]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/regulator/core.c
Merge remote-tracking branch 'regulator/topic/constraints' into regulator-next
[karo-tx-linux.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37
38 #include "dummy.h"
39 #include "internal.h"
40
41 #define rdev_crit(rdev, fmt, ...)                                       \
42         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43 #define rdev_err(rdev, fmt, ...)                                        \
44         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45 #define rdev_warn(rdev, fmt, ...)                                       \
46         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47 #define rdev_info(rdev, fmt, ...)                                       \
48         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49 #define rdev_dbg(rdev, fmt, ...)                                        \
50         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
51
52 static DEFINE_MUTEX(regulator_list_mutex);
53 static LIST_HEAD(regulator_list);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58
59 static struct dentry *debugfs_root;
60
61 /*
62  * struct regulator_map
63  *
64  * Used to provide symbolic supply names to devices.
65  */
66 struct regulator_map {
67         struct list_head list;
68         const char *dev_name;   /* The dev_name() for the consumer */
69         const char *supply;
70         struct regulator_dev *regulator;
71 };
72
73 /*
74  * struct regulator_enable_gpio
75  *
76  * Management for shared enable GPIO pin
77  */
78 struct regulator_enable_gpio {
79         struct list_head list;
80         int gpio;
81         u32 enable_count;       /* a number of enabled shared GPIO */
82         u32 request_count;      /* a number of requested shared GPIO */
83         unsigned int ena_gpio_invert:1;
84 };
85
86 /*
87  * struct regulator_supply_alias
88  *
89  * Used to map lookups for a supply onto an alternative device.
90  */
91 struct regulator_supply_alias {
92         struct list_head list;
93         struct device *src_dev;
94         const char *src_supply;
95         struct device *alias_dev;
96         const char *alias_supply;
97 };
98
99 static int _regulator_is_enabled(struct regulator_dev *rdev);
100 static int _regulator_disable(struct regulator_dev *rdev);
101 static int _regulator_get_voltage(struct regulator_dev *rdev);
102 static int _regulator_get_current_limit(struct regulator_dev *rdev);
103 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104 static void _notifier_call_chain(struct regulator_dev *rdev,
105                                   unsigned long event, void *data);
106 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
107                                      int min_uV, int max_uV);
108 static struct regulator *create_regulator(struct regulator_dev *rdev,
109                                           struct device *dev,
110                                           const char *supply_name);
111
112 static const char *rdev_get_name(struct regulator_dev *rdev)
113 {
114         if (rdev->constraints && rdev->constraints->name)
115                 return rdev->constraints->name;
116         else if (rdev->desc->name)
117                 return rdev->desc->name;
118         else
119                 return "";
120 }
121
122 static bool have_full_constraints(void)
123 {
124         return has_full_constraints || of_have_populated_dt();
125 }
126
127 /**
128  * of_get_regulator - get a regulator device node based on supply name
129  * @dev: Device pointer for the consumer (of regulator) device
130  * @supply: regulator supply name
131  *
132  * Extract the regulator device node corresponding to the supply name.
133  * returns the device node corresponding to the regulator if found, else
134  * returns NULL.
135  */
136 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
137 {
138         struct device_node *regnode = NULL;
139         char prop_name[32]; /* 32 is max size of property name */
140
141         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
142
143         snprintf(prop_name, 32, "%s-supply", supply);
144         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
145
146         if (!regnode) {
147                 dev_dbg(dev, "Looking up %s property in node %s failed",
148                                 prop_name, dev->of_node->full_name);
149                 return NULL;
150         }
151         return regnode;
152 }
153
154 static int _regulator_can_change_status(struct regulator_dev *rdev)
155 {
156         if (!rdev->constraints)
157                 return 0;
158
159         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
160                 return 1;
161         else
162                 return 0;
163 }
164
165 /* Platform voltage constraint check */
166 static int regulator_check_voltage(struct regulator_dev *rdev,
167                                    int *min_uV, int *max_uV)
168 {
169         BUG_ON(*min_uV > *max_uV);
170
171         if (!rdev->constraints) {
172                 rdev_err(rdev, "no constraints\n");
173                 return -ENODEV;
174         }
175         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176                 rdev_err(rdev, "operation not allowed\n");
177                 return -EPERM;
178         }
179
180         if (*max_uV > rdev->constraints->max_uV)
181                 *max_uV = rdev->constraints->max_uV;
182         if (*min_uV < rdev->constraints->min_uV)
183                 *min_uV = rdev->constraints->min_uV;
184
185         if (*min_uV > *max_uV) {
186                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187                          *min_uV, *max_uV);
188                 return -EINVAL;
189         }
190
191         return 0;
192 }
193
194 /* Make sure we select a voltage that suits the needs of all
195  * regulator consumers
196  */
197 static int regulator_check_consumers(struct regulator_dev *rdev,
198                                      int *min_uV, int *max_uV)
199 {
200         struct regulator *regulator;
201
202         list_for_each_entry(regulator, &rdev->consumer_list, list) {
203                 /*
204                  * Assume consumers that didn't say anything are OK
205                  * with anything in the constraint range.
206                  */
207                 if (!regulator->min_uV && !regulator->max_uV)
208                         continue;
209
210                 if (*max_uV > regulator->max_uV)
211                         *max_uV = regulator->max_uV;
212                 if (*min_uV < regulator->min_uV)
213                         *min_uV = regulator->min_uV;
214         }
215
216         if (*min_uV > *max_uV) {
217                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
218                         *min_uV, *max_uV);
219                 return -EINVAL;
220         }
221
222         return 0;
223 }
224
225 /* current constraint check */
226 static int regulator_check_current_limit(struct regulator_dev *rdev,
227                                         int *min_uA, int *max_uA)
228 {
229         BUG_ON(*min_uA > *max_uA);
230
231         if (!rdev->constraints) {
232                 rdev_err(rdev, "no constraints\n");
233                 return -ENODEV;
234         }
235         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236                 rdev_err(rdev, "operation not allowed\n");
237                 return -EPERM;
238         }
239
240         if (*max_uA > rdev->constraints->max_uA)
241                 *max_uA = rdev->constraints->max_uA;
242         if (*min_uA < rdev->constraints->min_uA)
243                 *min_uA = rdev->constraints->min_uA;
244
245         if (*min_uA > *max_uA) {
246                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247                          *min_uA, *max_uA);
248                 return -EINVAL;
249         }
250
251         return 0;
252 }
253
254 /* operating mode constraint check */
255 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
256 {
257         switch (*mode) {
258         case REGULATOR_MODE_FAST:
259         case REGULATOR_MODE_NORMAL:
260         case REGULATOR_MODE_IDLE:
261         case REGULATOR_MODE_STANDBY:
262                 break;
263         default:
264                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
265                 return -EINVAL;
266         }
267
268         if (!rdev->constraints) {
269                 rdev_err(rdev, "no constraints\n");
270                 return -ENODEV;
271         }
272         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273                 rdev_err(rdev, "operation not allowed\n");
274                 return -EPERM;
275         }
276
277         /* The modes are bitmasks, the most power hungry modes having
278          * the lowest values. If the requested mode isn't supported
279          * try higher modes. */
280         while (*mode) {
281                 if (rdev->constraints->valid_modes_mask & *mode)
282                         return 0;
283                 *mode /= 2;
284         }
285
286         return -EINVAL;
287 }
288
289 /* dynamic regulator mode switching constraint check */
290 static int regulator_check_drms(struct regulator_dev *rdev)
291 {
292         if (!rdev->constraints) {
293                 rdev_err(rdev, "no constraints\n");
294                 return -ENODEV;
295         }
296         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297                 rdev_err(rdev, "operation not allowed\n");
298                 return -EPERM;
299         }
300         return 0;
301 }
302
303 static ssize_t regulator_uV_show(struct device *dev,
304                                 struct device_attribute *attr, char *buf)
305 {
306         struct regulator_dev *rdev = dev_get_drvdata(dev);
307         ssize_t ret;
308
309         mutex_lock(&rdev->mutex);
310         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311         mutex_unlock(&rdev->mutex);
312
313         return ret;
314 }
315 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
316
317 static ssize_t regulator_uA_show(struct device *dev,
318                                 struct device_attribute *attr, char *buf)
319 {
320         struct regulator_dev *rdev = dev_get_drvdata(dev);
321
322         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
323 }
324 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
325
326 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
327                          char *buf)
328 {
329         struct regulator_dev *rdev = dev_get_drvdata(dev);
330
331         return sprintf(buf, "%s\n", rdev_get_name(rdev));
332 }
333 static DEVICE_ATTR_RO(name);
334
335 static ssize_t regulator_print_opmode(char *buf, int mode)
336 {
337         switch (mode) {
338         case REGULATOR_MODE_FAST:
339                 return sprintf(buf, "fast\n");
340         case REGULATOR_MODE_NORMAL:
341                 return sprintf(buf, "normal\n");
342         case REGULATOR_MODE_IDLE:
343                 return sprintf(buf, "idle\n");
344         case REGULATOR_MODE_STANDBY:
345                 return sprintf(buf, "standby\n");
346         }
347         return sprintf(buf, "unknown\n");
348 }
349
350 static ssize_t regulator_opmode_show(struct device *dev,
351                                     struct device_attribute *attr, char *buf)
352 {
353         struct regulator_dev *rdev = dev_get_drvdata(dev);
354
355         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
356 }
357 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
358
359 static ssize_t regulator_print_state(char *buf, int state)
360 {
361         if (state > 0)
362                 return sprintf(buf, "enabled\n");
363         else if (state == 0)
364                 return sprintf(buf, "disabled\n");
365         else
366                 return sprintf(buf, "unknown\n");
367 }
368
369 static ssize_t regulator_state_show(struct device *dev,
370                                    struct device_attribute *attr, char *buf)
371 {
372         struct regulator_dev *rdev = dev_get_drvdata(dev);
373         ssize_t ret;
374
375         mutex_lock(&rdev->mutex);
376         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
377         mutex_unlock(&rdev->mutex);
378
379         return ret;
380 }
381 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
382
383 static ssize_t regulator_status_show(struct device *dev,
384                                    struct device_attribute *attr, char *buf)
385 {
386         struct regulator_dev *rdev = dev_get_drvdata(dev);
387         int status;
388         char *label;
389
390         status = rdev->desc->ops->get_status(rdev);
391         if (status < 0)
392                 return status;
393
394         switch (status) {
395         case REGULATOR_STATUS_OFF:
396                 label = "off";
397                 break;
398         case REGULATOR_STATUS_ON:
399                 label = "on";
400                 break;
401         case REGULATOR_STATUS_ERROR:
402                 label = "error";
403                 break;
404         case REGULATOR_STATUS_FAST:
405                 label = "fast";
406                 break;
407         case REGULATOR_STATUS_NORMAL:
408                 label = "normal";
409                 break;
410         case REGULATOR_STATUS_IDLE:
411                 label = "idle";
412                 break;
413         case REGULATOR_STATUS_STANDBY:
414                 label = "standby";
415                 break;
416         case REGULATOR_STATUS_BYPASS:
417                 label = "bypass";
418                 break;
419         case REGULATOR_STATUS_UNDEFINED:
420                 label = "undefined";
421                 break;
422         default:
423                 return -ERANGE;
424         }
425
426         return sprintf(buf, "%s\n", label);
427 }
428 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
429
430 static ssize_t regulator_min_uA_show(struct device *dev,
431                                     struct device_attribute *attr, char *buf)
432 {
433         struct regulator_dev *rdev = dev_get_drvdata(dev);
434
435         if (!rdev->constraints)
436                 return sprintf(buf, "constraint not defined\n");
437
438         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
439 }
440 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
441
442 static ssize_t regulator_max_uA_show(struct device *dev,
443                                     struct device_attribute *attr, char *buf)
444 {
445         struct regulator_dev *rdev = dev_get_drvdata(dev);
446
447         if (!rdev->constraints)
448                 return sprintf(buf, "constraint not defined\n");
449
450         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
451 }
452 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
453
454 static ssize_t regulator_min_uV_show(struct device *dev,
455                                     struct device_attribute *attr, char *buf)
456 {
457         struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459         if (!rdev->constraints)
460                 return sprintf(buf, "constraint not defined\n");
461
462         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
463 }
464 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
465
466 static ssize_t regulator_max_uV_show(struct device *dev,
467                                     struct device_attribute *attr, char *buf)
468 {
469         struct regulator_dev *rdev = dev_get_drvdata(dev);
470
471         if (!rdev->constraints)
472                 return sprintf(buf, "constraint not defined\n");
473
474         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
475 }
476 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
477
478 static ssize_t regulator_total_uA_show(struct device *dev,
479                                       struct device_attribute *attr, char *buf)
480 {
481         struct regulator_dev *rdev = dev_get_drvdata(dev);
482         struct regulator *regulator;
483         int uA = 0;
484
485         mutex_lock(&rdev->mutex);
486         list_for_each_entry(regulator, &rdev->consumer_list, list)
487                 uA += regulator->uA_load;
488         mutex_unlock(&rdev->mutex);
489         return sprintf(buf, "%d\n", uA);
490 }
491 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
492
493 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
494                               char *buf)
495 {
496         struct regulator_dev *rdev = dev_get_drvdata(dev);
497         return sprintf(buf, "%d\n", rdev->use_count);
498 }
499 static DEVICE_ATTR_RO(num_users);
500
501 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
502                          char *buf)
503 {
504         struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506         switch (rdev->desc->type) {
507         case REGULATOR_VOLTAGE:
508                 return sprintf(buf, "voltage\n");
509         case REGULATOR_CURRENT:
510                 return sprintf(buf, "current\n");
511         }
512         return sprintf(buf, "unknown\n");
513 }
514 static DEVICE_ATTR_RO(type);
515
516 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
517                                 struct device_attribute *attr, char *buf)
518 {
519         struct regulator_dev *rdev = dev_get_drvdata(dev);
520
521         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
522 }
523 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
524                 regulator_suspend_mem_uV_show, NULL);
525
526 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
527                                 struct device_attribute *attr, char *buf)
528 {
529         struct regulator_dev *rdev = dev_get_drvdata(dev);
530
531         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
532 }
533 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
534                 regulator_suspend_disk_uV_show, NULL);
535
536 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
537                                 struct device_attribute *attr, char *buf)
538 {
539         struct regulator_dev *rdev = dev_get_drvdata(dev);
540
541         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
542 }
543 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
544                 regulator_suspend_standby_uV_show, NULL);
545
546 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
547                                 struct device_attribute *attr, char *buf)
548 {
549         struct regulator_dev *rdev = dev_get_drvdata(dev);
550
551         return regulator_print_opmode(buf,
552                 rdev->constraints->state_mem.mode);
553 }
554 static DEVICE_ATTR(suspend_mem_mode, 0444,
555                 regulator_suspend_mem_mode_show, NULL);
556
557 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
558                                 struct device_attribute *attr, char *buf)
559 {
560         struct regulator_dev *rdev = dev_get_drvdata(dev);
561
562         return regulator_print_opmode(buf,
563                 rdev->constraints->state_disk.mode);
564 }
565 static DEVICE_ATTR(suspend_disk_mode, 0444,
566                 regulator_suspend_disk_mode_show, NULL);
567
568 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
569                                 struct device_attribute *attr, char *buf)
570 {
571         struct regulator_dev *rdev = dev_get_drvdata(dev);
572
573         return regulator_print_opmode(buf,
574                 rdev->constraints->state_standby.mode);
575 }
576 static DEVICE_ATTR(suspend_standby_mode, 0444,
577                 regulator_suspend_standby_mode_show, NULL);
578
579 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
580                                    struct device_attribute *attr, char *buf)
581 {
582         struct regulator_dev *rdev = dev_get_drvdata(dev);
583
584         return regulator_print_state(buf,
585                         rdev->constraints->state_mem.enabled);
586 }
587 static DEVICE_ATTR(suspend_mem_state, 0444,
588                 regulator_suspend_mem_state_show, NULL);
589
590 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
591                                    struct device_attribute *attr, char *buf)
592 {
593         struct regulator_dev *rdev = dev_get_drvdata(dev);
594
595         return regulator_print_state(buf,
596                         rdev->constraints->state_disk.enabled);
597 }
598 static DEVICE_ATTR(suspend_disk_state, 0444,
599                 regulator_suspend_disk_state_show, NULL);
600
601 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
602                                    struct device_attribute *attr, char *buf)
603 {
604         struct regulator_dev *rdev = dev_get_drvdata(dev);
605
606         return regulator_print_state(buf,
607                         rdev->constraints->state_standby.enabled);
608 }
609 static DEVICE_ATTR(suspend_standby_state, 0444,
610                 regulator_suspend_standby_state_show, NULL);
611
612 static ssize_t regulator_bypass_show(struct device *dev,
613                                      struct device_attribute *attr, char *buf)
614 {
615         struct regulator_dev *rdev = dev_get_drvdata(dev);
616         const char *report;
617         bool bypass;
618         int ret;
619
620         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
621
622         if (ret != 0)
623                 report = "unknown";
624         else if (bypass)
625                 report = "enabled";
626         else
627                 report = "disabled";
628
629         return sprintf(buf, "%s\n", report);
630 }
631 static DEVICE_ATTR(bypass, 0444,
632                    regulator_bypass_show, NULL);
633
634 /*
635  * These are the only attributes are present for all regulators.
636  * Other attributes are a function of regulator functionality.
637  */
638 static struct attribute *regulator_dev_attrs[] = {
639         &dev_attr_name.attr,
640         &dev_attr_num_users.attr,
641         &dev_attr_type.attr,
642         NULL,
643 };
644 ATTRIBUTE_GROUPS(regulator_dev);
645
646 static void regulator_dev_release(struct device *dev)
647 {
648         struct regulator_dev *rdev = dev_get_drvdata(dev);
649         kfree(rdev);
650 }
651
652 static struct class regulator_class = {
653         .name = "regulator",
654         .dev_release = regulator_dev_release,
655         .dev_groups = regulator_dev_groups,
656 };
657
658 /* Calculate the new optimum regulator operating mode based on the new total
659  * consumer load. All locks held by caller */
660 static void drms_uA_update(struct regulator_dev *rdev)
661 {
662         struct regulator *sibling;
663         int current_uA = 0, output_uV, input_uV, err;
664         unsigned int mode;
665
666         err = regulator_check_drms(rdev);
667         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
668             (!rdev->desc->ops->get_voltage &&
669              !rdev->desc->ops->get_voltage_sel) ||
670             !rdev->desc->ops->set_mode)
671                 return;
672
673         /* get output voltage */
674         output_uV = _regulator_get_voltage(rdev);
675         if (output_uV <= 0)
676                 return;
677
678         /* get input voltage */
679         input_uV = 0;
680         if (rdev->supply)
681                 input_uV = regulator_get_voltage(rdev->supply);
682         if (input_uV <= 0)
683                 input_uV = rdev->constraints->input_uV;
684         if (input_uV <= 0)
685                 return;
686
687         /* calc total requested load */
688         list_for_each_entry(sibling, &rdev->consumer_list, list)
689                 current_uA += sibling->uA_load;
690
691         /* now get the optimum mode for our new total regulator load */
692         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
693                                                   output_uV, current_uA);
694
695         /* check the new mode is allowed */
696         err = regulator_mode_constrain(rdev, &mode);
697         if (err == 0)
698                 rdev->desc->ops->set_mode(rdev, mode);
699 }
700
701 static int suspend_set_state(struct regulator_dev *rdev,
702         struct regulator_state *rstate)
703 {
704         int ret = 0;
705
706         /* If we have no suspend mode configration don't set anything;
707          * only warn if the driver implements set_suspend_voltage or
708          * set_suspend_mode callback.
709          */
710         if (!rstate->enabled && !rstate->disabled) {
711                 if (rdev->desc->ops->set_suspend_voltage ||
712                     rdev->desc->ops->set_suspend_mode)
713                         rdev_warn(rdev, "No configuration\n");
714                 return 0;
715         }
716
717         if (rstate->enabled && rstate->disabled) {
718                 rdev_err(rdev, "invalid configuration\n");
719                 return -EINVAL;
720         }
721
722         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
723                 ret = rdev->desc->ops->set_suspend_enable(rdev);
724         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
725                 ret = rdev->desc->ops->set_suspend_disable(rdev);
726         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
727                 ret = 0;
728
729         if (ret < 0) {
730                 rdev_err(rdev, "failed to enabled/disable\n");
731                 return ret;
732         }
733
734         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
735                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
736                 if (ret < 0) {
737                         rdev_err(rdev, "failed to set voltage\n");
738                         return ret;
739                 }
740         }
741
742         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
743                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
744                 if (ret < 0) {
745                         rdev_err(rdev, "failed to set mode\n");
746                         return ret;
747                 }
748         }
749         return ret;
750 }
751
752 /* locks held by caller */
753 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
754 {
755         if (!rdev->constraints)
756                 return -EINVAL;
757
758         switch (state) {
759         case PM_SUSPEND_STANDBY:
760                 return suspend_set_state(rdev,
761                         &rdev->constraints->state_standby);
762         case PM_SUSPEND_MEM:
763                 return suspend_set_state(rdev,
764                         &rdev->constraints->state_mem);
765         case PM_SUSPEND_MAX:
766                 return suspend_set_state(rdev,
767                         &rdev->constraints->state_disk);
768         default:
769                 return -EINVAL;
770         }
771 }
772
773 static void print_constraints(struct regulator_dev *rdev)
774 {
775         struct regulation_constraints *constraints = rdev->constraints;
776         char buf[80] = "";
777         int count = 0;
778         int ret;
779
780         if (constraints->min_uV && constraints->max_uV) {
781                 if (constraints->min_uV == constraints->max_uV)
782                         count += sprintf(buf + count, "%d mV ",
783                                          constraints->min_uV / 1000);
784                 else
785                         count += sprintf(buf + count, "%d <--> %d mV ",
786                                          constraints->min_uV / 1000,
787                                          constraints->max_uV / 1000);
788         }
789
790         if (!constraints->min_uV ||
791             constraints->min_uV != constraints->max_uV) {
792                 ret = _regulator_get_voltage(rdev);
793                 if (ret > 0)
794                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
795         }
796
797         if (constraints->uV_offset)
798                 count += sprintf(buf, "%dmV offset ",
799                                  constraints->uV_offset / 1000);
800
801         if (constraints->min_uA && constraints->max_uA) {
802                 if (constraints->min_uA == constraints->max_uA)
803                         count += sprintf(buf + count, "%d mA ",
804                                          constraints->min_uA / 1000);
805                 else
806                         count += sprintf(buf + count, "%d <--> %d mA ",
807                                          constraints->min_uA / 1000,
808                                          constraints->max_uA / 1000);
809         }
810
811         if (!constraints->min_uA ||
812             constraints->min_uA != constraints->max_uA) {
813                 ret = _regulator_get_current_limit(rdev);
814                 if (ret > 0)
815                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
816         }
817
818         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
819                 count += sprintf(buf + count, "fast ");
820         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
821                 count += sprintf(buf + count, "normal ");
822         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
823                 count += sprintf(buf + count, "idle ");
824         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
825                 count += sprintf(buf + count, "standby");
826
827         if (!count)
828                 sprintf(buf, "no parameters");
829
830         rdev_info(rdev, "%s\n", buf);
831
832         if ((constraints->min_uV != constraints->max_uV) &&
833             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
834                 rdev_warn(rdev,
835                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
836 }
837
838 static int machine_constraints_voltage(struct regulator_dev *rdev,
839         struct regulation_constraints *constraints)
840 {
841         struct regulator_ops *ops = rdev->desc->ops;
842         int ret;
843
844         /* do we need to apply the constraint voltage */
845         if (rdev->constraints->apply_uV &&
846             rdev->constraints->min_uV == rdev->constraints->max_uV) {
847                 int current_uV = _regulator_get_voltage(rdev);
848                 if (current_uV < 0) {
849                         rdev_err(rdev, "failed to get the current voltage\n");
850                         return current_uV;
851                 }
852                 if (current_uV < rdev->constraints->min_uV ||
853                     current_uV > rdev->constraints->max_uV) {
854                         ret = _regulator_do_set_voltage(
855                                 rdev, rdev->constraints->min_uV,
856                                 rdev->constraints->max_uV);
857                         if (ret < 0) {
858                                 rdev_err(rdev,
859                                         "failed to apply %duV constraint\n",
860                                         rdev->constraints->min_uV);
861                                 return ret;
862                         }
863                 }
864         }
865
866         /* constrain machine-level voltage specs to fit
867          * the actual range supported by this regulator.
868          */
869         if (ops->list_voltage && rdev->desc->n_voltages) {
870                 int     count = rdev->desc->n_voltages;
871                 int     i;
872                 int     min_uV = INT_MAX;
873                 int     max_uV = INT_MIN;
874                 int     cmin = constraints->min_uV;
875                 int     cmax = constraints->max_uV;
876
877                 /* it's safe to autoconfigure fixed-voltage supplies
878                    and the constraints are used by list_voltage. */
879                 if (count == 1 && !cmin) {
880                         cmin = 1;
881                         cmax = INT_MAX;
882                         constraints->min_uV = cmin;
883                         constraints->max_uV = cmax;
884                 }
885
886                 /* voltage constraints are optional */
887                 if ((cmin == 0) && (cmax == 0))
888                         return 0;
889
890                 /* else require explicit machine-level constraints */
891                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
892                         rdev_err(rdev, "invalid voltage constraints\n");
893                         return -EINVAL;
894                 }
895
896                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
897                 for (i = 0; i < count; i++) {
898                         int     value;
899
900                         value = ops->list_voltage(rdev, i);
901                         if (value <= 0)
902                                 continue;
903
904                         /* maybe adjust [min_uV..max_uV] */
905                         if (value >= cmin && value < min_uV)
906                                 min_uV = value;
907                         if (value <= cmax && value > max_uV)
908                                 max_uV = value;
909                 }
910
911                 /* final: [min_uV..max_uV] valid iff constraints valid */
912                 if (max_uV < min_uV) {
913                         rdev_err(rdev,
914                                  "unsupportable voltage constraints %u-%uuV\n",
915                                  min_uV, max_uV);
916                         return -EINVAL;
917                 }
918
919                 /* use regulator's subset of machine constraints */
920                 if (constraints->min_uV < min_uV) {
921                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
922                                  constraints->min_uV, min_uV);
923                         constraints->min_uV = min_uV;
924                 }
925                 if (constraints->max_uV > max_uV) {
926                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
927                                  constraints->max_uV, max_uV);
928                         constraints->max_uV = max_uV;
929                 }
930         }
931
932         return 0;
933 }
934
935 static int machine_constraints_current(struct regulator_dev *rdev,
936         struct regulation_constraints *constraints)
937 {
938         struct regulator_ops *ops = rdev->desc->ops;
939         int ret;
940
941         if (!constraints->min_uA && !constraints->max_uA)
942                 return 0;
943
944         if (constraints->min_uA > constraints->max_uA) {
945                 rdev_err(rdev, "Invalid current constraints\n");
946                 return -EINVAL;
947         }
948
949         if (!ops->set_current_limit || !ops->get_current_limit) {
950                 rdev_warn(rdev, "Operation of current configuration missing\n");
951                 return 0;
952         }
953
954         /* Set regulator current in constraints range */
955         ret = ops->set_current_limit(rdev, constraints->min_uA,
956                         constraints->max_uA);
957         if (ret < 0) {
958                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
959                 return ret;
960         }
961
962         return 0;
963 }
964
965 static int _regulator_do_enable(struct regulator_dev *rdev);
966
967 /**
968  * set_machine_constraints - sets regulator constraints
969  * @rdev: regulator source
970  * @constraints: constraints to apply
971  *
972  * Allows platform initialisation code to define and constrain
973  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
974  * Constraints *must* be set by platform code in order for some
975  * regulator operations to proceed i.e. set_voltage, set_current_limit,
976  * set_mode.
977  */
978 static int set_machine_constraints(struct regulator_dev *rdev,
979         const struct regulation_constraints *constraints)
980 {
981         int ret = 0;
982         struct regulator_ops *ops = rdev->desc->ops;
983
984         if (constraints)
985                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
986                                             GFP_KERNEL);
987         else
988                 rdev->constraints = kzalloc(sizeof(*constraints),
989                                             GFP_KERNEL);
990         if (!rdev->constraints)
991                 return -ENOMEM;
992
993         ret = machine_constraints_voltage(rdev, rdev->constraints);
994         if (ret != 0)
995                 goto out;
996
997         ret = machine_constraints_current(rdev, rdev->constraints);
998         if (ret != 0)
999                 goto out;
1000
1001         /* do we need to setup our suspend state */
1002         if (rdev->constraints->initial_state) {
1003                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1004                 if (ret < 0) {
1005                         rdev_err(rdev, "failed to set suspend state\n");
1006                         goto out;
1007                 }
1008         }
1009
1010         if (rdev->constraints->initial_mode) {
1011                 if (!ops->set_mode) {
1012                         rdev_err(rdev, "no set_mode operation\n");
1013                         ret = -EINVAL;
1014                         goto out;
1015                 }
1016
1017                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1018                 if (ret < 0) {
1019                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1020                         goto out;
1021                 }
1022         }
1023
1024         /* If the constraints say the regulator should be on at this point
1025          * and we have control then make sure it is enabled.
1026          */
1027         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1028                 ret = _regulator_do_enable(rdev);
1029                 if (ret < 0 && ret != -EINVAL) {
1030                         rdev_err(rdev, "failed to enable\n");
1031                         goto out;
1032                 }
1033         }
1034
1035         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1036                 && ops->set_ramp_delay) {
1037                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1038                 if (ret < 0) {
1039                         rdev_err(rdev, "failed to set ramp_delay\n");
1040                         goto out;
1041                 }
1042         }
1043
1044         print_constraints(rdev);
1045         return 0;
1046 out:
1047         kfree(rdev->constraints);
1048         rdev->constraints = NULL;
1049         return ret;
1050 }
1051
1052 /**
1053  * set_supply - set regulator supply regulator
1054  * @rdev: regulator name
1055  * @supply_rdev: supply regulator name
1056  *
1057  * Called by platform initialisation code to set the supply regulator for this
1058  * regulator. This ensures that a regulators supply will also be enabled by the
1059  * core if it's child is enabled.
1060  */
1061 static int set_supply(struct regulator_dev *rdev,
1062                       struct regulator_dev *supply_rdev)
1063 {
1064         int err;
1065
1066         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1067
1068         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1069         if (rdev->supply == NULL) {
1070                 err = -ENOMEM;
1071                 return err;
1072         }
1073         supply_rdev->open_count++;
1074
1075         return 0;
1076 }
1077
1078 /**
1079  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1080  * @rdev:         regulator source
1081  * @consumer_dev_name: dev_name() string for device supply applies to
1082  * @supply:       symbolic name for supply
1083  *
1084  * Allows platform initialisation code to map physical regulator
1085  * sources to symbolic names for supplies for use by devices.  Devices
1086  * should use these symbolic names to request regulators, avoiding the
1087  * need to provide board-specific regulator names as platform data.
1088  */
1089 static int set_consumer_device_supply(struct regulator_dev *rdev,
1090                                       const char *consumer_dev_name,
1091                                       const char *supply)
1092 {
1093         struct regulator_map *node;
1094         int has_dev;
1095
1096         if (supply == NULL)
1097                 return -EINVAL;
1098
1099         if (consumer_dev_name != NULL)
1100                 has_dev = 1;
1101         else
1102                 has_dev = 0;
1103
1104         list_for_each_entry(node, &regulator_map_list, list) {
1105                 if (node->dev_name && consumer_dev_name) {
1106                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1107                                 continue;
1108                 } else if (node->dev_name || consumer_dev_name) {
1109                         continue;
1110                 }
1111
1112                 if (strcmp(node->supply, supply) != 0)
1113                         continue;
1114
1115                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1116                          consumer_dev_name,
1117                          dev_name(&node->regulator->dev),
1118                          node->regulator->desc->name,
1119                          supply,
1120                          dev_name(&rdev->dev), rdev_get_name(rdev));
1121                 return -EBUSY;
1122         }
1123
1124         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1125         if (node == NULL)
1126                 return -ENOMEM;
1127
1128         node->regulator = rdev;
1129         node->supply = supply;
1130
1131         if (has_dev) {
1132                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1133                 if (node->dev_name == NULL) {
1134                         kfree(node);
1135                         return -ENOMEM;
1136                 }
1137         }
1138
1139         list_add(&node->list, &regulator_map_list);
1140         return 0;
1141 }
1142
1143 static void unset_regulator_supplies(struct regulator_dev *rdev)
1144 {
1145         struct regulator_map *node, *n;
1146
1147         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1148                 if (rdev == node->regulator) {
1149                         list_del(&node->list);
1150                         kfree(node->dev_name);
1151                         kfree(node);
1152                 }
1153         }
1154 }
1155
1156 #define REG_STR_SIZE    64
1157
1158 static struct regulator *create_regulator(struct regulator_dev *rdev,
1159                                           struct device *dev,
1160                                           const char *supply_name)
1161 {
1162         struct regulator *regulator;
1163         char buf[REG_STR_SIZE];
1164         int err, size;
1165
1166         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1167         if (regulator == NULL)
1168                 return NULL;
1169
1170         mutex_lock(&rdev->mutex);
1171         regulator->rdev = rdev;
1172         list_add(&regulator->list, &rdev->consumer_list);
1173
1174         if (dev) {
1175                 regulator->dev = dev;
1176
1177                 /* Add a link to the device sysfs entry */
1178                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1179                                  dev->kobj.name, supply_name);
1180                 if (size >= REG_STR_SIZE)
1181                         goto overflow_err;
1182
1183                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1184                 if (regulator->supply_name == NULL)
1185                         goto overflow_err;
1186
1187                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1188                                         buf);
1189                 if (err) {
1190                         rdev_warn(rdev, "could not add device link %s err %d\n",
1191                                   dev->kobj.name, err);
1192                         /* non-fatal */
1193                 }
1194         } else {
1195                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1196                 if (regulator->supply_name == NULL)
1197                         goto overflow_err;
1198         }
1199
1200         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1201                                                 rdev->debugfs);
1202         if (!regulator->debugfs) {
1203                 rdev_warn(rdev, "Failed to create debugfs directory\n");
1204         } else {
1205                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1206                                    &regulator->uA_load);
1207                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1208                                    &regulator->min_uV);
1209                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1210                                    &regulator->max_uV);
1211         }
1212
1213         /*
1214          * Check now if the regulator is an always on regulator - if
1215          * it is then we don't need to do nearly so much work for
1216          * enable/disable calls.
1217          */
1218         if (!_regulator_can_change_status(rdev) &&
1219             _regulator_is_enabled(rdev))
1220                 regulator->always_on = true;
1221
1222         mutex_unlock(&rdev->mutex);
1223         return regulator;
1224 overflow_err:
1225         list_del(&regulator->list);
1226         kfree(regulator);
1227         mutex_unlock(&rdev->mutex);
1228         return NULL;
1229 }
1230
1231 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1232 {
1233         if (rdev->constraints && rdev->constraints->enable_time)
1234                 return rdev->constraints->enable_time;
1235         if (!rdev->desc->ops->enable_time)
1236                 return rdev->desc->enable_time;
1237         return rdev->desc->ops->enable_time(rdev);
1238 }
1239
1240 static struct regulator_supply_alias *regulator_find_supply_alias(
1241                 struct device *dev, const char *supply)
1242 {
1243         struct regulator_supply_alias *map;
1244
1245         list_for_each_entry(map, &regulator_supply_alias_list, list)
1246                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1247                         return map;
1248
1249         return NULL;
1250 }
1251
1252 static void regulator_supply_alias(struct device **dev, const char **supply)
1253 {
1254         struct regulator_supply_alias *map;
1255
1256         map = regulator_find_supply_alias(*dev, *supply);
1257         if (map) {
1258                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1259                                 *supply, map->alias_supply,
1260                                 dev_name(map->alias_dev));
1261                 *dev = map->alias_dev;
1262                 *supply = map->alias_supply;
1263         }
1264 }
1265
1266 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1267                                                   const char *supply,
1268                                                   int *ret)
1269 {
1270         struct regulator_dev *r;
1271         struct device_node *node;
1272         struct regulator_map *map;
1273         const char *devname = NULL;
1274
1275         regulator_supply_alias(&dev, &supply);
1276
1277         /* first do a dt based lookup */
1278         if (dev && dev->of_node) {
1279                 node = of_get_regulator(dev, supply);
1280                 if (node) {
1281                         list_for_each_entry(r, &regulator_list, list)
1282                                 if (r->dev.parent &&
1283                                         node == r->dev.of_node)
1284                                         return r;
1285                         *ret = -EPROBE_DEFER;
1286                         return NULL;
1287                 } else {
1288                         /*
1289                          * If we couldn't even get the node then it's
1290                          * not just that the device didn't register
1291                          * yet, there's no node and we'll never
1292                          * succeed.
1293                          */
1294                         *ret = -ENODEV;
1295                 }
1296         }
1297
1298         /* if not found, try doing it non-dt way */
1299         if (dev)
1300                 devname = dev_name(dev);
1301
1302         list_for_each_entry(r, &regulator_list, list)
1303                 if (strcmp(rdev_get_name(r), supply) == 0)
1304                         return r;
1305
1306         list_for_each_entry(map, &regulator_map_list, list) {
1307                 /* If the mapping has a device set up it must match */
1308                 if (map->dev_name &&
1309                     (!devname || strcmp(map->dev_name, devname)))
1310                         continue;
1311
1312                 if (strcmp(map->supply, supply) == 0)
1313                         return map->regulator;
1314         }
1315
1316
1317         return NULL;
1318 }
1319
1320 /* Internal regulator request function */
1321 static struct regulator *_regulator_get(struct device *dev, const char *id,
1322                                         bool exclusive, bool allow_dummy)
1323 {
1324         struct regulator_dev *rdev;
1325         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1326         const char *devname = NULL;
1327         int ret;
1328
1329         if (id == NULL) {
1330                 pr_err("get() with no identifier\n");
1331                 return ERR_PTR(-EINVAL);
1332         }
1333
1334         if (dev)
1335                 devname = dev_name(dev);
1336
1337         if (have_full_constraints())
1338                 ret = -ENODEV;
1339         else
1340                 ret = -EPROBE_DEFER;
1341
1342         mutex_lock(&regulator_list_mutex);
1343
1344         rdev = regulator_dev_lookup(dev, id, &ret);
1345         if (rdev)
1346                 goto found;
1347
1348         regulator = ERR_PTR(ret);
1349
1350         /*
1351          * If we have return value from dev_lookup fail, we do not expect to
1352          * succeed, so, quit with appropriate error value
1353          */
1354         if (ret && ret != -ENODEV)
1355                 goto out;
1356
1357         if (!devname)
1358                 devname = "deviceless";
1359
1360         /*
1361          * Assume that a regulator is physically present and enabled
1362          * even if it isn't hooked up and just provide a dummy.
1363          */
1364         if (have_full_constraints() && allow_dummy) {
1365                 pr_warn("%s supply %s not found, using dummy regulator\n",
1366                         devname, id);
1367
1368                 rdev = dummy_regulator_rdev;
1369                 goto found;
1370         /* Don't log an error when called from regulator_get_optional() */
1371         } else if (!have_full_constraints() || exclusive) {
1372                 dev_warn(dev, "dummy supplies not allowed\n");
1373         }
1374
1375         mutex_unlock(&regulator_list_mutex);
1376         return regulator;
1377
1378 found:
1379         if (rdev->exclusive) {
1380                 regulator = ERR_PTR(-EPERM);
1381                 goto out;
1382         }
1383
1384         if (exclusive && rdev->open_count) {
1385                 regulator = ERR_PTR(-EBUSY);
1386                 goto out;
1387         }
1388
1389         if (!try_module_get(rdev->owner))
1390                 goto out;
1391
1392         regulator = create_regulator(rdev, dev, id);
1393         if (regulator == NULL) {
1394                 regulator = ERR_PTR(-ENOMEM);
1395                 module_put(rdev->owner);
1396                 goto out;
1397         }
1398
1399         rdev->open_count++;
1400         if (exclusive) {
1401                 rdev->exclusive = 1;
1402
1403                 ret = _regulator_is_enabled(rdev);
1404                 if (ret > 0)
1405                         rdev->use_count = 1;
1406                 else
1407                         rdev->use_count = 0;
1408         }
1409
1410 out:
1411         mutex_unlock(&regulator_list_mutex);
1412
1413         return regulator;
1414 }
1415
1416 /**
1417  * regulator_get - lookup and obtain a reference to a regulator.
1418  * @dev: device for regulator "consumer"
1419  * @id: Supply name or regulator ID.
1420  *
1421  * Returns a struct regulator corresponding to the regulator producer,
1422  * or IS_ERR() condition containing errno.
1423  *
1424  * Use of supply names configured via regulator_set_device_supply() is
1425  * strongly encouraged.  It is recommended that the supply name used
1426  * should match the name used for the supply and/or the relevant
1427  * device pins in the datasheet.
1428  */
1429 struct regulator *regulator_get(struct device *dev, const char *id)
1430 {
1431         return _regulator_get(dev, id, false, true);
1432 }
1433 EXPORT_SYMBOL_GPL(regulator_get);
1434
1435 /**
1436  * regulator_get_exclusive - obtain exclusive access to a regulator.
1437  * @dev: device for regulator "consumer"
1438  * @id: Supply name or regulator ID.
1439  *
1440  * Returns a struct regulator corresponding to the regulator producer,
1441  * or IS_ERR() condition containing errno.  Other consumers will be
1442  * unable to obtain this reference is held and the use count for the
1443  * regulator will be initialised to reflect the current state of the
1444  * regulator.
1445  *
1446  * This is intended for use by consumers which cannot tolerate shared
1447  * use of the regulator such as those which need to force the
1448  * regulator off for correct operation of the hardware they are
1449  * controlling.
1450  *
1451  * Use of supply names configured via regulator_set_device_supply() is
1452  * strongly encouraged.  It is recommended that the supply name used
1453  * should match the name used for the supply and/or the relevant
1454  * device pins in the datasheet.
1455  */
1456 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1457 {
1458         return _regulator_get(dev, id, true, false);
1459 }
1460 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1461
1462 /**
1463  * regulator_get_optional - obtain optional access to a regulator.
1464  * @dev: device for regulator "consumer"
1465  * @id: Supply name or regulator ID.
1466  *
1467  * Returns a struct regulator corresponding to the regulator producer,
1468  * or IS_ERR() condition containing errno.  Other consumers will be
1469  * unable to obtain this reference is held and the use count for the
1470  * regulator will be initialised to reflect the current state of the
1471  * regulator.
1472  *
1473  * This is intended for use by consumers for devices which can have
1474  * some supplies unconnected in normal use, such as some MMC devices.
1475  * It can allow the regulator core to provide stub supplies for other
1476  * supplies requested using normal regulator_get() calls without
1477  * disrupting the operation of drivers that can handle absent
1478  * supplies.
1479  *
1480  * Use of supply names configured via regulator_set_device_supply() is
1481  * strongly encouraged.  It is recommended that the supply name used
1482  * should match the name used for the supply and/or the relevant
1483  * device pins in the datasheet.
1484  */
1485 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1486 {
1487         return _regulator_get(dev, id, false, false);
1488 }
1489 EXPORT_SYMBOL_GPL(regulator_get_optional);
1490
1491 /* Locks held by regulator_put() */
1492 static void _regulator_put(struct regulator *regulator)
1493 {
1494         struct regulator_dev *rdev;
1495
1496         if (regulator == NULL || IS_ERR(regulator))
1497                 return;
1498
1499         rdev = regulator->rdev;
1500
1501         debugfs_remove_recursive(regulator->debugfs);
1502
1503         /* remove any sysfs entries */
1504         if (regulator->dev)
1505                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1506         kfree(regulator->supply_name);
1507         list_del(&regulator->list);
1508         kfree(regulator);
1509
1510         rdev->open_count--;
1511         rdev->exclusive = 0;
1512
1513         module_put(rdev->owner);
1514 }
1515
1516 /**
1517  * regulator_put - "free" the regulator source
1518  * @regulator: regulator source
1519  *
1520  * Note: drivers must ensure that all regulator_enable calls made on this
1521  * regulator source are balanced by regulator_disable calls prior to calling
1522  * this function.
1523  */
1524 void regulator_put(struct regulator *regulator)
1525 {
1526         mutex_lock(&regulator_list_mutex);
1527         _regulator_put(regulator);
1528         mutex_unlock(&regulator_list_mutex);
1529 }
1530 EXPORT_SYMBOL_GPL(regulator_put);
1531
1532 /**
1533  * regulator_register_supply_alias - Provide device alias for supply lookup
1534  *
1535  * @dev: device that will be given as the regulator "consumer"
1536  * @id: Supply name or regulator ID
1537  * @alias_dev: device that should be used to lookup the supply
1538  * @alias_id: Supply name or regulator ID that should be used to lookup the
1539  * supply
1540  *
1541  * All lookups for id on dev will instead be conducted for alias_id on
1542  * alias_dev.
1543  */
1544 int regulator_register_supply_alias(struct device *dev, const char *id,
1545                                     struct device *alias_dev,
1546                                     const char *alias_id)
1547 {
1548         struct regulator_supply_alias *map;
1549
1550         map = regulator_find_supply_alias(dev, id);
1551         if (map)
1552                 return -EEXIST;
1553
1554         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1555         if (!map)
1556                 return -ENOMEM;
1557
1558         map->src_dev = dev;
1559         map->src_supply = id;
1560         map->alias_dev = alias_dev;
1561         map->alias_supply = alias_id;
1562
1563         list_add(&map->list, &regulator_supply_alias_list);
1564
1565         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1566                 id, dev_name(dev), alias_id, dev_name(alias_dev));
1567
1568         return 0;
1569 }
1570 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1571
1572 /**
1573  * regulator_unregister_supply_alias - Remove device alias
1574  *
1575  * @dev: device that will be given as the regulator "consumer"
1576  * @id: Supply name or regulator ID
1577  *
1578  * Remove a lookup alias if one exists for id on dev.
1579  */
1580 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1581 {
1582         struct regulator_supply_alias *map;
1583
1584         map = regulator_find_supply_alias(dev, id);
1585         if (map) {
1586                 list_del(&map->list);
1587                 kfree(map);
1588         }
1589 }
1590 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1591
1592 /**
1593  * regulator_bulk_register_supply_alias - register multiple aliases
1594  *
1595  * @dev: device that will be given as the regulator "consumer"
1596  * @id: List of supply names or regulator IDs
1597  * @alias_dev: device that should be used to lookup the supply
1598  * @alias_id: List of supply names or regulator IDs that should be used to
1599  * lookup the supply
1600  * @num_id: Number of aliases to register
1601  *
1602  * @return 0 on success, an errno on failure.
1603  *
1604  * This helper function allows drivers to register several supply
1605  * aliases in one operation.  If any of the aliases cannot be
1606  * registered any aliases that were registered will be removed
1607  * before returning to the caller.
1608  */
1609 int regulator_bulk_register_supply_alias(struct device *dev, const char **id,
1610                                          struct device *alias_dev,
1611                                          const char **alias_id,
1612                                          int num_id)
1613 {
1614         int i;
1615         int ret;
1616
1617         for (i = 0; i < num_id; ++i) {
1618                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1619                                                       alias_id[i]);
1620                 if (ret < 0)
1621                         goto err;
1622         }
1623
1624         return 0;
1625
1626 err:
1627         dev_err(dev,
1628                 "Failed to create supply alias %s,%s -> %s,%s\n",
1629                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1630
1631         while (--i >= 0)
1632                 regulator_unregister_supply_alias(dev, id[i]);
1633
1634         return ret;
1635 }
1636 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1637
1638 /**
1639  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1640  *
1641  * @dev: device that will be given as the regulator "consumer"
1642  * @id: List of supply names or regulator IDs
1643  * @num_id: Number of aliases to unregister
1644  *
1645  * This helper function allows drivers to unregister several supply
1646  * aliases in one operation.
1647  */
1648 void regulator_bulk_unregister_supply_alias(struct device *dev,
1649                                             const char **id,
1650                                             int num_id)
1651 {
1652         int i;
1653
1654         for (i = 0; i < num_id; ++i)
1655                 regulator_unregister_supply_alias(dev, id[i]);
1656 }
1657 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1658
1659
1660 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1661 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1662                                 const struct regulator_config *config)
1663 {
1664         struct regulator_enable_gpio *pin;
1665         int ret;
1666
1667         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1668                 if (pin->gpio == config->ena_gpio) {
1669                         rdev_dbg(rdev, "GPIO %d is already used\n",
1670                                 config->ena_gpio);
1671                         goto update_ena_gpio_to_rdev;
1672                 }
1673         }
1674
1675         ret = gpio_request_one(config->ena_gpio,
1676                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1677                                 rdev_get_name(rdev));
1678         if (ret)
1679                 return ret;
1680
1681         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1682         if (pin == NULL) {
1683                 gpio_free(config->ena_gpio);
1684                 return -ENOMEM;
1685         }
1686
1687         pin->gpio = config->ena_gpio;
1688         pin->ena_gpio_invert = config->ena_gpio_invert;
1689         list_add(&pin->list, &regulator_ena_gpio_list);
1690
1691 update_ena_gpio_to_rdev:
1692         pin->request_count++;
1693         rdev->ena_pin = pin;
1694         return 0;
1695 }
1696
1697 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1698 {
1699         struct regulator_enable_gpio *pin, *n;
1700
1701         if (!rdev->ena_pin)
1702                 return;
1703
1704         /* Free the GPIO only in case of no use */
1705         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1706                 if (pin->gpio == rdev->ena_pin->gpio) {
1707                         if (pin->request_count <= 1) {
1708                                 pin->request_count = 0;
1709                                 gpio_free(pin->gpio);
1710                                 list_del(&pin->list);
1711                                 kfree(pin);
1712                         } else {
1713                                 pin->request_count--;
1714                         }
1715                 }
1716         }
1717 }
1718
1719 /**
1720  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1721  * @rdev: regulator_dev structure
1722  * @enable: enable GPIO at initial use?
1723  *
1724  * GPIO is enabled in case of initial use. (enable_count is 0)
1725  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1726  */
1727 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1728 {
1729         struct regulator_enable_gpio *pin = rdev->ena_pin;
1730
1731         if (!pin)
1732                 return -EINVAL;
1733
1734         if (enable) {
1735                 /* Enable GPIO at initial use */
1736                 if (pin->enable_count == 0)
1737                         gpio_set_value_cansleep(pin->gpio,
1738                                                 !pin->ena_gpio_invert);
1739
1740                 pin->enable_count++;
1741         } else {
1742                 if (pin->enable_count > 1) {
1743                         pin->enable_count--;
1744                         return 0;
1745                 }
1746
1747                 /* Disable GPIO if not used */
1748                 if (pin->enable_count <= 1) {
1749                         gpio_set_value_cansleep(pin->gpio,
1750                                                 pin->ena_gpio_invert);
1751                         pin->enable_count = 0;
1752                 }
1753         }
1754
1755         return 0;
1756 }
1757
1758 static int _regulator_do_enable(struct regulator_dev *rdev)
1759 {
1760         int ret, delay;
1761
1762         /* Query before enabling in case configuration dependent.  */
1763         ret = _regulator_get_enable_time(rdev);
1764         if (ret >= 0) {
1765                 delay = ret;
1766         } else {
1767                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1768                 delay = 0;
1769         }
1770
1771         trace_regulator_enable(rdev_get_name(rdev));
1772
1773         if (rdev->ena_pin) {
1774                 ret = regulator_ena_gpio_ctrl(rdev, true);
1775                 if (ret < 0)
1776                         return ret;
1777                 rdev->ena_gpio_state = 1;
1778         } else if (rdev->desc->ops->enable) {
1779                 ret = rdev->desc->ops->enable(rdev);
1780                 if (ret < 0)
1781                         return ret;
1782         } else {
1783                 return -EINVAL;
1784         }
1785
1786         /* Allow the regulator to ramp; it would be useful to extend
1787          * this for bulk operations so that the regulators can ramp
1788          * together.  */
1789         trace_regulator_enable_delay(rdev_get_name(rdev));
1790
1791         /*
1792          * Delay for the requested amount of time as per the guidelines in:
1793          *
1794          *     Documentation/timers/timers-howto.txt
1795          *
1796          * The assumption here is that regulators will never be enabled in
1797          * atomic context and therefore sleeping functions can be used.
1798          */
1799         if (delay) {
1800                 unsigned int ms = delay / 1000;
1801                 unsigned int us = delay % 1000;
1802
1803                 if (ms > 0) {
1804                         /*
1805                          * For small enough values, handle super-millisecond
1806                          * delays in the usleep_range() call below.
1807                          */
1808                         if (ms < 20)
1809                                 us += ms * 1000;
1810                         else
1811                                 msleep(ms);
1812                 }
1813
1814                 /*
1815                  * Give the scheduler some room to coalesce with any other
1816                  * wakeup sources. For delays shorter than 10 us, don't even
1817                  * bother setting up high-resolution timers and just busy-
1818                  * loop.
1819                  */
1820                 if (us >= 10)
1821                         usleep_range(us, us + 100);
1822                 else
1823                         udelay(us);
1824         }
1825
1826         trace_regulator_enable_complete(rdev_get_name(rdev));
1827
1828         return 0;
1829 }
1830
1831 /* locks held by regulator_enable() */
1832 static int _regulator_enable(struct regulator_dev *rdev)
1833 {
1834         int ret;
1835
1836         /* check voltage and requested load before enabling */
1837         if (rdev->constraints &&
1838             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1839                 drms_uA_update(rdev);
1840
1841         if (rdev->use_count == 0) {
1842                 /* The regulator may on if it's not switchable or left on */
1843                 ret = _regulator_is_enabled(rdev);
1844                 if (ret == -EINVAL || ret == 0) {
1845                         if (!_regulator_can_change_status(rdev))
1846                                 return -EPERM;
1847
1848                         ret = _regulator_do_enable(rdev);
1849                         if (ret < 0)
1850                                 return ret;
1851
1852                 } else if (ret < 0) {
1853                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1854                         return ret;
1855                 }
1856                 /* Fallthrough on positive return values - already enabled */
1857         }
1858
1859         rdev->use_count++;
1860
1861         return 0;
1862 }
1863
1864 /**
1865  * regulator_enable - enable regulator output
1866  * @regulator: regulator source
1867  *
1868  * Request that the regulator be enabled with the regulator output at
1869  * the predefined voltage or current value.  Calls to regulator_enable()
1870  * must be balanced with calls to regulator_disable().
1871  *
1872  * NOTE: the output value can be set by other drivers, boot loader or may be
1873  * hardwired in the regulator.
1874  */
1875 int regulator_enable(struct regulator *regulator)
1876 {
1877         struct regulator_dev *rdev = regulator->rdev;
1878         int ret = 0;
1879
1880         if (regulator->always_on)
1881                 return 0;
1882
1883         if (rdev->supply) {
1884                 ret = regulator_enable(rdev->supply);
1885                 if (ret != 0)
1886                         return ret;
1887         }
1888
1889         mutex_lock(&rdev->mutex);
1890         ret = _regulator_enable(rdev);
1891         mutex_unlock(&rdev->mutex);
1892
1893         if (ret != 0 && rdev->supply)
1894                 regulator_disable(rdev->supply);
1895
1896         return ret;
1897 }
1898 EXPORT_SYMBOL_GPL(regulator_enable);
1899
1900 static int _regulator_do_disable(struct regulator_dev *rdev)
1901 {
1902         int ret;
1903
1904         trace_regulator_disable(rdev_get_name(rdev));
1905
1906         if (rdev->ena_pin) {
1907                 ret = regulator_ena_gpio_ctrl(rdev, false);
1908                 if (ret < 0)
1909                         return ret;
1910                 rdev->ena_gpio_state = 0;
1911
1912         } else if (rdev->desc->ops->disable) {
1913                 ret = rdev->desc->ops->disable(rdev);
1914                 if (ret != 0)
1915                         return ret;
1916         }
1917
1918         trace_regulator_disable_complete(rdev_get_name(rdev));
1919
1920         return 0;
1921 }
1922
1923 /* locks held by regulator_disable() */
1924 static int _regulator_disable(struct regulator_dev *rdev)
1925 {
1926         int ret = 0;
1927
1928         if (WARN(rdev->use_count <= 0,
1929                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
1930                 return -EIO;
1931
1932         /* are we the last user and permitted to disable ? */
1933         if (rdev->use_count == 1 &&
1934             (rdev->constraints && !rdev->constraints->always_on)) {
1935
1936                 /* we are last user */
1937                 if (_regulator_can_change_status(rdev)) {
1938                         ret = _regulator_do_disable(rdev);
1939                         if (ret < 0) {
1940                                 rdev_err(rdev, "failed to disable\n");
1941                                 return ret;
1942                         }
1943                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1944                                         NULL);
1945                 }
1946
1947                 rdev->use_count = 0;
1948         } else if (rdev->use_count > 1) {
1949
1950                 if (rdev->constraints &&
1951                         (rdev->constraints->valid_ops_mask &
1952                         REGULATOR_CHANGE_DRMS))
1953                         drms_uA_update(rdev);
1954
1955                 rdev->use_count--;
1956         }
1957
1958         return ret;
1959 }
1960
1961 /**
1962  * regulator_disable - disable regulator output
1963  * @regulator: regulator source
1964  *
1965  * Disable the regulator output voltage or current.  Calls to
1966  * regulator_enable() must be balanced with calls to
1967  * regulator_disable().
1968  *
1969  * NOTE: this will only disable the regulator output if no other consumer
1970  * devices have it enabled, the regulator device supports disabling and
1971  * machine constraints permit this operation.
1972  */
1973 int regulator_disable(struct regulator *regulator)
1974 {
1975         struct regulator_dev *rdev = regulator->rdev;
1976         int ret = 0;
1977
1978         if (regulator->always_on)
1979                 return 0;
1980
1981         mutex_lock(&rdev->mutex);
1982         ret = _regulator_disable(rdev);
1983         mutex_unlock(&rdev->mutex);
1984
1985         if (ret == 0 && rdev->supply)
1986                 regulator_disable(rdev->supply);
1987
1988         return ret;
1989 }
1990 EXPORT_SYMBOL_GPL(regulator_disable);
1991
1992 /* locks held by regulator_force_disable() */
1993 static int _regulator_force_disable(struct regulator_dev *rdev)
1994 {
1995         int ret = 0;
1996
1997         ret = _regulator_do_disable(rdev);
1998         if (ret < 0) {
1999                 rdev_err(rdev, "failed to force disable\n");
2000                 return ret;
2001         }
2002
2003         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2004                         REGULATOR_EVENT_DISABLE, NULL);
2005
2006         return 0;
2007 }
2008
2009 /**
2010  * regulator_force_disable - force disable regulator output
2011  * @regulator: regulator source
2012  *
2013  * Forcibly disable the regulator output voltage or current.
2014  * NOTE: this *will* disable the regulator output even if other consumer
2015  * devices have it enabled. This should be used for situations when device
2016  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2017  */
2018 int regulator_force_disable(struct regulator *regulator)
2019 {
2020         struct regulator_dev *rdev = regulator->rdev;
2021         int ret;
2022
2023         mutex_lock(&rdev->mutex);
2024         regulator->uA_load = 0;
2025         ret = _regulator_force_disable(regulator->rdev);
2026         mutex_unlock(&rdev->mutex);
2027
2028         if (rdev->supply)
2029                 while (rdev->open_count--)
2030                         regulator_disable(rdev->supply);
2031
2032         return ret;
2033 }
2034 EXPORT_SYMBOL_GPL(regulator_force_disable);
2035
2036 static void regulator_disable_work(struct work_struct *work)
2037 {
2038         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2039                                                   disable_work.work);
2040         int count, i, ret;
2041
2042         mutex_lock(&rdev->mutex);
2043
2044         BUG_ON(!rdev->deferred_disables);
2045
2046         count = rdev->deferred_disables;
2047         rdev->deferred_disables = 0;
2048
2049         for (i = 0; i < count; i++) {
2050                 ret = _regulator_disable(rdev);
2051                 if (ret != 0)
2052                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2053         }
2054
2055         mutex_unlock(&rdev->mutex);
2056
2057         if (rdev->supply) {
2058                 for (i = 0; i < count; i++) {
2059                         ret = regulator_disable(rdev->supply);
2060                         if (ret != 0) {
2061                                 rdev_err(rdev,
2062                                          "Supply disable failed: %d\n", ret);
2063                         }
2064                 }
2065         }
2066 }
2067
2068 /**
2069  * regulator_disable_deferred - disable regulator output with delay
2070  * @regulator: regulator source
2071  * @ms: miliseconds until the regulator is disabled
2072  *
2073  * Execute regulator_disable() on the regulator after a delay.  This
2074  * is intended for use with devices that require some time to quiesce.
2075  *
2076  * NOTE: this will only disable the regulator output if no other consumer
2077  * devices have it enabled, the regulator device supports disabling and
2078  * machine constraints permit this operation.
2079  */
2080 int regulator_disable_deferred(struct regulator *regulator, int ms)
2081 {
2082         struct regulator_dev *rdev = regulator->rdev;
2083         int ret;
2084
2085         if (regulator->always_on)
2086                 return 0;
2087
2088         if (!ms)
2089                 return regulator_disable(regulator);
2090
2091         mutex_lock(&rdev->mutex);
2092         rdev->deferred_disables++;
2093         mutex_unlock(&rdev->mutex);
2094
2095         ret = queue_delayed_work(system_power_efficient_wq,
2096                                  &rdev->disable_work,
2097                                  msecs_to_jiffies(ms));
2098         if (ret < 0)
2099                 return ret;
2100         else
2101                 return 0;
2102 }
2103 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2104
2105 static int _regulator_is_enabled(struct regulator_dev *rdev)
2106 {
2107         /* A GPIO control always takes precedence */
2108         if (rdev->ena_pin)
2109                 return rdev->ena_gpio_state;
2110
2111         /* If we don't know then assume that the regulator is always on */
2112         if (!rdev->desc->ops->is_enabled)
2113                 return 1;
2114
2115         return rdev->desc->ops->is_enabled(rdev);
2116 }
2117
2118 /**
2119  * regulator_is_enabled - is the regulator output enabled
2120  * @regulator: regulator source
2121  *
2122  * Returns positive if the regulator driver backing the source/client
2123  * has requested that the device be enabled, zero if it hasn't, else a
2124  * negative errno code.
2125  *
2126  * Note that the device backing this regulator handle can have multiple
2127  * users, so it might be enabled even if regulator_enable() was never
2128  * called for this particular source.
2129  */
2130 int regulator_is_enabled(struct regulator *regulator)
2131 {
2132         int ret;
2133
2134         if (regulator->always_on)
2135                 return 1;
2136
2137         mutex_lock(&regulator->rdev->mutex);
2138         ret = _regulator_is_enabled(regulator->rdev);
2139         mutex_unlock(&regulator->rdev->mutex);
2140
2141         return ret;
2142 }
2143 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2144
2145 /**
2146  * regulator_can_change_voltage - check if regulator can change voltage
2147  * @regulator: regulator source
2148  *
2149  * Returns positive if the regulator driver backing the source/client
2150  * can change its voltage, false otherwise. Useful for detecting fixed
2151  * or dummy regulators and disabling voltage change logic in the client
2152  * driver.
2153  */
2154 int regulator_can_change_voltage(struct regulator *regulator)
2155 {
2156         struct regulator_dev    *rdev = regulator->rdev;
2157
2158         if (rdev->constraints &&
2159             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2160                 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2161                         return 1;
2162
2163                 if (rdev->desc->continuous_voltage_range &&
2164                     rdev->constraints->min_uV && rdev->constraints->max_uV &&
2165                     rdev->constraints->min_uV != rdev->constraints->max_uV)
2166                         return 1;
2167         }
2168
2169         return 0;
2170 }
2171 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2172
2173 /**
2174  * regulator_count_voltages - count regulator_list_voltage() selectors
2175  * @regulator: regulator source
2176  *
2177  * Returns number of selectors, or negative errno.  Selectors are
2178  * numbered starting at zero, and typically correspond to bitfields
2179  * in hardware registers.
2180  */
2181 int regulator_count_voltages(struct regulator *regulator)
2182 {
2183         struct regulator_dev    *rdev = regulator->rdev;
2184
2185         return rdev->desc->n_voltages ? : -EINVAL;
2186 }
2187 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2188
2189 /**
2190  * regulator_list_voltage - enumerate supported voltages
2191  * @regulator: regulator source
2192  * @selector: identify voltage to list
2193  * Context: can sleep
2194  *
2195  * Returns a voltage that can be passed to @regulator_set_voltage(),
2196  * zero if this selector code can't be used on this system, or a
2197  * negative errno.
2198  */
2199 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2200 {
2201         struct regulator_dev    *rdev = regulator->rdev;
2202         struct regulator_ops    *ops = rdev->desc->ops;
2203         int                     ret;
2204
2205         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2206                 return rdev->desc->fixed_uV;
2207
2208         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2209                 return -EINVAL;
2210
2211         mutex_lock(&rdev->mutex);
2212         ret = ops->list_voltage(rdev, selector);
2213         mutex_unlock(&rdev->mutex);
2214
2215         if (ret > 0) {
2216                 if (ret < rdev->constraints->min_uV)
2217                         ret = 0;
2218                 else if (ret > rdev->constraints->max_uV)
2219                         ret = 0;
2220         }
2221
2222         return ret;
2223 }
2224 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2225
2226 /**
2227  * regulator_get_linear_step - return the voltage step size between VSEL values
2228  * @regulator: regulator source
2229  *
2230  * Returns the voltage step size between VSEL values for linear
2231  * regulators, or return 0 if the regulator isn't a linear regulator.
2232  */
2233 unsigned int regulator_get_linear_step(struct regulator *regulator)
2234 {
2235         struct regulator_dev *rdev = regulator->rdev;
2236
2237         return rdev->desc->uV_step;
2238 }
2239 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2240
2241 /**
2242  * regulator_is_supported_voltage - check if a voltage range can be supported
2243  *
2244  * @regulator: Regulator to check.
2245  * @min_uV: Minimum required voltage in uV.
2246  * @max_uV: Maximum required voltage in uV.
2247  *
2248  * Returns a boolean or a negative error code.
2249  */
2250 int regulator_is_supported_voltage(struct regulator *regulator,
2251                                    int min_uV, int max_uV)
2252 {
2253         struct regulator_dev *rdev = regulator->rdev;
2254         int i, voltages, ret;
2255
2256         /* If we can't change voltage check the current voltage */
2257         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2258                 ret = regulator_get_voltage(regulator);
2259                 if (ret >= 0)
2260                         return min_uV <= ret && ret <= max_uV;
2261                 else
2262                         return ret;
2263         }
2264
2265         /* Any voltage within constrains range is fine? */
2266         if (rdev->desc->continuous_voltage_range)
2267                 return min_uV >= rdev->constraints->min_uV &&
2268                                 max_uV <= rdev->constraints->max_uV;
2269
2270         ret = regulator_count_voltages(regulator);
2271         if (ret < 0)
2272                 return ret;
2273         voltages = ret;
2274
2275         for (i = 0; i < voltages; i++) {
2276                 ret = regulator_list_voltage(regulator, i);
2277
2278                 if (ret >= min_uV && ret <= max_uV)
2279                         return 1;
2280         }
2281
2282         return 0;
2283 }
2284 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2285
2286 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2287                                      int min_uV, int max_uV)
2288 {
2289         int ret;
2290         int delay = 0;
2291         int best_val = 0;
2292         unsigned int selector;
2293         int old_selector = -1;
2294
2295         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2296
2297         min_uV += rdev->constraints->uV_offset;
2298         max_uV += rdev->constraints->uV_offset;
2299
2300         /*
2301          * If we can't obtain the old selector there is not enough
2302          * info to call set_voltage_time_sel().
2303          */
2304         if (_regulator_is_enabled(rdev) &&
2305             rdev->desc->ops->set_voltage_time_sel &&
2306             rdev->desc->ops->get_voltage_sel) {
2307                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2308                 if (old_selector < 0)
2309                         return old_selector;
2310         }
2311
2312         if (rdev->desc->ops->set_voltage) {
2313                 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2314                                                    &selector);
2315
2316                 if (ret >= 0) {
2317                         if (rdev->desc->ops->list_voltage)
2318                                 best_val = rdev->desc->ops->list_voltage(rdev,
2319                                                                          selector);
2320                         else
2321                                 best_val = _regulator_get_voltage(rdev);
2322                 }
2323
2324         } else if (rdev->desc->ops->set_voltage_sel) {
2325                 if (rdev->desc->ops->map_voltage) {
2326                         ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2327                                                            max_uV);
2328                 } else {
2329                         if (rdev->desc->ops->list_voltage ==
2330                             regulator_list_voltage_linear)
2331                                 ret = regulator_map_voltage_linear(rdev,
2332                                                                 min_uV, max_uV);
2333                         else
2334                                 ret = regulator_map_voltage_iterate(rdev,
2335                                                                 min_uV, max_uV);
2336                 }
2337
2338                 if (ret >= 0) {
2339                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2340                         if (min_uV <= best_val && max_uV >= best_val) {
2341                                 selector = ret;
2342                                 if (old_selector == selector)
2343                                         ret = 0;
2344                                 else
2345                                         ret = rdev->desc->ops->set_voltage_sel(
2346                                                                 rdev, ret);
2347                         } else {
2348                                 ret = -EINVAL;
2349                         }
2350                 }
2351         } else {
2352                 ret = -EINVAL;
2353         }
2354
2355         /* Call set_voltage_time_sel if successfully obtained old_selector */
2356         if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2357                 && old_selector != selector) {
2358
2359                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2360                                                 old_selector, selector);
2361                 if (delay < 0) {
2362                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2363                                   delay);
2364                         delay = 0;
2365                 }
2366
2367                 /* Insert any necessary delays */
2368                 if (delay >= 1000) {
2369                         mdelay(delay / 1000);
2370                         udelay(delay % 1000);
2371                 } else if (delay) {
2372                         udelay(delay);
2373                 }
2374         }
2375
2376         if (ret == 0 && best_val >= 0) {
2377                 unsigned long data = best_val;
2378
2379                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2380                                      (void *)data);
2381         }
2382
2383         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2384
2385         return ret;
2386 }
2387
2388 /**
2389  * regulator_set_voltage - set regulator output voltage
2390  * @regulator: regulator source
2391  * @min_uV: Minimum required voltage in uV
2392  * @max_uV: Maximum acceptable voltage in uV
2393  *
2394  * Sets a voltage regulator to the desired output voltage. This can be set
2395  * during any regulator state. IOW, regulator can be disabled or enabled.
2396  *
2397  * If the regulator is enabled then the voltage will change to the new value
2398  * immediately otherwise if the regulator is disabled the regulator will
2399  * output at the new voltage when enabled.
2400  *
2401  * NOTE: If the regulator is shared between several devices then the lowest
2402  * request voltage that meets the system constraints will be used.
2403  * Regulator system constraints must be set for this regulator before
2404  * calling this function otherwise this call will fail.
2405  */
2406 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2407 {
2408         struct regulator_dev *rdev = regulator->rdev;
2409         int ret = 0;
2410         int old_min_uV, old_max_uV;
2411         int current_uV;
2412
2413         mutex_lock(&rdev->mutex);
2414
2415         /* If we're setting the same range as last time the change
2416          * should be a noop (some cpufreq implementations use the same
2417          * voltage for multiple frequencies, for example).
2418          */
2419         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2420                 goto out;
2421
2422         /* If we're trying to set a range that overlaps the current voltage,
2423          * return succesfully even though the regulator does not support
2424          * changing the voltage.
2425          */
2426         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2427                 current_uV = _regulator_get_voltage(rdev);
2428                 if (min_uV <= current_uV && current_uV <= max_uV) {
2429                         regulator->min_uV = min_uV;
2430                         regulator->max_uV = max_uV;
2431                         goto out;
2432                 }
2433         }
2434
2435         /* sanity check */
2436         if (!rdev->desc->ops->set_voltage &&
2437             !rdev->desc->ops->set_voltage_sel) {
2438                 ret = -EINVAL;
2439                 goto out;
2440         }
2441
2442         /* constraints check */
2443         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2444         if (ret < 0)
2445                 goto out;
2446
2447         /* restore original values in case of error */
2448         old_min_uV = regulator->min_uV;
2449         old_max_uV = regulator->max_uV;
2450         regulator->min_uV = min_uV;
2451         regulator->max_uV = max_uV;
2452
2453         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2454         if (ret < 0)
2455                 goto out2;
2456
2457         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2458         if (ret < 0)
2459                 goto out2;
2460
2461 out:
2462         mutex_unlock(&rdev->mutex);
2463         return ret;
2464 out2:
2465         regulator->min_uV = old_min_uV;
2466         regulator->max_uV = old_max_uV;
2467         mutex_unlock(&rdev->mutex);
2468         return ret;
2469 }
2470 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2471
2472 /**
2473  * regulator_set_voltage_time - get raise/fall time
2474  * @regulator: regulator source
2475  * @old_uV: starting voltage in microvolts
2476  * @new_uV: target voltage in microvolts
2477  *
2478  * Provided with the starting and ending voltage, this function attempts to
2479  * calculate the time in microseconds required to rise or fall to this new
2480  * voltage.
2481  */
2482 int regulator_set_voltage_time(struct regulator *regulator,
2483                                int old_uV, int new_uV)
2484 {
2485         struct regulator_dev    *rdev = regulator->rdev;
2486         struct regulator_ops    *ops = rdev->desc->ops;
2487         int old_sel = -1;
2488         int new_sel = -1;
2489         int voltage;
2490         int i;
2491
2492         /* Currently requires operations to do this */
2493         if (!ops->list_voltage || !ops->set_voltage_time_sel
2494             || !rdev->desc->n_voltages)
2495                 return -EINVAL;
2496
2497         for (i = 0; i < rdev->desc->n_voltages; i++) {
2498                 /* We only look for exact voltage matches here */
2499                 voltage = regulator_list_voltage(regulator, i);
2500                 if (voltage < 0)
2501                         return -EINVAL;
2502                 if (voltage == 0)
2503                         continue;
2504                 if (voltage == old_uV)
2505                         old_sel = i;
2506                 if (voltage == new_uV)
2507                         new_sel = i;
2508         }
2509
2510         if (old_sel < 0 || new_sel < 0)
2511                 return -EINVAL;
2512
2513         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2514 }
2515 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2516
2517 /**
2518  * regulator_set_voltage_time_sel - get raise/fall time
2519  * @rdev: regulator source device
2520  * @old_selector: selector for starting voltage
2521  * @new_selector: selector for target voltage
2522  *
2523  * Provided with the starting and target voltage selectors, this function
2524  * returns time in microseconds required to rise or fall to this new voltage
2525  *
2526  * Drivers providing ramp_delay in regulation_constraints can use this as their
2527  * set_voltage_time_sel() operation.
2528  */
2529 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2530                                    unsigned int old_selector,
2531                                    unsigned int new_selector)
2532 {
2533         unsigned int ramp_delay = 0;
2534         int old_volt, new_volt;
2535
2536         if (rdev->constraints->ramp_delay)
2537                 ramp_delay = rdev->constraints->ramp_delay;
2538         else if (rdev->desc->ramp_delay)
2539                 ramp_delay = rdev->desc->ramp_delay;
2540
2541         if (ramp_delay == 0) {
2542                 rdev_warn(rdev, "ramp_delay not set\n");
2543                 return 0;
2544         }
2545
2546         /* sanity check */
2547         if (!rdev->desc->ops->list_voltage)
2548                 return -EINVAL;
2549
2550         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2551         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2552
2553         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2554 }
2555 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2556
2557 /**
2558  * regulator_sync_voltage - re-apply last regulator output voltage
2559  * @regulator: regulator source
2560  *
2561  * Re-apply the last configured voltage.  This is intended to be used
2562  * where some external control source the consumer is cooperating with
2563  * has caused the configured voltage to change.
2564  */
2565 int regulator_sync_voltage(struct regulator *regulator)
2566 {
2567         struct regulator_dev *rdev = regulator->rdev;
2568         int ret, min_uV, max_uV;
2569
2570         mutex_lock(&rdev->mutex);
2571
2572         if (!rdev->desc->ops->set_voltage &&
2573             !rdev->desc->ops->set_voltage_sel) {
2574                 ret = -EINVAL;
2575                 goto out;
2576         }
2577
2578         /* This is only going to work if we've had a voltage configured. */
2579         if (!regulator->min_uV && !regulator->max_uV) {
2580                 ret = -EINVAL;
2581                 goto out;
2582         }
2583
2584         min_uV = regulator->min_uV;
2585         max_uV = regulator->max_uV;
2586
2587         /* This should be a paranoia check... */
2588         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2589         if (ret < 0)
2590                 goto out;
2591
2592         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2593         if (ret < 0)
2594                 goto out;
2595
2596         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2597
2598 out:
2599         mutex_unlock(&rdev->mutex);
2600         return ret;
2601 }
2602 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2603
2604 static int _regulator_get_voltage(struct regulator_dev *rdev)
2605 {
2606         int sel, ret;
2607
2608         if (rdev->desc->ops->get_voltage_sel) {
2609                 sel = rdev->desc->ops->get_voltage_sel(rdev);
2610                 if (sel < 0)
2611                         return sel;
2612                 ret = rdev->desc->ops->list_voltage(rdev, sel);
2613         } else if (rdev->desc->ops->get_voltage) {
2614                 ret = rdev->desc->ops->get_voltage(rdev);
2615         } else if (rdev->desc->ops->list_voltage) {
2616                 ret = rdev->desc->ops->list_voltage(rdev, 0);
2617         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2618                 ret = rdev->desc->fixed_uV;
2619         } else {
2620                 return -EINVAL;
2621         }
2622
2623         if (ret < 0)
2624                 return ret;
2625         return ret - rdev->constraints->uV_offset;
2626 }
2627
2628 /**
2629  * regulator_get_voltage - get regulator output voltage
2630  * @regulator: regulator source
2631  *
2632  * This returns the current regulator voltage in uV.
2633  *
2634  * NOTE: If the regulator is disabled it will return the voltage value. This
2635  * function should not be used to determine regulator state.
2636  */
2637 int regulator_get_voltage(struct regulator *regulator)
2638 {
2639         int ret;
2640
2641         mutex_lock(&regulator->rdev->mutex);
2642
2643         ret = _regulator_get_voltage(regulator->rdev);
2644
2645         mutex_unlock(&regulator->rdev->mutex);
2646
2647         return ret;
2648 }
2649 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2650
2651 /**
2652  * regulator_set_current_limit - set regulator output current limit
2653  * @regulator: regulator source
2654  * @min_uA: Minimum supported current in uA
2655  * @max_uA: Maximum supported current in uA
2656  *
2657  * Sets current sink to the desired output current. This can be set during
2658  * any regulator state. IOW, regulator can be disabled or enabled.
2659  *
2660  * If the regulator is enabled then the current will change to the new value
2661  * immediately otherwise if the regulator is disabled the regulator will
2662  * output at the new current when enabled.
2663  *
2664  * NOTE: Regulator system constraints must be set for this regulator before
2665  * calling this function otherwise this call will fail.
2666  */
2667 int regulator_set_current_limit(struct regulator *regulator,
2668                                int min_uA, int max_uA)
2669 {
2670         struct regulator_dev *rdev = regulator->rdev;
2671         int ret;
2672
2673         mutex_lock(&rdev->mutex);
2674
2675         /* sanity check */
2676         if (!rdev->desc->ops->set_current_limit) {
2677                 ret = -EINVAL;
2678                 goto out;
2679         }
2680
2681         /* constraints check */
2682         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2683         if (ret < 0)
2684                 goto out;
2685
2686         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2687 out:
2688         mutex_unlock(&rdev->mutex);
2689         return ret;
2690 }
2691 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2692
2693 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2694 {
2695         int ret;
2696
2697         mutex_lock(&rdev->mutex);
2698
2699         /* sanity check */
2700         if (!rdev->desc->ops->get_current_limit) {
2701                 ret = -EINVAL;
2702                 goto out;
2703         }
2704
2705         ret = rdev->desc->ops->get_current_limit(rdev);
2706 out:
2707         mutex_unlock(&rdev->mutex);
2708         return ret;
2709 }
2710
2711 /**
2712  * regulator_get_current_limit - get regulator output current
2713  * @regulator: regulator source
2714  *
2715  * This returns the current supplied by the specified current sink in uA.
2716  *
2717  * NOTE: If the regulator is disabled it will return the current value. This
2718  * function should not be used to determine regulator state.
2719  */
2720 int regulator_get_current_limit(struct regulator *regulator)
2721 {
2722         return _regulator_get_current_limit(regulator->rdev);
2723 }
2724 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2725
2726 /**
2727  * regulator_set_mode - set regulator operating mode
2728  * @regulator: regulator source
2729  * @mode: operating mode - one of the REGULATOR_MODE constants
2730  *
2731  * Set regulator operating mode to increase regulator efficiency or improve
2732  * regulation performance.
2733  *
2734  * NOTE: Regulator system constraints must be set for this regulator before
2735  * calling this function otherwise this call will fail.
2736  */
2737 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2738 {
2739         struct regulator_dev *rdev = regulator->rdev;
2740         int ret;
2741         int regulator_curr_mode;
2742
2743         mutex_lock(&rdev->mutex);
2744
2745         /* sanity check */
2746         if (!rdev->desc->ops->set_mode) {
2747                 ret = -EINVAL;
2748                 goto out;
2749         }
2750
2751         /* return if the same mode is requested */
2752         if (rdev->desc->ops->get_mode) {
2753                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2754                 if (regulator_curr_mode == mode) {
2755                         ret = 0;
2756                         goto out;
2757                 }
2758         }
2759
2760         /* constraints check */
2761         ret = regulator_mode_constrain(rdev, &mode);
2762         if (ret < 0)
2763                 goto out;
2764
2765         ret = rdev->desc->ops->set_mode(rdev, mode);
2766 out:
2767         mutex_unlock(&rdev->mutex);
2768         return ret;
2769 }
2770 EXPORT_SYMBOL_GPL(regulator_set_mode);
2771
2772 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2773 {
2774         int ret;
2775
2776         mutex_lock(&rdev->mutex);
2777
2778         /* sanity check */
2779         if (!rdev->desc->ops->get_mode) {
2780                 ret = -EINVAL;
2781                 goto out;
2782         }
2783
2784         ret = rdev->desc->ops->get_mode(rdev);
2785 out:
2786         mutex_unlock(&rdev->mutex);
2787         return ret;
2788 }
2789
2790 /**
2791  * regulator_get_mode - get regulator operating mode
2792  * @regulator: regulator source
2793  *
2794  * Get the current regulator operating mode.
2795  */
2796 unsigned int regulator_get_mode(struct regulator *regulator)
2797 {
2798         return _regulator_get_mode(regulator->rdev);
2799 }
2800 EXPORT_SYMBOL_GPL(regulator_get_mode);
2801
2802 /**
2803  * regulator_set_optimum_mode - set regulator optimum operating mode
2804  * @regulator: regulator source
2805  * @uA_load: load current
2806  *
2807  * Notifies the regulator core of a new device load. This is then used by
2808  * DRMS (if enabled by constraints) to set the most efficient regulator
2809  * operating mode for the new regulator loading.
2810  *
2811  * Consumer devices notify their supply regulator of the maximum power
2812  * they will require (can be taken from device datasheet in the power
2813  * consumption tables) when they change operational status and hence power
2814  * state. Examples of operational state changes that can affect power
2815  * consumption are :-
2816  *
2817  *    o Device is opened / closed.
2818  *    o Device I/O is about to begin or has just finished.
2819  *    o Device is idling in between work.
2820  *
2821  * This information is also exported via sysfs to userspace.
2822  *
2823  * DRMS will sum the total requested load on the regulator and change
2824  * to the most efficient operating mode if platform constraints allow.
2825  *
2826  * Returns the new regulator mode or error.
2827  */
2828 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2829 {
2830         struct regulator_dev *rdev = regulator->rdev;
2831         struct regulator *consumer;
2832         int ret, output_uV, input_uV = 0, total_uA_load = 0;
2833         unsigned int mode;
2834
2835         if (rdev->supply)
2836                 input_uV = regulator_get_voltage(rdev->supply);
2837
2838         mutex_lock(&rdev->mutex);
2839
2840         /*
2841          * first check to see if we can set modes at all, otherwise just
2842          * tell the consumer everything is OK.
2843          */
2844         regulator->uA_load = uA_load;
2845         ret = regulator_check_drms(rdev);
2846         if (ret < 0) {
2847                 ret = 0;
2848                 goto out;
2849         }
2850
2851         if (!rdev->desc->ops->get_optimum_mode)
2852                 goto out;
2853
2854         /*
2855          * we can actually do this so any errors are indicators of
2856          * potential real failure.
2857          */
2858         ret = -EINVAL;
2859
2860         if (!rdev->desc->ops->set_mode)
2861                 goto out;
2862
2863         /* get output voltage */
2864         output_uV = _regulator_get_voltage(rdev);
2865         if (output_uV <= 0) {
2866                 rdev_err(rdev, "invalid output voltage found\n");
2867                 goto out;
2868         }
2869
2870         /* No supply? Use constraint voltage */
2871         if (input_uV <= 0)
2872                 input_uV = rdev->constraints->input_uV;
2873         if (input_uV <= 0) {
2874                 rdev_err(rdev, "invalid input voltage found\n");
2875                 goto out;
2876         }
2877
2878         /* calc total requested load for this regulator */
2879         list_for_each_entry(consumer, &rdev->consumer_list, list)
2880                 total_uA_load += consumer->uA_load;
2881
2882         mode = rdev->desc->ops->get_optimum_mode(rdev,
2883                                                  input_uV, output_uV,
2884                                                  total_uA_load);
2885         ret = regulator_mode_constrain(rdev, &mode);
2886         if (ret < 0) {
2887                 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2888                          total_uA_load, input_uV, output_uV);
2889                 goto out;
2890         }
2891
2892         ret = rdev->desc->ops->set_mode(rdev, mode);
2893         if (ret < 0) {
2894                 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2895                 goto out;
2896         }
2897         ret = mode;
2898 out:
2899         mutex_unlock(&rdev->mutex);
2900         return ret;
2901 }
2902 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2903
2904 /**
2905  * regulator_allow_bypass - allow the regulator to go into bypass mode
2906  *
2907  * @regulator: Regulator to configure
2908  * @enable: enable or disable bypass mode
2909  *
2910  * Allow the regulator to go into bypass mode if all other consumers
2911  * for the regulator also enable bypass mode and the machine
2912  * constraints allow this.  Bypass mode means that the regulator is
2913  * simply passing the input directly to the output with no regulation.
2914  */
2915 int regulator_allow_bypass(struct regulator *regulator, bool enable)
2916 {
2917         struct regulator_dev *rdev = regulator->rdev;
2918         int ret = 0;
2919
2920         if (!rdev->desc->ops->set_bypass)
2921                 return 0;
2922
2923         if (rdev->constraints &&
2924             !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2925                 return 0;
2926
2927         mutex_lock(&rdev->mutex);
2928
2929         if (enable && !regulator->bypass) {
2930                 rdev->bypass_count++;
2931
2932                 if (rdev->bypass_count == rdev->open_count) {
2933                         ret = rdev->desc->ops->set_bypass(rdev, enable);
2934                         if (ret != 0)
2935                                 rdev->bypass_count--;
2936                 }
2937
2938         } else if (!enable && regulator->bypass) {
2939                 rdev->bypass_count--;
2940
2941                 if (rdev->bypass_count != rdev->open_count) {
2942                         ret = rdev->desc->ops->set_bypass(rdev, enable);
2943                         if (ret != 0)
2944                                 rdev->bypass_count++;
2945                 }
2946         }
2947
2948         if (ret == 0)
2949                 regulator->bypass = enable;
2950
2951         mutex_unlock(&rdev->mutex);
2952
2953         return ret;
2954 }
2955 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2956
2957 /**
2958  * regulator_register_notifier - register regulator event notifier
2959  * @regulator: regulator source
2960  * @nb: notifier block
2961  *
2962  * Register notifier block to receive regulator events.
2963  */
2964 int regulator_register_notifier(struct regulator *regulator,
2965                               struct notifier_block *nb)
2966 {
2967         return blocking_notifier_chain_register(&regulator->rdev->notifier,
2968                                                 nb);
2969 }
2970 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2971
2972 /**
2973  * regulator_unregister_notifier - unregister regulator event notifier
2974  * @regulator: regulator source
2975  * @nb: notifier block
2976  *
2977  * Unregister regulator event notifier block.
2978  */
2979 int regulator_unregister_notifier(struct regulator *regulator,
2980                                 struct notifier_block *nb)
2981 {
2982         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2983                                                   nb);
2984 }
2985 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2986
2987 /* notify regulator consumers and downstream regulator consumers.
2988  * Note mutex must be held by caller.
2989  */
2990 static void _notifier_call_chain(struct regulator_dev *rdev,
2991                                   unsigned long event, void *data)
2992 {
2993         /* call rdev chain first */
2994         blocking_notifier_call_chain(&rdev->notifier, event, data);
2995 }
2996
2997 /**
2998  * regulator_bulk_get - get multiple regulator consumers
2999  *
3000  * @dev:           Device to supply
3001  * @num_consumers: Number of consumers to register
3002  * @consumers:     Configuration of consumers; clients are stored here.
3003  *
3004  * @return 0 on success, an errno on failure.
3005  *
3006  * This helper function allows drivers to get several regulator
3007  * consumers in one operation.  If any of the regulators cannot be
3008  * acquired then any regulators that were allocated will be freed
3009  * before returning to the caller.
3010  */
3011 int regulator_bulk_get(struct device *dev, int num_consumers,
3012                        struct regulator_bulk_data *consumers)
3013 {
3014         int i;
3015         int ret;
3016
3017         for (i = 0; i < num_consumers; i++)
3018                 consumers[i].consumer = NULL;
3019
3020         for (i = 0; i < num_consumers; i++) {
3021                 consumers[i].consumer = regulator_get(dev,
3022                                                       consumers[i].supply);
3023                 if (IS_ERR(consumers[i].consumer)) {
3024                         ret = PTR_ERR(consumers[i].consumer);
3025                         dev_err(dev, "Failed to get supply '%s': %d\n",
3026                                 consumers[i].supply, ret);
3027                         consumers[i].consumer = NULL;
3028                         goto err;
3029                 }
3030         }
3031
3032         return 0;
3033
3034 err:
3035         while (--i >= 0)
3036                 regulator_put(consumers[i].consumer);
3037
3038         return ret;
3039 }
3040 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3041
3042 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3043 {
3044         struct regulator_bulk_data *bulk = data;
3045
3046         bulk->ret = regulator_enable(bulk->consumer);
3047 }
3048
3049 /**
3050  * regulator_bulk_enable - enable multiple regulator consumers
3051  *
3052  * @num_consumers: Number of consumers
3053  * @consumers:     Consumer data; clients are stored here.
3054  * @return         0 on success, an errno on failure
3055  *
3056  * This convenience API allows consumers to enable multiple regulator
3057  * clients in a single API call.  If any consumers cannot be enabled
3058  * then any others that were enabled will be disabled again prior to
3059  * return.
3060  */
3061 int regulator_bulk_enable(int num_consumers,
3062                           struct regulator_bulk_data *consumers)
3063 {
3064         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3065         int i;
3066         int ret = 0;
3067
3068         for (i = 0; i < num_consumers; i++) {
3069                 if (consumers[i].consumer->always_on)
3070                         consumers[i].ret = 0;
3071                 else
3072                         async_schedule_domain(regulator_bulk_enable_async,
3073                                               &consumers[i], &async_domain);
3074         }
3075
3076         async_synchronize_full_domain(&async_domain);
3077
3078         /* If any consumer failed we need to unwind any that succeeded */
3079         for (i = 0; i < num_consumers; i++) {
3080                 if (consumers[i].ret != 0) {
3081                         ret = consumers[i].ret;
3082                         goto err;
3083                 }
3084         }
3085
3086         return 0;
3087
3088 err:
3089         for (i = 0; i < num_consumers; i++) {
3090                 if (consumers[i].ret < 0)
3091                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3092                                consumers[i].ret);
3093                 else
3094                         regulator_disable(consumers[i].consumer);
3095         }
3096
3097         return ret;
3098 }
3099 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3100
3101 /**
3102  * regulator_bulk_disable - disable multiple regulator consumers
3103  *
3104  * @num_consumers: Number of consumers
3105  * @consumers:     Consumer data; clients are stored here.
3106  * @return         0 on success, an errno on failure
3107  *
3108  * This convenience API allows consumers to disable multiple regulator
3109  * clients in a single API call.  If any consumers cannot be disabled
3110  * then any others that were disabled will be enabled again prior to
3111  * return.
3112  */
3113 int regulator_bulk_disable(int num_consumers,
3114                            struct regulator_bulk_data *consumers)
3115 {
3116         int i;
3117         int ret, r;
3118
3119         for (i = num_consumers - 1; i >= 0; --i) {
3120                 ret = regulator_disable(consumers[i].consumer);
3121                 if (ret != 0)
3122                         goto err;
3123         }
3124
3125         return 0;
3126
3127 err:
3128         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3129         for (++i; i < num_consumers; ++i) {
3130                 r = regulator_enable(consumers[i].consumer);
3131                 if (r != 0)
3132                         pr_err("Failed to reename %s: %d\n",
3133                                consumers[i].supply, r);
3134         }
3135
3136         return ret;
3137 }
3138 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3139
3140 /**
3141  * regulator_bulk_force_disable - force disable multiple regulator consumers
3142  *
3143  * @num_consumers: Number of consumers
3144  * @consumers:     Consumer data; clients are stored here.
3145  * @return         0 on success, an errno on failure
3146  *
3147  * This convenience API allows consumers to forcibly disable multiple regulator
3148  * clients in a single API call.
3149  * NOTE: This should be used for situations when device damage will
3150  * likely occur if the regulators are not disabled (e.g. over temp).
3151  * Although regulator_force_disable function call for some consumers can
3152  * return error numbers, the function is called for all consumers.
3153  */
3154 int regulator_bulk_force_disable(int num_consumers,
3155                            struct regulator_bulk_data *consumers)
3156 {
3157         int i;
3158         int ret;
3159
3160         for (i = 0; i < num_consumers; i++)
3161                 consumers[i].ret =
3162                             regulator_force_disable(consumers[i].consumer);
3163
3164         for (i = 0; i < num_consumers; i++) {
3165                 if (consumers[i].ret != 0) {
3166                         ret = consumers[i].ret;
3167                         goto out;
3168                 }
3169         }
3170
3171         return 0;
3172 out:
3173         return ret;
3174 }
3175 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3176
3177 /**
3178  * regulator_bulk_free - free multiple regulator consumers
3179  *
3180  * @num_consumers: Number of consumers
3181  * @consumers:     Consumer data; clients are stored here.
3182  *
3183  * This convenience API allows consumers to free multiple regulator
3184  * clients in a single API call.
3185  */
3186 void regulator_bulk_free(int num_consumers,
3187                          struct regulator_bulk_data *consumers)
3188 {
3189         int i;
3190
3191         for (i = 0; i < num_consumers; i++) {
3192                 regulator_put(consumers[i].consumer);
3193                 consumers[i].consumer = NULL;
3194         }
3195 }
3196 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3197
3198 /**
3199  * regulator_notifier_call_chain - call regulator event notifier
3200  * @rdev: regulator source
3201  * @event: notifier block
3202  * @data: callback-specific data.
3203  *
3204  * Called by regulator drivers to notify clients a regulator event has
3205  * occurred. We also notify regulator clients downstream.
3206  * Note lock must be held by caller.
3207  */
3208 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3209                                   unsigned long event, void *data)
3210 {
3211         _notifier_call_chain(rdev, event, data);
3212         return NOTIFY_DONE;
3213
3214 }
3215 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3216
3217 /**
3218  * regulator_mode_to_status - convert a regulator mode into a status
3219  *
3220  * @mode: Mode to convert
3221  *
3222  * Convert a regulator mode into a status.
3223  */
3224 int regulator_mode_to_status(unsigned int mode)
3225 {
3226         switch (mode) {
3227         case REGULATOR_MODE_FAST:
3228                 return REGULATOR_STATUS_FAST;
3229         case REGULATOR_MODE_NORMAL:
3230                 return REGULATOR_STATUS_NORMAL;
3231         case REGULATOR_MODE_IDLE:
3232                 return REGULATOR_STATUS_IDLE;
3233         case REGULATOR_MODE_STANDBY:
3234                 return REGULATOR_STATUS_STANDBY;
3235         default:
3236                 return REGULATOR_STATUS_UNDEFINED;
3237         }
3238 }
3239 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3240
3241 /*
3242  * To avoid cluttering sysfs (and memory) with useless state, only
3243  * create attributes that can be meaningfully displayed.
3244  */
3245 static int add_regulator_attributes(struct regulator_dev *rdev)
3246 {
3247         struct device           *dev = &rdev->dev;
3248         struct regulator_ops    *ops = rdev->desc->ops;
3249         int                     status = 0;
3250
3251         /* some attributes need specific methods to be displayed */
3252         if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3253             (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3254             (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3255                 (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) {
3256                 status = device_create_file(dev, &dev_attr_microvolts);
3257                 if (status < 0)
3258                         return status;
3259         }
3260         if (ops->get_current_limit) {
3261                 status = device_create_file(dev, &dev_attr_microamps);
3262                 if (status < 0)
3263                         return status;
3264         }
3265         if (ops->get_mode) {
3266                 status = device_create_file(dev, &dev_attr_opmode);
3267                 if (status < 0)
3268                         return status;
3269         }
3270         if (rdev->ena_pin || ops->is_enabled) {
3271                 status = device_create_file(dev, &dev_attr_state);
3272                 if (status < 0)
3273                         return status;
3274         }
3275         if (ops->get_status) {
3276                 status = device_create_file(dev, &dev_attr_status);
3277                 if (status < 0)
3278                         return status;
3279         }
3280         if (ops->get_bypass) {
3281                 status = device_create_file(dev, &dev_attr_bypass);
3282                 if (status < 0)
3283                         return status;
3284         }
3285
3286         /* some attributes are type-specific */
3287         if (rdev->desc->type == REGULATOR_CURRENT) {
3288                 status = device_create_file(dev, &dev_attr_requested_microamps);
3289                 if (status < 0)
3290                         return status;
3291         }
3292
3293         /* all the other attributes exist to support constraints;
3294          * don't show them if there are no constraints, or if the
3295          * relevant supporting methods are missing.
3296          */
3297         if (!rdev->constraints)
3298                 return status;
3299
3300         /* constraints need specific supporting methods */
3301         if (ops->set_voltage || ops->set_voltage_sel) {
3302                 status = device_create_file(dev, &dev_attr_min_microvolts);
3303                 if (status < 0)
3304                         return status;
3305                 status = device_create_file(dev, &dev_attr_max_microvolts);
3306                 if (status < 0)
3307                         return status;
3308         }
3309         if (ops->set_current_limit) {
3310                 status = device_create_file(dev, &dev_attr_min_microamps);
3311                 if (status < 0)
3312                         return status;
3313                 status = device_create_file(dev, &dev_attr_max_microamps);
3314                 if (status < 0)
3315                         return status;
3316         }
3317
3318         status = device_create_file(dev, &dev_attr_suspend_standby_state);
3319         if (status < 0)
3320                 return status;
3321         status = device_create_file(dev, &dev_attr_suspend_mem_state);
3322         if (status < 0)
3323                 return status;
3324         status = device_create_file(dev, &dev_attr_suspend_disk_state);
3325         if (status < 0)
3326                 return status;
3327
3328         if (ops->set_suspend_voltage) {
3329                 status = device_create_file(dev,
3330                                 &dev_attr_suspend_standby_microvolts);
3331                 if (status < 0)
3332                         return status;
3333                 status = device_create_file(dev,
3334                                 &dev_attr_suspend_mem_microvolts);
3335                 if (status < 0)
3336                         return status;
3337                 status = device_create_file(dev,
3338                                 &dev_attr_suspend_disk_microvolts);
3339                 if (status < 0)
3340                         return status;
3341         }
3342
3343         if (ops->set_suspend_mode) {
3344                 status = device_create_file(dev,
3345                                 &dev_attr_suspend_standby_mode);
3346                 if (status < 0)
3347                         return status;
3348                 status = device_create_file(dev,
3349                                 &dev_attr_suspend_mem_mode);
3350                 if (status < 0)
3351                         return status;
3352                 status = device_create_file(dev,
3353                                 &dev_attr_suspend_disk_mode);
3354                 if (status < 0)
3355                         return status;
3356         }
3357
3358         return status;
3359 }
3360
3361 static void rdev_init_debugfs(struct regulator_dev *rdev)
3362 {
3363         rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3364         if (!rdev->debugfs) {
3365                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3366                 return;
3367         }
3368
3369         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3370                            &rdev->use_count);
3371         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3372                            &rdev->open_count);
3373         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3374                            &rdev->bypass_count);
3375 }
3376
3377 /**
3378  * regulator_register - register regulator
3379  * @regulator_desc: regulator to register
3380  * @config: runtime configuration for regulator
3381  *
3382  * Called by regulator drivers to register a regulator.
3383  * Returns a valid pointer to struct regulator_dev on success
3384  * or an ERR_PTR() on error.
3385  */
3386 struct regulator_dev *
3387 regulator_register(const struct regulator_desc *regulator_desc,
3388                    const struct regulator_config *config)
3389 {
3390         const struct regulation_constraints *constraints = NULL;
3391         const struct regulator_init_data *init_data;
3392         static atomic_t regulator_no = ATOMIC_INIT(0);
3393         struct regulator_dev *rdev;
3394         struct device *dev;
3395         int ret, i;
3396         const char *supply = NULL;
3397
3398         if (regulator_desc == NULL || config == NULL)
3399                 return ERR_PTR(-EINVAL);
3400
3401         dev = config->dev;
3402         WARN_ON(!dev);
3403
3404         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3405                 return ERR_PTR(-EINVAL);
3406
3407         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3408             regulator_desc->type != REGULATOR_CURRENT)
3409                 return ERR_PTR(-EINVAL);
3410
3411         /* Only one of each should be implemented */
3412         WARN_ON(regulator_desc->ops->get_voltage &&
3413                 regulator_desc->ops->get_voltage_sel);
3414         WARN_ON(regulator_desc->ops->set_voltage &&
3415                 regulator_desc->ops->set_voltage_sel);
3416
3417         /* If we're using selectors we must implement list_voltage. */
3418         if (regulator_desc->ops->get_voltage_sel &&
3419             !regulator_desc->ops->list_voltage) {
3420                 return ERR_PTR(-EINVAL);
3421         }
3422         if (regulator_desc->ops->set_voltage_sel &&
3423             !regulator_desc->ops->list_voltage) {
3424                 return ERR_PTR(-EINVAL);
3425         }
3426
3427         init_data = config->init_data;
3428
3429         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3430         if (rdev == NULL)
3431                 return ERR_PTR(-ENOMEM);
3432
3433         mutex_lock(&regulator_list_mutex);
3434
3435         mutex_init(&rdev->mutex);
3436         rdev->reg_data = config->driver_data;
3437         rdev->owner = regulator_desc->owner;
3438         rdev->desc = regulator_desc;
3439         if (config->regmap)
3440                 rdev->regmap = config->regmap;
3441         else if (dev_get_regmap(dev, NULL))
3442                 rdev->regmap = dev_get_regmap(dev, NULL);
3443         else if (dev->parent)
3444                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3445         INIT_LIST_HEAD(&rdev->consumer_list);
3446         INIT_LIST_HEAD(&rdev->list);
3447         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3448         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3449
3450         /* preform any regulator specific init */
3451         if (init_data && init_data->regulator_init) {
3452                 ret = init_data->regulator_init(rdev->reg_data);
3453                 if (ret < 0)
3454                         goto clean;
3455         }
3456
3457         /* register with sysfs */
3458         rdev->dev.class = &regulator_class;
3459         rdev->dev.of_node = config->of_node;
3460         rdev->dev.parent = dev;
3461         dev_set_name(&rdev->dev, "regulator.%d",
3462                      atomic_inc_return(&regulator_no) - 1);
3463         ret = device_register(&rdev->dev);
3464         if (ret != 0) {
3465                 put_device(&rdev->dev);
3466                 goto clean;
3467         }
3468
3469         dev_set_drvdata(&rdev->dev, rdev);
3470
3471         if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3472                 ret = regulator_ena_gpio_request(rdev, config);
3473                 if (ret != 0) {
3474                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3475                                  config->ena_gpio, ret);
3476                         goto wash;
3477                 }
3478
3479                 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3480                         rdev->ena_gpio_state = 1;
3481
3482                 if (config->ena_gpio_invert)
3483                         rdev->ena_gpio_state = !rdev->ena_gpio_state;
3484         }
3485
3486         /* set regulator constraints */
3487         if (init_data)
3488                 constraints = &init_data->constraints;
3489
3490         ret = set_machine_constraints(rdev, constraints);
3491         if (ret < 0)
3492                 goto scrub;
3493
3494         /* add attributes supported by this regulator */
3495         ret = add_regulator_attributes(rdev);
3496         if (ret < 0)
3497                 goto scrub;
3498
3499         if (init_data && init_data->supply_regulator)
3500                 supply = init_data->supply_regulator;
3501         else if (regulator_desc->supply_name)
3502                 supply = regulator_desc->supply_name;
3503
3504         if (supply) {
3505                 struct regulator_dev *r;
3506
3507                 r = regulator_dev_lookup(dev, supply, &ret);
3508
3509                 if (ret == -ENODEV) {
3510                         /*
3511                          * No supply was specified for this regulator and
3512                          * there will never be one.
3513                          */
3514                         ret = 0;
3515                         goto add_dev;
3516                 } else if (!r) {
3517                         dev_err(dev, "Failed to find supply %s\n", supply);
3518                         ret = -EPROBE_DEFER;
3519                         goto scrub;
3520                 }
3521
3522                 ret = set_supply(rdev, r);
3523                 if (ret < 0)
3524                         goto scrub;
3525
3526                 /* Enable supply if rail is enabled */
3527                 if (_regulator_is_enabled(rdev)) {
3528                         ret = regulator_enable(rdev->supply);
3529                         if (ret < 0)
3530                                 goto scrub;
3531                 }
3532         }
3533
3534 add_dev:
3535         /* add consumers devices */
3536         if (init_data) {
3537                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3538                         ret = set_consumer_device_supply(rdev,
3539                                 init_data->consumer_supplies[i].dev_name,
3540                                 init_data->consumer_supplies[i].supply);
3541                         if (ret < 0) {
3542                                 dev_err(dev, "Failed to set supply %s\n",
3543                                         init_data->consumer_supplies[i].supply);
3544                                 goto unset_supplies;
3545                         }
3546                 }
3547         }
3548
3549         list_add(&rdev->list, &regulator_list);
3550
3551         rdev_init_debugfs(rdev);
3552 out:
3553         mutex_unlock(&regulator_list_mutex);
3554         return rdev;
3555
3556 unset_supplies:
3557         unset_regulator_supplies(rdev);
3558
3559 scrub:
3560         if (rdev->supply)
3561                 _regulator_put(rdev->supply);
3562         regulator_ena_gpio_free(rdev);
3563         kfree(rdev->constraints);
3564 wash:
3565         device_unregister(&rdev->dev);
3566         /* device core frees rdev */
3567         rdev = ERR_PTR(ret);
3568         goto out;
3569
3570 clean:
3571         kfree(rdev);
3572         rdev = ERR_PTR(ret);
3573         goto out;
3574 }
3575 EXPORT_SYMBOL_GPL(regulator_register);
3576
3577 /**
3578  * regulator_unregister - unregister regulator
3579  * @rdev: regulator to unregister
3580  *
3581  * Called by regulator drivers to unregister a regulator.
3582  */
3583 void regulator_unregister(struct regulator_dev *rdev)
3584 {
3585         if (rdev == NULL)
3586                 return;
3587
3588         if (rdev->supply) {
3589                 while (rdev->use_count--)
3590                         regulator_disable(rdev->supply);
3591                 regulator_put(rdev->supply);
3592         }
3593         mutex_lock(&regulator_list_mutex);
3594         debugfs_remove_recursive(rdev->debugfs);
3595         flush_work(&rdev->disable_work.work);
3596         WARN_ON(rdev->open_count);
3597         unset_regulator_supplies(rdev);
3598         list_del(&rdev->list);
3599         kfree(rdev->constraints);
3600         regulator_ena_gpio_free(rdev);
3601         device_unregister(&rdev->dev);
3602         mutex_unlock(&regulator_list_mutex);
3603 }
3604 EXPORT_SYMBOL_GPL(regulator_unregister);
3605
3606 /**
3607  * regulator_suspend_prepare - prepare regulators for system wide suspend
3608  * @state: system suspend state
3609  *
3610  * Configure each regulator with it's suspend operating parameters for state.
3611  * This will usually be called by machine suspend code prior to supending.
3612  */
3613 int regulator_suspend_prepare(suspend_state_t state)
3614 {
3615         struct regulator_dev *rdev;
3616         int ret = 0;
3617
3618         /* ON is handled by regulator active state */
3619         if (state == PM_SUSPEND_ON)
3620                 return -EINVAL;
3621
3622         mutex_lock(&regulator_list_mutex);
3623         list_for_each_entry(rdev, &regulator_list, list) {
3624
3625                 mutex_lock(&rdev->mutex);
3626                 ret = suspend_prepare(rdev, state);
3627                 mutex_unlock(&rdev->mutex);
3628
3629                 if (ret < 0) {
3630                         rdev_err(rdev, "failed to prepare\n");
3631                         goto out;
3632                 }
3633         }
3634 out:
3635         mutex_unlock(&regulator_list_mutex);
3636         return ret;
3637 }
3638 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3639
3640 /**
3641  * regulator_suspend_finish - resume regulators from system wide suspend
3642  *
3643  * Turn on regulators that might be turned off by regulator_suspend_prepare
3644  * and that should be turned on according to the regulators properties.
3645  */
3646 int regulator_suspend_finish(void)
3647 {
3648         struct regulator_dev *rdev;
3649         int ret = 0, error;
3650
3651         mutex_lock(&regulator_list_mutex);
3652         list_for_each_entry(rdev, &regulator_list, list) {
3653                 mutex_lock(&rdev->mutex);
3654                 if (rdev->use_count > 0  || rdev->constraints->always_on) {
3655                         error = _regulator_do_enable(rdev);
3656                         if (error)
3657                                 ret = error;
3658                 } else {
3659                         if (!have_full_constraints())
3660                                 goto unlock;
3661                         if (!_regulator_is_enabled(rdev))
3662                                 goto unlock;
3663
3664                         error = _regulator_do_disable(rdev);
3665                         if (error)
3666                                 ret = error;
3667                 }
3668 unlock:
3669                 mutex_unlock(&rdev->mutex);
3670         }
3671         mutex_unlock(&regulator_list_mutex);
3672         return ret;
3673 }
3674 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3675
3676 /**
3677  * regulator_has_full_constraints - the system has fully specified constraints
3678  *
3679  * Calling this function will cause the regulator API to disable all
3680  * regulators which have a zero use count and don't have an always_on
3681  * constraint in a late_initcall.
3682  *
3683  * The intention is that this will become the default behaviour in a
3684  * future kernel release so users are encouraged to use this facility
3685  * now.
3686  */
3687 void regulator_has_full_constraints(void)
3688 {
3689         has_full_constraints = 1;
3690 }
3691 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3692
3693 /**
3694  * rdev_get_drvdata - get rdev regulator driver data
3695  * @rdev: regulator
3696  *
3697  * Get rdev regulator driver private data. This call can be used in the
3698  * regulator driver context.
3699  */
3700 void *rdev_get_drvdata(struct regulator_dev *rdev)
3701 {
3702         return rdev->reg_data;
3703 }
3704 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3705
3706 /**
3707  * regulator_get_drvdata - get regulator driver data
3708  * @regulator: regulator
3709  *
3710  * Get regulator driver private data. This call can be used in the consumer
3711  * driver context when non API regulator specific functions need to be called.
3712  */
3713 void *regulator_get_drvdata(struct regulator *regulator)
3714 {
3715         return regulator->rdev->reg_data;
3716 }
3717 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3718
3719 /**
3720  * regulator_set_drvdata - set regulator driver data
3721  * @regulator: regulator
3722  * @data: data
3723  */
3724 void regulator_set_drvdata(struct regulator *regulator, void *data)
3725 {
3726         regulator->rdev->reg_data = data;
3727 }
3728 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3729
3730 /**
3731  * regulator_get_id - get regulator ID
3732  * @rdev: regulator
3733  */
3734 int rdev_get_id(struct regulator_dev *rdev)
3735 {
3736         return rdev->desc->id;
3737 }
3738 EXPORT_SYMBOL_GPL(rdev_get_id);
3739
3740 struct device *rdev_get_dev(struct regulator_dev *rdev)
3741 {
3742         return &rdev->dev;
3743 }
3744 EXPORT_SYMBOL_GPL(rdev_get_dev);
3745
3746 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3747 {
3748         return reg_init_data->driver_data;
3749 }
3750 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3751
3752 #ifdef CONFIG_DEBUG_FS
3753 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3754                                     size_t count, loff_t *ppos)
3755 {
3756         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3757         ssize_t len, ret = 0;
3758         struct regulator_map *map;
3759
3760         if (!buf)
3761                 return -ENOMEM;
3762
3763         list_for_each_entry(map, &regulator_map_list, list) {
3764                 len = snprintf(buf + ret, PAGE_SIZE - ret,
3765                                "%s -> %s.%s\n",
3766                                rdev_get_name(map->regulator), map->dev_name,
3767                                map->supply);
3768                 if (len >= 0)
3769                         ret += len;
3770                 if (ret > PAGE_SIZE) {
3771                         ret = PAGE_SIZE;
3772                         break;
3773                 }
3774         }
3775
3776         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3777
3778         kfree(buf);
3779
3780         return ret;
3781 }
3782 #endif
3783
3784 static const struct file_operations supply_map_fops = {
3785 #ifdef CONFIG_DEBUG_FS
3786         .read = supply_map_read_file,
3787         .llseek = default_llseek,
3788 #endif
3789 };
3790
3791 static int __init regulator_init(void)
3792 {
3793         int ret;
3794
3795         ret = class_register(&regulator_class);
3796
3797         debugfs_root = debugfs_create_dir("regulator", NULL);
3798         if (!debugfs_root)
3799                 pr_warn("regulator: Failed to create debugfs directory\n");
3800
3801         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3802                             &supply_map_fops);
3803
3804         regulator_dummy_init();
3805
3806         return ret;
3807 }
3808
3809 /* init early to allow our consumers to complete system booting */
3810 core_initcall(regulator_init);
3811
3812 static int __init regulator_init_complete(void)
3813 {
3814         struct regulator_dev *rdev;
3815         struct regulator_ops *ops;
3816         struct regulation_constraints *c;
3817         int enabled, ret;
3818
3819         /*
3820          * Since DT doesn't provide an idiomatic mechanism for
3821          * enabling full constraints and since it's much more natural
3822          * with DT to provide them just assume that a DT enabled
3823          * system has full constraints.
3824          */
3825         if (of_have_populated_dt())
3826                 has_full_constraints = true;
3827
3828         mutex_lock(&regulator_list_mutex);
3829
3830         /* If we have a full configuration then disable any regulators
3831          * we have permission to change the status for and which are
3832          * not in use or always_on.  This is effectively the default
3833          * for DT and ACPI as they have full constraints.
3834          */
3835         list_for_each_entry(rdev, &regulator_list, list) {
3836                 ops = rdev->desc->ops;
3837                 c = rdev->constraints;
3838
3839                 if (c && c->always_on)
3840                         continue;
3841
3842                 if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
3843                         continue;
3844
3845                 mutex_lock(&rdev->mutex);
3846
3847                 if (rdev->use_count)
3848                         goto unlock;
3849
3850                 /* If we can't read the status assume it's on. */
3851                 if (ops->is_enabled)
3852                         enabled = ops->is_enabled(rdev);
3853                 else
3854                         enabled = 1;
3855
3856                 if (!enabled)
3857                         goto unlock;
3858
3859                 if (have_full_constraints()) {
3860                         /* We log since this may kill the system if it
3861                          * goes wrong. */
3862                         rdev_info(rdev, "disabling\n");
3863                         ret = _regulator_do_disable(rdev);
3864                         if (ret != 0)
3865                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
3866                 } else {
3867                         /* The intention is that in future we will
3868                          * assume that full constraints are provided
3869                          * so warn even if we aren't going to do
3870                          * anything here.
3871                          */
3872                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
3873                 }
3874
3875 unlock:
3876                 mutex_unlock(&rdev->mutex);
3877         }
3878
3879         mutex_unlock(&regulator_list_mutex);
3880
3881         return 0;
3882 }
3883 late_initcall_sync(regulator_init_complete);