]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/regulator/core.c
Merge remote-tracking branch 'regulator/topic/max8973' into regulator-next
[karo-tx-linux.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37
38 #include "dummy.h"
39
40 #define rdev_crit(rdev, fmt, ...)                                       \
41         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_err(rdev, fmt, ...)                                        \
43         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_warn(rdev, fmt, ...)                                       \
45         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_info(rdev, fmt, ...)                                       \
47         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_dbg(rdev, fmt, ...)                                        \
49         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51 static DEFINE_MUTEX(regulator_list_mutex);
52 static LIST_HEAD(regulator_list);
53 static LIST_HEAD(regulator_map_list);
54 static bool has_full_constraints;
55 static bool board_wants_dummy_regulator;
56
57 static struct dentry *debugfs_root;
58
59 /*
60  * struct regulator_map
61  *
62  * Used to provide symbolic supply names to devices.
63  */
64 struct regulator_map {
65         struct list_head list;
66         const char *dev_name;   /* The dev_name() for the consumer */
67         const char *supply;
68         struct regulator_dev *regulator;
69 };
70
71 /*
72  * struct regulator
73  *
74  * One for each consumer device.
75  */
76 struct regulator {
77         struct device *dev;
78         struct list_head list;
79         unsigned int always_on:1;
80         unsigned int bypass:1;
81         int uA_load;
82         int min_uV;
83         int max_uV;
84         char *supply_name;
85         struct device_attribute dev_attr;
86         struct regulator_dev *rdev;
87         struct dentry *debugfs;
88 };
89
90 static int _regulator_is_enabled(struct regulator_dev *rdev);
91 static int _regulator_disable(struct regulator_dev *rdev);
92 static int _regulator_get_voltage(struct regulator_dev *rdev);
93 static int _regulator_get_current_limit(struct regulator_dev *rdev);
94 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
95 static void _notifier_call_chain(struct regulator_dev *rdev,
96                                   unsigned long event, void *data);
97 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
98                                      int min_uV, int max_uV);
99 static struct regulator *create_regulator(struct regulator_dev *rdev,
100                                           struct device *dev,
101                                           const char *supply_name);
102
103 static const char *rdev_get_name(struct regulator_dev *rdev)
104 {
105         if (rdev->constraints && rdev->constraints->name)
106                 return rdev->constraints->name;
107         else if (rdev->desc->name)
108                 return rdev->desc->name;
109         else
110                 return "";
111 }
112
113 /**
114  * of_get_regulator - get a regulator device node based on supply name
115  * @dev: Device pointer for the consumer (of regulator) device
116  * @supply: regulator supply name
117  *
118  * Extract the regulator device node corresponding to the supply name.
119  * retruns the device node corresponding to the regulator if found, else
120  * returns NULL.
121  */
122 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
123 {
124         struct device_node *regnode = NULL;
125         char prop_name[32]; /* 32 is max size of property name */
126
127         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
128
129         snprintf(prop_name, 32, "%s-supply", supply);
130         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
131
132         if (!regnode) {
133                 dev_dbg(dev, "Looking up %s property in node %s failed",
134                                 prop_name, dev->of_node->full_name);
135                 return NULL;
136         }
137         return regnode;
138 }
139
140 static int _regulator_can_change_status(struct regulator_dev *rdev)
141 {
142         if (!rdev->constraints)
143                 return 0;
144
145         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
146                 return 1;
147         else
148                 return 0;
149 }
150
151 /* Platform voltage constraint check */
152 static int regulator_check_voltage(struct regulator_dev *rdev,
153                                    int *min_uV, int *max_uV)
154 {
155         BUG_ON(*min_uV > *max_uV);
156
157         if (!rdev->constraints) {
158                 rdev_err(rdev, "no constraints\n");
159                 return -ENODEV;
160         }
161         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
162                 rdev_err(rdev, "operation not allowed\n");
163                 return -EPERM;
164         }
165
166         if (*max_uV > rdev->constraints->max_uV)
167                 *max_uV = rdev->constraints->max_uV;
168         if (*min_uV < rdev->constraints->min_uV)
169                 *min_uV = rdev->constraints->min_uV;
170
171         if (*min_uV > *max_uV) {
172                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
173                          *min_uV, *max_uV);
174                 return -EINVAL;
175         }
176
177         return 0;
178 }
179
180 /* Make sure we select a voltage that suits the needs of all
181  * regulator consumers
182  */
183 static int regulator_check_consumers(struct regulator_dev *rdev,
184                                      int *min_uV, int *max_uV)
185 {
186         struct regulator *regulator;
187
188         list_for_each_entry(regulator, &rdev->consumer_list, list) {
189                 /*
190                  * Assume consumers that didn't say anything are OK
191                  * with anything in the constraint range.
192                  */
193                 if (!regulator->min_uV && !regulator->max_uV)
194                         continue;
195
196                 if (*max_uV > regulator->max_uV)
197                         *max_uV = regulator->max_uV;
198                 if (*min_uV < regulator->min_uV)
199                         *min_uV = regulator->min_uV;
200         }
201
202         if (*min_uV > *max_uV) {
203                 dev_err(regulator->dev, "Restricting voltage, %u-%uuV\n",
204                         regulator->min_uV, regulator->max_uV);
205                 return -EINVAL;
206         }
207
208         return 0;
209 }
210
211 /* current constraint check */
212 static int regulator_check_current_limit(struct regulator_dev *rdev,
213                                         int *min_uA, int *max_uA)
214 {
215         BUG_ON(*min_uA > *max_uA);
216
217         if (!rdev->constraints) {
218                 rdev_err(rdev, "no constraints\n");
219                 return -ENODEV;
220         }
221         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
222                 rdev_err(rdev, "operation not allowed\n");
223                 return -EPERM;
224         }
225
226         if (*max_uA > rdev->constraints->max_uA)
227                 *max_uA = rdev->constraints->max_uA;
228         if (*min_uA < rdev->constraints->min_uA)
229                 *min_uA = rdev->constraints->min_uA;
230
231         if (*min_uA > *max_uA) {
232                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
233                          *min_uA, *max_uA);
234                 return -EINVAL;
235         }
236
237         return 0;
238 }
239
240 /* operating mode constraint check */
241 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
242 {
243         switch (*mode) {
244         case REGULATOR_MODE_FAST:
245         case REGULATOR_MODE_NORMAL:
246         case REGULATOR_MODE_IDLE:
247         case REGULATOR_MODE_STANDBY:
248                 break;
249         default:
250                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
251                 return -EINVAL;
252         }
253
254         if (!rdev->constraints) {
255                 rdev_err(rdev, "no constraints\n");
256                 return -ENODEV;
257         }
258         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
259                 rdev_err(rdev, "operation not allowed\n");
260                 return -EPERM;
261         }
262
263         /* The modes are bitmasks, the most power hungry modes having
264          * the lowest values. If the requested mode isn't supported
265          * try higher modes. */
266         while (*mode) {
267                 if (rdev->constraints->valid_modes_mask & *mode)
268                         return 0;
269                 *mode /= 2;
270         }
271
272         return -EINVAL;
273 }
274
275 /* dynamic regulator mode switching constraint check */
276 static int regulator_check_drms(struct regulator_dev *rdev)
277 {
278         if (!rdev->constraints) {
279                 rdev_err(rdev, "no constraints\n");
280                 return -ENODEV;
281         }
282         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
283                 rdev_err(rdev, "operation not allowed\n");
284                 return -EPERM;
285         }
286         return 0;
287 }
288
289 static ssize_t regulator_uV_show(struct device *dev,
290                                 struct device_attribute *attr, char *buf)
291 {
292         struct regulator_dev *rdev = dev_get_drvdata(dev);
293         ssize_t ret;
294
295         mutex_lock(&rdev->mutex);
296         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
297         mutex_unlock(&rdev->mutex);
298
299         return ret;
300 }
301 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
302
303 static ssize_t regulator_uA_show(struct device *dev,
304                                 struct device_attribute *attr, char *buf)
305 {
306         struct regulator_dev *rdev = dev_get_drvdata(dev);
307
308         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
309 }
310 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
311
312 static ssize_t regulator_name_show(struct device *dev,
313                              struct device_attribute *attr, char *buf)
314 {
315         struct regulator_dev *rdev = dev_get_drvdata(dev);
316
317         return sprintf(buf, "%s\n", rdev_get_name(rdev));
318 }
319
320 static ssize_t regulator_print_opmode(char *buf, int mode)
321 {
322         switch (mode) {
323         case REGULATOR_MODE_FAST:
324                 return sprintf(buf, "fast\n");
325         case REGULATOR_MODE_NORMAL:
326                 return sprintf(buf, "normal\n");
327         case REGULATOR_MODE_IDLE:
328                 return sprintf(buf, "idle\n");
329         case REGULATOR_MODE_STANDBY:
330                 return sprintf(buf, "standby\n");
331         }
332         return sprintf(buf, "unknown\n");
333 }
334
335 static ssize_t regulator_opmode_show(struct device *dev,
336                                     struct device_attribute *attr, char *buf)
337 {
338         struct regulator_dev *rdev = dev_get_drvdata(dev);
339
340         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
341 }
342 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
343
344 static ssize_t regulator_print_state(char *buf, int state)
345 {
346         if (state > 0)
347                 return sprintf(buf, "enabled\n");
348         else if (state == 0)
349                 return sprintf(buf, "disabled\n");
350         else
351                 return sprintf(buf, "unknown\n");
352 }
353
354 static ssize_t regulator_state_show(struct device *dev,
355                                    struct device_attribute *attr, char *buf)
356 {
357         struct regulator_dev *rdev = dev_get_drvdata(dev);
358         ssize_t ret;
359
360         mutex_lock(&rdev->mutex);
361         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
362         mutex_unlock(&rdev->mutex);
363
364         return ret;
365 }
366 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
367
368 static ssize_t regulator_status_show(struct device *dev,
369                                    struct device_attribute *attr, char *buf)
370 {
371         struct regulator_dev *rdev = dev_get_drvdata(dev);
372         int status;
373         char *label;
374
375         status = rdev->desc->ops->get_status(rdev);
376         if (status < 0)
377                 return status;
378
379         switch (status) {
380         case REGULATOR_STATUS_OFF:
381                 label = "off";
382                 break;
383         case REGULATOR_STATUS_ON:
384                 label = "on";
385                 break;
386         case REGULATOR_STATUS_ERROR:
387                 label = "error";
388                 break;
389         case REGULATOR_STATUS_FAST:
390                 label = "fast";
391                 break;
392         case REGULATOR_STATUS_NORMAL:
393                 label = "normal";
394                 break;
395         case REGULATOR_STATUS_IDLE:
396                 label = "idle";
397                 break;
398         case REGULATOR_STATUS_STANDBY:
399                 label = "standby";
400                 break;
401         case REGULATOR_STATUS_BYPASS:
402                 label = "bypass";
403                 break;
404         case REGULATOR_STATUS_UNDEFINED:
405                 label = "undefined";
406                 break;
407         default:
408                 return -ERANGE;
409         }
410
411         return sprintf(buf, "%s\n", label);
412 }
413 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
414
415 static ssize_t regulator_min_uA_show(struct device *dev,
416                                     struct device_attribute *attr, char *buf)
417 {
418         struct regulator_dev *rdev = dev_get_drvdata(dev);
419
420         if (!rdev->constraints)
421                 return sprintf(buf, "constraint not defined\n");
422
423         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
424 }
425 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
426
427 static ssize_t regulator_max_uA_show(struct device *dev,
428                                     struct device_attribute *attr, char *buf)
429 {
430         struct regulator_dev *rdev = dev_get_drvdata(dev);
431
432         if (!rdev->constraints)
433                 return sprintf(buf, "constraint not defined\n");
434
435         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
436 }
437 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
438
439 static ssize_t regulator_min_uV_show(struct device *dev,
440                                     struct device_attribute *attr, char *buf)
441 {
442         struct regulator_dev *rdev = dev_get_drvdata(dev);
443
444         if (!rdev->constraints)
445                 return sprintf(buf, "constraint not defined\n");
446
447         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
448 }
449 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
450
451 static ssize_t regulator_max_uV_show(struct device *dev,
452                                     struct device_attribute *attr, char *buf)
453 {
454         struct regulator_dev *rdev = dev_get_drvdata(dev);
455
456         if (!rdev->constraints)
457                 return sprintf(buf, "constraint not defined\n");
458
459         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
460 }
461 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
462
463 static ssize_t regulator_total_uA_show(struct device *dev,
464                                       struct device_attribute *attr, char *buf)
465 {
466         struct regulator_dev *rdev = dev_get_drvdata(dev);
467         struct regulator *regulator;
468         int uA = 0;
469
470         mutex_lock(&rdev->mutex);
471         list_for_each_entry(regulator, &rdev->consumer_list, list)
472                 uA += regulator->uA_load;
473         mutex_unlock(&rdev->mutex);
474         return sprintf(buf, "%d\n", uA);
475 }
476 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
477
478 static ssize_t regulator_num_users_show(struct device *dev,
479                                       struct device_attribute *attr, char *buf)
480 {
481         struct regulator_dev *rdev = dev_get_drvdata(dev);
482         return sprintf(buf, "%d\n", rdev->use_count);
483 }
484
485 static ssize_t regulator_type_show(struct device *dev,
486                                   struct device_attribute *attr, char *buf)
487 {
488         struct regulator_dev *rdev = dev_get_drvdata(dev);
489
490         switch (rdev->desc->type) {
491         case REGULATOR_VOLTAGE:
492                 return sprintf(buf, "voltage\n");
493         case REGULATOR_CURRENT:
494                 return sprintf(buf, "current\n");
495         }
496         return sprintf(buf, "unknown\n");
497 }
498
499 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
500                                 struct device_attribute *attr, char *buf)
501 {
502         struct regulator_dev *rdev = dev_get_drvdata(dev);
503
504         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
505 }
506 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
507                 regulator_suspend_mem_uV_show, NULL);
508
509 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
510                                 struct device_attribute *attr, char *buf)
511 {
512         struct regulator_dev *rdev = dev_get_drvdata(dev);
513
514         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
515 }
516 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
517                 regulator_suspend_disk_uV_show, NULL);
518
519 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
520                                 struct device_attribute *attr, char *buf)
521 {
522         struct regulator_dev *rdev = dev_get_drvdata(dev);
523
524         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
525 }
526 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
527                 regulator_suspend_standby_uV_show, NULL);
528
529 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
530                                 struct device_attribute *attr, char *buf)
531 {
532         struct regulator_dev *rdev = dev_get_drvdata(dev);
533
534         return regulator_print_opmode(buf,
535                 rdev->constraints->state_mem.mode);
536 }
537 static DEVICE_ATTR(suspend_mem_mode, 0444,
538                 regulator_suspend_mem_mode_show, NULL);
539
540 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
541                                 struct device_attribute *attr, char *buf)
542 {
543         struct regulator_dev *rdev = dev_get_drvdata(dev);
544
545         return regulator_print_opmode(buf,
546                 rdev->constraints->state_disk.mode);
547 }
548 static DEVICE_ATTR(suspend_disk_mode, 0444,
549                 regulator_suspend_disk_mode_show, NULL);
550
551 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
552                                 struct device_attribute *attr, char *buf)
553 {
554         struct regulator_dev *rdev = dev_get_drvdata(dev);
555
556         return regulator_print_opmode(buf,
557                 rdev->constraints->state_standby.mode);
558 }
559 static DEVICE_ATTR(suspend_standby_mode, 0444,
560                 regulator_suspend_standby_mode_show, NULL);
561
562 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
563                                    struct device_attribute *attr, char *buf)
564 {
565         struct regulator_dev *rdev = dev_get_drvdata(dev);
566
567         return regulator_print_state(buf,
568                         rdev->constraints->state_mem.enabled);
569 }
570 static DEVICE_ATTR(suspend_mem_state, 0444,
571                 regulator_suspend_mem_state_show, NULL);
572
573 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
574                                    struct device_attribute *attr, char *buf)
575 {
576         struct regulator_dev *rdev = dev_get_drvdata(dev);
577
578         return regulator_print_state(buf,
579                         rdev->constraints->state_disk.enabled);
580 }
581 static DEVICE_ATTR(suspend_disk_state, 0444,
582                 regulator_suspend_disk_state_show, NULL);
583
584 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
585                                    struct device_attribute *attr, char *buf)
586 {
587         struct regulator_dev *rdev = dev_get_drvdata(dev);
588
589         return regulator_print_state(buf,
590                         rdev->constraints->state_standby.enabled);
591 }
592 static DEVICE_ATTR(suspend_standby_state, 0444,
593                 regulator_suspend_standby_state_show, NULL);
594
595 static ssize_t regulator_bypass_show(struct device *dev,
596                                      struct device_attribute *attr, char *buf)
597 {
598         struct regulator_dev *rdev = dev_get_drvdata(dev);
599         const char *report;
600         bool bypass;
601         int ret;
602
603         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
604
605         if (ret != 0)
606                 report = "unknown";
607         else if (bypass)
608                 report = "enabled";
609         else
610                 report = "disabled";
611
612         return sprintf(buf, "%s\n", report);
613 }
614 static DEVICE_ATTR(bypass, 0444,
615                    regulator_bypass_show, NULL);
616
617 /*
618  * These are the only attributes are present for all regulators.
619  * Other attributes are a function of regulator functionality.
620  */
621 static struct device_attribute regulator_dev_attrs[] = {
622         __ATTR(name, 0444, regulator_name_show, NULL),
623         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
624         __ATTR(type, 0444, regulator_type_show, NULL),
625         __ATTR_NULL,
626 };
627
628 static void regulator_dev_release(struct device *dev)
629 {
630         struct regulator_dev *rdev = dev_get_drvdata(dev);
631         kfree(rdev);
632 }
633
634 static struct class regulator_class = {
635         .name = "regulator",
636         .dev_release = regulator_dev_release,
637         .dev_attrs = regulator_dev_attrs,
638 };
639
640 /* Calculate the new optimum regulator operating mode based on the new total
641  * consumer load. All locks held by caller */
642 static void drms_uA_update(struct regulator_dev *rdev)
643 {
644         struct regulator *sibling;
645         int current_uA = 0, output_uV, input_uV, err;
646         unsigned int mode;
647
648         err = regulator_check_drms(rdev);
649         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
650             (!rdev->desc->ops->get_voltage &&
651              !rdev->desc->ops->get_voltage_sel) ||
652             !rdev->desc->ops->set_mode)
653                 return;
654
655         /* get output voltage */
656         output_uV = _regulator_get_voltage(rdev);
657         if (output_uV <= 0)
658                 return;
659
660         /* get input voltage */
661         input_uV = 0;
662         if (rdev->supply)
663                 input_uV = regulator_get_voltage(rdev->supply);
664         if (input_uV <= 0)
665                 input_uV = rdev->constraints->input_uV;
666         if (input_uV <= 0)
667                 return;
668
669         /* calc total requested load */
670         list_for_each_entry(sibling, &rdev->consumer_list, list)
671                 current_uA += sibling->uA_load;
672
673         /* now get the optimum mode for our new total regulator load */
674         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
675                                                   output_uV, current_uA);
676
677         /* check the new mode is allowed */
678         err = regulator_mode_constrain(rdev, &mode);
679         if (err == 0)
680                 rdev->desc->ops->set_mode(rdev, mode);
681 }
682
683 static int suspend_set_state(struct regulator_dev *rdev,
684         struct regulator_state *rstate)
685 {
686         int ret = 0;
687
688         /* If we have no suspend mode configration don't set anything;
689          * only warn if the driver implements set_suspend_voltage or
690          * set_suspend_mode callback.
691          */
692         if (!rstate->enabled && !rstate->disabled) {
693                 if (rdev->desc->ops->set_suspend_voltage ||
694                     rdev->desc->ops->set_suspend_mode)
695                         rdev_warn(rdev, "No configuration\n");
696                 return 0;
697         }
698
699         if (rstate->enabled && rstate->disabled) {
700                 rdev_err(rdev, "invalid configuration\n");
701                 return -EINVAL;
702         }
703
704         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
705                 ret = rdev->desc->ops->set_suspend_enable(rdev);
706         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
707                 ret = rdev->desc->ops->set_suspend_disable(rdev);
708         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
709                 ret = 0;
710
711         if (ret < 0) {
712                 rdev_err(rdev, "failed to enabled/disable\n");
713                 return ret;
714         }
715
716         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
717                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
718                 if (ret < 0) {
719                         rdev_err(rdev, "failed to set voltage\n");
720                         return ret;
721                 }
722         }
723
724         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
725                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
726                 if (ret < 0) {
727                         rdev_err(rdev, "failed to set mode\n");
728                         return ret;
729                 }
730         }
731         return ret;
732 }
733
734 /* locks held by caller */
735 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
736 {
737         if (!rdev->constraints)
738                 return -EINVAL;
739
740         switch (state) {
741         case PM_SUSPEND_STANDBY:
742                 return suspend_set_state(rdev,
743                         &rdev->constraints->state_standby);
744         case PM_SUSPEND_MEM:
745                 return suspend_set_state(rdev,
746                         &rdev->constraints->state_mem);
747         case PM_SUSPEND_MAX:
748                 return suspend_set_state(rdev,
749                         &rdev->constraints->state_disk);
750         default:
751                 return -EINVAL;
752         }
753 }
754
755 static void print_constraints(struct regulator_dev *rdev)
756 {
757         struct regulation_constraints *constraints = rdev->constraints;
758         char buf[80] = "";
759         int count = 0;
760         int ret;
761
762         if (constraints->min_uV && constraints->max_uV) {
763                 if (constraints->min_uV == constraints->max_uV)
764                         count += sprintf(buf + count, "%d mV ",
765                                          constraints->min_uV / 1000);
766                 else
767                         count += sprintf(buf + count, "%d <--> %d mV ",
768                                          constraints->min_uV / 1000,
769                                          constraints->max_uV / 1000);
770         }
771
772         if (!constraints->min_uV ||
773             constraints->min_uV != constraints->max_uV) {
774                 ret = _regulator_get_voltage(rdev);
775                 if (ret > 0)
776                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
777         }
778
779         if (constraints->uV_offset)
780                 count += sprintf(buf, "%dmV offset ",
781                                  constraints->uV_offset / 1000);
782
783         if (constraints->min_uA && constraints->max_uA) {
784                 if (constraints->min_uA == constraints->max_uA)
785                         count += sprintf(buf + count, "%d mA ",
786                                          constraints->min_uA / 1000);
787                 else
788                         count += sprintf(buf + count, "%d <--> %d mA ",
789                                          constraints->min_uA / 1000,
790                                          constraints->max_uA / 1000);
791         }
792
793         if (!constraints->min_uA ||
794             constraints->min_uA != constraints->max_uA) {
795                 ret = _regulator_get_current_limit(rdev);
796                 if (ret > 0)
797                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
798         }
799
800         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
801                 count += sprintf(buf + count, "fast ");
802         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
803                 count += sprintf(buf + count, "normal ");
804         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
805                 count += sprintf(buf + count, "idle ");
806         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
807                 count += sprintf(buf + count, "standby");
808
809         if (!count)
810                 sprintf(buf, "no parameters");
811
812         rdev_info(rdev, "%s\n", buf);
813
814         if ((constraints->min_uV != constraints->max_uV) &&
815             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
816                 rdev_warn(rdev,
817                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
818 }
819
820 static int machine_constraints_voltage(struct regulator_dev *rdev,
821         struct regulation_constraints *constraints)
822 {
823         struct regulator_ops *ops = rdev->desc->ops;
824         int ret;
825
826         /* do we need to apply the constraint voltage */
827         if (rdev->constraints->apply_uV &&
828             rdev->constraints->min_uV == rdev->constraints->max_uV) {
829                 ret = _regulator_do_set_voltage(rdev,
830                                                 rdev->constraints->min_uV,
831                                                 rdev->constraints->max_uV);
832                 if (ret < 0) {
833                         rdev_err(rdev, "failed to apply %duV constraint\n",
834                                  rdev->constraints->min_uV);
835                         return ret;
836                 }
837         }
838
839         /* constrain machine-level voltage specs to fit
840          * the actual range supported by this regulator.
841          */
842         if (ops->list_voltage && rdev->desc->n_voltages) {
843                 int     count = rdev->desc->n_voltages;
844                 int     i;
845                 int     min_uV = INT_MAX;
846                 int     max_uV = INT_MIN;
847                 int     cmin = constraints->min_uV;
848                 int     cmax = constraints->max_uV;
849
850                 /* it's safe to autoconfigure fixed-voltage supplies
851                    and the constraints are used by list_voltage. */
852                 if (count == 1 && !cmin) {
853                         cmin = 1;
854                         cmax = INT_MAX;
855                         constraints->min_uV = cmin;
856                         constraints->max_uV = cmax;
857                 }
858
859                 /* voltage constraints are optional */
860                 if ((cmin == 0) && (cmax == 0))
861                         return 0;
862
863                 /* else require explicit machine-level constraints */
864                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
865                         rdev_err(rdev, "invalid voltage constraints\n");
866                         return -EINVAL;
867                 }
868
869                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
870                 for (i = 0; i < count; i++) {
871                         int     value;
872
873                         value = ops->list_voltage(rdev, i);
874                         if (value <= 0)
875                                 continue;
876
877                         /* maybe adjust [min_uV..max_uV] */
878                         if (value >= cmin && value < min_uV)
879                                 min_uV = value;
880                         if (value <= cmax && value > max_uV)
881                                 max_uV = value;
882                 }
883
884                 /* final: [min_uV..max_uV] valid iff constraints valid */
885                 if (max_uV < min_uV) {
886                         rdev_err(rdev,
887                                  "unsupportable voltage constraints %u-%uuV\n",
888                                  min_uV, max_uV);
889                         return -EINVAL;
890                 }
891
892                 /* use regulator's subset of machine constraints */
893                 if (constraints->min_uV < min_uV) {
894                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
895                                  constraints->min_uV, min_uV);
896                         constraints->min_uV = min_uV;
897                 }
898                 if (constraints->max_uV > max_uV) {
899                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
900                                  constraints->max_uV, max_uV);
901                         constraints->max_uV = max_uV;
902                 }
903         }
904
905         return 0;
906 }
907
908 /**
909  * set_machine_constraints - sets regulator constraints
910  * @rdev: regulator source
911  * @constraints: constraints to apply
912  *
913  * Allows platform initialisation code to define and constrain
914  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
915  * Constraints *must* be set by platform code in order for some
916  * regulator operations to proceed i.e. set_voltage, set_current_limit,
917  * set_mode.
918  */
919 static int set_machine_constraints(struct regulator_dev *rdev,
920         const struct regulation_constraints *constraints)
921 {
922         int ret = 0;
923         struct regulator_ops *ops = rdev->desc->ops;
924
925         if (constraints)
926                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
927                                             GFP_KERNEL);
928         else
929                 rdev->constraints = kzalloc(sizeof(*constraints),
930                                             GFP_KERNEL);
931         if (!rdev->constraints)
932                 return -ENOMEM;
933
934         ret = machine_constraints_voltage(rdev, rdev->constraints);
935         if (ret != 0)
936                 goto out;
937
938         /* do we need to setup our suspend state */
939         if (rdev->constraints->initial_state) {
940                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
941                 if (ret < 0) {
942                         rdev_err(rdev, "failed to set suspend state\n");
943                         goto out;
944                 }
945         }
946
947         if (rdev->constraints->initial_mode) {
948                 if (!ops->set_mode) {
949                         rdev_err(rdev, "no set_mode operation\n");
950                         ret = -EINVAL;
951                         goto out;
952                 }
953
954                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
955                 if (ret < 0) {
956                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
957                         goto out;
958                 }
959         }
960
961         /* If the constraints say the regulator should be on at this point
962          * and we have control then make sure it is enabled.
963          */
964         if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
965             ops->enable) {
966                 ret = ops->enable(rdev);
967                 if (ret < 0) {
968                         rdev_err(rdev, "failed to enable\n");
969                         goto out;
970                 }
971         }
972
973         if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
974                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
975                 if (ret < 0) {
976                         rdev_err(rdev, "failed to set ramp_delay\n");
977                         goto out;
978                 }
979         }
980
981         print_constraints(rdev);
982         return 0;
983 out:
984         kfree(rdev->constraints);
985         rdev->constraints = NULL;
986         return ret;
987 }
988
989 /**
990  * set_supply - set regulator supply regulator
991  * @rdev: regulator name
992  * @supply_rdev: supply regulator name
993  *
994  * Called by platform initialisation code to set the supply regulator for this
995  * regulator. This ensures that a regulators supply will also be enabled by the
996  * core if it's child is enabled.
997  */
998 static int set_supply(struct regulator_dev *rdev,
999                       struct regulator_dev *supply_rdev)
1000 {
1001         int err;
1002
1003         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1004
1005         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1006         if (rdev->supply == NULL) {
1007                 err = -ENOMEM;
1008                 return err;
1009         }
1010         supply_rdev->open_count++;
1011
1012         return 0;
1013 }
1014
1015 /**
1016  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1017  * @rdev:         regulator source
1018  * @consumer_dev_name: dev_name() string for device supply applies to
1019  * @supply:       symbolic name for supply
1020  *
1021  * Allows platform initialisation code to map physical regulator
1022  * sources to symbolic names for supplies for use by devices.  Devices
1023  * should use these symbolic names to request regulators, avoiding the
1024  * need to provide board-specific regulator names as platform data.
1025  */
1026 static int set_consumer_device_supply(struct regulator_dev *rdev,
1027                                       const char *consumer_dev_name,
1028                                       const char *supply)
1029 {
1030         struct regulator_map *node;
1031         int has_dev;
1032
1033         if (supply == NULL)
1034                 return -EINVAL;
1035
1036         if (consumer_dev_name != NULL)
1037                 has_dev = 1;
1038         else
1039                 has_dev = 0;
1040
1041         list_for_each_entry(node, &regulator_map_list, list) {
1042                 if (node->dev_name && consumer_dev_name) {
1043                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1044                                 continue;
1045                 } else if (node->dev_name || consumer_dev_name) {
1046                         continue;
1047                 }
1048
1049                 if (strcmp(node->supply, supply) != 0)
1050                         continue;
1051
1052                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1053                          consumer_dev_name,
1054                          dev_name(&node->regulator->dev),
1055                          node->regulator->desc->name,
1056                          supply,
1057                          dev_name(&rdev->dev), rdev_get_name(rdev));
1058                 return -EBUSY;
1059         }
1060
1061         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1062         if (node == NULL)
1063                 return -ENOMEM;
1064
1065         node->regulator = rdev;
1066         node->supply = supply;
1067
1068         if (has_dev) {
1069                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1070                 if (node->dev_name == NULL) {
1071                         kfree(node);
1072                         return -ENOMEM;
1073                 }
1074         }
1075
1076         list_add(&node->list, &regulator_map_list);
1077         return 0;
1078 }
1079
1080 static void unset_regulator_supplies(struct regulator_dev *rdev)
1081 {
1082         struct regulator_map *node, *n;
1083
1084         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1085                 if (rdev == node->regulator) {
1086                         list_del(&node->list);
1087                         kfree(node->dev_name);
1088                         kfree(node);
1089                 }
1090         }
1091 }
1092
1093 #define REG_STR_SIZE    64
1094
1095 static struct regulator *create_regulator(struct regulator_dev *rdev,
1096                                           struct device *dev,
1097                                           const char *supply_name)
1098 {
1099         struct regulator *regulator;
1100         char buf[REG_STR_SIZE];
1101         int err, size;
1102
1103         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1104         if (regulator == NULL)
1105                 return NULL;
1106
1107         mutex_lock(&rdev->mutex);
1108         regulator->rdev = rdev;
1109         list_add(&regulator->list, &rdev->consumer_list);
1110
1111         if (dev) {
1112                 regulator->dev = dev;
1113
1114                 /* Add a link to the device sysfs entry */
1115                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1116                                  dev->kobj.name, supply_name);
1117                 if (size >= REG_STR_SIZE)
1118                         goto overflow_err;
1119
1120                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1121                 if (regulator->supply_name == NULL)
1122                         goto overflow_err;
1123
1124                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1125                                         buf);
1126                 if (err) {
1127                         rdev_warn(rdev, "could not add device link %s err %d\n",
1128                                   dev->kobj.name, err);
1129                         /* non-fatal */
1130                 }
1131         } else {
1132                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1133                 if (regulator->supply_name == NULL)
1134                         goto overflow_err;
1135         }
1136
1137         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1138                                                 rdev->debugfs);
1139         if (!regulator->debugfs) {
1140                 rdev_warn(rdev, "Failed to create debugfs directory\n");
1141         } else {
1142                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1143                                    &regulator->uA_load);
1144                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1145                                    &regulator->min_uV);
1146                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1147                                    &regulator->max_uV);
1148         }
1149
1150         /*
1151          * Check now if the regulator is an always on regulator - if
1152          * it is then we don't need to do nearly so much work for
1153          * enable/disable calls.
1154          */
1155         if (!_regulator_can_change_status(rdev) &&
1156             _regulator_is_enabled(rdev))
1157                 regulator->always_on = true;
1158
1159         mutex_unlock(&rdev->mutex);
1160         return regulator;
1161 overflow_err:
1162         list_del(&regulator->list);
1163         kfree(regulator);
1164         mutex_unlock(&rdev->mutex);
1165         return NULL;
1166 }
1167
1168 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1169 {
1170         if (!rdev->desc->ops->enable_time)
1171                 return rdev->desc->enable_time;
1172         return rdev->desc->ops->enable_time(rdev);
1173 }
1174
1175 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1176                                                   const char *supply,
1177                                                   int *ret)
1178 {
1179         struct regulator_dev *r;
1180         struct device_node *node;
1181         struct regulator_map *map;
1182         const char *devname = NULL;
1183
1184         /* first do a dt based lookup */
1185         if (dev && dev->of_node) {
1186                 node = of_get_regulator(dev, supply);
1187                 if (node) {
1188                         list_for_each_entry(r, &regulator_list, list)
1189                                 if (r->dev.parent &&
1190                                         node == r->dev.of_node)
1191                                         return r;
1192                 } else {
1193                         /*
1194                          * If we couldn't even get the node then it's
1195                          * not just that the device didn't register
1196                          * yet, there's no node and we'll never
1197                          * succeed.
1198                          */
1199                         *ret = -ENODEV;
1200                 }
1201         }
1202
1203         /* if not found, try doing it non-dt way */
1204         if (dev)
1205                 devname = dev_name(dev);
1206
1207         list_for_each_entry(r, &regulator_list, list)
1208                 if (strcmp(rdev_get_name(r), supply) == 0)
1209                         return r;
1210
1211         list_for_each_entry(map, &regulator_map_list, list) {
1212                 /* If the mapping has a device set up it must match */
1213                 if (map->dev_name &&
1214                     (!devname || strcmp(map->dev_name, devname)))
1215                         continue;
1216
1217                 if (strcmp(map->supply, supply) == 0)
1218                         return map->regulator;
1219         }
1220
1221
1222         return NULL;
1223 }
1224
1225 /* Internal regulator request function */
1226 static struct regulator *_regulator_get(struct device *dev, const char *id,
1227                                         int exclusive)
1228 {
1229         struct regulator_dev *rdev;
1230         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1231         const char *devname = NULL;
1232         int ret;
1233
1234         if (id == NULL) {
1235                 pr_err("get() with no identifier\n");
1236                 return regulator;
1237         }
1238
1239         if (dev)
1240                 devname = dev_name(dev);
1241
1242         mutex_lock(&regulator_list_mutex);
1243
1244         rdev = regulator_dev_lookup(dev, id, &ret);
1245         if (rdev)
1246                 goto found;
1247
1248         if (board_wants_dummy_regulator) {
1249                 rdev = dummy_regulator_rdev;
1250                 goto found;
1251         }
1252
1253 #ifdef CONFIG_REGULATOR_DUMMY
1254         if (!devname)
1255                 devname = "deviceless";
1256
1257         /* If the board didn't flag that it was fully constrained then
1258          * substitute in a dummy regulator so consumers can continue.
1259          */
1260         if (!has_full_constraints) {
1261                 pr_warn("%s supply %s not found, using dummy regulator\n",
1262                         devname, id);
1263                 rdev = dummy_regulator_rdev;
1264                 goto found;
1265         }
1266 #endif
1267
1268         mutex_unlock(&regulator_list_mutex);
1269         return regulator;
1270
1271 found:
1272         if (rdev->exclusive) {
1273                 regulator = ERR_PTR(-EPERM);
1274                 goto out;
1275         }
1276
1277         if (exclusive && rdev->open_count) {
1278                 regulator = ERR_PTR(-EBUSY);
1279                 goto out;
1280         }
1281
1282         if (!try_module_get(rdev->owner))
1283                 goto out;
1284
1285         regulator = create_regulator(rdev, dev, id);
1286         if (regulator == NULL) {
1287                 regulator = ERR_PTR(-ENOMEM);
1288                 module_put(rdev->owner);
1289                 goto out;
1290         }
1291
1292         rdev->open_count++;
1293         if (exclusive) {
1294                 rdev->exclusive = 1;
1295
1296                 ret = _regulator_is_enabled(rdev);
1297                 if (ret > 0)
1298                         rdev->use_count = 1;
1299                 else
1300                         rdev->use_count = 0;
1301         }
1302
1303 out:
1304         mutex_unlock(&regulator_list_mutex);
1305
1306         return regulator;
1307 }
1308
1309 /**
1310  * regulator_get - lookup and obtain a reference to a regulator.
1311  * @dev: device for regulator "consumer"
1312  * @id: Supply name or regulator ID.
1313  *
1314  * Returns a struct regulator corresponding to the regulator producer,
1315  * or IS_ERR() condition containing errno.
1316  *
1317  * Use of supply names configured via regulator_set_device_supply() is
1318  * strongly encouraged.  It is recommended that the supply name used
1319  * should match the name used for the supply and/or the relevant
1320  * device pins in the datasheet.
1321  */
1322 struct regulator *regulator_get(struct device *dev, const char *id)
1323 {
1324         return _regulator_get(dev, id, 0);
1325 }
1326 EXPORT_SYMBOL_GPL(regulator_get);
1327
1328 static void devm_regulator_release(struct device *dev, void *res)
1329 {
1330         regulator_put(*(struct regulator **)res);
1331 }
1332
1333 /**
1334  * devm_regulator_get - Resource managed regulator_get()
1335  * @dev: device for regulator "consumer"
1336  * @id: Supply name or regulator ID.
1337  *
1338  * Managed regulator_get(). Regulators returned from this function are
1339  * automatically regulator_put() on driver detach. See regulator_get() for more
1340  * information.
1341  */
1342 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1343 {
1344         struct regulator **ptr, *regulator;
1345
1346         ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1347         if (!ptr)
1348                 return ERR_PTR(-ENOMEM);
1349
1350         regulator = regulator_get(dev, id);
1351         if (!IS_ERR(regulator)) {
1352                 *ptr = regulator;
1353                 devres_add(dev, ptr);
1354         } else {
1355                 devres_free(ptr);
1356         }
1357
1358         return regulator;
1359 }
1360 EXPORT_SYMBOL_GPL(devm_regulator_get);
1361
1362 /**
1363  * regulator_get_exclusive - obtain exclusive access to a regulator.
1364  * @dev: device for regulator "consumer"
1365  * @id: Supply name or regulator ID.
1366  *
1367  * Returns a struct regulator corresponding to the regulator producer,
1368  * or IS_ERR() condition containing errno.  Other consumers will be
1369  * unable to obtain this reference is held and the use count for the
1370  * regulator will be initialised to reflect the current state of the
1371  * regulator.
1372  *
1373  * This is intended for use by consumers which cannot tolerate shared
1374  * use of the regulator such as those which need to force the
1375  * regulator off for correct operation of the hardware they are
1376  * controlling.
1377  *
1378  * Use of supply names configured via regulator_set_device_supply() is
1379  * strongly encouraged.  It is recommended that the supply name used
1380  * should match the name used for the supply and/or the relevant
1381  * device pins in the datasheet.
1382  */
1383 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1384 {
1385         return _regulator_get(dev, id, 1);
1386 }
1387 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1388
1389 /* Locks held by regulator_put() */
1390 static void _regulator_put(struct regulator *regulator)
1391 {
1392         struct regulator_dev *rdev;
1393
1394         if (regulator == NULL || IS_ERR(regulator))
1395                 return;
1396
1397         rdev = regulator->rdev;
1398
1399         debugfs_remove_recursive(regulator->debugfs);
1400
1401         /* remove any sysfs entries */
1402         if (regulator->dev)
1403                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1404         kfree(regulator->supply_name);
1405         list_del(&regulator->list);
1406         kfree(regulator);
1407
1408         rdev->open_count--;
1409         rdev->exclusive = 0;
1410
1411         module_put(rdev->owner);
1412 }
1413
1414 /**
1415  * regulator_put - "free" the regulator source
1416  * @regulator: regulator source
1417  *
1418  * Note: drivers must ensure that all regulator_enable calls made on this
1419  * regulator source are balanced by regulator_disable calls prior to calling
1420  * this function.
1421  */
1422 void regulator_put(struct regulator *regulator)
1423 {
1424         mutex_lock(&regulator_list_mutex);
1425         _regulator_put(regulator);
1426         mutex_unlock(&regulator_list_mutex);
1427 }
1428 EXPORT_SYMBOL_GPL(regulator_put);
1429
1430 static int devm_regulator_match(struct device *dev, void *res, void *data)
1431 {
1432         struct regulator **r = res;
1433         if (!r || !*r) {
1434                 WARN_ON(!r || !*r);
1435                 return 0;
1436         }
1437         return *r == data;
1438 }
1439
1440 /**
1441  * devm_regulator_put - Resource managed regulator_put()
1442  * @regulator: regulator to free
1443  *
1444  * Deallocate a regulator allocated with devm_regulator_get(). Normally
1445  * this function will not need to be called and the resource management
1446  * code will ensure that the resource is freed.
1447  */
1448 void devm_regulator_put(struct regulator *regulator)
1449 {
1450         int rc;
1451
1452         rc = devres_release(regulator->dev, devm_regulator_release,
1453                             devm_regulator_match, regulator);
1454         if (rc != 0)
1455                 WARN_ON(rc);
1456 }
1457 EXPORT_SYMBOL_GPL(devm_regulator_put);
1458
1459 static int _regulator_do_enable(struct regulator_dev *rdev)
1460 {
1461         int ret, delay;
1462
1463         /* Query before enabling in case configuration dependent.  */
1464         ret = _regulator_get_enable_time(rdev);
1465         if (ret >= 0) {
1466                 delay = ret;
1467         } else {
1468                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1469                 delay = 0;
1470         }
1471
1472         trace_regulator_enable(rdev_get_name(rdev));
1473
1474         if (rdev->ena_gpio) {
1475                 gpio_set_value_cansleep(rdev->ena_gpio,
1476                                         !rdev->ena_gpio_invert);
1477                 rdev->ena_gpio_state = 1;
1478         } else if (rdev->desc->ops->enable) {
1479                 ret = rdev->desc->ops->enable(rdev);
1480                 if (ret < 0)
1481                         return ret;
1482         } else {
1483                 return -EINVAL;
1484         }
1485
1486         /* Allow the regulator to ramp; it would be useful to extend
1487          * this for bulk operations so that the regulators can ramp
1488          * together.  */
1489         trace_regulator_enable_delay(rdev_get_name(rdev));
1490
1491         if (delay >= 1000) {
1492                 mdelay(delay / 1000);
1493                 udelay(delay % 1000);
1494         } else if (delay) {
1495                 udelay(delay);
1496         }
1497
1498         trace_regulator_enable_complete(rdev_get_name(rdev));
1499
1500         return 0;
1501 }
1502
1503 /* locks held by regulator_enable() */
1504 static int _regulator_enable(struct regulator_dev *rdev)
1505 {
1506         int ret;
1507
1508         /* check voltage and requested load before enabling */
1509         if (rdev->constraints &&
1510             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1511                 drms_uA_update(rdev);
1512
1513         if (rdev->use_count == 0) {
1514                 /* The regulator may on if it's not switchable or left on */
1515                 ret = _regulator_is_enabled(rdev);
1516                 if (ret == -EINVAL || ret == 0) {
1517                         if (!_regulator_can_change_status(rdev))
1518                                 return -EPERM;
1519
1520                         ret = _regulator_do_enable(rdev);
1521                         if (ret < 0)
1522                                 return ret;
1523
1524                 } else if (ret < 0) {
1525                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1526                         return ret;
1527                 }
1528                 /* Fallthrough on positive return values - already enabled */
1529         }
1530
1531         rdev->use_count++;
1532
1533         return 0;
1534 }
1535
1536 /**
1537  * regulator_enable - enable regulator output
1538  * @regulator: regulator source
1539  *
1540  * Request that the regulator be enabled with the regulator output at
1541  * the predefined voltage or current value.  Calls to regulator_enable()
1542  * must be balanced with calls to regulator_disable().
1543  *
1544  * NOTE: the output value can be set by other drivers, boot loader or may be
1545  * hardwired in the regulator.
1546  */
1547 int regulator_enable(struct regulator *regulator)
1548 {
1549         struct regulator_dev *rdev = regulator->rdev;
1550         int ret = 0;
1551
1552         if (regulator->always_on)
1553                 return 0;
1554
1555         if (rdev->supply) {
1556                 ret = regulator_enable(rdev->supply);
1557                 if (ret != 0)
1558                         return ret;
1559         }
1560
1561         mutex_lock(&rdev->mutex);
1562         ret = _regulator_enable(rdev);
1563         mutex_unlock(&rdev->mutex);
1564
1565         if (ret != 0 && rdev->supply)
1566                 regulator_disable(rdev->supply);
1567
1568         return ret;
1569 }
1570 EXPORT_SYMBOL_GPL(regulator_enable);
1571
1572 static int _regulator_do_disable(struct regulator_dev *rdev)
1573 {
1574         int ret;
1575
1576         trace_regulator_disable(rdev_get_name(rdev));
1577
1578         if (rdev->ena_gpio) {
1579                 gpio_set_value_cansleep(rdev->ena_gpio,
1580                                         rdev->ena_gpio_invert);
1581                 rdev->ena_gpio_state = 0;
1582
1583         } else if (rdev->desc->ops->disable) {
1584                 ret = rdev->desc->ops->disable(rdev);
1585                 if (ret != 0)
1586                         return ret;
1587         }
1588
1589         trace_regulator_disable_complete(rdev_get_name(rdev));
1590
1591         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1592                              NULL);
1593         return 0;
1594 }
1595
1596 /* locks held by regulator_disable() */
1597 static int _regulator_disable(struct regulator_dev *rdev)
1598 {
1599         int ret = 0;
1600
1601         if (WARN(rdev->use_count <= 0,
1602                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
1603                 return -EIO;
1604
1605         /* are we the last user and permitted to disable ? */
1606         if (rdev->use_count == 1 &&
1607             (rdev->constraints && !rdev->constraints->always_on)) {
1608
1609                 /* we are last user */
1610                 if (_regulator_can_change_status(rdev)) {
1611                         ret = _regulator_do_disable(rdev);
1612                         if (ret < 0) {
1613                                 rdev_err(rdev, "failed to disable\n");
1614                                 return ret;
1615                         }
1616                 }
1617
1618                 rdev->use_count = 0;
1619         } else if (rdev->use_count > 1) {
1620
1621                 if (rdev->constraints &&
1622                         (rdev->constraints->valid_ops_mask &
1623                         REGULATOR_CHANGE_DRMS))
1624                         drms_uA_update(rdev);
1625
1626                 rdev->use_count--;
1627         }
1628
1629         return ret;
1630 }
1631
1632 /**
1633  * regulator_disable - disable regulator output
1634  * @regulator: regulator source
1635  *
1636  * Disable the regulator output voltage or current.  Calls to
1637  * regulator_enable() must be balanced with calls to
1638  * regulator_disable().
1639  *
1640  * NOTE: this will only disable the regulator output if no other consumer
1641  * devices have it enabled, the regulator device supports disabling and
1642  * machine constraints permit this operation.
1643  */
1644 int regulator_disable(struct regulator *regulator)
1645 {
1646         struct regulator_dev *rdev = regulator->rdev;
1647         int ret = 0;
1648
1649         if (regulator->always_on)
1650                 return 0;
1651
1652         mutex_lock(&rdev->mutex);
1653         ret = _regulator_disable(rdev);
1654         mutex_unlock(&rdev->mutex);
1655
1656         if (ret == 0 && rdev->supply)
1657                 regulator_disable(rdev->supply);
1658
1659         return ret;
1660 }
1661 EXPORT_SYMBOL_GPL(regulator_disable);
1662
1663 /* locks held by regulator_force_disable() */
1664 static int _regulator_force_disable(struct regulator_dev *rdev)
1665 {
1666         int ret = 0;
1667
1668         /* force disable */
1669         if (rdev->desc->ops->disable) {
1670                 /* ah well, who wants to live forever... */
1671                 ret = rdev->desc->ops->disable(rdev);
1672                 if (ret < 0) {
1673                         rdev_err(rdev, "failed to force disable\n");
1674                         return ret;
1675                 }
1676                 /* notify other consumers that power has been forced off */
1677                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1678                         REGULATOR_EVENT_DISABLE, NULL);
1679         }
1680
1681         return ret;
1682 }
1683
1684 /**
1685  * regulator_force_disable - force disable regulator output
1686  * @regulator: regulator source
1687  *
1688  * Forcibly disable the regulator output voltage or current.
1689  * NOTE: this *will* disable the regulator output even if other consumer
1690  * devices have it enabled. This should be used for situations when device
1691  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1692  */
1693 int regulator_force_disable(struct regulator *regulator)
1694 {
1695         struct regulator_dev *rdev = regulator->rdev;
1696         int ret;
1697
1698         mutex_lock(&rdev->mutex);
1699         regulator->uA_load = 0;
1700         ret = _regulator_force_disable(regulator->rdev);
1701         mutex_unlock(&rdev->mutex);
1702
1703         if (rdev->supply)
1704                 while (rdev->open_count--)
1705                         regulator_disable(rdev->supply);
1706
1707         return ret;
1708 }
1709 EXPORT_SYMBOL_GPL(regulator_force_disable);
1710
1711 static void regulator_disable_work(struct work_struct *work)
1712 {
1713         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1714                                                   disable_work.work);
1715         int count, i, ret;
1716
1717         mutex_lock(&rdev->mutex);
1718
1719         BUG_ON(!rdev->deferred_disables);
1720
1721         count = rdev->deferred_disables;
1722         rdev->deferred_disables = 0;
1723
1724         for (i = 0; i < count; i++) {
1725                 ret = _regulator_disable(rdev);
1726                 if (ret != 0)
1727                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1728         }
1729
1730         mutex_unlock(&rdev->mutex);
1731
1732         if (rdev->supply) {
1733                 for (i = 0; i < count; i++) {
1734                         ret = regulator_disable(rdev->supply);
1735                         if (ret != 0) {
1736                                 rdev_err(rdev,
1737                                          "Supply disable failed: %d\n", ret);
1738                         }
1739                 }
1740         }
1741 }
1742
1743 /**
1744  * regulator_disable_deferred - disable regulator output with delay
1745  * @regulator: regulator source
1746  * @ms: miliseconds until the regulator is disabled
1747  *
1748  * Execute regulator_disable() on the regulator after a delay.  This
1749  * is intended for use with devices that require some time to quiesce.
1750  *
1751  * NOTE: this will only disable the regulator output if no other consumer
1752  * devices have it enabled, the regulator device supports disabling and
1753  * machine constraints permit this operation.
1754  */
1755 int regulator_disable_deferred(struct regulator *regulator, int ms)
1756 {
1757         struct regulator_dev *rdev = regulator->rdev;
1758         int ret;
1759
1760         if (regulator->always_on)
1761                 return 0;
1762
1763         if (!ms)
1764                 return regulator_disable(regulator);
1765
1766         mutex_lock(&rdev->mutex);
1767         rdev->deferred_disables++;
1768         mutex_unlock(&rdev->mutex);
1769
1770         ret = schedule_delayed_work(&rdev->disable_work,
1771                                     msecs_to_jiffies(ms));
1772         if (ret < 0)
1773                 return ret;
1774         else
1775                 return 0;
1776 }
1777 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1778
1779 /**
1780  * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1781  *
1782  * @rdev: regulator to operate on
1783  *
1784  * Regulators that use regmap for their register I/O can set the
1785  * enable_reg and enable_mask fields in their descriptor and then use
1786  * this as their is_enabled operation, saving some code.
1787  */
1788 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1789 {
1790         unsigned int val;
1791         int ret;
1792
1793         ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1794         if (ret != 0)
1795                 return ret;
1796
1797         return (val & rdev->desc->enable_mask) != 0;
1798 }
1799 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1800
1801 /**
1802  * regulator_enable_regmap - standard enable() for regmap users
1803  *
1804  * @rdev: regulator to operate on
1805  *
1806  * Regulators that use regmap for their register I/O can set the
1807  * enable_reg and enable_mask fields in their descriptor and then use
1808  * this as their enable() operation, saving some code.
1809  */
1810 int regulator_enable_regmap(struct regulator_dev *rdev)
1811 {
1812         return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1813                                   rdev->desc->enable_mask,
1814                                   rdev->desc->enable_mask);
1815 }
1816 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1817
1818 /**
1819  * regulator_disable_regmap - standard disable() for regmap users
1820  *
1821  * @rdev: regulator to operate on
1822  *
1823  * Regulators that use regmap for their register I/O can set the
1824  * enable_reg and enable_mask fields in their descriptor and then use
1825  * this as their disable() operation, saving some code.
1826  */
1827 int regulator_disable_regmap(struct regulator_dev *rdev)
1828 {
1829         return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1830                                   rdev->desc->enable_mask, 0);
1831 }
1832 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1833
1834 static int _regulator_is_enabled(struct regulator_dev *rdev)
1835 {
1836         /* A GPIO control always takes precedence */
1837         if (rdev->ena_gpio)
1838                 return rdev->ena_gpio_state;
1839
1840         /* If we don't know then assume that the regulator is always on */
1841         if (!rdev->desc->ops->is_enabled)
1842                 return 1;
1843
1844         return rdev->desc->ops->is_enabled(rdev);
1845 }
1846
1847 /**
1848  * regulator_is_enabled - is the regulator output enabled
1849  * @regulator: regulator source
1850  *
1851  * Returns positive if the regulator driver backing the source/client
1852  * has requested that the device be enabled, zero if it hasn't, else a
1853  * negative errno code.
1854  *
1855  * Note that the device backing this regulator handle can have multiple
1856  * users, so it might be enabled even if regulator_enable() was never
1857  * called for this particular source.
1858  */
1859 int regulator_is_enabled(struct regulator *regulator)
1860 {
1861         int ret;
1862
1863         if (regulator->always_on)
1864                 return 1;
1865
1866         mutex_lock(&regulator->rdev->mutex);
1867         ret = _regulator_is_enabled(regulator->rdev);
1868         mutex_unlock(&regulator->rdev->mutex);
1869
1870         return ret;
1871 }
1872 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1873
1874 /**
1875  * regulator_can_change_voltage - check if regulator can change voltage
1876  * @regulator: regulator source
1877  *
1878  * Returns positive if the regulator driver backing the source/client
1879  * can change its voltage, false otherwise. Usefull for detecting fixed
1880  * or dummy regulators and disabling voltage change logic in the client
1881  * driver.
1882  */
1883 int regulator_can_change_voltage(struct regulator *regulator)
1884 {
1885         struct regulator_dev    *rdev = regulator->rdev;
1886
1887         if (rdev->constraints &&
1888             rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE &&
1889             rdev->desc->n_voltages > 1)
1890                 return 1;
1891
1892         return 0;
1893 }
1894 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
1895
1896 /**
1897  * regulator_count_voltages - count regulator_list_voltage() selectors
1898  * @regulator: regulator source
1899  *
1900  * Returns number of selectors, or negative errno.  Selectors are
1901  * numbered starting at zero, and typically correspond to bitfields
1902  * in hardware registers.
1903  */
1904 int regulator_count_voltages(struct regulator *regulator)
1905 {
1906         struct regulator_dev    *rdev = regulator->rdev;
1907
1908         return rdev->desc->n_voltages ? : -EINVAL;
1909 }
1910 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1911
1912 /**
1913  * regulator_list_voltage_linear - List voltages with simple calculation
1914  *
1915  * @rdev: Regulator device
1916  * @selector: Selector to convert into a voltage
1917  *
1918  * Regulators with a simple linear mapping between voltages and
1919  * selectors can set min_uV and uV_step in the regulator descriptor
1920  * and then use this function as their list_voltage() operation,
1921  */
1922 int regulator_list_voltage_linear(struct regulator_dev *rdev,
1923                                   unsigned int selector)
1924 {
1925         if (selector >= rdev->desc->n_voltages)
1926                 return -EINVAL;
1927
1928         return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
1929 }
1930 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
1931
1932 /**
1933  * regulator_list_voltage_table - List voltages with table based mapping
1934  *
1935  * @rdev: Regulator device
1936  * @selector: Selector to convert into a voltage
1937  *
1938  * Regulators with table based mapping between voltages and
1939  * selectors can set volt_table in the regulator descriptor
1940  * and then use this function as their list_voltage() operation.
1941  */
1942 int regulator_list_voltage_table(struct regulator_dev *rdev,
1943                                  unsigned int selector)
1944 {
1945         if (!rdev->desc->volt_table) {
1946                 BUG_ON(!rdev->desc->volt_table);
1947                 return -EINVAL;
1948         }
1949
1950         if (selector >= rdev->desc->n_voltages)
1951                 return -EINVAL;
1952
1953         return rdev->desc->volt_table[selector];
1954 }
1955 EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
1956
1957 /**
1958  * regulator_list_voltage - enumerate supported voltages
1959  * @regulator: regulator source
1960  * @selector: identify voltage to list
1961  * Context: can sleep
1962  *
1963  * Returns a voltage that can be passed to @regulator_set_voltage(),
1964  * zero if this selector code can't be used on this system, or a
1965  * negative errno.
1966  */
1967 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1968 {
1969         struct regulator_dev    *rdev = regulator->rdev;
1970         struct regulator_ops    *ops = rdev->desc->ops;
1971         int                     ret;
1972
1973         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1974                 return -EINVAL;
1975
1976         mutex_lock(&rdev->mutex);
1977         ret = ops->list_voltage(rdev, selector);
1978         mutex_unlock(&rdev->mutex);
1979
1980         if (ret > 0) {
1981                 if (ret < rdev->constraints->min_uV)
1982                         ret = 0;
1983                 else if (ret > rdev->constraints->max_uV)
1984                         ret = 0;
1985         }
1986
1987         return ret;
1988 }
1989 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1990
1991 /**
1992  * regulator_is_supported_voltage - check if a voltage range can be supported
1993  *
1994  * @regulator: Regulator to check.
1995  * @min_uV: Minimum required voltage in uV.
1996  * @max_uV: Maximum required voltage in uV.
1997  *
1998  * Returns a boolean or a negative error code.
1999  */
2000 int regulator_is_supported_voltage(struct regulator *regulator,
2001                                    int min_uV, int max_uV)
2002 {
2003         struct regulator_dev *rdev = regulator->rdev;
2004         int i, voltages, ret;
2005
2006         /* If we can't change voltage check the current voltage */
2007         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2008                 ret = regulator_get_voltage(regulator);
2009                 if (ret >= 0)
2010                         return (min_uV <= ret && ret <= max_uV);
2011                 else
2012                         return ret;
2013         }
2014
2015         /* Any voltage within constrains range is fine? */
2016         if (rdev->desc->continuous_voltage_range)
2017                 return min_uV >= rdev->constraints->min_uV &&
2018                                 max_uV <= rdev->constraints->max_uV;
2019
2020         ret = regulator_count_voltages(regulator);
2021         if (ret < 0)
2022                 return ret;
2023         voltages = ret;
2024
2025         for (i = 0; i < voltages; i++) {
2026                 ret = regulator_list_voltage(regulator, i);
2027
2028                 if (ret >= min_uV && ret <= max_uV)
2029                         return 1;
2030         }
2031
2032         return 0;
2033 }
2034 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2035
2036 /**
2037  * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
2038  *
2039  * @rdev: regulator to operate on
2040  *
2041  * Regulators that use regmap for their register I/O can set the
2042  * vsel_reg and vsel_mask fields in their descriptor and then use this
2043  * as their get_voltage_vsel operation, saving some code.
2044  */
2045 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
2046 {
2047         unsigned int val;
2048         int ret;
2049
2050         ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
2051         if (ret != 0)
2052                 return ret;
2053
2054         val &= rdev->desc->vsel_mask;
2055         val >>= ffs(rdev->desc->vsel_mask) - 1;
2056
2057         return val;
2058 }
2059 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
2060
2061 /**
2062  * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
2063  *
2064  * @rdev: regulator to operate on
2065  * @sel: Selector to set
2066  *
2067  * Regulators that use regmap for their register I/O can set the
2068  * vsel_reg and vsel_mask fields in their descriptor and then use this
2069  * as their set_voltage_vsel operation, saving some code.
2070  */
2071 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2072 {
2073         sel <<= ffs(rdev->desc->vsel_mask) - 1;
2074
2075         return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2076                                   rdev->desc->vsel_mask, sel);
2077 }
2078 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2079
2080 /**
2081  * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2082  *
2083  * @rdev: Regulator to operate on
2084  * @min_uV: Lower bound for voltage
2085  * @max_uV: Upper bound for voltage
2086  *
2087  * Drivers implementing set_voltage_sel() and list_voltage() can use
2088  * this as their map_voltage() operation.  It will find a suitable
2089  * voltage by calling list_voltage() until it gets something in bounds
2090  * for the requested voltages.
2091  */
2092 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2093                                   int min_uV, int max_uV)
2094 {
2095         int best_val = INT_MAX;
2096         int selector = 0;
2097         int i, ret;
2098
2099         /* Find the smallest voltage that falls within the specified
2100          * range.
2101          */
2102         for (i = 0; i < rdev->desc->n_voltages; i++) {
2103                 ret = rdev->desc->ops->list_voltage(rdev, i);
2104                 if (ret < 0)
2105                         continue;
2106
2107                 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2108                         best_val = ret;
2109                         selector = i;
2110                 }
2111         }
2112
2113         if (best_val != INT_MAX)
2114                 return selector;
2115         else
2116                 return -EINVAL;
2117 }
2118 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2119
2120 /**
2121  * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2122  *
2123  * @rdev: Regulator to operate on
2124  * @min_uV: Lower bound for voltage
2125  * @max_uV: Upper bound for voltage
2126  *
2127  * Drivers providing min_uV and uV_step in their regulator_desc can
2128  * use this as their map_voltage() operation.
2129  */
2130 int regulator_map_voltage_linear(struct regulator_dev *rdev,
2131                                  int min_uV, int max_uV)
2132 {
2133         int ret, voltage;
2134
2135         /* Allow uV_step to be 0 for fixed voltage */
2136         if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2137                 if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2138                         return 0;
2139                 else
2140                         return -EINVAL;
2141         }
2142
2143         if (!rdev->desc->uV_step) {
2144                 BUG_ON(!rdev->desc->uV_step);
2145                 return -EINVAL;
2146         }
2147
2148         if (min_uV < rdev->desc->min_uV)
2149                 min_uV = rdev->desc->min_uV;
2150
2151         ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2152         if (ret < 0)
2153                 return ret;
2154
2155         /* Map back into a voltage to verify we're still in bounds */
2156         voltage = rdev->desc->ops->list_voltage(rdev, ret);
2157         if (voltage < min_uV || voltage > max_uV)
2158                 return -EINVAL;
2159
2160         return ret;
2161 }
2162 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2163
2164 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2165                                      int min_uV, int max_uV)
2166 {
2167         int ret;
2168         int delay = 0;
2169         int best_val = 0;
2170         unsigned int selector;
2171         int old_selector = -1;
2172
2173         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2174
2175         min_uV += rdev->constraints->uV_offset;
2176         max_uV += rdev->constraints->uV_offset;
2177
2178         /*
2179          * If we can't obtain the old selector there is not enough
2180          * info to call set_voltage_time_sel().
2181          */
2182         if (_regulator_is_enabled(rdev) &&
2183             rdev->desc->ops->set_voltage_time_sel &&
2184             rdev->desc->ops->get_voltage_sel) {
2185                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2186                 if (old_selector < 0)
2187                         return old_selector;
2188         }
2189
2190         if (rdev->desc->ops->set_voltage) {
2191                 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2192                                                    &selector);
2193
2194                 if (ret >= 0) {
2195                         if (rdev->desc->ops->list_voltage)
2196                                 best_val = rdev->desc->ops->list_voltage(rdev,
2197                                                                          selector);
2198                         else
2199                                 best_val = _regulator_get_voltage(rdev);
2200                 }
2201
2202         } else if (rdev->desc->ops->set_voltage_sel) {
2203                 if (rdev->desc->ops->map_voltage) {
2204                         ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2205                                                            max_uV);
2206                 } else {
2207                         if (rdev->desc->ops->list_voltage ==
2208                             regulator_list_voltage_linear)
2209                                 ret = regulator_map_voltage_linear(rdev,
2210                                                                 min_uV, max_uV);
2211                         else
2212                                 ret = regulator_map_voltage_iterate(rdev,
2213                                                                 min_uV, max_uV);
2214                 }
2215
2216                 if (ret >= 0) {
2217                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2218                         if (min_uV <= best_val && max_uV >= best_val) {
2219                                 selector = ret;
2220                                 ret = rdev->desc->ops->set_voltage_sel(rdev,
2221                                                                        ret);
2222                         } else {
2223                                 ret = -EINVAL;
2224                         }
2225                 }
2226         } else {
2227                 ret = -EINVAL;
2228         }
2229
2230         /* Call set_voltage_time_sel if successfully obtained old_selector */
2231         if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2232             rdev->desc->ops->set_voltage_time_sel) {
2233
2234                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2235                                                 old_selector, selector);
2236                 if (delay < 0) {
2237                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2238                                   delay);
2239                         delay = 0;
2240                 }
2241
2242                 /* Insert any necessary delays */
2243                 if (delay >= 1000) {
2244                         mdelay(delay / 1000);
2245                         udelay(delay % 1000);
2246                 } else if (delay) {
2247                         udelay(delay);
2248                 }
2249         }
2250
2251         if (ret == 0 && best_val >= 0) {
2252                 unsigned long data = best_val;
2253
2254                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2255                                      (void *)data);
2256         }
2257
2258         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2259
2260         return ret;
2261 }
2262
2263 /**
2264  * regulator_set_voltage - set regulator output voltage
2265  * @regulator: regulator source
2266  * @min_uV: Minimum required voltage in uV
2267  * @max_uV: Maximum acceptable voltage in uV
2268  *
2269  * Sets a voltage regulator to the desired output voltage. This can be set
2270  * during any regulator state. IOW, regulator can be disabled or enabled.
2271  *
2272  * If the regulator is enabled then the voltage will change to the new value
2273  * immediately otherwise if the regulator is disabled the regulator will
2274  * output at the new voltage when enabled.
2275  *
2276  * NOTE: If the regulator is shared between several devices then the lowest
2277  * request voltage that meets the system constraints will be used.
2278  * Regulator system constraints must be set for this regulator before
2279  * calling this function otherwise this call will fail.
2280  */
2281 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2282 {
2283         struct regulator_dev *rdev = regulator->rdev;
2284         int ret = 0;
2285
2286         mutex_lock(&rdev->mutex);
2287
2288         /* If we're setting the same range as last time the change
2289          * should be a noop (some cpufreq implementations use the same
2290          * voltage for multiple frequencies, for example).
2291          */
2292         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2293                 goto out;
2294
2295         /* sanity check */
2296         if (!rdev->desc->ops->set_voltage &&
2297             !rdev->desc->ops->set_voltage_sel) {
2298                 ret = -EINVAL;
2299                 goto out;
2300         }
2301
2302         /* constraints check */
2303         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2304         if (ret < 0)
2305                 goto out;
2306         regulator->min_uV = min_uV;
2307         regulator->max_uV = max_uV;
2308
2309         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2310         if (ret < 0)
2311                 goto out;
2312
2313         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2314
2315 out:
2316         mutex_unlock(&rdev->mutex);
2317         return ret;
2318 }
2319 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2320
2321 /**
2322  * regulator_set_voltage_time - get raise/fall time
2323  * @regulator: regulator source
2324  * @old_uV: starting voltage in microvolts
2325  * @new_uV: target voltage in microvolts
2326  *
2327  * Provided with the starting and ending voltage, this function attempts to
2328  * calculate the time in microseconds required to rise or fall to this new
2329  * voltage.
2330  */
2331 int regulator_set_voltage_time(struct regulator *regulator,
2332                                int old_uV, int new_uV)
2333 {
2334         struct regulator_dev    *rdev = regulator->rdev;
2335         struct regulator_ops    *ops = rdev->desc->ops;
2336         int old_sel = -1;
2337         int new_sel = -1;
2338         int voltage;
2339         int i;
2340
2341         /* Currently requires operations to do this */
2342         if (!ops->list_voltage || !ops->set_voltage_time_sel
2343             || !rdev->desc->n_voltages)
2344                 return -EINVAL;
2345
2346         for (i = 0; i < rdev->desc->n_voltages; i++) {
2347                 /* We only look for exact voltage matches here */
2348                 voltage = regulator_list_voltage(regulator, i);
2349                 if (voltage < 0)
2350                         return -EINVAL;
2351                 if (voltage == 0)
2352                         continue;
2353                 if (voltage == old_uV)
2354                         old_sel = i;
2355                 if (voltage == new_uV)
2356                         new_sel = i;
2357         }
2358
2359         if (old_sel < 0 || new_sel < 0)
2360                 return -EINVAL;
2361
2362         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2363 }
2364 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2365
2366 /**
2367  * regulator_set_voltage_time_sel - get raise/fall time
2368  * @rdev: regulator source device
2369  * @old_selector: selector for starting voltage
2370  * @new_selector: selector for target voltage
2371  *
2372  * Provided with the starting and target voltage selectors, this function
2373  * returns time in microseconds required to rise or fall to this new voltage
2374  *
2375  * Drivers providing ramp_delay in regulation_constraints can use this as their
2376  * set_voltage_time_sel() operation.
2377  */
2378 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2379                                    unsigned int old_selector,
2380                                    unsigned int new_selector)
2381 {
2382         unsigned int ramp_delay = 0;
2383         int old_volt, new_volt;
2384
2385         if (rdev->constraints->ramp_delay)
2386                 ramp_delay = rdev->constraints->ramp_delay;
2387         else if (rdev->desc->ramp_delay)
2388                 ramp_delay = rdev->desc->ramp_delay;
2389
2390         if (ramp_delay == 0) {
2391                 rdev_warn(rdev, "ramp_delay not set\n");
2392                 return 0;
2393         }
2394
2395         /* sanity check */
2396         if (!rdev->desc->ops->list_voltage)
2397                 return -EINVAL;
2398
2399         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2400         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2401
2402         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2403 }
2404 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2405
2406 /**
2407  * regulator_sync_voltage - re-apply last regulator output voltage
2408  * @regulator: regulator source
2409  *
2410  * Re-apply the last configured voltage.  This is intended to be used
2411  * where some external control source the consumer is cooperating with
2412  * has caused the configured voltage to change.
2413  */
2414 int regulator_sync_voltage(struct regulator *regulator)
2415 {
2416         struct regulator_dev *rdev = regulator->rdev;
2417         int ret, min_uV, max_uV;
2418
2419         mutex_lock(&rdev->mutex);
2420
2421         if (!rdev->desc->ops->set_voltage &&
2422             !rdev->desc->ops->set_voltage_sel) {
2423                 ret = -EINVAL;
2424                 goto out;
2425         }
2426
2427         /* This is only going to work if we've had a voltage configured. */
2428         if (!regulator->min_uV && !regulator->max_uV) {
2429                 ret = -EINVAL;
2430                 goto out;
2431         }
2432
2433         min_uV = regulator->min_uV;
2434         max_uV = regulator->max_uV;
2435
2436         /* This should be a paranoia check... */
2437         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2438         if (ret < 0)
2439                 goto out;
2440
2441         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2442         if (ret < 0)
2443                 goto out;
2444
2445         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2446
2447 out:
2448         mutex_unlock(&rdev->mutex);
2449         return ret;
2450 }
2451 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2452
2453 static int _regulator_get_voltage(struct regulator_dev *rdev)
2454 {
2455         int sel, ret;
2456
2457         if (rdev->desc->ops->get_voltage_sel) {
2458                 sel = rdev->desc->ops->get_voltage_sel(rdev);
2459                 if (sel < 0)
2460                         return sel;
2461                 ret = rdev->desc->ops->list_voltage(rdev, sel);
2462         } else if (rdev->desc->ops->get_voltage) {
2463                 ret = rdev->desc->ops->get_voltage(rdev);
2464         } else if (rdev->desc->ops->list_voltage) {
2465                 ret = rdev->desc->ops->list_voltage(rdev, 0);
2466         } else {
2467                 return -EINVAL;
2468         }
2469
2470         if (ret < 0)
2471                 return ret;
2472         return ret - rdev->constraints->uV_offset;
2473 }
2474
2475 /**
2476  * regulator_get_voltage - get regulator output voltage
2477  * @regulator: regulator source
2478  *
2479  * This returns the current regulator voltage in uV.
2480  *
2481  * NOTE: If the regulator is disabled it will return the voltage value. This
2482  * function should not be used to determine regulator state.
2483  */
2484 int regulator_get_voltage(struct regulator *regulator)
2485 {
2486         int ret;
2487
2488         mutex_lock(&regulator->rdev->mutex);
2489
2490         ret = _regulator_get_voltage(regulator->rdev);
2491
2492         mutex_unlock(&regulator->rdev->mutex);
2493
2494         return ret;
2495 }
2496 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2497
2498 /**
2499  * regulator_set_current_limit - set regulator output current limit
2500  * @regulator: regulator source
2501  * @min_uA: Minimuum supported current in uA
2502  * @max_uA: Maximum supported current in uA
2503  *
2504  * Sets current sink to the desired output current. This can be set during
2505  * any regulator state. IOW, regulator can be disabled or enabled.
2506  *
2507  * If the regulator is enabled then the current will change to the new value
2508  * immediately otherwise if the regulator is disabled the regulator will
2509  * output at the new current when enabled.
2510  *
2511  * NOTE: Regulator system constraints must be set for this regulator before
2512  * calling this function otherwise this call will fail.
2513  */
2514 int regulator_set_current_limit(struct regulator *regulator,
2515                                int min_uA, int max_uA)
2516 {
2517         struct regulator_dev *rdev = regulator->rdev;
2518         int ret;
2519
2520         mutex_lock(&rdev->mutex);
2521
2522         /* sanity check */
2523         if (!rdev->desc->ops->set_current_limit) {
2524                 ret = -EINVAL;
2525                 goto out;
2526         }
2527
2528         /* constraints check */
2529         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2530         if (ret < 0)
2531                 goto out;
2532
2533         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2534 out:
2535         mutex_unlock(&rdev->mutex);
2536         return ret;
2537 }
2538 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2539
2540 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2541 {
2542         int ret;
2543
2544         mutex_lock(&rdev->mutex);
2545
2546         /* sanity check */
2547         if (!rdev->desc->ops->get_current_limit) {
2548                 ret = -EINVAL;
2549                 goto out;
2550         }
2551
2552         ret = rdev->desc->ops->get_current_limit(rdev);
2553 out:
2554         mutex_unlock(&rdev->mutex);
2555         return ret;
2556 }
2557
2558 /**
2559  * regulator_get_current_limit - get regulator output current
2560  * @regulator: regulator source
2561  *
2562  * This returns the current supplied by the specified current sink in uA.
2563  *
2564  * NOTE: If the regulator is disabled it will return the current value. This
2565  * function should not be used to determine regulator state.
2566  */
2567 int regulator_get_current_limit(struct regulator *regulator)
2568 {
2569         return _regulator_get_current_limit(regulator->rdev);
2570 }
2571 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2572
2573 /**
2574  * regulator_set_mode - set regulator operating mode
2575  * @regulator: regulator source
2576  * @mode: operating mode - one of the REGULATOR_MODE constants
2577  *
2578  * Set regulator operating mode to increase regulator efficiency or improve
2579  * regulation performance.
2580  *
2581  * NOTE: Regulator system constraints must be set for this regulator before
2582  * calling this function otherwise this call will fail.
2583  */
2584 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2585 {
2586         struct regulator_dev *rdev = regulator->rdev;
2587         int ret;
2588         int regulator_curr_mode;
2589
2590         mutex_lock(&rdev->mutex);
2591
2592         /* sanity check */
2593         if (!rdev->desc->ops->set_mode) {
2594                 ret = -EINVAL;
2595                 goto out;
2596         }
2597
2598         /* return if the same mode is requested */
2599         if (rdev->desc->ops->get_mode) {
2600                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2601                 if (regulator_curr_mode == mode) {
2602                         ret = 0;
2603                         goto out;
2604                 }
2605         }
2606
2607         /* constraints check */
2608         ret = regulator_mode_constrain(rdev, &mode);
2609         if (ret < 0)
2610                 goto out;
2611
2612         ret = rdev->desc->ops->set_mode(rdev, mode);
2613 out:
2614         mutex_unlock(&rdev->mutex);
2615         return ret;
2616 }
2617 EXPORT_SYMBOL_GPL(regulator_set_mode);
2618
2619 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2620 {
2621         int ret;
2622
2623         mutex_lock(&rdev->mutex);
2624
2625         /* sanity check */
2626         if (!rdev->desc->ops->get_mode) {
2627                 ret = -EINVAL;
2628                 goto out;
2629         }
2630
2631         ret = rdev->desc->ops->get_mode(rdev);
2632 out:
2633         mutex_unlock(&rdev->mutex);
2634         return ret;
2635 }
2636
2637 /**
2638  * regulator_get_mode - get regulator operating mode
2639  * @regulator: regulator source
2640  *
2641  * Get the current regulator operating mode.
2642  */
2643 unsigned int regulator_get_mode(struct regulator *regulator)
2644 {
2645         return _regulator_get_mode(regulator->rdev);
2646 }
2647 EXPORT_SYMBOL_GPL(regulator_get_mode);
2648
2649 /**
2650  * regulator_set_optimum_mode - set regulator optimum operating mode
2651  * @regulator: regulator source
2652  * @uA_load: load current
2653  *
2654  * Notifies the regulator core of a new device load. This is then used by
2655  * DRMS (if enabled by constraints) to set the most efficient regulator
2656  * operating mode for the new regulator loading.
2657  *
2658  * Consumer devices notify their supply regulator of the maximum power
2659  * they will require (can be taken from device datasheet in the power
2660  * consumption tables) when they change operational status and hence power
2661  * state. Examples of operational state changes that can affect power
2662  * consumption are :-
2663  *
2664  *    o Device is opened / closed.
2665  *    o Device I/O is about to begin or has just finished.
2666  *    o Device is idling in between work.
2667  *
2668  * This information is also exported via sysfs to userspace.
2669  *
2670  * DRMS will sum the total requested load on the regulator and change
2671  * to the most efficient operating mode if platform constraints allow.
2672  *
2673  * Returns the new regulator mode or error.
2674  */
2675 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2676 {
2677         struct regulator_dev *rdev = regulator->rdev;
2678         struct regulator *consumer;
2679         int ret, output_uV, input_uV = 0, total_uA_load = 0;
2680         unsigned int mode;
2681
2682         if (rdev->supply)
2683                 input_uV = regulator_get_voltage(rdev->supply);
2684
2685         mutex_lock(&rdev->mutex);
2686
2687         /*
2688          * first check to see if we can set modes at all, otherwise just
2689          * tell the consumer everything is OK.
2690          */
2691         regulator->uA_load = uA_load;
2692         ret = regulator_check_drms(rdev);
2693         if (ret < 0) {
2694                 ret = 0;
2695                 goto out;
2696         }
2697
2698         if (!rdev->desc->ops->get_optimum_mode)
2699                 goto out;
2700
2701         /*
2702          * we can actually do this so any errors are indicators of
2703          * potential real failure.
2704          */
2705         ret = -EINVAL;
2706
2707         if (!rdev->desc->ops->set_mode)
2708                 goto out;
2709
2710         /* get output voltage */
2711         output_uV = _regulator_get_voltage(rdev);
2712         if (output_uV <= 0) {
2713                 rdev_err(rdev, "invalid output voltage found\n");
2714                 goto out;
2715         }
2716
2717         /* No supply? Use constraint voltage */
2718         if (input_uV <= 0)
2719                 input_uV = rdev->constraints->input_uV;
2720         if (input_uV <= 0) {
2721                 rdev_err(rdev, "invalid input voltage found\n");
2722                 goto out;
2723         }
2724
2725         /* calc total requested load for this regulator */
2726         list_for_each_entry(consumer, &rdev->consumer_list, list)
2727                 total_uA_load += consumer->uA_load;
2728
2729         mode = rdev->desc->ops->get_optimum_mode(rdev,
2730                                                  input_uV, output_uV,
2731                                                  total_uA_load);
2732         ret = regulator_mode_constrain(rdev, &mode);
2733         if (ret < 0) {
2734                 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2735                          total_uA_load, input_uV, output_uV);
2736                 goto out;
2737         }
2738
2739         ret = rdev->desc->ops->set_mode(rdev, mode);
2740         if (ret < 0) {
2741                 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2742                 goto out;
2743         }
2744         ret = mode;
2745 out:
2746         mutex_unlock(&rdev->mutex);
2747         return ret;
2748 }
2749 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2750
2751 /**
2752  * regulator_set_bypass_regmap - Default set_bypass() using regmap
2753  *
2754  * @rdev: device to operate on.
2755  * @enable: state to set.
2756  */
2757 int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
2758 {
2759         unsigned int val;
2760
2761         if (enable)
2762                 val = rdev->desc->bypass_mask;
2763         else
2764                 val = 0;
2765
2766         return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
2767                                   rdev->desc->bypass_mask, val);
2768 }
2769 EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
2770
2771 /**
2772  * regulator_get_bypass_regmap - Default get_bypass() using regmap
2773  *
2774  * @rdev: device to operate on.
2775  * @enable: current state.
2776  */
2777 int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
2778 {
2779         unsigned int val;
2780         int ret;
2781
2782         ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
2783         if (ret != 0)
2784                 return ret;
2785
2786         *enable = val & rdev->desc->bypass_mask;
2787
2788         return 0;
2789 }
2790 EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
2791
2792 /**
2793  * regulator_allow_bypass - allow the regulator to go into bypass mode
2794  *
2795  * @regulator: Regulator to configure
2796  * @allow: enable or disable bypass mode
2797  *
2798  * Allow the regulator to go into bypass mode if all other consumers
2799  * for the regulator also enable bypass mode and the machine
2800  * constraints allow this.  Bypass mode means that the regulator is
2801  * simply passing the input directly to the output with no regulation.
2802  */
2803 int regulator_allow_bypass(struct regulator *regulator, bool enable)
2804 {
2805         struct regulator_dev *rdev = regulator->rdev;
2806         int ret = 0;
2807
2808         if (!rdev->desc->ops->set_bypass)
2809                 return 0;
2810
2811         if (rdev->constraints &&
2812             !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2813                 return 0;
2814
2815         mutex_lock(&rdev->mutex);
2816
2817         if (enable && !regulator->bypass) {
2818                 rdev->bypass_count++;
2819
2820                 if (rdev->bypass_count == rdev->open_count) {
2821                         ret = rdev->desc->ops->set_bypass(rdev, enable);
2822                         if (ret != 0)
2823                                 rdev->bypass_count--;
2824                 }
2825
2826         } else if (!enable && regulator->bypass) {
2827                 rdev->bypass_count--;
2828
2829                 if (rdev->bypass_count != rdev->open_count) {
2830                         ret = rdev->desc->ops->set_bypass(rdev, enable);
2831                         if (ret != 0)
2832                                 rdev->bypass_count++;
2833                 }
2834         }
2835
2836         if (ret == 0)
2837                 regulator->bypass = enable;
2838
2839         mutex_unlock(&rdev->mutex);
2840
2841         return ret;
2842 }
2843 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2844
2845 /**
2846  * regulator_register_notifier - register regulator event notifier
2847  * @regulator: regulator source
2848  * @nb: notifier block
2849  *
2850  * Register notifier block to receive regulator events.
2851  */
2852 int regulator_register_notifier(struct regulator *regulator,
2853                               struct notifier_block *nb)
2854 {
2855         return blocking_notifier_chain_register(&regulator->rdev->notifier,
2856                                                 nb);
2857 }
2858 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2859
2860 /**
2861  * regulator_unregister_notifier - unregister regulator event notifier
2862  * @regulator: regulator source
2863  * @nb: notifier block
2864  *
2865  * Unregister regulator event notifier block.
2866  */
2867 int regulator_unregister_notifier(struct regulator *regulator,
2868                                 struct notifier_block *nb)
2869 {
2870         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2871                                                   nb);
2872 }
2873 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2874
2875 /* notify regulator consumers and downstream regulator consumers.
2876  * Note mutex must be held by caller.
2877  */
2878 static void _notifier_call_chain(struct regulator_dev *rdev,
2879                                   unsigned long event, void *data)
2880 {
2881         /* call rdev chain first */
2882         blocking_notifier_call_chain(&rdev->notifier, event, data);
2883 }
2884
2885 /**
2886  * regulator_bulk_get - get multiple regulator consumers
2887  *
2888  * @dev:           Device to supply
2889  * @num_consumers: Number of consumers to register
2890  * @consumers:     Configuration of consumers; clients are stored here.
2891  *
2892  * @return 0 on success, an errno on failure.
2893  *
2894  * This helper function allows drivers to get several regulator
2895  * consumers in one operation.  If any of the regulators cannot be
2896  * acquired then any regulators that were allocated will be freed
2897  * before returning to the caller.
2898  */
2899 int regulator_bulk_get(struct device *dev, int num_consumers,
2900                        struct regulator_bulk_data *consumers)
2901 {
2902         int i;
2903         int ret;
2904
2905         for (i = 0; i < num_consumers; i++)
2906                 consumers[i].consumer = NULL;
2907
2908         for (i = 0; i < num_consumers; i++) {
2909                 consumers[i].consumer = regulator_get(dev,
2910                                                       consumers[i].supply);
2911                 if (IS_ERR(consumers[i].consumer)) {
2912                         ret = PTR_ERR(consumers[i].consumer);
2913                         dev_err(dev, "Failed to get supply '%s': %d\n",
2914                                 consumers[i].supply, ret);
2915                         consumers[i].consumer = NULL;
2916                         goto err;
2917                 }
2918         }
2919
2920         return 0;
2921
2922 err:
2923         while (--i >= 0)
2924                 regulator_put(consumers[i].consumer);
2925
2926         return ret;
2927 }
2928 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2929
2930 /**
2931  * devm_regulator_bulk_get - managed get multiple regulator consumers
2932  *
2933  * @dev:           Device to supply
2934  * @num_consumers: Number of consumers to register
2935  * @consumers:     Configuration of consumers; clients are stored here.
2936  *
2937  * @return 0 on success, an errno on failure.
2938  *
2939  * This helper function allows drivers to get several regulator
2940  * consumers in one operation with management, the regulators will
2941  * automatically be freed when the device is unbound.  If any of the
2942  * regulators cannot be acquired then any regulators that were
2943  * allocated will be freed before returning to the caller.
2944  */
2945 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2946                             struct regulator_bulk_data *consumers)
2947 {
2948         int i;
2949         int ret;
2950
2951         for (i = 0; i < num_consumers; i++)
2952                 consumers[i].consumer = NULL;
2953
2954         for (i = 0; i < num_consumers; i++) {
2955                 consumers[i].consumer = devm_regulator_get(dev,
2956                                                            consumers[i].supply);
2957                 if (IS_ERR(consumers[i].consumer)) {
2958                         ret = PTR_ERR(consumers[i].consumer);
2959                         dev_err(dev, "Failed to get supply '%s': %d\n",
2960                                 consumers[i].supply, ret);
2961                         consumers[i].consumer = NULL;
2962                         goto err;
2963                 }
2964         }
2965
2966         return 0;
2967
2968 err:
2969         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2970                 devm_regulator_put(consumers[i].consumer);
2971
2972         return ret;
2973 }
2974 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2975
2976 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2977 {
2978         struct regulator_bulk_data *bulk = data;
2979
2980         bulk->ret = regulator_enable(bulk->consumer);
2981 }
2982
2983 /**
2984  * regulator_bulk_enable - enable multiple regulator consumers
2985  *
2986  * @num_consumers: Number of consumers
2987  * @consumers:     Consumer data; clients are stored here.
2988  * @return         0 on success, an errno on failure
2989  *
2990  * This convenience API allows consumers to enable multiple regulator
2991  * clients in a single API call.  If any consumers cannot be enabled
2992  * then any others that were enabled will be disabled again prior to
2993  * return.
2994  */
2995 int regulator_bulk_enable(int num_consumers,
2996                           struct regulator_bulk_data *consumers)
2997 {
2998         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
2999         int i;
3000         int ret = 0;
3001
3002         for (i = 0; i < num_consumers; i++) {
3003                 if (consumers[i].consumer->always_on)
3004                         consumers[i].ret = 0;
3005                 else
3006                         async_schedule_domain(regulator_bulk_enable_async,
3007                                               &consumers[i], &async_domain);
3008         }
3009
3010         async_synchronize_full_domain(&async_domain);
3011
3012         /* If any consumer failed we need to unwind any that succeeded */
3013         for (i = 0; i < num_consumers; i++) {
3014                 if (consumers[i].ret != 0) {
3015                         ret = consumers[i].ret;
3016                         goto err;
3017                 }
3018         }
3019
3020         return 0;
3021
3022 err:
3023         pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
3024         while (--i >= 0)
3025                 regulator_disable(consumers[i].consumer);
3026
3027         return ret;
3028 }
3029 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3030
3031 /**
3032  * regulator_bulk_disable - disable multiple regulator consumers
3033  *
3034  * @num_consumers: Number of consumers
3035  * @consumers:     Consumer data; clients are stored here.
3036  * @return         0 on success, an errno on failure
3037  *
3038  * This convenience API allows consumers to disable multiple regulator
3039  * clients in a single API call.  If any consumers cannot be disabled
3040  * then any others that were disabled will be enabled again prior to
3041  * return.
3042  */
3043 int regulator_bulk_disable(int num_consumers,
3044                            struct regulator_bulk_data *consumers)
3045 {
3046         int i;
3047         int ret, r;
3048
3049         for (i = num_consumers - 1; i >= 0; --i) {
3050                 ret = regulator_disable(consumers[i].consumer);
3051                 if (ret != 0)
3052                         goto err;
3053         }
3054
3055         return 0;
3056
3057 err:
3058         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3059         for (++i; i < num_consumers; ++i) {
3060                 r = regulator_enable(consumers[i].consumer);
3061                 if (r != 0)
3062                         pr_err("Failed to reename %s: %d\n",
3063                                consumers[i].supply, r);
3064         }
3065
3066         return ret;
3067 }
3068 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3069
3070 /**
3071  * regulator_bulk_force_disable - force disable multiple regulator consumers
3072  *
3073  * @num_consumers: Number of consumers
3074  * @consumers:     Consumer data; clients are stored here.
3075  * @return         0 on success, an errno on failure
3076  *
3077  * This convenience API allows consumers to forcibly disable multiple regulator
3078  * clients in a single API call.
3079  * NOTE: This should be used for situations when device damage will
3080  * likely occur if the regulators are not disabled (e.g. over temp).
3081  * Although regulator_force_disable function call for some consumers can
3082  * return error numbers, the function is called for all consumers.
3083  */
3084 int regulator_bulk_force_disable(int num_consumers,
3085                            struct regulator_bulk_data *consumers)
3086 {
3087         int i;
3088         int ret;
3089
3090         for (i = 0; i < num_consumers; i++)
3091                 consumers[i].ret =
3092                             regulator_force_disable(consumers[i].consumer);
3093
3094         for (i = 0; i < num_consumers; i++) {
3095                 if (consumers[i].ret != 0) {
3096                         ret = consumers[i].ret;
3097                         goto out;
3098                 }
3099         }
3100
3101         return 0;
3102 out:
3103         return ret;
3104 }
3105 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3106
3107 /**
3108  * regulator_bulk_free - free multiple regulator consumers
3109  *
3110  * @num_consumers: Number of consumers
3111  * @consumers:     Consumer data; clients are stored here.
3112  *
3113  * This convenience API allows consumers to free multiple regulator
3114  * clients in a single API call.
3115  */
3116 void regulator_bulk_free(int num_consumers,
3117                          struct regulator_bulk_data *consumers)
3118 {
3119         int i;
3120
3121         for (i = 0; i < num_consumers; i++) {
3122                 regulator_put(consumers[i].consumer);
3123                 consumers[i].consumer = NULL;
3124         }
3125 }
3126 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3127
3128 /**
3129  * regulator_notifier_call_chain - call regulator event notifier
3130  * @rdev: regulator source
3131  * @event: notifier block
3132  * @data: callback-specific data.
3133  *
3134  * Called by regulator drivers to notify clients a regulator event has
3135  * occurred. We also notify regulator clients downstream.
3136  * Note lock must be held by caller.
3137  */
3138 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3139                                   unsigned long event, void *data)
3140 {
3141         _notifier_call_chain(rdev, event, data);
3142         return NOTIFY_DONE;
3143
3144 }
3145 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3146
3147 /**
3148  * regulator_mode_to_status - convert a regulator mode into a status
3149  *
3150  * @mode: Mode to convert
3151  *
3152  * Convert a regulator mode into a status.
3153  */
3154 int regulator_mode_to_status(unsigned int mode)
3155 {
3156         switch (mode) {
3157         case REGULATOR_MODE_FAST:
3158                 return REGULATOR_STATUS_FAST;
3159         case REGULATOR_MODE_NORMAL:
3160                 return REGULATOR_STATUS_NORMAL;
3161         case REGULATOR_MODE_IDLE:
3162                 return REGULATOR_STATUS_IDLE;
3163         case REGULATOR_MODE_STANDBY:
3164                 return REGULATOR_STATUS_STANDBY;
3165         default:
3166                 return REGULATOR_STATUS_UNDEFINED;
3167         }
3168 }
3169 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3170
3171 /*
3172  * To avoid cluttering sysfs (and memory) with useless state, only
3173  * create attributes that can be meaningfully displayed.
3174  */
3175 static int add_regulator_attributes(struct regulator_dev *rdev)
3176 {
3177         struct device           *dev = &rdev->dev;
3178         struct regulator_ops    *ops = rdev->desc->ops;
3179         int                     status = 0;
3180
3181         /* some attributes need specific methods to be displayed */
3182         if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3183             (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3184             (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3185                 status = device_create_file(dev, &dev_attr_microvolts);
3186                 if (status < 0)
3187                         return status;
3188         }
3189         if (ops->get_current_limit) {
3190                 status = device_create_file(dev, &dev_attr_microamps);
3191                 if (status < 0)
3192                         return status;
3193         }
3194         if (ops->get_mode) {
3195                 status = device_create_file(dev, &dev_attr_opmode);
3196                 if (status < 0)
3197                         return status;
3198         }
3199         if (ops->is_enabled) {
3200                 status = device_create_file(dev, &dev_attr_state);
3201                 if (status < 0)
3202                         return status;
3203         }
3204         if (ops->get_status) {
3205                 status = device_create_file(dev, &dev_attr_status);
3206                 if (status < 0)
3207                         return status;
3208         }
3209         if (ops->get_bypass) {
3210                 status = device_create_file(dev, &dev_attr_bypass);
3211                 if (status < 0)
3212                         return status;
3213         }
3214
3215         /* some attributes are type-specific */
3216         if (rdev->desc->type == REGULATOR_CURRENT) {
3217                 status = device_create_file(dev, &dev_attr_requested_microamps);
3218                 if (status < 0)
3219                         return status;
3220         }
3221
3222         /* all the other attributes exist to support constraints;
3223          * don't show them if there are no constraints, or if the
3224          * relevant supporting methods are missing.
3225          */
3226         if (!rdev->constraints)
3227                 return status;
3228
3229         /* constraints need specific supporting methods */
3230         if (ops->set_voltage || ops->set_voltage_sel) {
3231                 status = device_create_file(dev, &dev_attr_min_microvolts);
3232                 if (status < 0)
3233                         return status;
3234                 status = device_create_file(dev, &dev_attr_max_microvolts);
3235                 if (status < 0)
3236                         return status;
3237         }
3238         if (ops->set_current_limit) {
3239                 status = device_create_file(dev, &dev_attr_min_microamps);
3240                 if (status < 0)
3241                         return status;
3242                 status = device_create_file(dev, &dev_attr_max_microamps);
3243                 if (status < 0)
3244                         return status;
3245         }
3246
3247         status = device_create_file(dev, &dev_attr_suspend_standby_state);
3248         if (status < 0)
3249                 return status;
3250         status = device_create_file(dev, &dev_attr_suspend_mem_state);
3251         if (status < 0)
3252                 return status;
3253         status = device_create_file(dev, &dev_attr_suspend_disk_state);
3254         if (status < 0)
3255                 return status;
3256
3257         if (ops->set_suspend_voltage) {
3258                 status = device_create_file(dev,
3259                                 &dev_attr_suspend_standby_microvolts);
3260                 if (status < 0)
3261                         return status;
3262                 status = device_create_file(dev,
3263                                 &dev_attr_suspend_mem_microvolts);
3264                 if (status < 0)
3265                         return status;
3266                 status = device_create_file(dev,
3267                                 &dev_attr_suspend_disk_microvolts);
3268                 if (status < 0)
3269                         return status;
3270         }
3271
3272         if (ops->set_suspend_mode) {
3273                 status = device_create_file(dev,
3274                                 &dev_attr_suspend_standby_mode);
3275                 if (status < 0)
3276                         return status;
3277                 status = device_create_file(dev,
3278                                 &dev_attr_suspend_mem_mode);
3279                 if (status < 0)
3280                         return status;
3281                 status = device_create_file(dev,
3282                                 &dev_attr_suspend_disk_mode);
3283                 if (status < 0)
3284                         return status;
3285         }
3286
3287         return status;
3288 }
3289
3290 static void rdev_init_debugfs(struct regulator_dev *rdev)
3291 {
3292         rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3293         if (!rdev->debugfs) {
3294                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3295                 return;
3296         }
3297
3298         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3299                            &rdev->use_count);
3300         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3301                            &rdev->open_count);
3302         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3303                            &rdev->bypass_count);
3304 }
3305
3306 /**
3307  * regulator_register - register regulator
3308  * @regulator_desc: regulator to register
3309  * @config: runtime configuration for regulator
3310  *
3311  * Called by regulator drivers to register a regulator.
3312  * Returns 0 on success.
3313  */
3314 struct regulator_dev *
3315 regulator_register(const struct regulator_desc *regulator_desc,
3316                    const struct regulator_config *config)
3317 {
3318         const struct regulation_constraints *constraints = NULL;
3319         const struct regulator_init_data *init_data;
3320         static atomic_t regulator_no = ATOMIC_INIT(0);
3321         struct regulator_dev *rdev;
3322         struct device *dev;
3323         int ret, i;
3324         const char *supply = NULL;
3325
3326         if (regulator_desc == NULL || config == NULL)
3327                 return ERR_PTR(-EINVAL);
3328
3329         dev = config->dev;
3330         WARN_ON(!dev);
3331
3332         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3333                 return ERR_PTR(-EINVAL);
3334
3335         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3336             regulator_desc->type != REGULATOR_CURRENT)
3337                 return ERR_PTR(-EINVAL);
3338
3339         /* Only one of each should be implemented */
3340         WARN_ON(regulator_desc->ops->get_voltage &&
3341                 regulator_desc->ops->get_voltage_sel);
3342         WARN_ON(regulator_desc->ops->set_voltage &&
3343                 regulator_desc->ops->set_voltage_sel);
3344
3345         /* If we're using selectors we must implement list_voltage. */
3346         if (regulator_desc->ops->get_voltage_sel &&
3347             !regulator_desc->ops->list_voltage) {
3348                 return ERR_PTR(-EINVAL);
3349         }
3350         if (regulator_desc->ops->set_voltage_sel &&
3351             !regulator_desc->ops->list_voltage) {
3352                 return ERR_PTR(-EINVAL);
3353         }
3354
3355         init_data = config->init_data;
3356
3357         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3358         if (rdev == NULL)
3359                 return ERR_PTR(-ENOMEM);
3360
3361         mutex_lock(&regulator_list_mutex);
3362
3363         mutex_init(&rdev->mutex);
3364         rdev->reg_data = config->driver_data;
3365         rdev->owner = regulator_desc->owner;
3366         rdev->desc = regulator_desc;
3367         if (config->regmap)
3368                 rdev->regmap = config->regmap;
3369         else if (dev_get_regmap(dev, NULL))
3370                 rdev->regmap = dev_get_regmap(dev, NULL);
3371         else if (dev->parent)
3372                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3373         INIT_LIST_HEAD(&rdev->consumer_list);
3374         INIT_LIST_HEAD(&rdev->list);
3375         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3376         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3377
3378         /* preform any regulator specific init */
3379         if (init_data && init_data->regulator_init) {
3380                 ret = init_data->regulator_init(rdev->reg_data);
3381                 if (ret < 0)
3382                         goto clean;
3383         }
3384
3385         /* register with sysfs */
3386         rdev->dev.class = &regulator_class;
3387         rdev->dev.of_node = config->of_node;
3388         rdev->dev.parent = dev;
3389         dev_set_name(&rdev->dev, "regulator.%d",
3390                      atomic_inc_return(&regulator_no) - 1);
3391         ret = device_register(&rdev->dev);
3392         if (ret != 0) {
3393                 put_device(&rdev->dev);
3394                 goto clean;
3395         }
3396
3397         dev_set_drvdata(&rdev->dev, rdev);
3398
3399         if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3400                 ret = gpio_request_one(config->ena_gpio,
3401                                        GPIOF_DIR_OUT | config->ena_gpio_flags,
3402                                        rdev_get_name(rdev));
3403                 if (ret != 0) {
3404                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3405                                  config->ena_gpio, ret);
3406                         goto wash;
3407                 }
3408
3409                 rdev->ena_gpio = config->ena_gpio;
3410                 rdev->ena_gpio_invert = config->ena_gpio_invert;
3411
3412                 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3413                         rdev->ena_gpio_state = 1;
3414
3415                 if (rdev->ena_gpio_invert)
3416                         rdev->ena_gpio_state = !rdev->ena_gpio_state;
3417         }
3418
3419         /* set regulator constraints */
3420         if (init_data)
3421                 constraints = &init_data->constraints;
3422
3423         ret = set_machine_constraints(rdev, constraints);
3424         if (ret < 0)
3425                 goto scrub;
3426
3427         /* add attributes supported by this regulator */
3428         ret = add_regulator_attributes(rdev);
3429         if (ret < 0)
3430                 goto scrub;
3431
3432         if (init_data && init_data->supply_regulator)
3433                 supply = init_data->supply_regulator;
3434         else if (regulator_desc->supply_name)
3435                 supply = regulator_desc->supply_name;
3436
3437         if (supply) {
3438                 struct regulator_dev *r;
3439
3440                 r = regulator_dev_lookup(dev, supply, &ret);
3441
3442                 if (!r) {
3443                         dev_err(dev, "Failed to find supply %s\n", supply);
3444                         ret = -EPROBE_DEFER;
3445                         goto scrub;
3446                 }
3447
3448                 ret = set_supply(rdev, r);
3449                 if (ret < 0)
3450                         goto scrub;
3451
3452                 /* Enable supply if rail is enabled */
3453                 if (_regulator_is_enabled(rdev)) {
3454                         ret = regulator_enable(rdev->supply);
3455                         if (ret < 0)
3456                                 goto scrub;
3457                 }
3458         }
3459
3460         /* add consumers devices */
3461         if (init_data) {
3462                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3463                         ret = set_consumer_device_supply(rdev,
3464                                 init_data->consumer_supplies[i].dev_name,
3465                                 init_data->consumer_supplies[i].supply);
3466                         if (ret < 0) {
3467                                 dev_err(dev, "Failed to set supply %s\n",
3468                                         init_data->consumer_supplies[i].supply);
3469                                 goto unset_supplies;
3470                         }
3471                 }
3472         }
3473
3474         list_add(&rdev->list, &regulator_list);
3475
3476         rdev_init_debugfs(rdev);
3477 out:
3478         mutex_unlock(&regulator_list_mutex);
3479         return rdev;
3480
3481 unset_supplies:
3482         unset_regulator_supplies(rdev);
3483
3484 scrub:
3485         if (rdev->supply)
3486                 _regulator_put(rdev->supply);
3487         if (rdev->ena_gpio)
3488                 gpio_free(rdev->ena_gpio);
3489         kfree(rdev->constraints);
3490 wash:
3491         device_unregister(&rdev->dev);
3492         /* device core frees rdev */
3493         rdev = ERR_PTR(ret);
3494         goto out;
3495
3496 clean:
3497         kfree(rdev);
3498         rdev = ERR_PTR(ret);
3499         goto out;
3500 }
3501 EXPORT_SYMBOL_GPL(regulator_register);
3502
3503 /**
3504  * regulator_unregister - unregister regulator
3505  * @rdev: regulator to unregister
3506  *
3507  * Called by regulator drivers to unregister a regulator.
3508  */
3509 void regulator_unregister(struct regulator_dev *rdev)
3510 {
3511         if (rdev == NULL)
3512                 return;
3513
3514         if (rdev->supply)
3515                 regulator_put(rdev->supply);
3516         mutex_lock(&regulator_list_mutex);
3517         debugfs_remove_recursive(rdev->debugfs);
3518         flush_work(&rdev->disable_work.work);
3519         WARN_ON(rdev->open_count);
3520         unset_regulator_supplies(rdev);
3521         list_del(&rdev->list);
3522         kfree(rdev->constraints);
3523         if (rdev->ena_gpio)
3524                 gpio_free(rdev->ena_gpio);
3525         device_unregister(&rdev->dev);
3526         mutex_unlock(&regulator_list_mutex);
3527 }
3528 EXPORT_SYMBOL_GPL(regulator_unregister);
3529
3530 /**
3531  * regulator_suspend_prepare - prepare regulators for system wide suspend
3532  * @state: system suspend state
3533  *
3534  * Configure each regulator with it's suspend operating parameters for state.
3535  * This will usually be called by machine suspend code prior to supending.
3536  */
3537 int regulator_suspend_prepare(suspend_state_t state)
3538 {
3539         struct regulator_dev *rdev;
3540         int ret = 0;
3541
3542         /* ON is handled by regulator active state */
3543         if (state == PM_SUSPEND_ON)
3544                 return -EINVAL;
3545
3546         mutex_lock(&regulator_list_mutex);
3547         list_for_each_entry(rdev, &regulator_list, list) {
3548
3549                 mutex_lock(&rdev->mutex);
3550                 ret = suspend_prepare(rdev, state);
3551                 mutex_unlock(&rdev->mutex);
3552
3553                 if (ret < 0) {
3554                         rdev_err(rdev, "failed to prepare\n");
3555                         goto out;
3556                 }
3557         }
3558 out:
3559         mutex_unlock(&regulator_list_mutex);
3560         return ret;
3561 }
3562 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3563
3564 /**
3565  * regulator_suspend_finish - resume regulators from system wide suspend
3566  *
3567  * Turn on regulators that might be turned off by regulator_suspend_prepare
3568  * and that should be turned on according to the regulators properties.
3569  */
3570 int regulator_suspend_finish(void)
3571 {
3572         struct regulator_dev *rdev;
3573         int ret = 0, error;
3574
3575         mutex_lock(&regulator_list_mutex);
3576         list_for_each_entry(rdev, &regulator_list, list) {
3577                 struct regulator_ops *ops = rdev->desc->ops;
3578
3579                 mutex_lock(&rdev->mutex);
3580                 if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3581                                 ops->enable) {
3582                         error = ops->enable(rdev);
3583                         if (error)
3584                                 ret = error;
3585                 } else {
3586                         if (!has_full_constraints)
3587                                 goto unlock;
3588                         if (!ops->disable)
3589                                 goto unlock;
3590                         if (!_regulator_is_enabled(rdev))
3591                                 goto unlock;
3592
3593                         error = ops->disable(rdev);
3594                         if (error)
3595                                 ret = error;
3596                 }
3597 unlock:
3598                 mutex_unlock(&rdev->mutex);
3599         }
3600         mutex_unlock(&regulator_list_mutex);
3601         return ret;
3602 }
3603 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3604
3605 /**
3606  * regulator_has_full_constraints - the system has fully specified constraints
3607  *
3608  * Calling this function will cause the regulator API to disable all
3609  * regulators which have a zero use count and don't have an always_on
3610  * constraint in a late_initcall.
3611  *
3612  * The intention is that this will become the default behaviour in a
3613  * future kernel release so users are encouraged to use this facility
3614  * now.
3615  */
3616 void regulator_has_full_constraints(void)
3617 {
3618         has_full_constraints = 1;
3619 }
3620 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3621
3622 /**
3623  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3624  *
3625  * Calling this function will cause the regulator API to provide a
3626  * dummy regulator to consumers if no physical regulator is found,
3627  * allowing most consumers to proceed as though a regulator were
3628  * configured.  This allows systems such as those with software
3629  * controllable regulators for the CPU core only to be brought up more
3630  * readily.
3631  */
3632 void regulator_use_dummy_regulator(void)
3633 {
3634         board_wants_dummy_regulator = true;
3635 }
3636 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3637
3638 /**
3639  * rdev_get_drvdata - get rdev regulator driver data
3640  * @rdev: regulator
3641  *
3642  * Get rdev regulator driver private data. This call can be used in the
3643  * regulator driver context.
3644  */
3645 void *rdev_get_drvdata(struct regulator_dev *rdev)
3646 {
3647         return rdev->reg_data;
3648 }
3649 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3650
3651 /**
3652  * regulator_get_drvdata - get regulator driver data
3653  * @regulator: regulator
3654  *
3655  * Get regulator driver private data. This call can be used in the consumer
3656  * driver context when non API regulator specific functions need to be called.
3657  */
3658 void *regulator_get_drvdata(struct regulator *regulator)
3659 {
3660         return regulator->rdev->reg_data;
3661 }
3662 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3663
3664 /**
3665  * regulator_set_drvdata - set regulator driver data
3666  * @regulator: regulator
3667  * @data: data
3668  */
3669 void regulator_set_drvdata(struct regulator *regulator, void *data)
3670 {
3671         regulator->rdev->reg_data = data;
3672 }
3673 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3674
3675 /**
3676  * regulator_get_id - get regulator ID
3677  * @rdev: regulator
3678  */
3679 int rdev_get_id(struct regulator_dev *rdev)
3680 {
3681         return rdev->desc->id;
3682 }
3683 EXPORT_SYMBOL_GPL(rdev_get_id);
3684
3685 struct device *rdev_get_dev(struct regulator_dev *rdev)
3686 {
3687         return &rdev->dev;
3688 }
3689 EXPORT_SYMBOL_GPL(rdev_get_dev);
3690
3691 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3692 {
3693         return reg_init_data->driver_data;
3694 }
3695 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3696
3697 #ifdef CONFIG_DEBUG_FS
3698 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3699                                     size_t count, loff_t *ppos)
3700 {
3701         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3702         ssize_t len, ret = 0;
3703         struct regulator_map *map;
3704
3705         if (!buf)
3706                 return -ENOMEM;
3707
3708         list_for_each_entry(map, &regulator_map_list, list) {
3709                 len = snprintf(buf + ret, PAGE_SIZE - ret,
3710                                "%s -> %s.%s\n",
3711                                rdev_get_name(map->regulator), map->dev_name,
3712                                map->supply);
3713                 if (len >= 0)
3714                         ret += len;
3715                 if (ret > PAGE_SIZE) {
3716                         ret = PAGE_SIZE;
3717                         break;
3718                 }
3719         }
3720
3721         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3722
3723         kfree(buf);
3724
3725         return ret;
3726 }
3727 #endif
3728
3729 static const struct file_operations supply_map_fops = {
3730 #ifdef CONFIG_DEBUG_FS
3731         .read = supply_map_read_file,
3732         .llseek = default_llseek,
3733 #endif
3734 };
3735
3736 static int __init regulator_init(void)
3737 {
3738         int ret;
3739
3740         ret = class_register(&regulator_class);
3741
3742         debugfs_root = debugfs_create_dir("regulator", NULL);
3743         if (!debugfs_root)
3744                 pr_warn("regulator: Failed to create debugfs directory\n");
3745
3746         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3747                             &supply_map_fops);
3748
3749         regulator_dummy_init();
3750
3751         return ret;
3752 }
3753
3754 /* init early to allow our consumers to complete system booting */
3755 core_initcall(regulator_init);
3756
3757 static int __init regulator_init_complete(void)
3758 {
3759         struct regulator_dev *rdev;
3760         struct regulator_ops *ops;
3761         struct regulation_constraints *c;
3762         int enabled, ret;
3763
3764         /*
3765          * Since DT doesn't provide an idiomatic mechanism for
3766          * enabling full constraints and since it's much more natural
3767          * with DT to provide them just assume that a DT enabled
3768          * system has full constraints.
3769          */
3770         if (of_have_populated_dt())
3771                 has_full_constraints = true;
3772
3773         mutex_lock(&regulator_list_mutex);
3774
3775         /* If we have a full configuration then disable any regulators
3776          * which are not in use or always_on.  This will become the
3777          * default behaviour in the future.
3778          */
3779         list_for_each_entry(rdev, &regulator_list, list) {
3780                 ops = rdev->desc->ops;
3781                 c = rdev->constraints;
3782
3783                 if (!ops->disable || (c && c->always_on))
3784                         continue;
3785
3786                 mutex_lock(&rdev->mutex);
3787
3788                 if (rdev->use_count)
3789                         goto unlock;
3790
3791                 /* If we can't read the status assume it's on. */
3792                 if (ops->is_enabled)
3793                         enabled = ops->is_enabled(rdev);
3794                 else
3795                         enabled = 1;
3796
3797                 if (!enabled)
3798                         goto unlock;
3799
3800                 if (has_full_constraints) {
3801                         /* We log since this may kill the system if it
3802                          * goes wrong. */
3803                         rdev_info(rdev, "disabling\n");
3804                         ret = ops->disable(rdev);
3805                         if (ret != 0) {
3806                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
3807                         }
3808                 } else {
3809                         /* The intention is that in future we will
3810                          * assume that full constraints are provided
3811                          * so warn even if we aren't going to do
3812                          * anything here.
3813                          */
3814                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
3815                 }
3816
3817 unlock:
3818                 mutex_unlock(&rdev->mutex);
3819         }
3820
3821         mutex_unlock(&regulator_list_mutex);
3822
3823         return 0;
3824 }
3825 late_initcall(regulator_init_complete);