]> git.karo-electronics.de Git - linux-beck.git/blob - drivers/rtc/rtc-cmos.c
e8f3a212d09ad58fd7326a1a3de73b58d9adf3dd
[linux-beck.git] / drivers / rtc / rtc-cmos.c
1 /*
2  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
3  *
4  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5  * Copyright (C) 2006 David Brownell (convert to new framework)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11  */
12
13 /*
14  * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15  * That defined the register interface now provided by all PCs, some
16  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
17  * integrate an MC146818 clone in their southbridge, and boards use
18  * that instead of discrete clones like the DS12887 or M48T86.  There
19  * are also clones that connect using the LPC bus.
20  *
21  * That register API is also used directly by various other drivers
22  * (notably for integrated NVRAM), infrastructure (x86 has code to
23  * bypass the RTC framework, directly reading the RTC during boot
24  * and updating minutes/seconds for systems using NTP synch) and
25  * utilities (like userspace 'hwclock', if no /dev node exists).
26  *
27  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28  * interrupts disabled, holding the global rtc_lock, to exclude those
29  * other drivers and utilities on correctly configured systems.
30  */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/spinlock.h>
39 #include <linux/platform_device.h>
40 #include <linux/log2.h>
41 #include <linux/pm.h>
42 #include <linux/of.h>
43 #include <linux/of_platform.h>
44
45 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
46 #include <linux/mc146818rtc.h>
47
48 struct cmos_rtc {
49         struct rtc_device       *rtc;
50         struct device           *dev;
51         int                     irq;
52         struct resource         *iomem;
53         time64_t                alarm_expires;
54
55         void                    (*wake_on)(struct device *);
56         void                    (*wake_off)(struct device *);
57
58         u8                      enabled_wake;
59         u8                      suspend_ctrl;
60
61         /* newer hardware extends the original register set */
62         u8                      day_alrm;
63         u8                      mon_alrm;
64         u8                      century;
65 };
66
67 /* both platform and pnp busses use negative numbers for invalid irqs */
68 #define is_valid_irq(n)         ((n) > 0)
69
70 static const char driver_name[] = "rtc_cmos";
71
72 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
73  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
74  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
75  */
76 #define RTC_IRQMASK     (RTC_PF | RTC_AF | RTC_UF)
77
78 static inline int is_intr(u8 rtc_intr)
79 {
80         if (!(rtc_intr & RTC_IRQF))
81                 return 0;
82         return rtc_intr & RTC_IRQMASK;
83 }
84
85 /*----------------------------------------------------------------*/
86
87 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
88  * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
89  * used in a broken "legacy replacement" mode.  The breakage includes
90  * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
91  * other (better) use.
92  *
93  * When that broken mode is in use, platform glue provides a partial
94  * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
95  * want to use HPET for anything except those IRQs though...
96  */
97 #ifdef CONFIG_HPET_EMULATE_RTC
98 #include <asm/hpet.h>
99 #else
100
101 static inline int is_hpet_enabled(void)
102 {
103         return 0;
104 }
105
106 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
107 {
108         return 0;
109 }
110
111 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
112 {
113         return 0;
114 }
115
116 static inline int
117 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
118 {
119         return 0;
120 }
121
122 static inline int hpet_set_periodic_freq(unsigned long freq)
123 {
124         return 0;
125 }
126
127 static inline int hpet_rtc_dropped_irq(void)
128 {
129         return 0;
130 }
131
132 static inline int hpet_rtc_timer_init(void)
133 {
134         return 0;
135 }
136
137 extern irq_handler_t hpet_rtc_interrupt;
138
139 static inline int hpet_register_irq_handler(irq_handler_t handler)
140 {
141         return 0;
142 }
143
144 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
145 {
146         return 0;
147 }
148
149 #endif
150
151 /*----------------------------------------------------------------*/
152
153 #ifdef RTC_PORT
154
155 /* Most newer x86 systems have two register banks, the first used
156  * for RTC and NVRAM and the second only for NVRAM.  Caller must
157  * own rtc_lock ... and we won't worry about access during NMI.
158  */
159 #define can_bank2       true
160
161 static inline unsigned char cmos_read_bank2(unsigned char addr)
162 {
163         outb(addr, RTC_PORT(2));
164         return inb(RTC_PORT(3));
165 }
166
167 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
168 {
169         outb(addr, RTC_PORT(2));
170         outb(val, RTC_PORT(3));
171 }
172
173 #else
174
175 #define can_bank2       false
176
177 static inline unsigned char cmos_read_bank2(unsigned char addr)
178 {
179         return 0;
180 }
181
182 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
183 {
184 }
185
186 #endif
187
188 /*----------------------------------------------------------------*/
189
190 static int cmos_read_time(struct device *dev, struct rtc_time *t)
191 {
192         /* REVISIT:  if the clock has a "century" register, use
193          * that instead of the heuristic in mc146818_get_time().
194          * That'll make Y3K compatility (year > 2070) easy!
195          */
196         mc146818_get_time(t);
197         return 0;
198 }
199
200 static int cmos_set_time(struct device *dev, struct rtc_time *t)
201 {
202         /* REVISIT:  set the "century" register if available
203          *
204          * NOTE: this ignores the issue whereby updating the seconds
205          * takes effect exactly 500ms after we write the register.
206          * (Also queueing and other delays before we get this far.)
207          */
208         return mc146818_set_time(t);
209 }
210
211 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
212 {
213         struct cmos_rtc *cmos = dev_get_drvdata(dev);
214         unsigned char   rtc_control;
215
216         if (!is_valid_irq(cmos->irq))
217                 return -EIO;
218
219         /* Basic alarms only support hour, minute, and seconds fields.
220          * Some also support day and month, for alarms up to a year in
221          * the future.
222          */
223
224         spin_lock_irq(&rtc_lock);
225         t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
226         t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
227         t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
228
229         if (cmos->day_alrm) {
230                 /* ignore upper bits on readback per ACPI spec */
231                 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
232                 if (!t->time.tm_mday)
233                         t->time.tm_mday = -1;
234
235                 if (cmos->mon_alrm) {
236                         t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
237                         if (!t->time.tm_mon)
238                                 t->time.tm_mon = -1;
239                 }
240         }
241
242         rtc_control = CMOS_READ(RTC_CONTROL);
243         spin_unlock_irq(&rtc_lock);
244
245         if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
246                 if (((unsigned)t->time.tm_sec) < 0x60)
247                         t->time.tm_sec = bcd2bin(t->time.tm_sec);
248                 else
249                         t->time.tm_sec = -1;
250                 if (((unsigned)t->time.tm_min) < 0x60)
251                         t->time.tm_min = bcd2bin(t->time.tm_min);
252                 else
253                         t->time.tm_min = -1;
254                 if (((unsigned)t->time.tm_hour) < 0x24)
255                         t->time.tm_hour = bcd2bin(t->time.tm_hour);
256                 else
257                         t->time.tm_hour = -1;
258
259                 if (cmos->day_alrm) {
260                         if (((unsigned)t->time.tm_mday) <= 0x31)
261                                 t->time.tm_mday = bcd2bin(t->time.tm_mday);
262                         else
263                                 t->time.tm_mday = -1;
264
265                         if (cmos->mon_alrm) {
266                                 if (((unsigned)t->time.tm_mon) <= 0x12)
267                                         t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
268                                 else
269                                         t->time.tm_mon = -1;
270                         }
271                 }
272         }
273
274         t->enabled = !!(rtc_control & RTC_AIE);
275         t->pending = 0;
276
277         return 0;
278 }
279
280 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
281 {
282         unsigned char   rtc_intr;
283
284         /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
285          * allegedly some older rtcs need that to handle irqs properly
286          */
287         rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
288
289         if (is_hpet_enabled())
290                 return;
291
292         rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
293         if (is_intr(rtc_intr))
294                 rtc_update_irq(cmos->rtc, 1, rtc_intr);
295 }
296
297 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
298 {
299         unsigned char   rtc_control;
300
301         /* flush any pending IRQ status, notably for update irqs,
302          * before we enable new IRQs
303          */
304         rtc_control = CMOS_READ(RTC_CONTROL);
305         cmos_checkintr(cmos, rtc_control);
306
307         rtc_control |= mask;
308         CMOS_WRITE(rtc_control, RTC_CONTROL);
309         hpet_set_rtc_irq_bit(mask);
310
311         cmos_checkintr(cmos, rtc_control);
312 }
313
314 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
315 {
316         unsigned char   rtc_control;
317
318         rtc_control = CMOS_READ(RTC_CONTROL);
319         rtc_control &= ~mask;
320         CMOS_WRITE(rtc_control, RTC_CONTROL);
321         hpet_mask_rtc_irq_bit(mask);
322
323         cmos_checkintr(cmos, rtc_control);
324 }
325
326 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
327 {
328         struct cmos_rtc *cmos = dev_get_drvdata(dev);
329         unsigned char mon, mday, hrs, min, sec, rtc_control;
330
331         if (!is_valid_irq(cmos->irq))
332                 return -EIO;
333
334         mon = t->time.tm_mon + 1;
335         mday = t->time.tm_mday;
336         hrs = t->time.tm_hour;
337         min = t->time.tm_min;
338         sec = t->time.tm_sec;
339
340         rtc_control = CMOS_READ(RTC_CONTROL);
341         if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
342                 /* Writing 0xff means "don't care" or "match all".  */
343                 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
344                 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
345                 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
346                 min = (min < 60) ? bin2bcd(min) : 0xff;
347                 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
348         }
349
350         spin_lock_irq(&rtc_lock);
351
352         /* next rtc irq must not be from previous alarm setting */
353         cmos_irq_disable(cmos, RTC_AIE);
354
355         /* update alarm */
356         CMOS_WRITE(hrs, RTC_HOURS_ALARM);
357         CMOS_WRITE(min, RTC_MINUTES_ALARM);
358         CMOS_WRITE(sec, RTC_SECONDS_ALARM);
359
360         /* the system may support an "enhanced" alarm */
361         if (cmos->day_alrm) {
362                 CMOS_WRITE(mday, cmos->day_alrm);
363                 if (cmos->mon_alrm)
364                         CMOS_WRITE(mon, cmos->mon_alrm);
365         }
366
367         /* FIXME the HPET alarm glue currently ignores day_alrm
368          * and mon_alrm ...
369          */
370         hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
371
372         if (t->enabled)
373                 cmos_irq_enable(cmos, RTC_AIE);
374
375         spin_unlock_irq(&rtc_lock);
376
377         cmos->alarm_expires = rtc_tm_to_time64(&t->time);
378
379         return 0;
380 }
381
382 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
383 {
384         struct cmos_rtc *cmos = dev_get_drvdata(dev);
385         unsigned long   flags;
386
387         if (!is_valid_irq(cmos->irq))
388                 return -EINVAL;
389
390         spin_lock_irqsave(&rtc_lock, flags);
391
392         if (enabled)
393                 cmos_irq_enable(cmos, RTC_AIE);
394         else
395                 cmos_irq_disable(cmos, RTC_AIE);
396
397         spin_unlock_irqrestore(&rtc_lock, flags);
398         return 0;
399 }
400
401 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
402
403 static int cmos_procfs(struct device *dev, struct seq_file *seq)
404 {
405         struct cmos_rtc *cmos = dev_get_drvdata(dev);
406         unsigned char   rtc_control, valid;
407
408         spin_lock_irq(&rtc_lock);
409         rtc_control = CMOS_READ(RTC_CONTROL);
410         valid = CMOS_READ(RTC_VALID);
411         spin_unlock_irq(&rtc_lock);
412
413         /* NOTE:  at least ICH6 reports battery status using a different
414          * (non-RTC) bit; and SQWE is ignored on many current systems.
415          */
416         seq_printf(seq,
417                    "periodic_IRQ\t: %s\n"
418                    "update_IRQ\t: %s\n"
419                    "HPET_emulated\t: %s\n"
420                    // "square_wave\t: %s\n"
421                    "BCD\t\t: %s\n"
422                    "DST_enable\t: %s\n"
423                    "periodic_freq\t: %d\n"
424                    "batt_status\t: %s\n",
425                    (rtc_control & RTC_PIE) ? "yes" : "no",
426                    (rtc_control & RTC_UIE) ? "yes" : "no",
427                    is_hpet_enabled() ? "yes" : "no",
428                    // (rtc_control & RTC_SQWE) ? "yes" : "no",
429                    (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
430                    (rtc_control & RTC_DST_EN) ? "yes" : "no",
431                    cmos->rtc->irq_freq,
432                    (valid & RTC_VRT) ? "okay" : "dead");
433
434         return 0;
435 }
436
437 #else
438 #define cmos_procfs     NULL
439 #endif
440
441 static const struct rtc_class_ops cmos_rtc_ops = {
442         .read_time              = cmos_read_time,
443         .set_time               = cmos_set_time,
444         .read_alarm             = cmos_read_alarm,
445         .set_alarm              = cmos_set_alarm,
446         .proc                   = cmos_procfs,
447         .alarm_irq_enable       = cmos_alarm_irq_enable,
448 };
449
450 /*----------------------------------------------------------------*/
451
452 /*
453  * All these chips have at least 64 bytes of address space, shared by
454  * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
455  * by boot firmware.  Modern chips have 128 or 256 bytes.
456  */
457
458 #define NVRAM_OFFSET    (RTC_REG_D + 1)
459
460 static ssize_t
461 cmos_nvram_read(struct file *filp, struct kobject *kobj,
462                 struct bin_attribute *attr,
463                 char *buf, loff_t off, size_t count)
464 {
465         int     retval;
466
467         off += NVRAM_OFFSET;
468         spin_lock_irq(&rtc_lock);
469         for (retval = 0; count; count--, off++, retval++) {
470                 if (off < 128)
471                         *buf++ = CMOS_READ(off);
472                 else if (can_bank2)
473                         *buf++ = cmos_read_bank2(off);
474                 else
475                         break;
476         }
477         spin_unlock_irq(&rtc_lock);
478
479         return retval;
480 }
481
482 static ssize_t
483 cmos_nvram_write(struct file *filp, struct kobject *kobj,
484                 struct bin_attribute *attr,
485                 char *buf, loff_t off, size_t count)
486 {
487         struct cmos_rtc *cmos;
488         int             retval;
489
490         cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
491
492         /* NOTE:  on at least PCs and Ataris, the boot firmware uses a
493          * checksum on part of the NVRAM data.  That's currently ignored
494          * here.  If userspace is smart enough to know what fields of
495          * NVRAM to update, updating checksums is also part of its job.
496          */
497         off += NVRAM_OFFSET;
498         spin_lock_irq(&rtc_lock);
499         for (retval = 0; count; count--, off++, retval++) {
500                 /* don't trash RTC registers */
501                 if (off == cmos->day_alrm
502                                 || off == cmos->mon_alrm
503                                 || off == cmos->century)
504                         buf++;
505                 else if (off < 128)
506                         CMOS_WRITE(*buf++, off);
507                 else if (can_bank2)
508                         cmos_write_bank2(*buf++, off);
509                 else
510                         break;
511         }
512         spin_unlock_irq(&rtc_lock);
513
514         return retval;
515 }
516
517 static struct bin_attribute nvram = {
518         .attr = {
519                 .name   = "nvram",
520                 .mode   = S_IRUGO | S_IWUSR,
521         },
522
523         .read   = cmos_nvram_read,
524         .write  = cmos_nvram_write,
525         /* size gets set up later */
526 };
527
528 /*----------------------------------------------------------------*/
529
530 static struct cmos_rtc  cmos_rtc;
531
532 static irqreturn_t cmos_interrupt(int irq, void *p)
533 {
534         u8              irqstat;
535         u8              rtc_control;
536
537         spin_lock(&rtc_lock);
538
539         /* When the HPET interrupt handler calls us, the interrupt
540          * status is passed as arg1 instead of the irq number.  But
541          * always clear irq status, even when HPET is in the way.
542          *
543          * Note that HPET and RTC are almost certainly out of phase,
544          * giving different IRQ status ...
545          */
546         irqstat = CMOS_READ(RTC_INTR_FLAGS);
547         rtc_control = CMOS_READ(RTC_CONTROL);
548         if (is_hpet_enabled())
549                 irqstat = (unsigned long)irq & 0xF0;
550
551         /* If we were suspended, RTC_CONTROL may not be accurate since the
552          * bios may have cleared it.
553          */
554         if (!cmos_rtc.suspend_ctrl)
555                 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
556         else
557                 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
558
559         /* All Linux RTC alarms should be treated as if they were oneshot.
560          * Similar code may be needed in system wakeup paths, in case the
561          * alarm woke the system.
562          */
563         if (irqstat & RTC_AIE) {
564                 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
565                 rtc_control &= ~RTC_AIE;
566                 CMOS_WRITE(rtc_control, RTC_CONTROL);
567                 hpet_mask_rtc_irq_bit(RTC_AIE);
568                 CMOS_READ(RTC_INTR_FLAGS);
569         }
570         spin_unlock(&rtc_lock);
571
572         if (is_intr(irqstat)) {
573                 rtc_update_irq(p, 1, irqstat);
574                 return IRQ_HANDLED;
575         } else
576                 return IRQ_NONE;
577 }
578
579 #ifdef  CONFIG_PNP
580 #define INITSECTION
581
582 #else
583 #define INITSECTION     __init
584 #endif
585
586 static int INITSECTION
587 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
588 {
589         struct cmos_rtc_board_info      *info = dev_get_platdata(dev);
590         int                             retval = 0;
591         unsigned char                   rtc_control;
592         unsigned                        address_space;
593         u32                             flags = 0;
594
595         /* there can be only one ... */
596         if (cmos_rtc.dev)
597                 return -EBUSY;
598
599         if (!ports)
600                 return -ENODEV;
601
602         /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
603          *
604          * REVISIT non-x86 systems may instead use memory space resources
605          * (needing ioremap etc), not i/o space resources like this ...
606          */
607         if (RTC_IOMAPPED)
608                 ports = request_region(ports->start, resource_size(ports),
609                                        driver_name);
610         else
611                 ports = request_mem_region(ports->start, resource_size(ports),
612                                            driver_name);
613         if (!ports) {
614                 dev_dbg(dev, "i/o registers already in use\n");
615                 return -EBUSY;
616         }
617
618         cmos_rtc.irq = rtc_irq;
619         cmos_rtc.iomem = ports;
620
621         /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
622          * driver did, but don't reject unknown configs.   Old hardware
623          * won't address 128 bytes.  Newer chips have multiple banks,
624          * though they may not be listed in one I/O resource.
625          */
626 #if     defined(CONFIG_ATARI)
627         address_space = 64;
628 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
629                         || defined(__sparc__) || defined(__mips__) \
630                         || defined(__powerpc__) || defined(CONFIG_MN10300)
631         address_space = 128;
632 #else
633 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
634         address_space = 128;
635 #endif
636         if (can_bank2 && ports->end > (ports->start + 1))
637                 address_space = 256;
638
639         /* For ACPI systems extension info comes from the FADT.  On others,
640          * board specific setup provides it as appropriate.  Systems where
641          * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
642          * some almost-clones) can provide hooks to make that behave.
643          *
644          * Note that ACPI doesn't preclude putting these registers into
645          * "extended" areas of the chip, including some that we won't yet
646          * expect CMOS_READ and friends to handle.
647          */
648         if (info) {
649                 if (info->flags)
650                         flags = info->flags;
651                 if (info->address_space)
652                         address_space = info->address_space;
653
654                 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
655                         cmos_rtc.day_alrm = info->rtc_day_alarm;
656                 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
657                         cmos_rtc.mon_alrm = info->rtc_mon_alarm;
658                 if (info->rtc_century && info->rtc_century < 128)
659                         cmos_rtc.century = info->rtc_century;
660
661                 if (info->wake_on && info->wake_off) {
662                         cmos_rtc.wake_on = info->wake_on;
663                         cmos_rtc.wake_off = info->wake_off;
664                 }
665         }
666
667         cmos_rtc.dev = dev;
668         dev_set_drvdata(dev, &cmos_rtc);
669
670         cmos_rtc.rtc = rtc_device_register(driver_name, dev,
671                                 &cmos_rtc_ops, THIS_MODULE);
672         if (IS_ERR(cmos_rtc.rtc)) {
673                 retval = PTR_ERR(cmos_rtc.rtc);
674                 goto cleanup0;
675         }
676
677         rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
678
679         spin_lock_irq(&rtc_lock);
680
681         if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
682                 /* force periodic irq to CMOS reset default of 1024Hz;
683                  *
684                  * REVISIT it's been reported that at least one x86_64 ALI
685                  * mobo doesn't use 32KHz here ... for portability we might
686                  * need to do something about other clock frequencies.
687                  */
688                 cmos_rtc.rtc->irq_freq = 1024;
689                 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
690                 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
691         }
692
693         /* disable irqs */
694         if (is_valid_irq(rtc_irq))
695                 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
696
697         rtc_control = CMOS_READ(RTC_CONTROL);
698
699         spin_unlock_irq(&rtc_lock);
700
701         /* FIXME:
702          * <asm-generic/rtc.h> doesn't know 12-hour mode either.
703          */
704         if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
705                 dev_warn(dev, "only 24-hr supported\n");
706                 retval = -ENXIO;
707                 goto cleanup1;
708         }
709
710         hpet_rtc_timer_init();
711
712         if (is_valid_irq(rtc_irq)) {
713                 irq_handler_t rtc_cmos_int_handler;
714
715                 if (is_hpet_enabled()) {
716                         rtc_cmos_int_handler = hpet_rtc_interrupt;
717                         retval = hpet_register_irq_handler(cmos_interrupt);
718                         if (retval) {
719                                 hpet_mask_rtc_irq_bit(RTC_IRQMASK);
720                                 dev_warn(dev, "hpet_register_irq_handler "
721                                                 " failed in rtc_init().");
722                                 goto cleanup1;
723                         }
724                 } else
725                         rtc_cmos_int_handler = cmos_interrupt;
726
727                 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
728                                 IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev),
729                                 cmos_rtc.rtc);
730                 if (retval < 0) {
731                         dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
732                         goto cleanup1;
733                 }
734         }
735
736         /* export at least the first block of NVRAM */
737         nvram.size = address_space - NVRAM_OFFSET;
738         retval = sysfs_create_bin_file(&dev->kobj, &nvram);
739         if (retval < 0) {
740                 dev_dbg(dev, "can't create nvram file? %d\n", retval);
741                 goto cleanup2;
742         }
743
744         dev_info(dev, "%s%s, %zd bytes nvram%s\n",
745                 !is_valid_irq(rtc_irq) ? "no alarms" :
746                         cmos_rtc.mon_alrm ? "alarms up to one year" :
747                         cmos_rtc.day_alrm ? "alarms up to one month" :
748                         "alarms up to one day",
749                 cmos_rtc.century ? ", y3k" : "",
750                 nvram.size,
751                 is_hpet_enabled() ? ", hpet irqs" : "");
752
753         return 0;
754
755 cleanup2:
756         if (is_valid_irq(rtc_irq))
757                 free_irq(rtc_irq, cmos_rtc.rtc);
758 cleanup1:
759         cmos_rtc.dev = NULL;
760         rtc_device_unregister(cmos_rtc.rtc);
761 cleanup0:
762         if (RTC_IOMAPPED)
763                 release_region(ports->start, resource_size(ports));
764         else
765                 release_mem_region(ports->start, resource_size(ports));
766         return retval;
767 }
768
769 static void cmos_do_shutdown(int rtc_irq)
770 {
771         spin_lock_irq(&rtc_lock);
772         if (is_valid_irq(rtc_irq))
773                 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
774         spin_unlock_irq(&rtc_lock);
775 }
776
777 static void __exit cmos_do_remove(struct device *dev)
778 {
779         struct cmos_rtc *cmos = dev_get_drvdata(dev);
780         struct resource *ports;
781
782         cmos_do_shutdown(cmos->irq);
783
784         sysfs_remove_bin_file(&dev->kobj, &nvram);
785
786         if (is_valid_irq(cmos->irq)) {
787                 free_irq(cmos->irq, cmos->rtc);
788                 hpet_unregister_irq_handler(cmos_interrupt);
789         }
790
791         rtc_device_unregister(cmos->rtc);
792         cmos->rtc = NULL;
793
794         ports = cmos->iomem;
795         if (RTC_IOMAPPED)
796                 release_region(ports->start, resource_size(ports));
797         else
798                 release_mem_region(ports->start, resource_size(ports));
799         cmos->iomem = NULL;
800
801         cmos->dev = NULL;
802 }
803
804 static int cmos_aie_poweroff(struct device *dev)
805 {
806         struct cmos_rtc *cmos = dev_get_drvdata(dev);
807         struct rtc_time now;
808         time64_t t_now;
809         int retval = 0;
810         unsigned char rtc_control;
811
812         if (!cmos->alarm_expires)
813                 return -EINVAL;
814
815         spin_lock_irq(&rtc_lock);
816         rtc_control = CMOS_READ(RTC_CONTROL);
817         spin_unlock_irq(&rtc_lock);
818
819         /* We only care about the situation where AIE is disabled. */
820         if (rtc_control & RTC_AIE)
821                 return -EBUSY;
822
823         cmos_read_time(dev, &now);
824         t_now = rtc_tm_to_time64(&now);
825
826         /*
827          * When enabling "RTC wake-up" in BIOS setup, the machine reboots
828          * automatically right after shutdown on some buggy boxes.
829          * This automatic rebooting issue won't happen when the alarm
830          * time is larger than now+1 seconds.
831          *
832          * If the alarm time is equal to now+1 seconds, the issue can be
833          * prevented by cancelling the alarm.
834          */
835         if (cmos->alarm_expires == t_now + 1) {
836                 struct rtc_wkalrm alarm;
837
838                 /* Cancel the AIE timer by configuring the past time. */
839                 rtc_time64_to_tm(t_now - 1, &alarm.time);
840                 alarm.enabled = 0;
841                 retval = cmos_set_alarm(dev, &alarm);
842         } else if (cmos->alarm_expires > t_now + 1) {
843                 retval = -EBUSY;
844         }
845
846         return retval;
847 }
848
849 #ifdef CONFIG_PM
850
851 static int cmos_suspend(struct device *dev)
852 {
853         struct cmos_rtc *cmos = dev_get_drvdata(dev);
854         unsigned char   tmp;
855
856         /* only the alarm might be a wakeup event source */
857         spin_lock_irq(&rtc_lock);
858         cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
859         if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
860                 unsigned char   mask;
861
862                 if (device_may_wakeup(dev))
863                         mask = RTC_IRQMASK & ~RTC_AIE;
864                 else
865                         mask = RTC_IRQMASK;
866                 tmp &= ~mask;
867                 CMOS_WRITE(tmp, RTC_CONTROL);
868                 hpet_mask_rtc_irq_bit(mask);
869
870                 cmos_checkintr(cmos, tmp);
871         }
872         spin_unlock_irq(&rtc_lock);
873
874         if (tmp & RTC_AIE) {
875                 cmos->enabled_wake = 1;
876                 if (cmos->wake_on)
877                         cmos->wake_on(dev);
878                 else
879                         enable_irq_wake(cmos->irq);
880         }
881
882         dev_dbg(dev, "suspend%s, ctrl %02x\n",
883                         (tmp & RTC_AIE) ? ", alarm may wake" : "",
884                         tmp);
885
886         return 0;
887 }
888
889 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
890  * after a detour through G3 "mechanical off", although the ACPI spec
891  * says wakeup should only work from G1/S4 "hibernate".  To most users,
892  * distinctions between S4 and S5 are pointless.  So when the hardware
893  * allows, don't draw that distinction.
894  */
895 static inline int cmos_poweroff(struct device *dev)
896 {
897         return cmos_suspend(dev);
898 }
899
900 #ifdef  CONFIG_PM_SLEEP
901
902 static void cmos_check_acpi_rtc_status(struct device *dev,
903                                        unsigned char *rtc_control);
904
905 static int cmos_resume(struct device *dev)
906 {
907         struct cmos_rtc *cmos = dev_get_drvdata(dev);
908         unsigned char tmp;
909
910         if (cmos->enabled_wake) {
911                 if (cmos->wake_off)
912                         cmos->wake_off(dev);
913                 else
914                         disable_irq_wake(cmos->irq);
915                 cmos->enabled_wake = 0;
916         }
917
918         spin_lock_irq(&rtc_lock);
919         tmp = cmos->suspend_ctrl;
920         cmos->suspend_ctrl = 0;
921         /* re-enable any irqs previously active */
922         if (tmp & RTC_IRQMASK) {
923                 unsigned char   mask;
924
925                 if (device_may_wakeup(dev))
926                         hpet_rtc_timer_init();
927
928                 do {
929                         CMOS_WRITE(tmp, RTC_CONTROL);
930                         hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
931
932                         mask = CMOS_READ(RTC_INTR_FLAGS);
933                         mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
934                         if (!is_hpet_enabled() || !is_intr(mask))
935                                 break;
936
937                         /* force one-shot behavior if HPET blocked
938                          * the wake alarm's irq
939                          */
940                         rtc_update_irq(cmos->rtc, 1, mask);
941                         tmp &= ~RTC_AIE;
942                         hpet_mask_rtc_irq_bit(RTC_AIE);
943                 } while (mask & RTC_AIE);
944
945                 if (tmp & RTC_AIE)
946                         cmos_check_acpi_rtc_status(dev, &tmp);
947         }
948         spin_unlock_irq(&rtc_lock);
949
950         dev_dbg(dev, "resume, ctrl %02x\n", tmp);
951
952         return 0;
953 }
954
955 #endif
956 #else
957
958 static inline int cmos_poweroff(struct device *dev)
959 {
960         return -ENOSYS;
961 }
962
963 #endif
964
965 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
966
967 /*----------------------------------------------------------------*/
968
969 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
970  * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
971  * probably list them in similar PNPBIOS tables; so PNP is more common.
972  *
973  * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
974  * predate even PNPBIOS should set up platform_bus devices.
975  */
976
977 #ifdef  CONFIG_ACPI
978
979 #include <linux/acpi.h>
980
981 static u32 rtc_handler(void *context)
982 {
983         struct device *dev = context;
984         struct cmos_rtc *cmos = dev_get_drvdata(dev);
985         unsigned char rtc_control = 0;
986         unsigned char rtc_intr;
987
988         spin_lock_irq(&rtc_lock);
989         if (cmos_rtc.suspend_ctrl)
990                 rtc_control = CMOS_READ(RTC_CONTROL);
991         if (rtc_control & RTC_AIE) {
992                 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
993                 CMOS_WRITE(rtc_control, RTC_CONTROL);
994                 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
995                 rtc_update_irq(cmos->rtc, 1, rtc_intr);
996         }
997         spin_unlock_irq(&rtc_lock);
998
999         pm_wakeup_event(dev, 0);
1000         acpi_clear_event(ACPI_EVENT_RTC);
1001         acpi_disable_event(ACPI_EVENT_RTC, 0);
1002         return ACPI_INTERRUPT_HANDLED;
1003 }
1004
1005 static inline void rtc_wake_setup(struct device *dev)
1006 {
1007         acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1008         /*
1009          * After the RTC handler is installed, the Fixed_RTC event should
1010          * be disabled. Only when the RTC alarm is set will it be enabled.
1011          */
1012         acpi_clear_event(ACPI_EVENT_RTC);
1013         acpi_disable_event(ACPI_EVENT_RTC, 0);
1014 }
1015
1016 static void rtc_wake_on(struct device *dev)
1017 {
1018         acpi_clear_event(ACPI_EVENT_RTC);
1019         acpi_enable_event(ACPI_EVENT_RTC, 0);
1020 }
1021
1022 static void rtc_wake_off(struct device *dev)
1023 {
1024         acpi_disable_event(ACPI_EVENT_RTC, 0);
1025 }
1026
1027 /* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find
1028  * its device node and pass extra config data.  This helps its driver use
1029  * capabilities that the now-obsolete mc146818 didn't have, and informs it
1030  * that this board's RTC is wakeup-capable (per ACPI spec).
1031  */
1032 static struct cmos_rtc_board_info acpi_rtc_info;
1033
1034 static void cmos_wake_setup(struct device *dev)
1035 {
1036         if (acpi_disabled)
1037                 return;
1038
1039         rtc_wake_setup(dev);
1040         acpi_rtc_info.wake_on = rtc_wake_on;
1041         acpi_rtc_info.wake_off = rtc_wake_off;
1042
1043         /* workaround bug in some ACPI tables */
1044         if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1045                 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1046                         acpi_gbl_FADT.month_alarm);
1047                 acpi_gbl_FADT.month_alarm = 0;
1048         }
1049
1050         acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1051         acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1052         acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1053
1054         /* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */
1055         if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1056                 dev_info(dev, "RTC can wake from S4\n");
1057
1058         dev->platform_data = &acpi_rtc_info;
1059
1060         /* RTC always wakes from S1/S2/S3, and often S4/STD */
1061         device_init_wakeup(dev, 1);
1062 }
1063
1064 static void cmos_check_acpi_rtc_status(struct device *dev,
1065                                        unsigned char *rtc_control)
1066 {
1067         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1068         acpi_event_status rtc_status;
1069         acpi_status status;
1070
1071         if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1072                 return;
1073
1074         status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1075         if (ACPI_FAILURE(status)) {
1076                 dev_err(dev, "Could not get RTC status\n");
1077         } else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1078                 unsigned char mask;
1079                 *rtc_control &= ~RTC_AIE;
1080                 CMOS_WRITE(*rtc_control, RTC_CONTROL);
1081                 mask = CMOS_READ(RTC_INTR_FLAGS);
1082                 rtc_update_irq(cmos->rtc, 1, mask);
1083         }
1084 }
1085
1086 #else
1087
1088 static void cmos_wake_setup(struct device *dev)
1089 {
1090 }
1091
1092 static void cmos_check_acpi_rtc_status(struct device *dev,
1093                                        unsigned char *rtc_control)
1094 {
1095 }
1096
1097 #endif
1098
1099 #ifdef  CONFIG_PNP
1100
1101 #include <linux/pnp.h>
1102
1103 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1104 {
1105         cmos_wake_setup(&pnp->dev);
1106
1107         if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0))
1108                 /* Some machines contain a PNP entry for the RTC, but
1109                  * don't define the IRQ. It should always be safe to
1110                  * hardcode it in these cases
1111                  */
1112                 return cmos_do_probe(&pnp->dev,
1113                                 pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
1114         else
1115                 return cmos_do_probe(&pnp->dev,
1116                                 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1117                                 pnp_irq(pnp, 0));
1118 }
1119
1120 static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
1121 {
1122         cmos_do_remove(&pnp->dev);
1123 }
1124
1125 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1126 {
1127         struct device *dev = &pnp->dev;
1128         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1129
1130         if (system_state == SYSTEM_POWER_OFF) {
1131                 int retval = cmos_poweroff(dev);
1132
1133                 if (cmos_aie_poweroff(dev) < 0 && !retval)
1134                         return;
1135         }
1136
1137         cmos_do_shutdown(cmos->irq);
1138 }
1139
1140 static const struct pnp_device_id rtc_ids[] = {
1141         { .id = "PNP0b00", },
1142         { .id = "PNP0b01", },
1143         { .id = "PNP0b02", },
1144         { },
1145 };
1146 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1147
1148 static struct pnp_driver cmos_pnp_driver = {
1149         .name           = (char *) driver_name,
1150         .id_table       = rtc_ids,
1151         .probe          = cmos_pnp_probe,
1152         .remove         = __exit_p(cmos_pnp_remove),
1153         .shutdown       = cmos_pnp_shutdown,
1154
1155         /* flag ensures resume() gets called, and stops syslog spam */
1156         .flags          = PNP_DRIVER_RES_DO_NOT_CHANGE,
1157         .driver         = {
1158                         .pm = &cmos_pm_ops,
1159         },
1160 };
1161
1162 #endif  /* CONFIG_PNP */
1163
1164 #ifdef CONFIG_OF
1165 static const struct of_device_id of_cmos_match[] = {
1166         {
1167                 .compatible = "motorola,mc146818",
1168         },
1169         { },
1170 };
1171 MODULE_DEVICE_TABLE(of, of_cmos_match);
1172
1173 static __init void cmos_of_init(struct platform_device *pdev)
1174 {
1175         struct device_node *node = pdev->dev.of_node;
1176         struct rtc_time time;
1177         int ret;
1178         const __be32 *val;
1179
1180         if (!node)
1181                 return;
1182
1183         val = of_get_property(node, "ctrl-reg", NULL);
1184         if (val)
1185                 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1186
1187         val = of_get_property(node, "freq-reg", NULL);
1188         if (val)
1189                 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1190
1191         cmos_read_time(&pdev->dev, &time);
1192         ret = rtc_valid_tm(&time);
1193         if (ret) {
1194                 struct rtc_time def_time = {
1195                         .tm_year = 1,
1196                         .tm_mday = 1,
1197                 };
1198                 cmos_set_time(&pdev->dev, &def_time);
1199         }
1200 }
1201 #else
1202 static inline void cmos_of_init(struct platform_device *pdev) {}
1203 #endif
1204 /*----------------------------------------------------------------*/
1205
1206 /* Platform setup should have set up an RTC device, when PNP is
1207  * unavailable ... this could happen even on (older) PCs.
1208  */
1209
1210 static int __init cmos_platform_probe(struct platform_device *pdev)
1211 {
1212         struct resource *resource;
1213         int irq;
1214
1215         cmos_of_init(pdev);
1216         cmos_wake_setup(&pdev->dev);
1217
1218         if (RTC_IOMAPPED)
1219                 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1220         else
1221                 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1222         irq = platform_get_irq(pdev, 0);
1223         if (irq < 0)
1224                 irq = -1;
1225
1226         return cmos_do_probe(&pdev->dev, resource, irq);
1227 }
1228
1229 static int __exit cmos_platform_remove(struct platform_device *pdev)
1230 {
1231         cmos_do_remove(&pdev->dev);
1232         return 0;
1233 }
1234
1235 static void cmos_platform_shutdown(struct platform_device *pdev)
1236 {
1237         struct device *dev = &pdev->dev;
1238         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1239
1240         if (system_state == SYSTEM_POWER_OFF) {
1241                 int retval = cmos_poweroff(dev);
1242
1243                 if (cmos_aie_poweroff(dev) < 0 && !retval)
1244                         return;
1245         }
1246
1247         cmos_do_shutdown(cmos->irq);
1248 }
1249
1250 /* work with hotplug and coldplug */
1251 MODULE_ALIAS("platform:rtc_cmos");
1252
1253 static struct platform_driver cmos_platform_driver = {
1254         .remove         = __exit_p(cmos_platform_remove),
1255         .shutdown       = cmos_platform_shutdown,
1256         .driver = {
1257                 .name           = driver_name,
1258 #ifdef CONFIG_PM
1259                 .pm             = &cmos_pm_ops,
1260 #endif
1261                 .of_match_table = of_match_ptr(of_cmos_match),
1262         }
1263 };
1264
1265 #ifdef CONFIG_PNP
1266 static bool pnp_driver_registered;
1267 #endif
1268 static bool platform_driver_registered;
1269
1270 static int __init cmos_init(void)
1271 {
1272         int retval = 0;
1273
1274 #ifdef  CONFIG_PNP
1275         retval = pnp_register_driver(&cmos_pnp_driver);
1276         if (retval == 0)
1277                 pnp_driver_registered = true;
1278 #endif
1279
1280         if (!cmos_rtc.dev) {
1281                 retval = platform_driver_probe(&cmos_platform_driver,
1282                                                cmos_platform_probe);
1283                 if (retval == 0)
1284                         platform_driver_registered = true;
1285         }
1286
1287         if (retval == 0)
1288                 return 0;
1289
1290 #ifdef  CONFIG_PNP
1291         if (pnp_driver_registered)
1292                 pnp_unregister_driver(&cmos_pnp_driver);
1293 #endif
1294         return retval;
1295 }
1296 module_init(cmos_init);
1297
1298 static void __exit cmos_exit(void)
1299 {
1300 #ifdef  CONFIG_PNP
1301         if (pnp_driver_registered)
1302                 pnp_unregister_driver(&cmos_pnp_driver);
1303 #endif
1304         if (platform_driver_registered)
1305                 platform_driver_unregister(&cmos_platform_driver);
1306 }
1307 module_exit(cmos_exit);
1308
1309
1310 MODULE_AUTHOR("David Brownell");
1311 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1312 MODULE_LICENSE("GPL");