2 * drivers/rtc/rtc-pl031.c
4 * Real Time Clock interface for ARM AMBA PrimeCell 031 RTC
6 * Author: Deepak Saxena <dsaxena@plexity.net>
8 * Copyright 2006 (c) MontaVista Software, Inc.
10 * Author: Mian Yousaf Kaukab <mian.yousaf.kaukab@stericsson.com>
11 * Copyright 2010 (c) ST-Ericsson AB
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
18 #include <linux/module.h>
19 #include <linux/rtc.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/amba/bus.h>
24 #include <linux/bcd.h>
25 #include <linux/delay.h>
26 #include <linux/version.h>
27 #include <linux/slab.h>
30 * Register definitions
32 #define RTC_DR 0x00 /* Data read register */
33 #define RTC_MR 0x04 /* Match register */
34 #define RTC_LR 0x08 /* Data load register */
35 #define RTC_CR 0x0c /* Control register */
36 #define RTC_IMSC 0x10 /* Interrupt mask and set register */
37 #define RTC_RIS 0x14 /* Raw interrupt status register */
38 #define RTC_MIS 0x18 /* Masked interrupt status register */
39 #define RTC_ICR 0x1c /* Interrupt clear register */
40 /* ST variants have additional timer functionality */
41 #define RTC_TDR 0x20 /* Timer data read register */
42 #define RTC_TLR 0x24 /* Timer data load register */
43 #define RTC_TCR 0x28 /* Timer control register */
44 #define RTC_YDR 0x30 /* Year data read register */
45 #define RTC_YMR 0x34 /* Year match register */
46 #define RTC_YLR 0x38 /* Year data load register */
48 #define RTC_CR_CWEN (1 << 26) /* Clockwatch enable bit */
50 #define RTC_TCR_EN (1 << 1) /* Periodic timer enable bit */
52 /* Common bit definitions for Interrupt status and control registers */
53 #define RTC_BIT_AI (1 << 0) /* Alarm interrupt bit */
54 #define RTC_BIT_PI (1 << 1) /* Periodic interrupt bit. ST variants only. */
56 /* Common bit definations for ST v2 for reading/writing time */
57 #define RTC_SEC_SHIFT 0
58 #define RTC_SEC_MASK (0x3F << RTC_SEC_SHIFT) /* Second [0-59] */
59 #define RTC_MIN_SHIFT 6
60 #define RTC_MIN_MASK (0x3F << RTC_MIN_SHIFT) /* Minute [0-59] */
61 #define RTC_HOUR_SHIFT 12
62 #define RTC_HOUR_MASK (0x1F << RTC_HOUR_SHIFT) /* Hour [0-23] */
63 #define RTC_WDAY_SHIFT 17
64 #define RTC_WDAY_MASK (0x7 << RTC_WDAY_SHIFT) /* Day of Week [1-7] 1=Sunday */
65 #define RTC_MDAY_SHIFT 20
66 #define RTC_MDAY_MASK (0x1F << RTC_MDAY_SHIFT) /* Day of Month [1-31] */
67 #define RTC_MON_SHIFT 25
68 #define RTC_MON_MASK (0xF << RTC_MON_SHIFT) /* Month [1-12] 1=January */
70 #define RTC_TIMER_FREQ 32768
73 struct rtc_device *rtc;
79 static int pl031_alarm_irq_enable(struct device *dev,
82 struct pl031_local *ldata = dev_get_drvdata(dev);
85 /* Clear any pending alarm interrupts. */
86 writel(RTC_BIT_AI, ldata->base + RTC_ICR);
88 imsc = readl(ldata->base + RTC_IMSC);
91 writel(imsc | RTC_BIT_AI, ldata->base + RTC_IMSC);
93 writel(imsc & ~RTC_BIT_AI, ldata->base + RTC_IMSC);
99 * Convert Gregorian date to ST v2 RTC format.
101 static int pl031_stv2_tm_to_time(struct device *dev,
102 struct rtc_time *tm, unsigned long *st_time,
103 unsigned long *bcd_year)
105 int year = tm->tm_year + 1900;
106 int wday = tm->tm_wday;
108 /* wday masking is not working in hardware so wday must be valid */
109 if (wday < -1 || wday > 6) {
110 dev_err(dev, "invalid wday value %d\n", tm->tm_wday);
112 } else if (wday == -1) {
113 /* wday is not provided, calculate it here */
115 struct rtc_time calc_tm;
117 rtc_tm_to_time(tm, &time);
118 rtc_time_to_tm(time, &calc_tm);
119 wday = calc_tm.tm_wday;
122 *bcd_year = (bin2bcd(year % 100) | bin2bcd(year / 100) << 8);
124 *st_time = ((tm->tm_mon + 1) << RTC_MON_SHIFT)
125 | (tm->tm_mday << RTC_MDAY_SHIFT)
126 | ((wday + 1) << RTC_WDAY_SHIFT)
127 | (tm->tm_hour << RTC_HOUR_SHIFT)
128 | (tm->tm_min << RTC_MIN_SHIFT)
129 | (tm->tm_sec << RTC_SEC_SHIFT);
135 * Convert ST v2 RTC format to Gregorian date.
137 static int pl031_stv2_time_to_tm(unsigned long st_time, unsigned long bcd_year,
140 tm->tm_year = bcd2bin(bcd_year) + (bcd2bin(bcd_year >> 8) * 100);
141 tm->tm_mon = ((st_time & RTC_MON_MASK) >> RTC_MON_SHIFT) - 1;
142 tm->tm_mday = ((st_time & RTC_MDAY_MASK) >> RTC_MDAY_SHIFT);
143 tm->tm_wday = ((st_time & RTC_WDAY_MASK) >> RTC_WDAY_SHIFT) - 1;
144 tm->tm_hour = ((st_time & RTC_HOUR_MASK) >> RTC_HOUR_SHIFT);
145 tm->tm_min = ((st_time & RTC_MIN_MASK) >> RTC_MIN_SHIFT);
146 tm->tm_sec = ((st_time & RTC_SEC_MASK) >> RTC_SEC_SHIFT);
148 tm->tm_yday = rtc_year_days(tm->tm_mday, tm->tm_mon, tm->tm_year);
154 static int pl031_stv2_read_time(struct device *dev, struct rtc_time *tm)
156 struct pl031_local *ldata = dev_get_drvdata(dev);
158 pl031_stv2_time_to_tm(readl(ldata->base + RTC_DR),
159 readl(ldata->base + RTC_YDR), tm);
164 static int pl031_stv2_set_time(struct device *dev, struct rtc_time *tm)
167 unsigned long bcd_year;
168 struct pl031_local *ldata = dev_get_drvdata(dev);
171 ret = pl031_stv2_tm_to_time(dev, tm, &time, &bcd_year);
173 writel(bcd_year, ldata->base + RTC_YLR);
174 writel(time, ldata->base + RTC_LR);
180 static int pl031_stv2_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
182 struct pl031_local *ldata = dev_get_drvdata(dev);
185 ret = pl031_stv2_time_to_tm(readl(ldata->base + RTC_MR),
186 readl(ldata->base + RTC_YMR), &alarm->time);
188 alarm->pending = readl(ldata->base + RTC_RIS) & RTC_BIT_AI;
189 alarm->enabled = readl(ldata->base + RTC_IMSC) & RTC_BIT_AI;
194 static int pl031_stv2_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
196 struct pl031_local *ldata = dev_get_drvdata(dev);
198 unsigned long bcd_year;
201 /* At the moment, we can only deal with non-wildcarded alarm times. */
202 ret = rtc_valid_tm(&alarm->time);
204 ret = pl031_stv2_tm_to_time(dev, &alarm->time,
207 writel(bcd_year, ldata->base + RTC_YMR);
208 writel(time, ldata->base + RTC_MR);
210 pl031_alarm_irq_enable(dev, alarm->enabled);
217 static irqreturn_t pl031_interrupt(int irq, void *dev_id)
219 struct pl031_local *ldata = dev_id;
220 unsigned long rtcmis;
221 unsigned long events = 0;
223 rtcmis = readl(ldata->base + RTC_MIS);
225 writel(rtcmis, ldata->base + RTC_ICR);
227 if (rtcmis & RTC_BIT_AI)
228 events |= (RTC_AF | RTC_IRQF);
230 /* Timer interrupt is only available in ST variants */
231 if ((rtcmis & RTC_BIT_PI) &&
232 (ldata->hw_designer == AMBA_VENDOR_ST))
233 events |= (RTC_PF | RTC_IRQF);
235 rtc_update_irq(ldata->rtc, 1, events);
243 static int pl031_read_time(struct device *dev, struct rtc_time *tm)
245 struct pl031_local *ldata = dev_get_drvdata(dev);
247 rtc_time_to_tm(readl(ldata->base + RTC_DR), tm);
252 static int pl031_set_time(struct device *dev, struct rtc_time *tm)
255 struct pl031_local *ldata = dev_get_drvdata(dev);
258 ret = rtc_tm_to_time(tm, &time);
261 writel(time, ldata->base + RTC_LR);
266 static int pl031_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
268 struct pl031_local *ldata = dev_get_drvdata(dev);
270 rtc_time_to_tm(readl(ldata->base + RTC_MR), &alarm->time);
272 alarm->pending = readl(ldata->base + RTC_RIS) & RTC_BIT_AI;
273 alarm->enabled = readl(ldata->base + RTC_IMSC) & RTC_BIT_AI;
278 static int pl031_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
280 struct pl031_local *ldata = dev_get_drvdata(dev);
284 /* At the moment, we can only deal with non-wildcarded alarm times. */
285 ret = rtc_valid_tm(&alarm->time);
287 ret = rtc_tm_to_time(&alarm->time, &time);
289 writel(time, ldata->base + RTC_MR);
290 pl031_alarm_irq_enable(dev, alarm->enabled);
297 /* Periodic interrupt is only available in ST variants. */
298 static int pl031_irq_set_state(struct device *dev, int enabled)
300 struct pl031_local *ldata = dev_get_drvdata(dev);
303 /* Clear any pending timer interrupt. */
304 writel(RTC_BIT_PI, ldata->base + RTC_ICR);
306 writel(readl(ldata->base + RTC_IMSC) | RTC_BIT_PI,
307 ldata->base + RTC_IMSC);
309 /* Now start the timer */
310 writel(readl(ldata->base + RTC_TCR) | RTC_TCR_EN,
311 ldata->base + RTC_TCR);
314 writel(readl(ldata->base + RTC_IMSC) & (~RTC_BIT_PI),
315 ldata->base + RTC_IMSC);
317 /* Also stop the timer */
318 writel(readl(ldata->base + RTC_TCR) & (~RTC_TCR_EN),
319 ldata->base + RTC_TCR);
321 /* Wait at least 1 RTC32 clock cycle to ensure next access
322 * to RTC_TCR will succeed.
329 static int pl031_irq_set_freq(struct device *dev, int freq)
331 struct pl031_local *ldata = dev_get_drvdata(dev);
333 /* Cant set timer if it is already enabled */
334 if (readl(ldata->base + RTC_TCR) & RTC_TCR_EN) {
335 dev_err(dev, "can't change frequency while timer enabled\n");
339 /* If self start bit in RTC_TCR is set timer will start here,
340 * but we never set that bit. Instead we start the timer when
341 * set_state is called with enabled == 1.
343 writel(RTC_TIMER_FREQ / freq, ldata->base + RTC_TLR);
348 static int pl031_remove(struct amba_device *adev)
350 struct pl031_local *ldata = dev_get_drvdata(&adev->dev);
352 amba_set_drvdata(adev, NULL);
353 free_irq(adev->irq[0], ldata->rtc);
354 rtc_device_unregister(ldata->rtc);
355 iounmap(ldata->base);
357 amba_release_regions(adev);
362 static int pl031_probe(struct amba_device *adev, struct amba_id *id)
365 struct pl031_local *ldata;
366 struct rtc_class_ops *ops = id->data;
368 ret = amba_request_regions(adev, NULL);
372 ldata = kzalloc(sizeof(struct pl031_local), GFP_KERNEL);
378 ldata->base = ioremap(adev->res.start, resource_size(&adev->res));
385 amba_set_drvdata(adev, ldata);
387 ldata->hw_designer = amba_manf(adev);
388 ldata->hw_revision = amba_rev(adev);
390 dev_dbg(&adev->dev, "designer ID = 0x%02x\n", ldata->hw_designer);
391 dev_dbg(&adev->dev, "revision = 0x%01x\n", ldata->hw_revision);
393 /* Enable the clockwatch on ST Variants */
394 if ((ldata->hw_designer == AMBA_VENDOR_ST) &&
395 (ldata->hw_revision > 1))
396 writel(readl(ldata->base + RTC_CR) | RTC_CR_CWEN,
397 ldata->base + RTC_CR);
399 ldata->rtc = rtc_device_register("pl031", &adev->dev, ops,
401 if (IS_ERR(ldata->rtc)) {
402 ret = PTR_ERR(ldata->rtc);
406 if (request_irq(adev->irq[0], pl031_interrupt,
407 IRQF_DISABLED | IRQF_SHARED, "rtc-pl031", ldata)) {
415 rtc_device_unregister(ldata->rtc);
417 iounmap(ldata->base);
418 amba_set_drvdata(adev, NULL);
422 amba_release_regions(adev);
428 /* Operations for the original ARM version */
429 static struct rtc_class_ops arm_pl031_ops = {
430 .read_time = pl031_read_time,
431 .set_time = pl031_set_time,
432 .read_alarm = pl031_read_alarm,
433 .set_alarm = pl031_set_alarm,
434 .alarm_irq_enable = pl031_alarm_irq_enable,
437 /* The First ST derivative */
438 static struct rtc_class_ops stv1_pl031_ops = {
439 .read_time = pl031_read_time,
440 .set_time = pl031_set_time,
441 .read_alarm = pl031_read_alarm,
442 .set_alarm = pl031_set_alarm,
443 .alarm_irq_enable = pl031_alarm_irq_enable,
444 .irq_set_state = pl031_irq_set_state,
445 .irq_set_freq = pl031_irq_set_freq,
448 /* And the second ST derivative */
449 static struct rtc_class_ops stv2_pl031_ops = {
450 .read_time = pl031_stv2_read_time,
451 .set_time = pl031_stv2_set_time,
452 .read_alarm = pl031_stv2_read_alarm,
453 .set_alarm = pl031_stv2_set_alarm,
454 .alarm_irq_enable = pl031_alarm_irq_enable,
455 .irq_set_state = pl031_irq_set_state,
456 .irq_set_freq = pl031_irq_set_freq,
459 static struct amba_id pl031_ids[] __initdata = {
463 .data = &arm_pl031_ops,
465 /* ST Micro variants */
469 .data = &stv1_pl031_ops,
474 .data = &stv2_pl031_ops,
479 static struct amba_driver pl031_driver = {
483 .id_table = pl031_ids,
484 .probe = pl031_probe,
485 .remove = pl031_remove,
488 static int __init pl031_init(void)
490 return amba_driver_register(&pl031_driver);
493 static void __exit pl031_exit(void)
495 amba_driver_unregister(&pl031_driver);
498 module_init(pl031_init);
499 module_exit(pl031_exit);
501 MODULE_AUTHOR("Deepak Saxena <dsaxena@plexity.net");
502 MODULE_DESCRIPTION("ARM AMBA PL031 RTC Driver");
503 MODULE_LICENSE("GPL");