         mutex_unlock(&regulator_list_mutex);
3788 }
3789 EXPORT_SYMBOL_GPL(regulator_unregister);
3790
3791 /**
3792  * regulator_suspend_prepare - prepare regulators for system wide suspend
3793  * @state: system suspend state
3794  *
3795  * Configure each regulator with it's suspend operating parameters for state.
3796  * This will usually be called by machine suspend code prior to supending.
3797  */
3798 int regulator_suspend_prepare(suspend_state_t state)
3799 {
3800         struct regulator_dev *rdev;
3801         int ret = 0;
3802
3803         /* ON is handled by regulator active state */
3804         if (state == PM_SUSPEND_ON)
3805                 return -EINVAL;
3806
3807         mutex_lock(&regulator_list_mutex);
3808         list_for_each_entry(rdev, &regulator_list, list) {
3809
3810                 mutex_lock(&rdev->mutex);
3811                 ret = suspend_prepare(rdev, state);
3812                 mutex_unlock(&rdev->mutex);
3813
3814                 if (ret < 0) {
3815                         rdev_err(rdev, "failed to prepare\n");
3816                         goto out;
3817                 }
3818         }
3819 out:
3820         mutex_unlock(&regulator_list_mutex);
3821         return ret;
3822 }
3823 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3824
3825 /**
3826  * regulator_suspend_finish - resume regulators from system wide suspend
3827  *
3828  * Turn on regulators that might be turned off by regulator_suspend_prepare
3829  * and that should be turned on according to the regulators properties.
3830  */
3831 int regulator_suspend_finish(void)
3832 {
3833         struct regulator_dev *rdev;
3834         int ret = 0, error;
3835
3836         mutex_lock(&regulator_list_mutex);
3837         list_for_each_entry(rdev, &regulator_list, list) {
3838                 mutex_lock(&rdev->mutex);
3839                 if (rdev->use_count > 0  || rdev->constraints->always_on) {
3840                         error = _regulator_do_enable(rdev);
3841                         if (error)
3842                                 ret = error;
3843                 } else {
3844                         if (!have_full_constraints())
3845                                 goto unlock;
3846                         if (!_regulator_is_enabled(rdev))
3847                                 goto unlock;
3848
3849                         error = _regulator_do_disable(rdev);
3850                         if (error)
3851                                 ret = error;
3852                 }
3853 unlock:
3854                 mutex_unlock(&rdev->mutex);
3855         }
3856         mutex_unlock(&regulator_list_mutex);
3857         return ret;
3858 }
3859 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3860
3861 /**
3862  * regulator_has_full_constraints - the system has fully specified constraints
3863  *
3864  * Calling this function will cause the regulator API to disable all
3865  * regulators which have a zero use count and don't have an always_on
3866  * constraint in a late_initcall.
3867  *
3868  * The intention is that this will become the default behaviour in a
3869  * future kernel release so users are encouraged to use this facility
3870  * now.
3871  */
3872 void regulator_has_full_constraints(void)
3873 {
3874         has_full_constraints = 1;
3875 }
3876 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3877
3878 /**
3879  * rdev_get_drvdata - get rdev regulator driver data
3880  * @rdev: regulator
3881  *
3882  * Get rdev regulator driver private data. This call can be used in the
3883  * regulator driver context.
3884  */
3885 void *rdev_get_drvdata(struct regulator_dev *rdev)
3886 {
3887         return rdev->reg_data;
3888 }
3889 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3890
3891 /**
3892  * regulator_get_drvdata - get regulator driver data
3893  * @regulator: regulator
3894  *
3895  * Get regulator driver private data. This call can be used in the consumer
3896  * driver context when non API regulator specific functions need to be called.
3897  */
3898 void *regulator_get_drvdata(struct regulator *regulator)
3899 {
3900         return regulator->rdev->reg_data;
3901 }
3902 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3903
3904 /**
3905  * regulator_set_drvdata - set regulator driver data
3906  * @regulator: regulator
3907  * @data: data
3908  */
3909 void regulator_set_drvdata(struct regulator *regulator, void *data)
3910 {
3911         regulator->rdev->reg_data = data;
3912 }
3913 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3914
3915 /**
3916  * regulator_get_id - get regulator ID
3917  * @rdev: regulator
3918  */
3919 int rdev_get_id(struct regulator_dev *rdev)
3920 {
3921         return rdev->desc->id;
3922 }
3923 EXPORT_SYMBOL_GPL(rdev_get_id);
3924
3925 struct device *rdev_get_dev(struct regulator_dev *rdev)
3926 {
3927         return &rdev->dev;
3928 }
3929 EXPORT_SYMBOL_GPL(rdev_get_dev);
3930
3931 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3932 {
3933         return reg_init_data->driver_data;
3934 }
3935 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3936
3937 #ifdef CONFIG_DEBUG_FS
3938 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3939                                     size_t count, loff_t *ppos)
3940 {
3941         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3942         ssize_t len, ret = 0;
3943         struct regulator_map *map;
3944
3945         if (!buf)
3946                 return -ENOMEM;
3947
3948         list_for_each_entry(map, &regulator_map_list, list) {
3949                 len = snprintf(buf + ret, PAGE_SIZE - ret,
3950                                "%s -> %s.%s\n",
3951                                rdev_get_name(map->regulator), map->dev_name,
3952                                map->supply);
3953                 if (len >= 0)
3954                         ret += len;
3955                 if (ret > PAGE_SIZE) {
3956                         ret = PAGE_SIZE;
3957                         break;
3958                 }
3959         }
3960
3961         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3962
3963         kfree(buf);
3964
3965         return ret;
3966 }
3967 #endif
3968
3969 static const struct file_operations supply_map_fops = {
3970 #ifdef CONFIG_DEBUG_FS
3971         .read = supply_map_read_file,
3972         .llseek = default_llseek,
3973 #endif
3974 };
3975
3976 static int __init regulator_init(void)
3977 {
3978         int ret;
3979
3980         ret = class_register(&regulator_class);
3981
3982         debugfs_root = debugfs_create_dir("regulator", NULL);
3983         if (!debugfs_root)
3984                 pr_warn("regulator: Failed to create debugfs directory\n");
3985
3986         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3987                             &supply_map_fops);
3988
3989         regulator_dummy_init();
3990
3991         return ret;
3992 }
3993
3994 /* init early to allow our consumers to complete system booting */
3995 core_initcall(regulator_init);
3996
3997 static int __init regulator_init_complete(void)
3998 {
3999         struct regulator_dev *rdev;
4000         const struct regulator_ops *ops;
4001         struct regulation_constraints *c;
4002         int enabled, ret;
4003
4004         /*
4005          * Since DT doesn't provide an idiomatic mechanism for
4006          * enabling full constraints and since it's much more natural
4007          * with DT to provide them just assume that a DT enabled
4008          * system has full constraints.
4009          */
4010         if (of_have_populated_dt())
4011                 has_full_constraints = true;
4012
4013         mutex_lock(&regulator_list_mutex);
4014
4015         /* If we have a full configuration then disable any regulators
4016          * we have permission to change the status for and which are
4017          * not in use or always_on.  This is effectively the default
4018          * for DT and ACPI as they have full constraints.
4019          */
4020         list_for_each_entry(rdev, &regulator_list, list) {
4021                 ops = rdev->desc->ops;
4022                 c = rdev->constraints;
4023
4024                 if (c && c->always_on)
4025                         continue;
4026
4027                 if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4028                         continue;
4029
4030                 mutex_lock(&rdev->mutex);
4031
4032                 if (rdev->use_count)
4033                         goto unlock;
4034
4035                 /* If we can't read the status assume it's on. */
4036                 if (ops->is_enabled)
4037                         enabled = ops->is_enabled(rdev);
4038                 else
4039                         enabled = 1;
4040
4041                 if (!enabled)
4042                         goto unlock;
4043
4044                 if (have_full_constraints()) {
4045                         /* We log since this may kill the system if it
4046                          * goes wrong. */
4047                         rdev_info(rdev, "disabling\n");
4048                         ret = _regulator_do_disable(rdev);
4049                         if (ret != 0)
4050                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
4051                 } else {
4052                         /* The intention is that in future we will
4053                          * assume that full constraints are provided
4054                          * so warn even if we aren't going to do
4055                          * anything here.
4056                          */
4057                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
4058                 }
4059
4060 unlock:
4061                 mutex_unlock(&rdev->mutex);
4062         }
4063
4064         mutex_unlock(&regulator_list_mutex);
4065
4066         return 0;
4067 }
4068 late_initcall_sync(regulator_init_complete);