]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/regulator/core.c
regulator: core: Refactor devm_regulator_get* APIs
[karo-tx-linux.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37
38 #include "dummy.h"
39
40 #define rdev_crit(rdev, fmt, ...)                                       \
41         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_err(rdev, fmt, ...)                                        \
43         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_warn(rdev, fmt, ...)                                       \
45         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_info(rdev, fmt, ...)                                       \
47         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_dbg(rdev, fmt, ...)                                        \
49         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51 static DEFINE_MUTEX(regulator_list_mutex);
52 static LIST_HEAD(regulator_list);
53 static LIST_HEAD(regulator_map_list);
54 static LIST_HEAD(regulator_ena_gpio_list);
55 static bool has_full_constraints;
56 static bool board_wants_dummy_regulator;
57
58 static struct dentry *debugfs_root;
59
60 /*
61  * struct regulator_map
62  *
63  * Used to provide symbolic supply names to devices.
64  */
65 struct regulator_map {
66         struct list_head list;
67         const char *dev_name;   /* The dev_name() for the consumer */
68         const char *supply;
69         struct regulator_dev *regulator;
70 };
71
72 /*
73  * struct regulator_enable_gpio
74  *
75  * Management for shared enable GPIO pin
76  */
77 struct regulator_enable_gpio {
78         struct list_head list;
79         int gpio;
80         u32 enable_count;       /* a number of enabled shared GPIO */
81         u32 request_count;      /* a number of requested shared GPIO */
82         unsigned int ena_gpio_invert:1;
83 };
84
85 /*
86  * struct regulator
87  *
88  * One for each consumer device.
89  */
90 struct regulator {
91         struct device *dev;
92         struct list_head list;
93         unsigned int always_on:1;
94         unsigned int bypass:1;
95         int uA_load;
96         int min_uV;
97         int max_uV;
98         char *supply_name;
99         struct device_attribute dev_attr;
100         struct regulator_dev *rdev;
101         struct dentry *debugfs;
102 };
103
104 static int _regulator_is_enabled(struct regulator_dev *rdev);
105 static int _regulator_disable(struct regulator_dev *rdev);
106 static int _regulator_get_voltage(struct regulator_dev *rdev);
107 static int _regulator_get_current_limit(struct regulator_dev *rdev);
108 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
109 static void _notifier_call_chain(struct regulator_dev *rdev,
110                                   unsigned long event, void *data);
111 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
112                                      int min_uV, int max_uV);
113 static struct regulator *create_regulator(struct regulator_dev *rdev,
114                                           struct device *dev,
115                                           const char *supply_name);
116
117 static const char *rdev_get_name(struct regulator_dev *rdev)
118 {
119         if (rdev->constraints && rdev->constraints->name)
120                 return rdev->constraints->name;
121         else if (rdev->desc->name)
122                 return rdev->desc->name;
123         else
124                 return "";
125 }
126
127 /**
128  * of_get_regulator - get a regulator device node based on supply name
129  * @dev: Device pointer for the consumer (of regulator) device
130  * @supply: regulator supply name
131  *
132  * Extract the regulator device node corresponding to the supply name.
133  * returns the device node corresponding to the regulator if found, else
134  * returns NULL.
135  */
136 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
137 {
138         struct device_node *regnode = NULL;
139         char prop_name[32]; /* 32 is max size of property name */
140
141         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
142
143         snprintf(prop_name, 32, "%s-supply", supply);
144         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
145
146         if (!regnode) {
147                 dev_dbg(dev, "Looking up %s property in node %s failed",
148                                 prop_name, dev->of_node->full_name);
149                 return NULL;
150         }
151         return regnode;
152 }
153
154 static int _regulator_can_change_status(struct regulator_dev *rdev)
155 {
156         if (!rdev->constraints)
157                 return 0;
158
159         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
160                 return 1;
161         else
162                 return 0;
163 }
164
165 /* Platform voltage constraint check */
166 static int regulator_check_voltage(struct regulator_dev *rdev,
167                                    int *min_uV, int *max_uV)
168 {
169         BUG_ON(*min_uV > *max_uV);
170
171         if (!rdev->constraints) {
172                 rdev_err(rdev, "no constraints\n");
173                 return -ENODEV;
174         }
175         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176                 rdev_err(rdev, "operation not allowed\n");
177                 return -EPERM;
178         }
179
180         if (*max_uV > rdev->constraints->max_uV)
181                 *max_uV = rdev->constraints->max_uV;
182         if (*min_uV < rdev->constraints->min_uV)
183                 *min_uV = rdev->constraints->min_uV;
184
185         if (*min_uV > *max_uV) {
186                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187                          *min_uV, *max_uV);
188                 return -EINVAL;
189         }
190
191         return 0;
192 }
193
194 /* Make sure we select a voltage that suits the needs of all
195  * regulator consumers
196  */
197 static int regulator_check_consumers(struct regulator_dev *rdev,
198                                      int *min_uV, int *max_uV)
199 {
200         struct regulator *regulator;
201
202         list_for_each_entry(regulator, &rdev->consumer_list, list) {
203                 /*
204                  * Assume consumers that didn't say anything are OK
205                  * with anything in the constraint range.
206                  */
207                 if (!regulator->min_uV && !regulator->max_uV)
208                         continue;
209
210                 if (*max_uV > regulator->max_uV)
211                         *max_uV = regulator->max_uV;
212                 if (*min_uV < regulator->min_uV)
213                         *min_uV = regulator->min_uV;
214         }
215
216         if (*min_uV > *max_uV) {
217                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
218                         *min_uV, *max_uV);
219                 return -EINVAL;
220         }
221
222         return 0;
223 }
224
225 /* current constraint check */
226 static int regulator_check_current_limit(struct regulator_dev *rdev,
227                                         int *min_uA, int *max_uA)
228 {
229         BUG_ON(*min_uA > *max_uA);
230
231         if (!rdev->constraints) {
232                 rdev_err(rdev, "no constraints\n");
233                 return -ENODEV;
234         }
235         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236                 rdev_err(rdev, "operation not allowed\n");
237                 return -EPERM;
238         }
239
240         if (*max_uA > rdev->constraints->max_uA)
241                 *max_uA = rdev->constraints->max_uA;
242         if (*min_uA < rdev->constraints->min_uA)
243                 *min_uA = rdev->constraints->min_uA;
244
245         if (*min_uA > *max_uA) {
246                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247                          *min_uA, *max_uA);
248                 return -EINVAL;
249         }
250
251         return 0;
252 }
253
254 /* operating mode constraint check */
255 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
256 {
257         switch (*mode) {
258         case REGULATOR_MODE_FAST:
259         case REGULATOR_MODE_NORMAL:
260         case REGULATOR_MODE_IDLE:
261         case REGULATOR_MODE_STANDBY:
262                 break;
263         default:
264                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
265                 return -EINVAL;
266         }
267
268         if (!rdev->constraints) {
269                 rdev_err(rdev, "no constraints\n");
270                 return -ENODEV;
271         }
272         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273                 rdev_err(rdev, "operation not allowed\n");
274                 return -EPERM;
275         }
276
277         /* The modes are bitmasks, the most power hungry modes having
278          * the lowest values. If the requested mode isn't supported
279          * try higher modes. */
280         while (*mode) {
281                 if (rdev->constraints->valid_modes_mask & *mode)
282                         return 0;
283                 *mode /= 2;
284         }
285
286         return -EINVAL;
287 }
288
289 /* dynamic regulator mode switching constraint check */
290 static int regulator_check_drms(struct regulator_dev *rdev)
291 {
292         if (!rdev->constraints) {
293                 rdev_err(rdev, "no constraints\n");
294                 return -ENODEV;
295         }
296         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297                 rdev_err(rdev, "operation not allowed\n");
298                 return -EPERM;
299         }
300         return 0;
301 }
302
303 static ssize_t regulator_uV_show(struct device *dev,
304                                 struct device_attribute *attr, char *buf)
305 {
306         struct regulator_dev *rdev = dev_get_drvdata(dev);
307         ssize_t ret;
308
309         mutex_lock(&rdev->mutex);
310         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311         mutex_unlock(&rdev->mutex);
312
313         return ret;
314 }
315 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
316
317 static ssize_t regulator_uA_show(struct device *dev,
318                                 struct device_attribute *attr, char *buf)
319 {
320         struct regulator_dev *rdev = dev_get_drvdata(dev);
321
322         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
323 }
324 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
325
326 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
327                          char *buf)
328 {
329         struct regulator_dev *rdev = dev_get_drvdata(dev);
330
331         return sprintf(buf, "%s\n", rdev_get_name(rdev));
332 }
333 static DEVICE_ATTR_RO(name);
334
335 static ssize_t regulator_print_opmode(char *buf, int mode)
336 {
337         switch (mode) {
338         case REGULATOR_MODE_FAST:
339                 return sprintf(buf, "fast\n");
340         case REGULATOR_MODE_NORMAL:
341                 return sprintf(buf, "normal\n");
342         case REGULATOR_MODE_IDLE:
343                 return sprintf(buf, "idle\n");
344         case REGULATOR_MODE_STANDBY:
345                 return sprintf(buf, "standby\n");
346         }
347         return sprintf(buf, "unknown\n");
348 }
349
350 static ssize_t regulator_opmode_show(struct device *dev,
351                                     struct device_attribute *attr, char *buf)
352 {
353         struct regulator_dev *rdev = dev_get_drvdata(dev);
354
355         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
356 }
357 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
358
359 static ssize_t regulator_print_state(char *buf, int state)
360 {
361         if (state > 0)
362                 return sprintf(buf, "enabled\n");
363         else if (state == 0)
364                 return sprintf(buf, "disabled\n");
365         else
366                 return sprintf(buf, "unknown\n");
367 }
368
369 static ssize_t regulator_state_show(struct device *dev,
370                                    struct device_attribute *attr, char *buf)
371 {
372         struct regulator_dev *rdev = dev_get_drvdata(dev);
373         ssize_t ret;
374
375         mutex_lock(&rdev->mutex);
376         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
377         mutex_unlock(&rdev->mutex);
378
379         return ret;
380 }
381 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
382
383 static ssize_t regulator_status_show(struct device *dev,
384                                    struct device_attribute *attr, char *buf)
385 {
386         struct regulator_dev *rdev = dev_get_drvdata(dev);
387         int status;
388         char *label;
389
390         status = rdev->desc->ops->get_status(rdev);
391         if (status < 0)
392                 return status;
393
394         switch (status) {
395         case REGULATOR_STATUS_OFF:
396                 label = "off";
397                 break;
398         case REGULATOR_STATUS_ON:
399                 label = "on";
400                 break;
401         case REGULATOR_STATUS_ERROR:
402                 label = "error";
403                 break;
404         case REGULATOR_STATUS_FAST:
405                 label = "fast";
406                 break;
407         case REGULATOR_STATUS_NORMAL:
408                 label = "normal";
409                 break;
410         case REGULATOR_STATUS_IDLE:
411                 label = "idle";
412                 break;
413         case REGULATOR_STATUS_STANDBY:
414                 label = "standby";
415                 break;
416         case REGULATOR_STATUS_BYPASS:
417                 label = "bypass";
418                 break;
419         case REGULATOR_STATUS_UNDEFINED:
420                 label = "undefined";
421                 break;
422         default:
423                 return -ERANGE;
424         }
425
426         return sprintf(buf, "%s\n", label);
427 }
428 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
429
430 static ssize_t regulator_min_uA_show(struct device *dev,
431                                     struct device_attribute *attr, char *buf)
432 {
433         struct regulator_dev *rdev = dev_get_drvdata(dev);
434
435         if (!rdev->constraints)
436                 return sprintf(buf, "constraint not defined\n");
437
438         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
439 }
440 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
441
442 static ssize_t regulator_max_uA_show(struct device *dev,
443                                     struct device_attribute *attr, char *buf)
444 {
445         struct regulator_dev *rdev = dev_get_drvdata(dev);
446
447         if (!rdev->constraints)
448                 return sprintf(buf, "constraint not defined\n");
449
450         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
451 }
452 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
453
454 static ssize_t regulator_min_uV_show(struct device *dev,
455                                     struct device_attribute *attr, char *buf)
456 {
457         struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459         if (!rdev->constraints)
460                 return sprintf(buf, "constraint not defined\n");
461
462         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
463 }
464 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
465
466 static ssize_t regulator_max_uV_show(struct device *dev,
467                                     struct device_attribute *attr, char *buf)
468 {
469         struct regulator_dev *rdev = dev_get_drvdata(dev);
470
471         if (!rdev->constraints)
472                 return sprintf(buf, "constraint not defined\n");
473
474         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
475 }
476 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
477
478 static ssize_t regulator_total_uA_show(struct device *dev,
479                                       struct device_attribute *attr, char *buf)
480 {
481         struct regulator_dev *rdev = dev_get_drvdata(dev);
482         struct regulator *regulator;
483         int uA = 0;
484
485         mutex_lock(&rdev->mutex);
486         list_for_each_entry(regulator, &rdev->consumer_list, list)
487                 uA += regulator->uA_load;
488         mutex_unlock(&rdev->mutex);
489         return sprintf(buf, "%d\n", uA);
490 }
491 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
492
493 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
494                               char *buf)
495 {
496         struct regulator_dev *rdev = dev_get_drvdata(dev);
497         return sprintf(buf, "%d\n", rdev->use_count);
498 }
499 static DEVICE_ATTR_RO(num_users);
500
501 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
502                          char *buf)
503 {
504         struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506         switch (rdev->desc->type) {
507         case REGULATOR_VOLTAGE:
508                 return sprintf(buf, "voltage\n");
509         case REGULATOR_CURRENT:
510                 return sprintf(buf, "current\n");
511         }
512         return sprintf(buf, "unknown\n");
513 }
514 static DEVICE_ATTR_RO(type);
515
516 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
517                                 struct device_attribute *attr, char *buf)
518 {
519         struct regulator_dev *rdev = dev_get_drvdata(dev);
520
521         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
522 }
523 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
524                 regulator_suspend_mem_uV_show, NULL);
525
526 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
527                                 struct device_attribute *attr, char *buf)
528 {
529         struct regulator_dev *rdev = dev_get_drvdata(dev);
530
531         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
532 }
533 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
534                 regulator_suspend_disk_uV_show, NULL);
535
536 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
537                                 struct device_attribute *attr, char *buf)
538 {
539         struct regulator_dev *rdev = dev_get_drvdata(dev);
540
541         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
542 }
543 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
544                 regulator_suspend_standby_uV_show, NULL);
545
546 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
547                                 struct device_attribute *attr, char *buf)
548 {
549         struct regulator_dev *rdev = dev_get_drvdata(dev);
550
551         return regulator_print_opmode(buf,
552                 rdev->constraints->state_mem.mode);
553 }
554 static DEVICE_ATTR(suspend_mem_mode, 0444,
555                 regulator_suspend_mem_mode_show, NULL);
556
557 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
558                                 struct device_attribute *attr, char *buf)
559 {
560         struct regulator_dev *rdev = dev_get_drvdata(dev);
561
562         return regulator_print_opmode(buf,
563                 rdev->constraints->state_disk.mode);
564 }
565 static DEVICE_ATTR(suspend_disk_mode, 0444,
566                 regulator_suspend_disk_mode_show, NULL);
567
568 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
569                                 struct device_attribute *attr, char *buf)
570 {
571         struct regulator_dev *rdev = dev_get_drvdata(dev);
572
573         return regulator_print_opmode(buf,
574                 rdev->constraints->state_standby.mode);
575 }
576 static DEVICE_ATTR(suspend_standby_mode, 0444,
577                 regulator_suspend_standby_mode_show, NULL);
578
579 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
580                                    struct device_attribute *attr, char *buf)
581 {
582         struct regulator_dev *rdev = dev_get_drvdata(dev);
583
584         return regulator_print_state(buf,
585                         rdev->constraints->state_mem.enabled);
586 }
587 static DEVICE_ATTR(suspend_mem_state, 0444,
588                 regulator_suspend_mem_state_show, NULL);
589
590 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
591                                    struct device_attribute *attr, char *buf)
592 {
593         struct regulator_dev *rdev = dev_get_drvdata(dev);
594
595         return regulator_print_state(buf,
596                         rdev->constraints->state_disk.enabled);
597 }
598 static DEVICE_ATTR(suspend_disk_state, 0444,
599                 regulator_suspend_disk_state_show, NULL);
600
601 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
602                                    struct device_attribute *attr, char *buf)
603 {
604         struct regulator_dev *rdev = dev_get_drvdata(dev);
605
606         return regulator_print_state(buf,
607                         rdev->constraints->state_standby.enabled);
608 }
609 static DEVICE_ATTR(suspend_standby_state, 0444,
610                 regulator_suspend_standby_state_show, NULL);
611
612 static ssize_t regulator_bypass_show(struct device *dev,
613                                      struct device_attribute *attr, char *buf)
614 {
615         struct regulator_dev *rdev = dev_get_drvdata(dev);
616         const char *report;
617         bool bypass;
618         int ret;
619
620         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
621
622         if (ret != 0)
623                 report = "unknown";
624         else if (bypass)
625                 report = "enabled";
626         else
627                 report = "disabled";
628
629         return sprintf(buf, "%s\n", report);
630 }
631 static DEVICE_ATTR(bypass, 0444,
632                    regulator_bypass_show, NULL);
633
634 /*
635  * These are the only attributes are present for all regulators.
636  * Other attributes are a function of regulator functionality.
637  */
638 static struct attribute *regulator_dev_attrs[] = {
639         &dev_attr_name.attr,
640         &dev_attr_num_users.attr,
641         &dev_attr_type.attr,
642         NULL,
643 };
644 ATTRIBUTE_GROUPS(regulator_dev);
645
646 static void regulator_dev_release(struct device *dev)
647 {
648         struct regulator_dev *rdev = dev_get_drvdata(dev);
649         kfree(rdev);
650 }
651
652 static struct class regulator_class = {
653         .name = "regulator",
654         .dev_release = regulator_dev_release,
655         .dev_groups = regulator_dev_groups,
656 };
657
658 /* Calculate the new optimum regulator operating mode based on the new total
659  * consumer load. All locks held by caller */
660 static void drms_uA_update(struct regulator_dev *rdev)
661 {
662         struct regulator *sibling;
663         int current_uA = 0, output_uV, input_uV, err;
664         unsigned int mode;
665
666         err = regulator_check_drms(rdev);
667         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
668             (!rdev->desc->ops->get_voltage &&
669              !rdev->desc->ops->get_voltage_sel) ||
670             !rdev->desc->ops->set_mode)
671                 return;
672
673         /* get output voltage */
674         output_uV = _regulator_get_voltage(rdev);
675         if (output_uV <= 0)
676                 return;
677
678         /* get input voltage */
679         input_uV = 0;
680         if (rdev->supply)
681                 input_uV = regulator_get_voltage(rdev->supply);
682         if (input_uV <= 0)
683                 input_uV = rdev->constraints->input_uV;
684         if (input_uV <= 0)
685                 return;
686
687         /* calc total requested load */
688         list_for_each_entry(sibling, &rdev->consumer_list, list)
689                 current_uA += sibling->uA_load;
690
691         /* now get the optimum mode for our new total regulator load */
692         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
693                                                   output_uV, current_uA);
694
695         /* check the new mode is allowed */
696         err = regulator_mode_constrain(rdev, &mode);
697         if (err == 0)
698                 rdev->desc->ops->set_mode(rdev, mode);
699 }
700
701 static int suspend_set_state(struct regulator_dev *rdev,
702         struct regulator_state *rstate)
703 {
704         int ret = 0;
705
706         /* If we have no suspend mode configration don't set anything;
707          * only warn if the driver implements set_suspend_voltage or
708          * set_suspend_mode callback.
709          */
710         if (!rstate->enabled && !rstate->disabled) {
711                 if (rdev->desc->ops->set_suspend_voltage ||
712                     rdev->desc->ops->set_suspend_mode)
713                         rdev_warn(rdev, "No configuration\n");
714                 return 0;
715         }
716
717         if (rstate->enabled && rstate->disabled) {
718                 rdev_err(rdev, "invalid configuration\n");
719                 return -EINVAL;
720         }
721
722         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
723                 ret = rdev->desc->ops->set_suspend_enable(rdev);
724         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
725                 ret = rdev->desc->ops->set_suspend_disable(rdev);
726         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
727                 ret = 0;
728
729         if (ret < 0) {
730                 rdev_err(rdev, "failed to enabled/disable\n");
731                 return ret;
732         }
733
734         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
735                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
736                 if (ret < 0) {
737                         rdev_err(rdev, "failed to set voltage\n");
738                         return ret;
739                 }
740         }
741
742         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
743                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
744                 if (ret < 0) {
745                         rdev_err(rdev, "failed to set mode\n");
746                         return ret;
747                 }
748         }
749         return ret;
750 }
751
752 /* locks held by caller */
753 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
754 {
755         if (!rdev->constraints)
756                 return -EINVAL;
757
758         switch (state) {
759         case PM_SUSPEND_STANDBY:
760                 return suspend_set_state(rdev,
761                         &rdev->constraints->state_standby);
762         case PM_SUSPEND_MEM:
763                 return suspend_set_state(rdev,
764                         &rdev->constraints->state_mem);
765         case PM_SUSPEND_MAX:
766                 return suspend_set_state(rdev,
767                         &rdev->constraints->state_disk);
768         default:
769                 return -EINVAL;
770         }
771 }
772
773 static void print_constraints(struct regulator_dev *rdev)
774 {
775         struct regulation_constraints *constraints = rdev->constraints;
776         char buf[80] = "";
777         int count = 0;
778         int ret;
779
780         if (constraints->min_uV && constraints->max_uV) {
781                 if (constraints->min_uV == constraints->max_uV)
782                         count += sprintf(buf + count, "%d mV ",
783                                          constraints->min_uV / 1000);
784                 else
785                         count += sprintf(buf + count, "%d <--> %d mV ",
786                                          constraints->min_uV / 1000,
787                                          constraints->max_uV / 1000);
788         }
789
790         if (!constraints->min_uV ||
791             constraints->min_uV != constraints->max_uV) {
792                 ret = _regulator_get_voltage(rdev);
793                 if (ret > 0)
794                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
795         }
796
797         if (constraints->uV_offset)
798                 count += sprintf(buf, "%dmV offset ",
799                                  constraints->uV_offset / 1000);
800
801         if (constraints->min_uA && constraints->max_uA) {
802                 if (constraints->min_uA == constraints->max_uA)
803                         count += sprintf(buf + count, "%d mA ",
804                                          constraints->min_uA / 1000);
805                 else
806                         count += sprintf(buf + count, "%d <--> %d mA ",
807                                          constraints->min_uA / 1000,
808                                          constraints->max_uA / 1000);
809         }
810
811         if (!constraints->min_uA ||
812             constraints->min_uA != constraints->max_uA) {
813                 ret = _regulator_get_current_limit(rdev);
814                 if (ret > 0)
815                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
816         }
817
818         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
819                 count += sprintf(buf + count, "fast ");
820         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
821                 count += sprintf(buf + count, "normal ");
822         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
823                 count += sprintf(buf + count, "idle ");
824         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
825                 count += sprintf(buf + count, "standby");
826
827         if (!count)
828                 sprintf(buf, "no parameters");
829
830         rdev_info(rdev, "%s\n", buf);
831
832         if ((constraints->min_uV != constraints->max_uV) &&
833             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
834                 rdev_warn(rdev,
835                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
836 }
837
838 static int machine_constraints_voltage(struct regulator_dev *rdev,
839         struct regulation_constraints *constraints)
840 {
841         struct regulator_ops *ops = rdev->desc->ops;
842         int ret;
843
844         /* do we need to apply the constraint voltage */
845         if (rdev->constraints->apply_uV &&
846             rdev->constraints->min_uV == rdev->constraints->max_uV) {
847                 ret = _regulator_do_set_voltage(rdev,
848                                                 rdev->constraints->min_uV,
849                                                 rdev->constraints->max_uV);
850                 if (ret < 0) {
851                         rdev_err(rdev, "failed to apply %duV constraint\n",
852                                  rdev->constraints->min_uV);
853                         return ret;
854                 }
855         }
856
857         /* constrain machine-level voltage specs to fit
858          * the actual range supported by this regulator.
859          */
860         if (ops->list_voltage && rdev->desc->n_voltages) {
861                 int     count = rdev->desc->n_voltages;
862                 int     i;
863                 int     min_uV = INT_MAX;
864                 int     max_uV = INT_MIN;
865                 int     cmin = constraints->min_uV;
866                 int     cmax = constraints->max_uV;
867
868                 /* it's safe to autoconfigure fixed-voltage supplies
869                    and the constraints are used by list_voltage. */
870                 if (count == 1 && !cmin) {
871                         cmin = 1;
872                         cmax = INT_MAX;
873                         constraints->min_uV = cmin;
874                         constraints->max_uV = cmax;
875                 }
876
877                 /* voltage constraints are optional */
878                 if ((cmin == 0) && (cmax == 0))
879                         return 0;
880
881                 /* else require explicit machine-level constraints */
882                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
883                         rdev_err(rdev, "invalid voltage constraints\n");
884                         return -EINVAL;
885                 }
886
887                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
888                 for (i = 0; i < count; i++) {
889                         int     value;
890
891                         value = ops->list_voltage(rdev, i);
892                         if (value <= 0)
893                                 continue;
894
895                         /* maybe adjust [min_uV..max_uV] */
896                         if (value >= cmin && value < min_uV)
897                                 min_uV = value;
898                         if (value <= cmax && value > max_uV)
899                                 max_uV = value;
900                 }
901
902                 /* final: [min_uV..max_uV] valid iff constraints valid */
903                 if (max_uV < min_uV) {
904                         rdev_err(rdev,
905                                  "unsupportable voltage constraints %u-%uuV\n",
906                                  min_uV, max_uV);
907                         return -EINVAL;
908                 }
909
910                 /* use regulator's subset of machine constraints */
911                 if (constraints->min_uV < min_uV) {
912                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
913                                  constraints->min_uV, min_uV);
914                         constraints->min_uV = min_uV;
915                 }
916                 if (constraints->max_uV > max_uV) {
917                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
918                                  constraints->max_uV, max_uV);
919                         constraints->max_uV = max_uV;
920                 }
921         }
922
923         return 0;
924 }
925
926 /**
927  * set_machine_constraints - sets regulator constraints
928  * @rdev: regulator source
929  * @constraints: constraints to apply
930  *
931  * Allows platform initialisation code to define and constrain
932  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
933  * Constraints *must* be set by platform code in order for some
934  * regulator operations to proceed i.e. set_voltage, set_current_limit,
935  * set_mode.
936  */
937 static int set_machine_constraints(struct regulator_dev *rdev,
938         const struct regulation_constraints *constraints)
939 {
940         int ret = 0;
941         struct regulator_ops *ops = rdev->desc->ops;
942
943         if (constraints)
944                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
945                                             GFP_KERNEL);
946         else
947                 rdev->constraints = kzalloc(sizeof(*constraints),
948                                             GFP_KERNEL);
949         if (!rdev->constraints)
950                 return -ENOMEM;
951
952         ret = machine_constraints_voltage(rdev, rdev->constraints);
953         if (ret != 0)
954                 goto out;
955
956         /* do we need to setup our suspend state */
957         if (rdev->constraints->initial_state) {
958                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
959                 if (ret < 0) {
960                         rdev_err(rdev, "failed to set suspend state\n");
961                         goto out;
962                 }
963         }
964
965         if (rdev->constraints->initial_mode) {
966                 if (!ops->set_mode) {
967                         rdev_err(rdev, "no set_mode operation\n");
968                         ret = -EINVAL;
969                         goto out;
970                 }
971
972                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
973                 if (ret < 0) {
974                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
975                         goto out;
976                 }
977         }
978
979         /* If the constraints say the regulator should be on at this point
980          * and we have control then make sure it is enabled.
981          */
982         if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
983             ops->enable) {
984                 ret = ops->enable(rdev);
985                 if (ret < 0) {
986                         rdev_err(rdev, "failed to enable\n");
987                         goto out;
988                 }
989         }
990
991         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
992                 && ops->set_ramp_delay) {
993                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
994                 if (ret < 0) {
995                         rdev_err(rdev, "failed to set ramp_delay\n");
996                         goto out;
997                 }
998         }
999
1000         print_constraints(rdev);
1001         return 0;
1002 out:
1003         kfree(rdev->constraints);
1004         rdev->constraints = NULL;
1005         return ret;
1006 }
1007
1008 /**
1009  * set_supply - set regulator supply regulator
1010  * @rdev: regulator name
1011  * @supply_rdev: supply regulator name
1012  *
1013  * Called by platform initialisation code to set the supply regulator for this
1014  * regulator. This ensures that a regulators supply will also be enabled by the
1015  * core if it's child is enabled.
1016  */
1017 static int set_supply(struct regulator_dev *rdev,
1018                       struct regulator_dev *supply_rdev)
1019 {
1020         int err;
1021
1022         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1023
1024         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1025         if (rdev->supply == NULL) {
1026                 err = -ENOMEM;
1027                 return err;
1028         }
1029         supply_rdev->open_count++;
1030
1031         return 0;
1032 }
1033
1034 /**
1035  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1036  * @rdev:         regulator source
1037  * @consumer_dev_name: dev_name() string for device supply applies to
1038  * @supply:       symbolic name for supply
1039  *
1040  * Allows platform initialisation code to map physical regulator
1041  * sources to symbolic names for supplies for use by devices.  Devices
1042  * should use these symbolic names to request regulators, avoiding the
1043  * need to provide board-specific regulator names as platform data.
1044  */
1045 static int set_consumer_device_supply(struct regulator_dev *rdev,
1046                                       const char *consumer_dev_name,
1047                                       const char *supply)
1048 {
1049         struct regulator_map *node;
1050         int has_dev;
1051
1052         if (supply == NULL)
1053                 return -EINVAL;
1054
1055         if (consumer_dev_name != NULL)
1056                 has_dev = 1;
1057         else
1058                 has_dev = 0;
1059
1060         list_for_each_entry(node, &regulator_map_list, list) {
1061                 if (node->dev_name && consumer_dev_name) {
1062                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1063                                 continue;
1064                 } else if (node->dev_name || consumer_dev_name) {
1065                         continue;
1066                 }
1067
1068                 if (strcmp(node->supply, supply) != 0)
1069                         continue;
1070
1071                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1072                          consumer_dev_name,
1073                          dev_name(&node->regulator->dev),
1074                          node->regulator->desc->name,
1075                          supply,
1076                          dev_name(&rdev->dev), rdev_get_name(rdev));
1077                 return -EBUSY;
1078         }
1079
1080         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1081         if (node == NULL)
1082                 return -ENOMEM;
1083
1084         node->regulator = rdev;
1085         node->supply = supply;
1086
1087         if (has_dev) {
1088                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1089                 if (node->dev_name == NULL) {
1090                         kfree(node);
1091                         return -ENOMEM;
1092                 }
1093         }
1094
1095         list_add(&node->list, &regulator_map_list);
1096         return 0;
1097 }
1098
1099 static void unset_regulator_supplies(struct regulator_dev *rdev)
1100 {
1101         struct regulator_map *node, *n;
1102
1103         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1104                 if (rdev == node->regulator) {
1105                         list_del(&node->list);
1106                         kfree(node->dev_name);
1107                         kfree(node);
1108                 }
1109         }
1110 }
1111
1112 #define REG_STR_SIZE    64
1113
1114 static struct regulator *create_regulator(struct regulator_dev *rdev,
1115                                           struct device *dev,
1116                                           const char *supply_name)
1117 {
1118         struct regulator *regulator;
1119         char buf[REG_STR_SIZE];
1120         int err, size;
1121
1122         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1123         if (regulator == NULL)
1124                 return NULL;
1125
1126         mutex_lock(&rdev->mutex);
1127         regulator->rdev = rdev;
1128         list_add(&regulator->list, &rdev->consumer_list);
1129
1130         if (dev) {
1131                 regulator->dev = dev;
1132
1133                 /* Add a link to the device sysfs entry */
1134                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1135                                  dev->kobj.name, supply_name);
1136                 if (size >= REG_STR_SIZE)
1137                         goto overflow_err;
1138
1139                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1140                 if (regulator->supply_name == NULL)
1141                         goto overflow_err;
1142
1143                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1144                                         buf);
1145                 if (err) {
1146                         rdev_warn(rdev, "could not add device link %s err %d\n",
1147                                   dev->kobj.name, err);
1148                         /* non-fatal */
1149                 }
1150         } else {
1151                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1152                 if (regulator->supply_name == NULL)
1153                         goto overflow_err;
1154         }
1155
1156         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1157                                                 rdev->debugfs);
1158         if (!regulator->debugfs) {
1159                 rdev_warn(rdev, "Failed to create debugfs directory\n");
1160         } else {
1161                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1162                                    &regulator->uA_load);
1163                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1164                                    &regulator->min_uV);
1165                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1166                                    &regulator->max_uV);
1167         }
1168
1169         /*
1170          * Check now if the regulator is an always on regulator - if
1171          * it is then we don't need to do nearly so much work for
1172          * enable/disable calls.
1173          */
1174         if (!_regulator_can_change_status(rdev) &&
1175             _regulator_is_enabled(rdev))
1176                 regulator->always_on = true;
1177
1178         mutex_unlock(&rdev->mutex);
1179         return regulator;
1180 overflow_err:
1181         list_del(&regulator->list);
1182         kfree(regulator);
1183         mutex_unlock(&rdev->mutex);
1184         return NULL;
1185 }
1186
1187 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1188 {
1189         if (!rdev->desc->ops->enable_time)
1190                 return rdev->desc->enable_time;
1191         return rdev->desc->ops->enable_time(rdev);
1192 }
1193
1194 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1195                                                   const char *supply,
1196                                                   int *ret)
1197 {
1198         struct regulator_dev *r;
1199         struct device_node *node;
1200         struct regulator_map *map;
1201         const char *devname = NULL;
1202
1203         /* first do a dt based lookup */
1204         if (dev && dev->of_node) {
1205                 node = of_get_regulator(dev, supply);
1206                 if (node) {
1207                         list_for_each_entry(r, &regulator_list, list)
1208                                 if (r->dev.parent &&
1209                                         node == r->dev.of_node)
1210                                         return r;
1211                 } else {
1212                         /*
1213                          * If we couldn't even get the node then it's
1214                          * not just that the device didn't register
1215                          * yet, there's no node and we'll never
1216                          * succeed.
1217                          */
1218                         *ret = -ENODEV;
1219                 }
1220         }
1221
1222         /* if not found, try doing it non-dt way */
1223         if (dev)
1224                 devname = dev_name(dev);
1225
1226         list_for_each_entry(r, &regulator_list, list)
1227                 if (strcmp(rdev_get_name(r), supply) == 0)
1228                         return r;
1229
1230         list_for_each_entry(map, &regulator_map_list, list) {
1231                 /* If the mapping has a device set up it must match */
1232                 if (map->dev_name &&
1233                     (!devname || strcmp(map->dev_name, devname)))
1234                         continue;
1235
1236                 if (strcmp(map->supply, supply) == 0)
1237                         return map->regulator;
1238         }
1239
1240
1241         return NULL;
1242 }
1243
1244 /* Internal regulator request function */
1245 static struct regulator *_regulator_get(struct device *dev, const char *id,
1246                                         bool exclusive)
1247 {
1248         struct regulator_dev *rdev;
1249         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1250         const char *devname = NULL;
1251         int ret = 0;
1252
1253         if (id == NULL) {
1254                 pr_err("get() with no identifier\n");
1255                 return regulator;
1256         }
1257
1258         if (dev)
1259                 devname = dev_name(dev);
1260
1261         mutex_lock(&regulator_list_mutex);
1262
1263         rdev = regulator_dev_lookup(dev, id, &ret);
1264         if (rdev)
1265                 goto found;
1266
1267         /*
1268          * If we have return value from dev_lookup fail, we do not expect to
1269          * succeed, so, quit with appropriate error value
1270          */
1271         if (ret) {
1272                 regulator = ERR_PTR(ret);
1273                 goto out;
1274         }
1275
1276         if (board_wants_dummy_regulator) {
1277                 rdev = dummy_regulator_rdev;
1278                 goto found;
1279         }
1280
1281 #ifdef CONFIG_REGULATOR_DUMMY
1282         if (!devname)
1283                 devname = "deviceless";
1284
1285         /* If the board didn't flag that it was fully constrained then
1286          * substitute in a dummy regulator so consumers can continue.
1287          */
1288         if (!has_full_constraints) {
1289                 pr_warn("%s supply %s not found, using dummy regulator\n",
1290                         devname, id);
1291                 rdev = dummy_regulator_rdev;
1292                 goto found;
1293         }
1294 #endif
1295
1296         mutex_unlock(&regulator_list_mutex);
1297         return regulator;
1298
1299 found:
1300         if (rdev->exclusive) {
1301                 regulator = ERR_PTR(-EPERM);
1302                 goto out;
1303         }
1304
1305         if (exclusive && rdev->open_count) {
1306                 regulator = ERR_PTR(-EBUSY);
1307                 goto out;
1308         }
1309
1310         if (!try_module_get(rdev->owner))
1311                 goto out;
1312
1313         regulator = create_regulator(rdev, dev, id);
1314         if (regulator == NULL) {
1315                 regulator = ERR_PTR(-ENOMEM);
1316                 module_put(rdev->owner);
1317                 goto out;
1318         }
1319
1320         rdev->open_count++;
1321         if (exclusive) {
1322                 rdev->exclusive = 1;
1323
1324                 ret = _regulator_is_enabled(rdev);
1325                 if (ret > 0)
1326                         rdev->use_count = 1;
1327                 else
1328                         rdev->use_count = 0;
1329         }
1330
1331 out:
1332         mutex_unlock(&regulator_list_mutex);
1333
1334         return regulator;
1335 }
1336
1337 enum {
1338         NORMAL_GET,
1339         EXCLUSIVE_GET,
1340         OPTIONAL_GET,
1341 };
1342
1343 static void devm_regulator_release(struct device *dev, void *res)
1344 {
1345         regulator_put(*(struct regulator **)res);
1346 }
1347
1348 static struct regulator *_devm_regulator_get(struct device *dev, const char *id,
1349                                              int get_type)
1350 {
1351         struct regulator **ptr, *regulator;
1352
1353         ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1354         if (!ptr)
1355                 return ERR_PTR(-ENOMEM);
1356
1357         switch (get_type) {
1358         case NORMAL_GET:
1359                 regulator = regulator_get(dev, id);
1360                 break;
1361         case EXCLUSIVE_GET:
1362                 regulator = regulator_get_exclusive(dev, id);
1363                 break;
1364         case OPTIONAL_GET:
1365                 regulator = regulator_get_optional(dev, id);
1366                 break;
1367         default:
1368                 regulator = ERR_PTR(-EINVAL);
1369         }
1370
1371         if (!IS_ERR(regulator)) {
1372                 *ptr = regulator;
1373                 devres_add(dev, ptr);
1374         } else {
1375                 devres_free(ptr);
1376         }
1377
1378         return regulator;
1379 }
1380
1381 /**
1382  * regulator_get - lookup and obtain a reference to a regulator.
1383  * @dev: device for regulator "consumer"
1384  * @id: Supply name or regulator ID.
1385  *
1386  * Returns a struct regulator corresponding to the regulator producer,
1387  * or IS_ERR() condition containing errno.
1388  *
1389  * Use of supply names configured via regulator_set_device_supply() is
1390  * strongly encouraged.  It is recommended that the supply name used
1391  * should match the name used for the supply and/or the relevant
1392  * device pins in the datasheet.
1393  */
1394 struct regulator *regulator_get(struct device *dev, const char *id)
1395 {
1396         return _regulator_get(dev, id, false);
1397 }
1398 EXPORT_SYMBOL_GPL(regulator_get);
1399
1400 /**
1401  * devm_regulator_get - Resource managed regulator_get()
1402  * @dev: device for regulator "consumer"
1403  * @id: Supply name or regulator ID.
1404  *
1405  * Managed regulator_get(). Regulators returned from this function are
1406  * automatically regulator_put() on driver detach. See regulator_get() for more
1407  * information.
1408  */
1409 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1410 {
1411         return _devm_regulator_get(dev, id, NORMAL_GET);
1412 }
1413 EXPORT_SYMBOL_GPL(devm_regulator_get);
1414
1415 /**
1416  * regulator_get_exclusive - obtain exclusive access to a regulator.
1417  * @dev: device for regulator "consumer"
1418  * @id: Supply name or regulator ID.
1419  *
1420  * Returns a struct regulator corresponding to the regulator producer,
1421  * or IS_ERR() condition containing errno.  Other consumers will be
1422  * unable to obtain this reference is held and the use count for the
1423  * regulator will be initialised to reflect the current state of the
1424  * regulator.
1425  *
1426  * This is intended for use by consumers which cannot tolerate shared
1427  * use of the regulator such as those which need to force the
1428  * regulator off for correct operation of the hardware they are
1429  * controlling.
1430  *
1431  * Use of supply names configured via regulator_set_device_supply() is
1432  * strongly encouraged.  It is recommended that the supply name used
1433  * should match the name used for the supply and/or the relevant
1434  * device pins in the datasheet.
1435  */
1436 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1437 {
1438         return _regulator_get(dev, id, true);
1439 }
1440 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1441
1442 /**
1443  * devm_regulator_get_exclusive - Resource managed regulator_get_exclusive()
1444  * @dev: device for regulator "consumer"
1445  * @id: Supply name or regulator ID.
1446  *
1447  * Managed regulator_get_exclusive(). Regulators returned from this function
1448  * are automatically regulator_put() on driver detach. See regulator_get() for
1449  * more information.
1450  */
1451 struct regulator *devm_regulator_get_exclusive(struct device *dev,
1452                                                const char *id)
1453 {
1454         return _devm_regulator_get(dev, id, EXCLUSIVE_GET);
1455 }
1456 EXPORT_SYMBOL_GPL(devm_regulator_get_exclusive);
1457
1458 /**
1459  * regulator_get_optional - obtain optional access to a regulator.
1460  * @dev: device for regulator "consumer"
1461  * @id: Supply name or regulator ID.
1462  *
1463  * Returns a struct regulator corresponding to the regulator producer,
1464  * or IS_ERR() condition containing errno.  Other consumers will be
1465  * unable to obtain this reference is held and the use count for the
1466  * regulator will be initialised to reflect the current state of the
1467  * regulator.
1468  *
1469  * This is intended for use by consumers for devices which can have
1470  * some supplies unconnected in normal use, such as some MMC devices.
1471  * It can allow the regulator core to provide stub supplies for other
1472  * supplies requested using normal regulator_get() calls without
1473  * disrupting the operation of drivers that can handle absent
1474  * supplies.
1475  *
1476  * Use of supply names configured via regulator_set_device_supply() is
1477  * strongly encouraged.  It is recommended that the supply name used
1478  * should match the name used for the supply and/or the relevant
1479  * device pins in the datasheet.
1480  */
1481 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1482 {
1483         return _regulator_get(dev, id, 0);
1484 }
1485 EXPORT_SYMBOL_GPL(regulator_get_optional);
1486
1487 /**
1488  * devm_regulator_get_optional - Resource managed regulator_get_optional()
1489  * @dev: device for regulator "consumer"
1490  * @id: Supply name or regulator ID.
1491  *
1492  * Managed regulator_get_optional(). Regulators returned from this
1493  * function are automatically regulator_put() on driver detach. See
1494  * regulator_get_optional() for more information.
1495  */
1496 struct regulator *devm_regulator_get_optional(struct device *dev,
1497                                               const char *id)
1498 {
1499         return _devm_regulator_get(dev, id, OPTIONAL_GET);
1500 }
1501 EXPORT_SYMBOL_GPL(devm_regulator_get_optional);
1502
1503 /* Locks held by regulator_put() */
1504 static void _regulator_put(struct regulator *regulator)
1505 {
1506         struct regulator_dev *rdev;
1507
1508         if (regulator == NULL || IS_ERR(regulator))
1509                 return;
1510
1511         rdev = regulator->rdev;
1512
1513         debugfs_remove_recursive(regulator->debugfs);
1514
1515         /* remove any sysfs entries */
1516         if (regulator->dev)
1517                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1518         kfree(regulator->supply_name);
1519         list_del(&regulator->list);
1520         kfree(regulator);
1521
1522         rdev->open_count--;
1523         rdev->exclusive = 0;
1524
1525         module_put(rdev->owner);
1526 }
1527
1528 /**
1529  * regulator_put - "free" the regulator source
1530  * @regulator: regulator source
1531  *
1532  * Note: drivers must ensure that all regulator_enable calls made on this
1533  * regulator source are balanced by regulator_disable calls prior to calling
1534  * this function.
1535  */
1536 void regulator_put(struct regulator *regulator)
1537 {
1538         mutex_lock(&regulator_list_mutex);
1539         _regulator_put(regulator);
1540         mutex_unlock(&regulator_list_mutex);
1541 }
1542 EXPORT_SYMBOL_GPL(regulator_put);
1543
1544 static int devm_regulator_match(struct device *dev, void *res, void *data)
1545 {
1546         struct regulator **r = res;
1547         if (!r || !*r) {
1548                 WARN_ON(!r || !*r);
1549                 return 0;
1550         }
1551         return *r == data;
1552 }
1553
1554 /**
1555  * devm_regulator_put - Resource managed regulator_put()
1556  * @regulator: regulator to free
1557  *
1558  * Deallocate a regulator allocated with devm_regulator_get(). Normally
1559  * this function will not need to be called and the resource management
1560  * code will ensure that the resource is freed.
1561  */
1562 void devm_regulator_put(struct regulator *regulator)
1563 {
1564         int rc;
1565
1566         rc = devres_release(regulator->dev, devm_regulator_release,
1567                             devm_regulator_match, regulator);
1568         if (rc != 0)
1569                 WARN_ON(rc);
1570 }
1571 EXPORT_SYMBOL_GPL(devm_regulator_put);
1572
1573 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1574 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1575                                 const struct regulator_config *config)
1576 {
1577         struct regulator_enable_gpio *pin;
1578         int ret;
1579
1580         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1581                 if (pin->gpio == config->ena_gpio) {
1582                         rdev_dbg(rdev, "GPIO %d is already used\n",
1583                                 config->ena_gpio);
1584                         goto update_ena_gpio_to_rdev;
1585                 }
1586         }
1587
1588         ret = gpio_request_one(config->ena_gpio,
1589                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1590                                 rdev_get_name(rdev));
1591         if (ret)
1592                 return ret;
1593
1594         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1595         if (pin == NULL) {
1596                 gpio_free(config->ena_gpio);
1597                 return -ENOMEM;
1598         }
1599
1600         pin->gpio = config->ena_gpio;
1601         pin->ena_gpio_invert = config->ena_gpio_invert;
1602         list_add(&pin->list, &regulator_ena_gpio_list);
1603
1604 update_ena_gpio_to_rdev:
1605         pin->request_count++;
1606         rdev->ena_pin = pin;
1607         return 0;
1608 }
1609
1610 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1611 {
1612         struct regulator_enable_gpio *pin, *n;
1613
1614         if (!rdev->ena_pin)
1615                 return;
1616
1617         /* Free the GPIO only in case of no use */
1618         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1619                 if (pin->gpio == rdev->ena_pin->gpio) {
1620                         if (pin->request_count <= 1) {
1621                                 pin->request_count = 0;
1622                                 gpio_free(pin->gpio);
1623                                 list_del(&pin->list);
1624                                 kfree(pin);
1625                         } else {
1626                                 pin->request_count--;
1627                         }
1628                 }
1629         }
1630 }
1631
1632 /**
1633  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1634  * @rdev: regulator_dev structure
1635  * @enable: enable GPIO at initial use?
1636  *
1637  * GPIO is enabled in case of initial use. (enable_count is 0)
1638  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1639  */
1640 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1641 {
1642         struct regulator_enable_gpio *pin = rdev->ena_pin;
1643
1644         if (!pin)
1645                 return -EINVAL;
1646
1647         if (enable) {
1648                 /* Enable GPIO at initial use */
1649                 if (pin->enable_count == 0)
1650                         gpio_set_value_cansleep(pin->gpio,
1651                                                 !pin->ena_gpio_invert);
1652
1653                 pin->enable_count++;
1654         } else {
1655                 if (pin->enable_count > 1) {
1656                         pin->enable_count--;
1657                         return 0;
1658                 }
1659
1660                 /* Disable GPIO if not used */
1661                 if (pin->enable_count <= 1) {
1662                         gpio_set_value_cansleep(pin->gpio,
1663                                                 pin->ena_gpio_invert);
1664                         pin->enable_count = 0;
1665                 }
1666         }
1667
1668         return 0;
1669 }
1670
1671 static int _regulator_do_enable(struct regulator_dev *rdev)
1672 {
1673         int ret, delay;
1674
1675         /* Query before enabling in case configuration dependent.  */
1676         ret = _regulator_get_enable_time(rdev);
1677         if (ret >= 0) {
1678                 delay = ret;
1679         } else {
1680                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1681                 delay = 0;
1682         }
1683
1684         trace_regulator_enable(rdev_get_name(rdev));
1685
1686         if (rdev->ena_pin) {
1687                 ret = regulator_ena_gpio_ctrl(rdev, true);
1688                 if (ret < 0)
1689                         return ret;
1690                 rdev->ena_gpio_state = 1;
1691         } else if (rdev->desc->ops->enable) {
1692                 ret = rdev->desc->ops->enable(rdev);
1693                 if (ret < 0)
1694                         return ret;
1695         } else {
1696                 return -EINVAL;
1697         }
1698
1699         /* Allow the regulator to ramp; it would be useful to extend
1700          * this for bulk operations so that the regulators can ramp
1701          * together.  */
1702         trace_regulator_enable_delay(rdev_get_name(rdev));
1703
1704         if (delay >= 1000) {
1705                 mdelay(delay / 1000);
1706                 udelay(delay % 1000);
1707         } else if (delay) {
1708                 udelay(delay);
1709         }
1710
1711         trace_regulator_enable_complete(rdev_get_name(rdev));
1712
1713         return 0;
1714 }
1715
1716 /* locks held by regulator_enable() */
1717 static int _regulator_enable(struct regulator_dev *rdev)
1718 {
1719         int ret;
1720
1721         /* check voltage and requested load before enabling */
1722         if (rdev->constraints &&
1723             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1724                 drms_uA_update(rdev);
1725
1726         if (rdev->use_count == 0) {
1727                 /* The regulator may on if it's not switchable or left on */
1728                 ret = _regulator_is_enabled(rdev);
1729                 if (ret == -EINVAL || ret == 0) {
1730                         if (!_regulator_can_change_status(rdev))
1731                                 return -EPERM;
1732
1733                         ret = _regulator_do_enable(rdev);
1734                         if (ret < 0)
1735                                 return ret;
1736
1737                 } else if (ret < 0) {
1738                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1739                         return ret;
1740                 }
1741                 /* Fallthrough on positive return values - already enabled */
1742         }
1743
1744         rdev->use_count++;
1745
1746         return 0;
1747 }
1748
1749 /**
1750  * regulator_enable - enable regulator output
1751  * @regulator: regulator source
1752  *
1753  * Request that the regulator be enabled with the regulator output at
1754  * the predefined voltage or current value.  Calls to regulator_enable()
1755  * must be balanced with calls to regulator_disable().
1756  *
1757  * NOTE: the output value can be set by other drivers, boot loader or may be
1758  * hardwired in the regulator.
1759  */
1760 int regulator_enable(struct regulator *regulator)
1761 {
1762         struct regulator_dev *rdev = regulator->rdev;
1763         int ret = 0;
1764
1765         if (regulator->always_on)
1766                 return 0;
1767
1768         if (rdev->supply) {
1769                 ret = regulator_enable(rdev->supply);
1770                 if (ret != 0)
1771                         return ret;
1772         }
1773
1774         mutex_lock(&rdev->mutex);
1775         ret = _regulator_enable(rdev);
1776         mutex_unlock(&rdev->mutex);
1777
1778         if (ret != 0 && rdev->supply)
1779                 regulator_disable(rdev->supply);
1780
1781         return ret;
1782 }
1783 EXPORT_SYMBOL_GPL(regulator_enable);
1784
1785 static int _regulator_do_disable(struct regulator_dev *rdev)
1786 {
1787         int ret;
1788
1789         trace_regulator_disable(rdev_get_name(rdev));
1790
1791         if (rdev->ena_pin) {
1792                 ret = regulator_ena_gpio_ctrl(rdev, false);
1793                 if (ret < 0)
1794                         return ret;
1795                 rdev->ena_gpio_state = 0;
1796
1797         } else if (rdev->desc->ops->disable) {
1798                 ret = rdev->desc->ops->disable(rdev);
1799                 if (ret != 0)
1800                         return ret;
1801         }
1802
1803         trace_regulator_disable_complete(rdev_get_name(rdev));
1804
1805         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1806                              NULL);
1807         return 0;
1808 }
1809
1810 /* locks held by regulator_disable() */
1811 static int _regulator_disable(struct regulator_dev *rdev)
1812 {
1813         int ret = 0;
1814
1815         if (WARN(rdev->use_count <= 0,
1816                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
1817                 return -EIO;
1818
1819         /* are we the last user and permitted to disable ? */
1820         if (rdev->use_count == 1 &&
1821             (rdev->constraints && !rdev->constraints->always_on)) {
1822
1823                 /* we are last user */
1824                 if (_regulator_can_change_status(rdev)) {
1825                         ret = _regulator_do_disable(rdev);
1826                         if (ret < 0) {
1827                                 rdev_err(rdev, "failed to disable\n");
1828                                 return ret;
1829                         }
1830                 }
1831
1832                 rdev->use_count = 0;
1833         } else if (rdev->use_count > 1) {
1834
1835                 if (rdev->constraints &&
1836                         (rdev->constraints->valid_ops_mask &
1837                         REGULATOR_CHANGE_DRMS))
1838                         drms_uA_update(rdev);
1839
1840                 rdev->use_count--;
1841         }
1842
1843         return ret;
1844 }
1845
1846 /**
1847  * regulator_disable - disable regulator output
1848  * @regulator: regulator source
1849  *
1850  * Disable the regulator output voltage or current.  Calls to
1851  * regulator_enable() must be balanced with calls to
1852  * regulator_disable().
1853  *
1854  * NOTE: this will only disable the regulator output if no other consumer
1855  * devices have it enabled, the regulator device supports disabling and
1856  * machine constraints permit this operation.
1857  */
1858 int regulator_disable(struct regulator *regulator)
1859 {
1860         struct regulator_dev *rdev = regulator->rdev;
1861         int ret = 0;
1862
1863         if (regulator->always_on)
1864                 return 0;
1865
1866         mutex_lock(&rdev->mutex);
1867         ret = _regulator_disable(rdev);
1868         mutex_unlock(&rdev->mutex);
1869
1870         if (ret == 0 && rdev->supply)
1871                 regulator_disable(rdev->supply);
1872
1873         return ret;
1874 }
1875 EXPORT_SYMBOL_GPL(regulator_disable);
1876
1877 /* locks held by regulator_force_disable() */
1878 static int _regulator_force_disable(struct regulator_dev *rdev)
1879 {
1880         int ret = 0;
1881
1882         /* force disable */
1883         if (rdev->desc->ops->disable) {
1884                 /* ah well, who wants to live forever... */
1885                 ret = rdev->desc->ops->disable(rdev);
1886                 if (ret < 0) {
1887                         rdev_err(rdev, "failed to force disable\n");
1888                         return ret;
1889                 }
1890                 /* notify other consumers that power has been forced off */
1891                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1892                         REGULATOR_EVENT_DISABLE, NULL);
1893         }
1894
1895         return ret;
1896 }
1897
1898 /**
1899  * regulator_force_disable - force disable regulator output
1900  * @regulator: regulator source
1901  *
1902  * Forcibly disable the regulator output voltage or current.
1903  * NOTE: this *will* disable the regulator output even if other consumer
1904  * devices have it enabled. This should be used for situations when device
1905  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1906  */
1907 int regulator_force_disable(struct regulator *regulator)
1908 {
1909         struct regulator_dev *rdev = regulator->rdev;
1910         int ret;
1911
1912         mutex_lock(&rdev->mutex);
1913         regulator->uA_load = 0;
1914         ret = _regulator_force_disable(regulator->rdev);
1915         mutex_unlock(&rdev->mutex);
1916
1917         if (rdev->supply)
1918                 while (rdev->open_count--)
1919                         regulator_disable(rdev->supply);
1920
1921         return ret;
1922 }
1923 EXPORT_SYMBOL_GPL(regulator_force_disable);
1924
1925 static void regulator_disable_work(struct work_struct *work)
1926 {
1927         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1928                                                   disable_work.work);
1929         int count, i, ret;
1930
1931         mutex_lock(&rdev->mutex);
1932
1933         BUG_ON(!rdev->deferred_disables);
1934
1935         count = rdev->deferred_disables;
1936         rdev->deferred_disables = 0;
1937
1938         for (i = 0; i < count; i++) {
1939                 ret = _regulator_disable(rdev);
1940                 if (ret != 0)
1941                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1942         }
1943
1944         mutex_unlock(&rdev->mutex);
1945
1946         if (rdev->supply) {
1947                 for (i = 0; i < count; i++) {
1948                         ret = regulator_disable(rdev->supply);
1949                         if (ret != 0) {
1950                                 rdev_err(rdev,
1951                                          "Supply disable failed: %d\n", ret);
1952                         }
1953                 }
1954         }
1955 }
1956
1957 /**
1958  * regulator_disable_deferred - disable regulator output with delay
1959  * @regulator: regulator source
1960  * @ms: miliseconds until the regulator is disabled
1961  *
1962  * Execute regulator_disable() on the regulator after a delay.  This
1963  * is intended for use with devices that require some time to quiesce.
1964  *
1965  * NOTE: this will only disable the regulator output if no other consumer
1966  * devices have it enabled, the regulator device supports disabling and
1967  * machine constraints permit this operation.
1968  */
1969 int regulator_disable_deferred(struct regulator *regulator, int ms)
1970 {
1971         struct regulator_dev *rdev = regulator->rdev;
1972         int ret;
1973
1974         if (regulator->always_on)
1975                 return 0;
1976
1977         if (!ms)
1978                 return regulator_disable(regulator);
1979
1980         mutex_lock(&rdev->mutex);
1981         rdev->deferred_disables++;
1982         mutex_unlock(&rdev->mutex);
1983
1984         ret = queue_delayed_work(system_power_efficient_wq,
1985                                  &rdev->disable_work,
1986                                  msecs_to_jiffies(ms));
1987         if (ret < 0)
1988                 return ret;
1989         else
1990                 return 0;
1991 }
1992 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1993
1994 static int _regulator_is_enabled(struct regulator_dev *rdev)
1995 {
1996         /* A GPIO control always takes precedence */
1997         if (rdev->ena_pin)
1998                 return rdev->ena_gpio_state;
1999
2000         /* If we don't know then assume that the regulator is always on */
2001         if (!rdev->desc->ops->is_enabled)
2002                 return 1;
2003
2004         return rdev->desc->ops->is_enabled(rdev);
2005 }
2006
2007 /**
2008  * regulator_is_enabled - is the regulator output enabled
2009  * @regulator: regulator source
2010  *
2011  * Returns positive if the regulator driver backing the source/client
2012  * has requested that the device be enabled, zero if it hasn't, else a
2013  * negative errno code.
2014  *
2015  * Note that the device backing this regulator handle can have multiple
2016  * users, so it might be enabled even if regulator_enable() was never
2017  * called for this particular source.
2018  */
2019 int regulator_is_enabled(struct regulator *regulator)
2020 {
2021         int ret;
2022
2023         if (regulator->always_on)
2024                 return 1;
2025
2026         mutex_lock(&regulator->rdev->mutex);
2027         ret = _regulator_is_enabled(regulator->rdev);
2028         mutex_unlock(&regulator->rdev->mutex);
2029
2030         return ret;
2031 }
2032 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2033
2034 /**
2035  * regulator_can_change_voltage - check if regulator can change voltage
2036  * @regulator: regulator source
2037  *
2038  * Returns positive if the regulator driver backing the source/client
2039  * can change its voltage, false otherwise. Usefull for detecting fixed
2040  * or dummy regulators and disabling voltage change logic in the client
2041  * driver.
2042  */
2043 int regulator_can_change_voltage(struct regulator *regulator)
2044 {
2045         struct regulator_dev    *rdev = regulator->rdev;
2046
2047         if (rdev->constraints &&
2048             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2049                 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2050                         return 1;
2051
2052                 if (rdev->desc->continuous_voltage_range &&
2053                     rdev->constraints->min_uV && rdev->constraints->max_uV &&
2054                     rdev->constraints->min_uV != rdev->constraints->max_uV)
2055                         return 1;
2056         }
2057
2058         return 0;
2059 }
2060 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2061
2062 /**
2063  * regulator_count_voltages - count regulator_list_voltage() selectors
2064  * @regulator: regulator source
2065  *
2066  * Returns number of selectors, or negative errno.  Selectors are
2067  * numbered starting at zero, and typically correspond to bitfields
2068  * in hardware registers.
2069  */
2070 int regulator_count_voltages(struct regulator *regulator)
2071 {
2072         struct regulator_dev    *rdev = regulator->rdev;
2073
2074         return rdev->desc->n_voltages ? : -EINVAL;
2075 }
2076 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2077
2078 /**
2079  * regulator_list_voltage - enumerate supported voltages
2080  * @regulator: regulator source
2081  * @selector: identify voltage to list
2082  * Context: can sleep
2083  *
2084  * Returns a voltage that can be passed to @regulator_set_voltage(),
2085  * zero if this selector code can't be used on this system, or a
2086  * negative errno.
2087  */
2088 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2089 {
2090         struct regulator_dev    *rdev = regulator->rdev;
2091         struct regulator_ops    *ops = rdev->desc->ops;
2092         int                     ret;
2093
2094         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2095                 return -EINVAL;
2096
2097         mutex_lock(&rdev->mutex);
2098         ret = ops->list_voltage(rdev, selector);
2099         mutex_unlock(&rdev->mutex);
2100
2101         if (ret > 0) {
2102                 if (ret < rdev->constraints->min_uV)
2103                         ret = 0;
2104                 else if (ret > rdev->constraints->max_uV)
2105                         ret = 0;
2106         }
2107
2108         return ret;
2109 }
2110 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2111
2112 /**
2113  * regulator_get_linear_step - return the voltage step size between VSEL values
2114  * @regulator: regulator source
2115  *
2116  * Returns the voltage step size between VSEL values for linear
2117  * regulators, or return 0 if the regulator isn't a linear regulator.
2118  */
2119 unsigned int regulator_get_linear_step(struct regulator *regulator)
2120 {
2121         struct regulator_dev *rdev = regulator->rdev;
2122
2123         return rdev->desc->uV_step;
2124 }
2125 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2126
2127 /**
2128  * regulator_is_supported_voltage - check if a voltage range can be supported
2129  *
2130  * @regulator: Regulator to check.
2131  * @min_uV: Minimum required voltage in uV.
2132  * @max_uV: Maximum required voltage in uV.
2133  *
2134  * Returns a boolean or a negative error code.
2135  */
2136 int regulator_is_supported_voltage(struct regulator *regulator,
2137                                    int min_uV, int max_uV)
2138 {
2139         struct regulator_dev *rdev = regulator->rdev;
2140         int i, voltages, ret;
2141
2142         /* If we can't change voltage check the current voltage */
2143         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2144                 ret = regulator_get_voltage(regulator);
2145                 if (ret >= 0)
2146                         return (min_uV <= ret && ret <= max_uV);
2147                 else
2148                         return ret;
2149         }
2150
2151         /* Any voltage within constrains range is fine? */
2152         if (rdev->desc->continuous_voltage_range)
2153                 return min_uV >= rdev->constraints->min_uV &&
2154                                 max_uV <= rdev->constraints->max_uV;
2155
2156         ret = regulator_count_voltages(regulator);
2157         if (ret < 0)
2158                 return ret;
2159         voltages = ret;
2160
2161         for (i = 0; i < voltages; i++) {
2162                 ret = regulator_list_voltage(regulator, i);
2163
2164                 if (ret >= min_uV && ret <= max_uV)
2165                         return 1;
2166         }
2167
2168         return 0;
2169 }
2170 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2171
2172 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2173                                      int min_uV, int max_uV)
2174 {
2175         int ret;
2176         int delay = 0;
2177         int best_val = 0;
2178         unsigned int selector;
2179         int old_selector = -1;
2180
2181         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2182
2183         min_uV += rdev->constraints->uV_offset;
2184         max_uV += rdev->constraints->uV_offset;
2185
2186         /*
2187          * If we can't obtain the old selector there is not enough
2188          * info to call set_voltage_time_sel().
2189          */
2190         if (_regulator_is_enabled(rdev) &&
2191             rdev->desc->ops->set_voltage_time_sel &&
2192             rdev->desc->ops->get_voltage_sel) {
2193                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2194                 if (old_selector < 0)
2195                         return old_selector;
2196         }
2197
2198         if (rdev->desc->ops->set_voltage) {
2199                 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2200                                                    &selector);
2201
2202                 if (ret >= 0) {
2203                         if (rdev->desc->ops->list_voltage)
2204                                 best_val = rdev->desc->ops->list_voltage(rdev,
2205                                                                          selector);
2206                         else
2207                                 best_val = _regulator_get_voltage(rdev);
2208                 }
2209
2210         } else if (rdev->desc->ops->set_voltage_sel) {
2211                 if (rdev->desc->ops->map_voltage) {
2212                         ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2213                                                            max_uV);
2214                 } else {
2215                         if (rdev->desc->ops->list_voltage ==
2216                             regulator_list_voltage_linear)
2217                                 ret = regulator_map_voltage_linear(rdev,
2218                                                                 min_uV, max_uV);
2219                         else
2220                                 ret = regulator_map_voltage_iterate(rdev,
2221                                                                 min_uV, max_uV);
2222                 }
2223
2224                 if (ret >= 0) {
2225                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2226                         if (min_uV <= best_val && max_uV >= best_val) {
2227                                 selector = ret;
2228                                 if (old_selector == selector)
2229                                         ret = 0;
2230                                 else
2231                                         ret = rdev->desc->ops->set_voltage_sel(
2232                                                                 rdev, ret);
2233                         } else {
2234                                 ret = -EINVAL;
2235                         }
2236                 }
2237         } else {
2238                 ret = -EINVAL;
2239         }
2240
2241         /* Call set_voltage_time_sel if successfully obtained old_selector */
2242         if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2243                 && old_selector != selector) {
2244
2245                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2246                                                 old_selector, selector);
2247                 if (delay < 0) {
2248                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2249                                   delay);
2250                         delay = 0;
2251                 }
2252
2253                 /* Insert any necessary delays */
2254                 if (delay >= 1000) {
2255                         mdelay(delay / 1000);
2256                         udelay(delay % 1000);
2257                 } else if (delay) {
2258                         udelay(delay);
2259                 }
2260         }
2261
2262         if (ret == 0 && best_val >= 0) {
2263                 unsigned long data = best_val;
2264
2265                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2266                                      (void *)data);
2267         }
2268
2269         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2270
2271         return ret;
2272 }
2273
2274 /**
2275  * regulator_set_voltage - set regulator output voltage
2276  * @regulator: regulator source
2277  * @min_uV: Minimum required voltage in uV
2278  * @max_uV: Maximum acceptable voltage in uV
2279  *
2280  * Sets a voltage regulator to the desired output voltage. This can be set
2281  * during any regulator state. IOW, regulator can be disabled or enabled.
2282  *
2283  * If the regulator is enabled then the voltage will change to the new value
2284  * immediately otherwise if the regulator is disabled the regulator will
2285  * output at the new voltage when enabled.
2286  *
2287  * NOTE: If the regulator is shared between several devices then the lowest
2288  * request voltage that meets the system constraints will be used.
2289  * Regulator system constraints must be set for this regulator before
2290  * calling this function otherwise this call will fail.
2291  */
2292 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2293 {
2294         struct regulator_dev *rdev = regulator->rdev;
2295         int ret = 0;
2296         int old_min_uV, old_max_uV;
2297
2298         mutex_lock(&rdev->mutex);
2299
2300         /* If we're setting the same range as last time the change
2301          * should be a noop (some cpufreq implementations use the same
2302          * voltage for multiple frequencies, for example).
2303          */
2304         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2305                 goto out;
2306
2307         /* sanity check */
2308         if (!rdev->desc->ops->set_voltage &&
2309             !rdev->desc->ops->set_voltage_sel) {
2310                 ret = -EINVAL;
2311                 goto out;
2312         }
2313
2314         /* constraints check */
2315         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2316         if (ret < 0)
2317                 goto out;
2318         
2319         /* restore original values in case of error */
2320         old_min_uV = regulator->min_uV;
2321         old_max_uV = regulator->max_uV;
2322         regulator->min_uV = min_uV;
2323         regulator->max_uV = max_uV;
2324
2325         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2326         if (ret < 0)
2327                 goto out2;
2328
2329         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2330         if (ret < 0)
2331                 goto out2;
2332         
2333 out:
2334         mutex_unlock(&rdev->mutex);
2335         return ret;
2336 out2:
2337         regulator->min_uV = old_min_uV;
2338         regulator->max_uV = old_max_uV;
2339         mutex_unlock(&rdev->mutex);
2340         return ret;
2341 }
2342 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2343
2344 /**
2345  * regulator_set_voltage_time - get raise/fall time
2346  * @regulator: regulator source
2347  * @old_uV: starting voltage in microvolts
2348  * @new_uV: target voltage in microvolts
2349  *
2350  * Provided with the starting and ending voltage, this function attempts to
2351  * calculate the time in microseconds required to rise or fall to this new
2352  * voltage.
2353  */
2354 int regulator_set_voltage_time(struct regulator *regulator,
2355                                int old_uV, int new_uV)
2356 {
2357         struct regulator_dev    *rdev = regulator->rdev;
2358         struct regulator_ops    *ops = rdev->desc->ops;
2359         int old_sel = -1;
2360         int new_sel = -1;
2361         int voltage;
2362         int i;
2363
2364         /* Currently requires operations to do this */
2365         if (!ops->list_voltage || !ops->set_voltage_time_sel
2366             || !rdev->desc->n_voltages)
2367                 return -EINVAL;
2368
2369         for (i = 0; i < rdev->desc->n_voltages; i++) {
2370                 /* We only look for exact voltage matches here */
2371                 voltage = regulator_list_voltage(regulator, i);
2372                 if (voltage < 0)
2373                         return -EINVAL;
2374                 if (voltage == 0)
2375                         continue;
2376                 if (voltage == old_uV)
2377                         old_sel = i;
2378                 if (voltage == new_uV)
2379                         new_sel = i;
2380         }
2381
2382         if (old_sel < 0 || new_sel < 0)
2383                 return -EINVAL;
2384
2385         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2386 }
2387 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2388
2389 /**
2390  * regulator_set_voltage_time_sel - get raise/fall time
2391  * @rdev: regulator source device
2392  * @old_selector: selector for starting voltage
2393  * @new_selector: selector for target voltage
2394  *
2395  * Provided with the starting and target voltage selectors, this function
2396  * returns time in microseconds required to rise or fall to this new voltage
2397  *
2398  * Drivers providing ramp_delay in regulation_constraints can use this as their
2399  * set_voltage_time_sel() operation.
2400  */
2401 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2402                                    unsigned int old_selector,
2403                                    unsigned int new_selector)
2404 {
2405         unsigned int ramp_delay = 0;
2406         int old_volt, new_volt;
2407
2408         if (rdev->constraints->ramp_delay)
2409                 ramp_delay = rdev->constraints->ramp_delay;
2410         else if (rdev->desc->ramp_delay)
2411                 ramp_delay = rdev->desc->ramp_delay;
2412
2413         if (ramp_delay == 0) {
2414                 rdev_warn(rdev, "ramp_delay not set\n");
2415                 return 0;
2416         }
2417
2418         /* sanity check */
2419         if (!rdev->desc->ops->list_voltage)
2420                 return -EINVAL;
2421
2422         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2423         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2424
2425         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2426 }
2427 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2428
2429 /**
2430  * regulator_sync_voltage - re-apply last regulator output voltage
2431  * @regulator: regulator source
2432  *
2433  * Re-apply the last configured voltage.  This is intended to be used
2434  * where some external control source the consumer is cooperating with
2435  * has caused the configured voltage to change.
2436  */
2437 int regulator_sync_voltage(struct regulator *regulator)
2438 {
2439         struct regulator_dev *rdev = regulator->rdev;
2440         int ret, min_uV, max_uV;
2441
2442         mutex_lock(&rdev->mutex);
2443
2444         if (!rdev->desc->ops->set_voltage &&
2445             !rdev->desc->ops->set_voltage_sel) {
2446                 ret = -EINVAL;
2447                 goto out;
2448         }
2449
2450         /* This is only going to work if we've had a voltage configured. */
2451         if (!regulator->min_uV && !regulator->max_uV) {
2452                 ret = -EINVAL;
2453                 goto out;
2454         }
2455
2456         min_uV = regulator->min_uV;
2457         max_uV = regulator->max_uV;
2458
2459         /* This should be a paranoia check... */
2460         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2461         if (ret < 0)
2462                 goto out;
2463
2464         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2465         if (ret < 0)
2466                 goto out;
2467
2468         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2469
2470 out:
2471         mutex_unlock(&rdev->mutex);
2472         return ret;
2473 }
2474 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2475
2476 static int _regulator_get_voltage(struct regulator_dev *rdev)
2477 {
2478         int sel, ret;
2479
2480         if (rdev->desc->ops->get_voltage_sel) {
2481                 sel = rdev->desc->ops->get_voltage_sel(rdev);
2482                 if (sel < 0)
2483                         return sel;
2484                 ret = rdev->desc->ops->list_voltage(rdev, sel);
2485         } else if (rdev->desc->ops->get_voltage) {
2486                 ret = rdev->desc->ops->get_voltage(rdev);
2487         } else if (rdev->desc->ops->list_voltage) {
2488                 ret = rdev->desc->ops->list_voltage(rdev, 0);
2489         } else {
2490                 return -EINVAL;
2491         }
2492
2493         if (ret < 0)
2494                 return ret;
2495         return ret - rdev->constraints->uV_offset;
2496 }
2497
2498 /**
2499  * regulator_get_voltage - get regulator output voltage
2500  * @regulator: regulator source
2501  *
2502  * This returns the current regulator voltage in uV.
2503  *
2504  * NOTE: If the regulator is disabled it will return the voltage value. This
2505  * function should not be used to determine regulator state.
2506  */
2507 int regulator_get_voltage(struct regulator *regulator)
2508 {
2509         int ret;
2510
2511         mutex_lock(&regulator->rdev->mutex);
2512
2513         ret = _regulator_get_voltage(regulator->rdev);
2514
2515         mutex_unlock(&regulator->rdev->mutex);
2516
2517         return ret;
2518 }
2519 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2520
2521 /**
2522  * regulator_set_current_limit - set regulator output current limit
2523  * @regulator: regulator source
2524  * @min_uA: Minimum supported current in uA
2525  * @max_uA: Maximum supported current in uA
2526  *
2527  * Sets current sink to the desired output current. This can be set during
2528  * any regulator state. IOW, regulator can be disabled or enabled.
2529  *
2530  * If the regulator is enabled then the current will change to the new value
2531  * immediately otherwise if the regulator is disabled the regulator will
2532  * output at the new current when enabled.
2533  *
2534  * NOTE: Regulator system constraints must be set for this regulator before
2535  * calling this function otherwise this call will fail.
2536  */
2537 int regulator_set_current_limit(struct regulator *regulator,
2538                                int min_uA, int max_uA)
2539 {
2540         struct regulator_dev *rdev = regulator->rdev;
2541         int ret;
2542
2543         mutex_lock(&rdev->mutex);
2544
2545         /* sanity check */
2546         if (!rdev->desc->ops->set_current_limit) {
2547                 ret = -EINVAL;
2548                 goto out;
2549         }
2550
2551         /* constraints check */
2552         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2553         if (ret < 0)
2554                 goto out;
2555
2556         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2557 out:
2558         mutex_unlock(&rdev->mutex);
2559         return ret;
2560 }
2561 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2562
2563 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2564 {
2565         int ret;
2566
2567         mutex_lock(&rdev->mutex);
2568
2569         /* sanity check */
2570         if (!rdev->desc->ops->get_current_limit) {
2571                 ret = -EINVAL;
2572                 goto out;
2573         }
2574
2575         ret = rdev->desc->ops->get_current_limit(rdev);
2576 out:
2577         mutex_unlock(&rdev->mutex);
2578         return ret;
2579 }
2580
2581 /**
2582  * regulator_get_current_limit - get regulator output current
2583  * @regulator: regulator source
2584  *
2585  * This returns the current supplied by the specified current sink in uA.
2586  *
2587  * NOTE: If the regulator is disabled it will return the current value. This
2588  * function should not be used to determine regulator state.
2589  */
2590 int regulator_get_current_limit(struct regulator *regulator)
2591 {
2592         return _regulator_get_current_limit(regulator->rdev);
2593 }
2594 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2595
2596 /**
2597  * regulator_set_mode - set regulator operating mode
2598  * @regulator: regulator source
2599  * @mode: operating mode - one of the REGULATOR_MODE constants
2600  *
2601  * Set regulator operating mode to increase regulator efficiency or improve
2602  * regulation performance.
2603  *
2604  * NOTE: Regulator system constraints must be set for this regulator before
2605  * calling this function otherwise this call will fail.
2606  */
2607 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2608 {
2609         struct regulator_dev *rdev = regulator->rdev;
2610         int ret;
2611         int regulator_curr_mode;
2612
2613         mutex_lock(&rdev->mutex);
2614
2615         /* sanity check */
2616         if (!rdev->desc->ops->set_mode) {
2617                 ret = -EINVAL;
2618                 goto out;
2619         }
2620
2621         /* return if the same mode is requested */
2622         if (rdev->desc->ops->get_mode) {
2623                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2624                 if (regulator_curr_mode == mode) {
2625                         ret = 0;
2626                         goto out;
2627                 }
2628         }
2629
2630         /* constraints check */
2631         ret = regulator_mode_constrain(rdev, &mode);
2632         if (ret < 0)
2633                 goto out;
2634
2635         ret = rdev->desc->ops->set_mode(rdev, mode);
2636 out:
2637         mutex_unlock(&rdev->mutex);
2638         return ret;
2639 }
2640 EXPORT_SYMBOL_GPL(regulator_set_mode);
2641
2642 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2643 {
2644         int ret;
2645
2646         mutex_lock(&rdev->mutex);
2647
2648         /* sanity check */
2649         if (!rdev->desc->ops->get_mode) {
2650                 ret = -EINVAL;
2651                 goto out;
2652         }
2653
2654         ret = rdev->desc->ops->get_mode(rdev);
2655 out:
2656         mutex_unlock(&rdev->mutex);
2657         return ret;
2658 }
2659
2660 /**
2661  * regulator_get_mode - get regulator operating mode
2662  * @regulator: regulator source
2663  *
2664  * Get the current regulator operating mode.
2665  */
2666 unsigned int regulator_get_mode(struct regulator *regulator)
2667 {
2668         return _regulator_get_mode(regulator->rdev);
2669 }
2670 EXPORT_SYMBOL_GPL(regulator_get_mode);
2671
2672 /**
2673  * regulator_set_optimum_mode - set regulator optimum operating mode
2674  * @regulator: regulator source
2675  * @uA_load: load current
2676  *
2677  * Notifies the regulator core of a new device load. This is then used by
2678  * DRMS (if enabled by constraints) to set the most efficient regulator
2679  * operating mode for the new regulator loading.
2680  *
2681  * Consumer devices notify their supply regulator of the maximum power
2682  * they will require (can be taken from device datasheet in the power
2683  * consumption tables) when they change operational status and hence power
2684  * state. Examples of operational state changes that can affect power
2685  * consumption are :-
2686  *
2687  *    o Device is opened / closed.
2688  *    o Device I/O is about to begin or has just finished.
2689  *    o Device is idling in between work.
2690  *
2691  * This information is also exported via sysfs to userspace.
2692  *
2693  * DRMS will sum the total requested load on the regulator and change
2694  * to the most efficient operating mode if platform constraints allow.
2695  *
2696  * Returns the new regulator mode or error.
2697  */
2698 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2699 {
2700         struct regulator_dev *rdev = regulator->rdev;
2701         struct regulator *consumer;
2702         int ret, output_uV, input_uV = 0, total_uA_load = 0;
2703         unsigned int mode;
2704
2705         if (rdev->supply)
2706                 input_uV = regulator_get_voltage(rdev->supply);
2707
2708         mutex_lock(&rdev->mutex);
2709
2710         /*
2711          * first check to see if we can set modes at all, otherwise just
2712          * tell the consumer everything is OK.
2713          */
2714         regulator->uA_load = uA_load;
2715         ret = regulator_check_drms(rdev);
2716         if (ret < 0) {
2717                 ret = 0;
2718                 goto out;
2719         }
2720
2721         if (!rdev->desc->ops->get_optimum_mode)
2722                 goto out;
2723
2724         /*
2725          * we can actually do this so any errors are indicators of
2726          * potential real failure.
2727          */
2728         ret = -EINVAL;
2729
2730         if (!rdev->desc->ops->set_mode)
2731                 goto out;
2732
2733         /* get output voltage */
2734         output_uV = _regulator_get_voltage(rdev);
2735         if (output_uV <= 0) {
2736                 rdev_err(rdev, "invalid output voltage found\n");
2737                 goto out;
2738         }
2739
2740         /* No supply? Use constraint voltage */
2741         if (input_uV <= 0)
2742                 input_uV = rdev->constraints->input_uV;
2743         if (input_uV <= 0) {
2744                 rdev_err(rdev, "invalid input voltage found\n");
2745                 goto out;
2746         }
2747
2748         /* calc total requested load for this regulator */
2749         list_for_each_entry(consumer, &rdev->consumer_list, list)
2750                 total_uA_load += consumer->uA_load;
2751
2752         mode = rdev->desc->ops->get_optimum_mode(rdev,
2753                                                  input_uV, output_uV,
2754                                                  total_uA_load);
2755         ret = regulator_mode_constrain(rdev, &mode);
2756         if (ret < 0) {
2757                 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2758                          total_uA_load, input_uV, output_uV);
2759                 goto out;
2760         }
2761
2762         ret = rdev->desc->ops->set_mode(rdev, mode);
2763         if (ret < 0) {
2764                 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2765                 goto out;
2766         }
2767         ret = mode;
2768 out:
2769         mutex_unlock(&rdev->mutex);
2770         return ret;
2771 }
2772 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2773
2774 /**
2775  * regulator_allow_bypass - allow the regulator to go into bypass mode
2776  *
2777  * @regulator: Regulator to configure
2778  * @enable: enable or disable bypass mode
2779  *
2780  * Allow the regulator to go into bypass mode if all other consumers
2781  * for the regulator also enable bypass mode and the machine
2782  * constraints allow this.  Bypass mode means that the regulator is
2783  * simply passing the input directly to the output with no regulation.
2784  */
2785 int regulator_allow_bypass(struct regulator *regulator, bool enable)
2786 {
2787         struct regulator_dev *rdev = regulator->rdev;
2788         int ret = 0;
2789
2790         if (!rdev->desc->ops->set_bypass)
2791                 return 0;
2792
2793         if (rdev->constraints &&
2794             !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2795                 return 0;
2796
2797         mutex_lock(&rdev->mutex);
2798
2799         if (enable && !regulator->bypass) {
2800                 rdev->bypass_count++;
2801
2802                 if (rdev->bypass_count == rdev->open_count) {
2803                         ret = rdev->desc->ops->set_bypass(rdev, enable);
2804                         if (ret != 0)
2805                                 rdev->bypass_count--;
2806                 }
2807
2808         } else if (!enable && regulator->bypass) {
2809                 rdev->bypass_count--;
2810
2811                 if (rdev->bypass_count != rdev->open_count) {
2812                         ret = rdev->desc->ops->set_bypass(rdev, enable);
2813                         if (ret != 0)
2814                                 rdev->bypass_count++;
2815                 }
2816         }
2817
2818         if (ret == 0)
2819                 regulator->bypass = enable;
2820
2821         mutex_unlock(&rdev->mutex);
2822
2823         return ret;
2824 }
2825 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2826
2827 /**
2828  * regulator_register_notifier - register regulator event notifier
2829  * @regulator: regulator source
2830  * @nb: notifier block
2831  *
2832  * Register notifier block to receive regulator events.
2833  */
2834 int regulator_register_notifier(struct regulator *regulator,
2835                               struct notifier_block *nb)
2836 {
2837         return blocking_notifier_chain_register(&regulator->rdev->notifier,
2838                                                 nb);
2839 }
2840 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2841
2842 /**
2843  * regulator_unregister_notifier - unregister regulator event notifier
2844  * @regulator: regulator source
2845  * @nb: notifier block
2846  *
2847  * Unregister regulator event notifier block.
2848  */
2849 int regulator_unregister_notifier(struct regulator *regulator,
2850                                 struct notifier_block *nb)
2851 {
2852         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2853                                                   nb);
2854 }
2855 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2856
2857 /* notify regulator consumers and downstream regulator consumers.
2858  * Note mutex must be held by caller.
2859  */
2860 static void _notifier_call_chain(struct regulator_dev *rdev,
2861                                   unsigned long event, void *data)
2862 {
2863         /* call rdev chain first */
2864         blocking_notifier_call_chain(&rdev->notifier, event, data);
2865 }
2866
2867 /**
2868  * regulator_bulk_get - get multiple regulator consumers
2869  *
2870  * @dev:           Device to supply
2871  * @num_consumers: Number of consumers to register
2872  * @consumers:     Configuration of consumers; clients are stored here.
2873  *
2874  * @return 0 on success, an errno on failure.
2875  *
2876  * This helper function allows drivers to get several regulator
2877  * consumers in one operation.  If any of the regulators cannot be
2878  * acquired then any regulators that were allocated will be freed
2879  * before returning to the caller.
2880  */
2881 int regulator_bulk_get(struct device *dev, int num_consumers,
2882                        struct regulator_bulk_data *consumers)
2883 {
2884         int i;
2885         int ret;
2886
2887         for (i = 0; i < num_consumers; i++)
2888                 consumers[i].consumer = NULL;
2889
2890         for (i = 0; i < num_consumers; i++) {
2891                 consumers[i].consumer = regulator_get(dev,
2892                                                       consumers[i].supply);
2893                 if (IS_ERR(consumers[i].consumer)) {
2894                         ret = PTR_ERR(consumers[i].consumer);
2895                         dev_err(dev, "Failed to get supply '%s': %d\n",
2896                                 consumers[i].supply, ret);
2897                         consumers[i].consumer = NULL;
2898                         goto err;
2899                 }
2900         }
2901
2902         return 0;
2903
2904 err:
2905         while (--i >= 0)
2906                 regulator_put(consumers[i].consumer);
2907
2908         return ret;
2909 }
2910 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2911
2912 /**
2913  * devm_regulator_bulk_get - managed get multiple regulator consumers
2914  *
2915  * @dev:           Device to supply
2916  * @num_consumers: Number of consumers to register
2917  * @consumers:     Configuration of consumers; clients are stored here.
2918  *
2919  * @return 0 on success, an errno on failure.
2920  *
2921  * This helper function allows drivers to get several regulator
2922  * consumers in one operation with management, the regulators will
2923  * automatically be freed when the device is unbound.  If any of the
2924  * regulators cannot be acquired then any regulators that were
2925  * allocated will be freed before returning to the caller.
2926  */
2927 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2928                             struct regulator_bulk_data *consumers)
2929 {
2930         int i;
2931         int ret;
2932
2933         for (i = 0; i < num_consumers; i++)
2934                 consumers[i].consumer = NULL;
2935
2936         for (i = 0; i < num_consumers; i++) {
2937                 consumers[i].consumer = devm_regulator_get(dev,
2938                                                            consumers[i].supply);
2939                 if (IS_ERR(consumers[i].consumer)) {
2940                         ret = PTR_ERR(consumers[i].consumer);
2941                         dev_err(dev, "Failed to get supply '%s': %d\n",
2942                                 consumers[i].supply, ret);
2943                         consumers[i].consumer = NULL;
2944                         goto err;
2945                 }
2946         }
2947
2948         return 0;
2949
2950 err:
2951         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2952                 devm_regulator_put(consumers[i].consumer);
2953
2954         return ret;
2955 }
2956 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2957
2958 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2959 {
2960         struct regulator_bulk_data *bulk = data;
2961
2962         bulk->ret = regulator_enable(bulk->consumer);
2963 }
2964
2965 /**
2966  * regulator_bulk_enable - enable multiple regulator consumers
2967  *
2968  * @num_consumers: Number of consumers
2969  * @consumers:     Consumer data; clients are stored here.
2970  * @return         0 on success, an errno on failure
2971  *
2972  * This convenience API allows consumers to enable multiple regulator
2973  * clients in a single API call.  If any consumers cannot be enabled
2974  * then any others that were enabled will be disabled again prior to
2975  * return.
2976  */
2977 int regulator_bulk_enable(int num_consumers,
2978                           struct regulator_bulk_data *consumers)
2979 {
2980         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
2981         int i;
2982         int ret = 0;
2983
2984         for (i = 0; i < num_consumers; i++) {
2985                 if (consumers[i].consumer->always_on)
2986                         consumers[i].ret = 0;
2987                 else
2988                         async_schedule_domain(regulator_bulk_enable_async,
2989                                               &consumers[i], &async_domain);
2990         }
2991
2992         async_synchronize_full_domain(&async_domain);
2993
2994         /* If any consumer failed we need to unwind any that succeeded */
2995         for (i = 0; i < num_consumers; i++) {
2996                 if (consumers[i].ret != 0) {
2997                         ret = consumers[i].ret;
2998                         goto err;
2999                 }
3000         }
3001
3002         return 0;
3003
3004 err:
3005         for (i = 0; i < num_consumers; i++) {
3006                 if (consumers[i].ret < 0)
3007                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3008                                consumers[i].ret);
3009                 else
3010                         regulator_disable(consumers[i].consumer);
3011         }
3012
3013         return ret;
3014 }
3015 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3016
3017 /**
3018  * regulator_bulk_disable - disable multiple regulator consumers
3019  *
3020  * @num_consumers: Number of consumers
3021  * @consumers:     Consumer data; clients are stored here.
3022  * @return         0 on success, an errno on failure
3023  *
3024  * This convenience API allows consumers to disable multiple regulator
3025  * clients in a single API call.  If any consumers cannot be disabled
3026  * then any others that were disabled will be enabled again prior to
3027  * return.
3028  */
3029 int regulator_bulk_disable(int num_consumers,
3030                            struct regulator_bulk_data *consumers)
3031 {
3032         int i;
3033         int ret, r;
3034
3035         for (i = num_consumers - 1; i >= 0; --i) {
3036                 ret = regulator_disable(consumers[i].consumer);
3037                 if (ret != 0)
3038                         goto err;
3039         }
3040
3041         return 0;
3042
3043 err:
3044         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3045         for (++i; i < num_consumers; ++i) {
3046                 r = regulator_enable(consumers[i].consumer);
3047                 if (r != 0)
3048                         pr_err("Failed to reename %s: %d\n",
3049                                consumers[i].supply, r);
3050         }
3051
3052         return ret;
3053 }
3054 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3055
3056 /**
3057  * regulator_bulk_force_disable - force disable multiple regulator consumers
3058  *
3059  * @num_consumers: Number of consumers
3060  * @consumers:     Consumer data; clients are stored here.
3061  * @return         0 on success, an errno on failure
3062  *
3063  * This convenience API allows consumers to forcibly disable multiple regulator
3064  * clients in a single API call.
3065  * NOTE: This should be used for situations when device damage will
3066  * likely occur if the regulators are not disabled (e.g. over temp).
3067  * Although regulator_force_disable function call for some consumers can
3068  * return error numbers, the function is called for all consumers.
3069  */
3070 int regulator_bulk_force_disable(int num_consumers,
3071                            struct regulator_bulk_data *consumers)
3072 {
3073         int i;
3074         int ret;
3075
3076         for (i = 0; i < num_consumers; i++)
3077                 consumers[i].ret =
3078                             regulator_force_disable(consumers[i].consumer);
3079
3080         for (i = 0; i < num_consumers; i++) {
3081                 if (consumers[i].ret != 0) {
3082                         ret = consumers[i].ret;
3083                         goto out;
3084                 }
3085         }
3086
3087         return 0;
3088 out:
3089         return ret;
3090 }
3091 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3092
3093 /**
3094  * regulator_bulk_free - free multiple regulator consumers
3095  *
3096  * @num_consumers: Number of consumers
3097  * @consumers:     Consumer data; clients are stored here.
3098  *
3099  * This convenience API allows consumers to free multiple regulator
3100  * clients in a single API call.
3101  */
3102 void regulator_bulk_free(int num_consumers,
3103                          struct regulator_bulk_data *consumers)
3104 {
3105         int i;
3106
3107         for (i = 0; i < num_consumers; i++) {
3108                 regulator_put(consumers[i].consumer);
3109                 consumers[i].consumer = NULL;
3110         }
3111 }
3112 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3113
3114 /**
3115  * regulator_notifier_call_chain - call regulator event notifier
3116  * @rdev: regulator source
3117  * @event: notifier block
3118  * @data: callback-specific data.
3119  *
3120  * Called by regulator drivers to notify clients a regulator event has
3121  * occurred. We also notify regulator clients downstream.
3122  * Note lock must be held by caller.
3123  */
3124 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3125                                   unsigned long event, void *data)
3126 {
3127         _notifier_call_chain(rdev, event, data);
3128         return NOTIFY_DONE;
3129
3130 }
3131 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3132
3133 /**
3134  * regulator_mode_to_status - convert a regulator mode into a status
3135  *
3136  * @mode: Mode to convert
3137  *
3138  * Convert a regulator mode into a status.
3139  */
3140 int regulator_mode_to_status(unsigned int mode)
3141 {
3142         switch (mode) {
3143         case REGULATOR_MODE_FAST:
3144                 return REGULATOR_STATUS_FAST;
3145         case REGULATOR_MODE_NORMAL:
3146                 return REGULATOR_STATUS_NORMAL;
3147         case REGULATOR_MODE_IDLE:
3148                 return REGULATOR_STATUS_IDLE;
3149         case REGULATOR_MODE_STANDBY:
3150                 return REGULATOR_STATUS_STANDBY;
3151         default:
3152                 return REGULATOR_STATUS_UNDEFINED;
3153         }
3154 }
3155 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3156
3157 /*
3158  * To avoid cluttering sysfs (and memory) with useless state, only
3159  * create attributes that can be meaningfully displayed.
3160  */
3161 static int add_regulator_attributes(struct regulator_dev *rdev)
3162 {
3163         struct device           *dev = &rdev->dev;
3164         struct regulator_ops    *ops = rdev->desc->ops;
3165         int                     status = 0;
3166
3167         /* some attributes need specific methods to be displayed */
3168         if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3169             (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3170             (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3171                 status = device_create_file(dev, &dev_attr_microvolts);
3172                 if (status < 0)
3173                         return status;
3174         }
3175         if (ops->get_current_limit) {
3176                 status = device_create_file(dev, &dev_attr_microamps);
3177                 if (status < 0)
3178                         return status;
3179         }
3180         if (ops->get_mode) {
3181                 status = device_create_file(dev, &dev_attr_opmode);
3182                 if (status < 0)
3183                         return status;
3184         }
3185         if (rdev->ena_pin || ops->is_enabled) {
3186                 status = device_create_file(dev, &dev_attr_state);
3187                 if (status < 0)
3188                         return status;
3189         }
3190         if (ops->get_status) {
3191                 status = device_create_file(dev, &dev_attr_status);
3192                 if (status < 0)
3193                         return status;
3194         }
3195         if (ops->get_bypass) {
3196                 status = device_create_file(dev, &dev_attr_bypass);
3197                 if (status < 0)
3198                         return status;
3199         }
3200
3201         /* some attributes are type-specific */
3202         if (rdev->desc->type == REGULATOR_CURRENT) {
3203                 status = device_create_file(dev, &dev_attr_requested_microamps);
3204                 if (status < 0)
3205                         return status;
3206         }
3207
3208         /* all the other attributes exist to support constraints;
3209          * don't show them if there are no constraints, or if the
3210          * relevant supporting methods are missing.
3211          */
3212         if (!rdev->constraints)
3213                 return status;
3214
3215         /* constraints need specific supporting methods */
3216         if (ops->set_voltage || ops->set_voltage_sel) {
3217                 status = device_create_file(dev, &dev_attr_min_microvolts);
3218                 if (status < 0)
3219                         return status;
3220                 status = device_create_file(dev, &dev_attr_max_microvolts);
3221                 if (status < 0)
3222                         return status;
3223         }
3224         if (ops->set_current_limit) {
3225                 status = device_create_file(dev, &dev_attr_min_microamps);
3226                 if (status < 0)
3227                         return status;
3228                 status = device_create_file(dev, &dev_attr_max_microamps);
3229                 if (status < 0)
3230                         return status;
3231         }
3232
3233         status = device_create_file(dev, &dev_attr_suspend_standby_state);
3234         if (status < 0)
3235                 return status;
3236         status = device_create_file(dev, &dev_attr_suspend_mem_state);
3237         if (status < 0)
3238                 return status;
3239         status = device_create_file(dev, &dev_attr_suspend_disk_state);
3240         if (status < 0)
3241                 return status;
3242
3243         if (ops->set_suspend_voltage) {
3244                 status = device_create_file(dev,
3245                                 &dev_attr_suspend_standby_microvolts);
3246                 if (status < 0)
3247                         return status;
3248                 status = device_create_file(dev,
3249                                 &dev_attr_suspend_mem_microvolts);
3250                 if (status < 0)
3251                         return status;
3252                 status = device_create_file(dev,
3253                                 &dev_attr_suspend_disk_microvolts);
3254                 if (status < 0)
3255                         return status;
3256         }
3257
3258         if (ops->set_suspend_mode) {
3259                 status = device_create_file(dev,
3260                                 &dev_attr_suspend_standby_mode);
3261                 if (status < 0)
3262                         return status;
3263                 status = device_create_file(dev,
3264                                 &dev_attr_suspend_mem_mode);
3265                 if (status < 0)
3266                         return status;
3267                 status = device_create_file(dev,
3268                                 &dev_attr_suspend_disk_mode);
3269                 if (status < 0)
3270                         return status;
3271         }
3272
3273         return status;
3274 }
3275
3276 static void rdev_init_debugfs(struct regulator_dev *rdev)
3277 {
3278         rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3279         if (!rdev->debugfs) {
3280                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3281                 return;
3282         }
3283
3284         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3285                            &rdev->use_count);
3286         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3287                            &rdev->open_count);
3288         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3289                            &rdev->bypass_count);
3290 }
3291
3292 /**
3293  * regulator_register - register regulator
3294  * @regulator_desc: regulator to register
3295  * @config: runtime configuration for regulator
3296  *
3297  * Called by regulator drivers to register a regulator.
3298  * Returns a valid pointer to struct regulator_dev on success
3299  * or an ERR_PTR() on error.
3300  */
3301 struct regulator_dev *
3302 regulator_register(const struct regulator_desc *regulator_desc,
3303                    const struct regulator_config *config)
3304 {
3305         const struct regulation_constraints *constraints = NULL;
3306         const struct regulator_init_data *init_data;
3307         static atomic_t regulator_no = ATOMIC_INIT(0);
3308         struct regulator_dev *rdev;
3309         struct device *dev;
3310         int ret, i;
3311         const char *supply = NULL;
3312
3313         if (regulator_desc == NULL || config == NULL)
3314                 return ERR_PTR(-EINVAL);
3315
3316         dev = config->dev;
3317         WARN_ON(!dev);
3318
3319         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3320                 return ERR_PTR(-EINVAL);
3321
3322         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3323             regulator_desc->type != REGULATOR_CURRENT)
3324                 return ERR_PTR(-EINVAL);
3325
3326         /* Only one of each should be implemented */
3327         WARN_ON(regulator_desc->ops->get_voltage &&
3328                 regulator_desc->ops->get_voltage_sel);
3329         WARN_ON(regulator_desc->ops->set_voltage &&
3330                 regulator_desc->ops->set_voltage_sel);
3331
3332         /* If we're using selectors we must implement list_voltage. */
3333         if (regulator_desc->ops->get_voltage_sel &&
3334             !regulator_desc->ops->list_voltage) {
3335                 return ERR_PTR(-EINVAL);
3336         }
3337         if (regulator_desc->ops->set_voltage_sel &&
3338             !regulator_desc->ops->list_voltage) {
3339                 return ERR_PTR(-EINVAL);
3340         }
3341
3342         init_data = config->init_data;
3343
3344         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3345         if (rdev == NULL)
3346                 return ERR_PTR(-ENOMEM);
3347
3348         mutex_lock(&regulator_list_mutex);
3349
3350         mutex_init(&rdev->mutex);
3351         rdev->reg_data = config->driver_data;
3352         rdev->owner = regulator_desc->owner;
3353         rdev->desc = regulator_desc;
3354         if (config->regmap)
3355                 rdev->regmap = config->regmap;
3356         else if (dev_get_regmap(dev, NULL))
3357                 rdev->regmap = dev_get_regmap(dev, NULL);
3358         else if (dev->parent)
3359                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3360         INIT_LIST_HEAD(&rdev->consumer_list);
3361         INIT_LIST_HEAD(&rdev->list);
3362         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3363         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3364
3365         /* preform any regulator specific init */
3366         if (init_data && init_data->regulator_init) {
3367                 ret = init_data->regulator_init(rdev->reg_data);
3368                 if (ret < 0)
3369                         goto clean;
3370         }
3371
3372         /* register with sysfs */
3373         rdev->dev.class = &regulator_class;
3374         rdev->dev.of_node = config->of_node;
3375         rdev->dev.parent = dev;
3376         dev_set_name(&rdev->dev, "regulator.%d",
3377                      atomic_inc_return(&regulator_no) - 1);
3378         ret = device_register(&rdev->dev);
3379         if (ret != 0) {
3380                 put_device(&rdev->dev);
3381                 goto clean;
3382         }
3383
3384         dev_set_drvdata(&rdev->dev, rdev);
3385
3386         if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3387                 ret = regulator_ena_gpio_request(rdev, config);
3388                 if (ret != 0) {
3389                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3390                                  config->ena_gpio, ret);
3391                         goto wash;
3392                 }
3393
3394                 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3395                         rdev->ena_gpio_state = 1;
3396
3397                 if (config->ena_gpio_invert)
3398                         rdev->ena_gpio_state = !rdev->ena_gpio_state;
3399         }
3400
3401         /* set regulator constraints */
3402         if (init_data)
3403                 constraints = &init_data->constraints;
3404
3405         ret = set_machine_constraints(rdev, constraints);
3406         if (ret < 0)
3407                 goto scrub;
3408
3409         /* add attributes supported by this regulator */
3410         ret = add_regulator_attributes(rdev);
3411         if (ret < 0)
3412                 goto scrub;
3413
3414         if (init_data && init_data->supply_regulator)
3415                 supply = init_data->supply_regulator;
3416         else if (regulator_desc->supply_name)
3417                 supply = regulator_desc->supply_name;
3418
3419         if (supply) {
3420                 struct regulator_dev *r;
3421
3422                 r = regulator_dev_lookup(dev, supply, &ret);
3423
3424                 if (ret == -ENODEV) {
3425                         /*
3426                          * No supply was specified for this regulator and
3427                          * there will never be one.
3428                          */
3429                         ret = 0;
3430                         goto add_dev;
3431                 } else if (!r) {
3432                         dev_err(dev, "Failed to find supply %s\n", supply);
3433                         ret = -EPROBE_DEFER;
3434                         goto scrub;
3435                 }
3436
3437                 ret = set_supply(rdev, r);
3438                 if (ret < 0)
3439                         goto scrub;
3440
3441                 /* Enable supply if rail is enabled */
3442                 if (_regulator_is_enabled(rdev)) {
3443                         ret = regulator_enable(rdev->supply);
3444                         if (ret < 0)
3445                                 goto scrub;
3446                 }
3447         }
3448
3449 add_dev:
3450         /* add consumers devices */
3451         if (init_data) {
3452                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3453                         ret = set_consumer_device_supply(rdev,
3454                                 init_data->consumer_supplies[i].dev_name,
3455                                 init_data->consumer_supplies[i].supply);
3456                         if (ret < 0) {
3457                                 dev_err(dev, "Failed to set supply %s\n",
3458                                         init_data->consumer_supplies[i].supply);
3459                                 goto unset_supplies;
3460                         }
3461                 }
3462         }
3463
3464         list_add(&rdev->list, &regulator_list);
3465
3466         rdev_init_debugfs(rdev);
3467 out:
3468         mutex_unlock(&regulator_list_mutex);
3469         return rdev;
3470
3471 unset_supplies:
3472         unset_regulator_supplies(rdev);
3473
3474 scrub:
3475         if (rdev->supply)
3476                 _regulator_put(rdev->supply);
3477         regulator_ena_gpio_free(rdev);
3478         kfree(rdev->constraints);
3479 wash:
3480         device_unregister(&rdev->dev);
3481         /* device core frees rdev */
3482         rdev = ERR_PTR(ret);
3483         goto out;
3484
3485 clean:
3486         kfree(rdev);
3487         rdev = ERR_PTR(ret);
3488         goto out;
3489 }
3490 EXPORT_SYMBOL_GPL(regulator_register);
3491
3492 static void devm_rdev_release(struct device *dev, void *res)
3493 {
3494         regulator_unregister(*(struct regulator_dev **)res);
3495 }
3496
3497 /**
3498  * devm_regulator_register - Resource managed regulator_register()
3499  * @regulator_desc: regulator to register
3500  * @config: runtime configuration for regulator
3501  *
3502  * Called by regulator drivers to register a regulator.  Returns a
3503  * valid pointer to struct regulator_dev on success or an ERR_PTR() on
3504  * error.  The regulator will automatically be released when the device
3505  * is unbound.
3506  */
3507 struct regulator_dev *devm_regulator_register(struct device *dev,
3508                                   const struct regulator_desc *regulator_desc,
3509                                   const struct regulator_config *config)
3510 {
3511         struct regulator_dev **ptr, *rdev;
3512
3513         ptr = devres_alloc(devm_rdev_release, sizeof(*ptr),
3514                            GFP_KERNEL);
3515         if (!ptr)
3516                 return ERR_PTR(-ENOMEM);
3517
3518         rdev = regulator_register(regulator_desc, config);
3519         if (!IS_ERR(rdev)) {
3520                 *ptr = rdev;
3521                 devres_add(dev, ptr);
3522         } else {
3523                 devres_free(ptr);
3524         }
3525
3526         return rdev;
3527 }
3528 EXPORT_SYMBOL_GPL(devm_regulator_register);
3529
3530 /**
3531  * regulator_unregister - unregister regulator
3532  * @rdev: regulator to unregister
3533  *
3534  * Called by regulator drivers to unregister a regulator.
3535  */
3536 void regulator_unregister(struct regulator_dev *rdev)
3537 {
3538         if (rdev == NULL)
3539                 return;
3540
3541         if (rdev->supply) {
3542                 while (rdev->use_count--)
3543                         regulator_disable(rdev->supply);
3544                 regulator_put(rdev->supply);
3545         }
3546         mutex_lock(&regulator_list_mutex);
3547         debugfs_remove_recursive(rdev->debugfs);
3548         flush_work(&rdev->disable_work.work);
3549         WARN_ON(rdev->open_count);
3550         unset_regulator_supplies(rdev);
3551         list_del(&rdev->list);
3552         kfree(rdev->constraints);
3553         regulator_ena_gpio_free(rdev);
3554         device_unregister(&rdev->dev);
3555         mutex_unlock(&regulator_list_mutex);
3556 }
3557 EXPORT_SYMBOL_GPL(regulator_unregister);
3558
3559 static int devm_rdev_match(struct device *dev, void *res, void *data)
3560 {
3561         struct regulator_dev **r = res;
3562         if (!r || !*r) {
3563                 WARN_ON(!r || !*r);
3564                 return 0;
3565         }
3566         return *r == data;
3567 }
3568
3569 /**
3570  * devm_regulator_unregister - Resource managed regulator_unregister()
3571  * @regulator: regulator to free
3572  *
3573  * Unregister a regulator registered with devm_regulator_register().
3574  * Normally this function will not need to be called and the resource
3575  * management code will ensure that the resource is freed.
3576  */
3577 void devm_regulator_unregister(struct device *dev, struct regulator_dev *rdev)
3578 {
3579         int rc;
3580
3581         rc = devres_release(dev, devm_rdev_release, devm_rdev_match, rdev);
3582         if (rc != 0)
3583                 WARN_ON(rc);
3584 }
3585 EXPORT_SYMBOL_GPL(devm_regulator_unregister);
3586
3587 /**
3588  * regulator_suspend_prepare - prepare regulators for system wide suspend
3589  * @state: system suspend state
3590  *
3591  * Configure each regulator with it's suspend operating parameters for state.
3592  * This will usually be called by machine suspend code prior to supending.
3593  */
3594 int regulator_suspend_prepare(suspend_state_t state)
3595 {
3596         struct regulator_dev *rdev;
3597         int ret = 0;
3598
3599         /* ON is handled by regulator active state */
3600         if (state == PM_SUSPEND_ON)
3601                 return -EINVAL;
3602
3603         mutex_lock(&regulator_list_mutex);
3604         list_for_each_entry(rdev, &regulator_list, list) {
3605
3606                 mutex_lock(&rdev->mutex);
3607                 ret = suspend_prepare(rdev, state);
3608                 mutex_unlock(&rdev->mutex);
3609
3610                 if (ret < 0) {
3611                         rdev_err(rdev, "failed to prepare\n");
3612                         goto out;
3613                 }
3614         }
3615 out:
3616         mutex_unlock(&regulator_list_mutex);
3617         return ret;
3618 }
3619 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3620
3621 /**
3622  * regulator_suspend_finish - resume regulators from system wide suspend
3623  *
3624  * Turn on regulators that might be turned off by regulator_suspend_prepare
3625  * and that should be turned on according to the regulators properties.
3626  */
3627 int regulator_suspend_finish(void)
3628 {
3629         struct regulator_dev *rdev;
3630         int ret = 0, error;
3631
3632         mutex_lock(&regulator_list_mutex);
3633         list_for_each_entry(rdev, &regulator_list, list) {
3634                 struct regulator_ops *ops = rdev->desc->ops;
3635
3636                 mutex_lock(&rdev->mutex);
3637                 if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3638                                 ops->enable) {
3639                         error = ops->enable(rdev);
3640                         if (error)
3641                                 ret = error;
3642                 } else {
3643                         if (!has_full_constraints)
3644                                 goto unlock;
3645                         if (!ops->disable)
3646                                 goto unlock;
3647                         if (!_regulator_is_enabled(rdev))
3648                                 goto unlock;
3649
3650                         error = ops->disable(rdev);
3651                         if (error)
3652                                 ret = error;
3653                 }
3654 unlock:
3655                 mutex_unlock(&rdev->mutex);
3656         }
3657         mutex_unlock(&regulator_list_mutex);
3658         return ret;
3659 }
3660 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3661
3662 /**
3663  * regulator_has_full_constraints - the system has fully specified constraints
3664  *
3665  * Calling this function will cause the regulator API to disable all
3666  * regulators which have a zero use count and don't have an always_on
3667  * constraint in a late_initcall.
3668  *
3669  * The intention is that this will become the default behaviour in a
3670  * future kernel release so users are encouraged to use this facility
3671  * now.
3672  */
3673 void regulator_has_full_constraints(void)
3674 {
3675         has_full_constraints = 1;
3676 }
3677 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3678
3679 /**
3680  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3681  *
3682  * Calling this function will cause the regulator API to provide a
3683  * dummy regulator to consumers if no physical regulator is found,
3684  * allowing most consumers to proceed as though a regulator were
3685  * configured.  This allows systems such as those with software
3686  * controllable regulators for the CPU core only to be brought up more
3687  * readily.
3688  */
3689 void regulator_use_dummy_regulator(void)
3690 {
3691         board_wants_dummy_regulator = true;
3692 }
3693 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3694
3695 /**
3696  * rdev_get_drvdata - get rdev regulator driver data
3697  * @rdev: regulator
3698  *
3699  * Get rdev regulator driver private data. This call can be used in the
3700  * regulator driver context.
3701  */
3702 void *rdev_get_drvdata(struct regulator_dev *rdev)
3703 {
3704         return rdev->reg_data;
3705 }
3706 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3707
3708 /**
3709  * regulator_get_drvdata - get regulator driver data
3710  * @regulator: regulator
3711  *
3712  * Get regulator driver private data. This call can be used in the consumer
3713  * driver context when non API regulator specific functions need to be called.
3714  */
3715 void *regulator_get_drvdata(struct regulator *regulator)
3716 {
3717         return regulator->rdev->reg_data;
3718 }
3719 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3720
3721 /**
3722  * regulator_set_drvdata - set regulator driver data
3723  * @regulator: regulator
3724  * @data: data
3725  */
3726 void regulator_set_drvdata(struct regulator *regulator, void *data)
3727 {
3728         regulator->rdev->reg_data = data;
3729 }
3730 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3731
3732 /**
3733  * regulator_get_id - get regulator ID
3734  * @rdev: regulator
3735  */
3736 int rdev_get_id(struct regulator_dev *rdev)
3737 {
3738         return rdev->desc->id;
3739 }
3740 EXPORT_SYMBOL_GPL(rdev_get_id);
3741
3742 struct device *rdev_get_dev(struct regulator_dev *rdev)
3743 {
3744         return &rdev->dev;
3745 }
3746 EXPORT_SYMBOL_GPL(rdev_get_dev);
3747
3748 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3749 {
3750         return reg_init_data->driver_data;
3751 }
3752 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3753
3754 #ifdef CONFIG_DEBUG_FS
3755 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3756                                     size_t count, loff_t *ppos)
3757 {
3758         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3759         ssize_t len, ret = 0;
3760         struct regulator_map *map;
3761
3762         if (!buf)
3763                 return -ENOMEM;
3764
3765         list_for_each_entry(map, &regulator_map_list, list) {
3766                 len = snprintf(buf + ret, PAGE_SIZE - ret,
3767                                "%s -> %s.%s\n",
3768                                rdev_get_name(map->regulator), map->dev_name,
3769                                map->supply);
3770                 if (len >= 0)
3771                         ret += len;
3772                 if (ret > PAGE_SIZE) {
3773                         ret = PAGE_SIZE;
3774                         break;
3775                 }
3776         }
3777
3778         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3779
3780         kfree(buf);
3781
3782         return ret;
3783 }
3784 #endif
3785
3786 static const struct file_operations supply_map_fops = {
3787 #ifdef CONFIG_DEBUG_FS
3788         .read = supply_map_read_file,
3789         .llseek = default_llseek,
3790 #endif
3791 };
3792
3793 static int __init regulator_init(void)
3794 {
3795         int ret;
3796
3797         ret = class_register(&regulator_class);
3798
3799         debugfs_root = debugfs_create_dir("regulator", NULL);
3800         if (!debugfs_root)
3801                 pr_warn("regulator: Failed to create debugfs directory\n");
3802
3803         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3804                             &supply_map_fops);
3805
3806         regulator_dummy_init();
3807
3808         return ret;
3809 }
3810
3811 /* init early to allow our consumers to complete system booting */
3812 core_initcall(regulator_init);
3813
3814 static int __init regulator_init_complete(void)
3815 {
3816         struct regulator_dev *rdev;
3817         struct regulator_ops *ops;
3818         struct regulation_constraints *c;
3819         int enabled, ret;
3820
3821         /*
3822          * Since DT doesn't provide an idiomatic mechanism for
3823          * enabling full constraints and since it's much more natural
3824          * with DT to provide them just assume that a DT enabled
3825          * system has full constraints.
3826          */
3827         if (of_have_populated_dt())
3828                 has_full_constraints = true;
3829
3830         mutex_lock(&regulator_list_mutex);
3831
3832         /* If we have a full configuration then disable any regulators
3833          * which are not in use or always_on.  This will become the
3834          * default behaviour in the future.
3835          */
3836         list_for_each_entry(rdev, &regulator_list, list) {
3837                 ops = rdev->desc->ops;
3838                 c = rdev->constraints;
3839
3840                 if (!ops->disable || (c && c->always_on))
3841                         continue;
3842
3843                 mutex_lock(&rdev->mutex);
3844
3845                 if (rdev->use_count)
3846                         goto unlock;
3847
3848                 /* If we can't read the status assume it's on. */
3849                 if (ops->is_enabled)
3850                         enabled = ops->is_enabled(rdev);
3851                 else
3852                         enabled = 1;
3853
3854                 if (!enabled)
3855                         goto unlock;
3856
3857                 if (has_full_constraints) {
3858                         /* We log since this may kill the system if it
3859                          * goes wrong. */
3860                         rdev_info(rdev, "disabling\n");
3861                         ret = ops->disable(rdev);
3862                         if (ret != 0) {
3863                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
3864                         }
3865                 } else {
3866                         /* The intention is that in future we will
3867                          * assume that full constraints are provided
3868                          * so warn even if we aren't going to do
3869                          * anything here.
3870                          */
3871                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
3872                 }
3873
3874 unlock:
3875                 mutex_unlock(&rdev->mutex);
3876         }
3877
3878         mutex_unlock(&regulator_list_mutex);
3879
3880         return 0;
3881 }
3882 late_initcall(regulator_init_complete);