]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/rtc/rtc-sh.c
Merge branch 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mv-sheeva.git] / drivers / rtc / rtc-sh.c
1 /*
2  * SuperH On-Chip RTC Support
3  *
4  * Copyright (C) 2006 - 2009  Paul Mundt
5  * Copyright (C) 2006  Jamie Lenehan
6  * Copyright (C) 2008  Angelo Castello
7  *
8  * Based on the old arch/sh/kernel/cpu/rtc.c by:
9  *
10  *  Copyright (C) 2000  Philipp Rumpf <prumpf@tux.org>
11  *  Copyright (C) 1999  Tetsuya Okada & Niibe Yutaka
12  *
13  * This file is subject to the terms and conditions of the GNU General Public
14  * License.  See the file "COPYING" in the main directory of this archive
15  * for more details.
16  */
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/bcd.h>
20 #include <linux/rtc.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/seq_file.h>
24 #include <linux/interrupt.h>
25 #include <linux/spinlock.h>
26 #include <linux/io.h>
27 #include <linux/log2.h>
28 #include <linux/clk.h>
29 #include <asm/rtc.h>
30
31 #define DRV_NAME        "sh-rtc"
32 #define DRV_VERSION     "0.2.2"
33
34 #define RTC_REG(r)      ((r) * rtc_reg_size)
35
36 #define R64CNT          RTC_REG(0)
37
38 #define RSECCNT         RTC_REG(1)      /* RTC sec */
39 #define RMINCNT         RTC_REG(2)      /* RTC min */
40 #define RHRCNT          RTC_REG(3)      /* RTC hour */
41 #define RWKCNT          RTC_REG(4)      /* RTC week */
42 #define RDAYCNT         RTC_REG(5)      /* RTC day */
43 #define RMONCNT         RTC_REG(6)      /* RTC month */
44 #define RYRCNT          RTC_REG(7)      /* RTC year */
45 #define RSECAR          RTC_REG(8)      /* ALARM sec */
46 #define RMINAR          RTC_REG(9)      /* ALARM min */
47 #define RHRAR           RTC_REG(10)     /* ALARM hour */
48 #define RWKAR           RTC_REG(11)     /* ALARM week */
49 #define RDAYAR          RTC_REG(12)     /* ALARM day */
50 #define RMONAR          RTC_REG(13)     /* ALARM month */
51 #define RCR1            RTC_REG(14)     /* Control */
52 #define RCR2            RTC_REG(15)     /* Control */
53
54 /*
55  * Note on RYRAR and RCR3: Up until this point most of the register
56  * definitions are consistent across all of the available parts. However,
57  * the placement of the optional RYRAR and RCR3 (the RYRAR control
58  * register used to control RYRCNT/RYRAR compare) varies considerably
59  * across various parts, occasionally being mapped in to a completely
60  * unrelated address space. For proper RYRAR support a separate resource
61  * would have to be handed off, but as this is purely optional in
62  * practice, we simply opt not to support it, thereby keeping the code
63  * quite a bit more simplified.
64  */
65
66 /* ALARM Bits - or with BCD encoded value */
67 #define AR_ENB          0x80    /* Enable for alarm cmp   */
68
69 /* Period Bits */
70 #define PF_HP           0x100   /* Enable Half Period to support 8,32,128Hz */
71 #define PF_COUNT        0x200   /* Half periodic counter */
72 #define PF_OXS          0x400   /* Periodic One x Second */
73 #define PF_KOU          0x800   /* Kernel or User periodic request 1=kernel */
74 #define PF_MASK         0xf00
75
76 /* RCR1 Bits */
77 #define RCR1_CF         0x80    /* Carry Flag             */
78 #define RCR1_CIE        0x10    /* Carry Interrupt Enable */
79 #define RCR1_AIE        0x08    /* Alarm Interrupt Enable */
80 #define RCR1_AF         0x01    /* Alarm Flag             */
81
82 /* RCR2 Bits */
83 #define RCR2_PEF        0x80    /* PEriodic interrupt Flag */
84 #define RCR2_PESMASK    0x70    /* Periodic interrupt Set  */
85 #define RCR2_RTCEN      0x08    /* ENable RTC              */
86 #define RCR2_ADJ        0x04    /* ADJustment (30-second)  */
87 #define RCR2_RESET      0x02    /* Reset bit               */
88 #define RCR2_START      0x01    /* Start bit               */
89
90 struct sh_rtc {
91         void __iomem            *regbase;
92         unsigned long           regsize;
93         struct resource         *res;
94         int                     alarm_irq;
95         int                     periodic_irq;
96         int                     carry_irq;
97         struct clk              *clk;
98         struct rtc_device       *rtc_dev;
99         spinlock_t              lock;
100         unsigned long           capabilities;   /* See asm/rtc.h for cap bits */
101         unsigned short          periodic_freq;
102 };
103
104 static int __sh_rtc_interrupt(struct sh_rtc *rtc)
105 {
106         unsigned int tmp, pending;
107
108         tmp = readb(rtc->regbase + RCR1);
109         pending = tmp & RCR1_CF;
110         tmp &= ~RCR1_CF;
111         writeb(tmp, rtc->regbase + RCR1);
112
113         /* Users have requested One x Second IRQ */
114         if (pending && rtc->periodic_freq & PF_OXS)
115                 rtc_update_irq(rtc->rtc_dev, 1, RTC_UF | RTC_IRQF);
116
117         return pending;
118 }
119
120 static int __sh_rtc_alarm(struct sh_rtc *rtc)
121 {
122         unsigned int tmp, pending;
123
124         tmp = readb(rtc->regbase + RCR1);
125         pending = tmp & RCR1_AF;
126         tmp &= ~(RCR1_AF | RCR1_AIE);
127         writeb(tmp, rtc->regbase + RCR1);
128
129         if (pending)
130                 rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF);
131
132         return pending;
133 }
134
135 static int __sh_rtc_periodic(struct sh_rtc *rtc)
136 {
137         struct rtc_device *rtc_dev = rtc->rtc_dev;
138         struct rtc_task *irq_task;
139         unsigned int tmp, pending;
140
141         tmp = readb(rtc->regbase + RCR2);
142         pending = tmp & RCR2_PEF;
143         tmp &= ~RCR2_PEF;
144         writeb(tmp, rtc->regbase + RCR2);
145
146         if (!pending)
147                 return 0;
148
149         /* Half period enabled than one skipped and the next notified */
150         if ((rtc->periodic_freq & PF_HP) && (rtc->periodic_freq & PF_COUNT))
151                 rtc->periodic_freq &= ~PF_COUNT;
152         else {
153                 if (rtc->periodic_freq & PF_HP)
154                         rtc->periodic_freq |= PF_COUNT;
155                 if (rtc->periodic_freq & PF_KOU) {
156                         spin_lock(&rtc_dev->irq_task_lock);
157                         irq_task = rtc_dev->irq_task;
158                         if (irq_task)
159                                 irq_task->func(irq_task->private_data);
160                         spin_unlock(&rtc_dev->irq_task_lock);
161                 } else
162                         rtc_update_irq(rtc->rtc_dev, 1, RTC_PF | RTC_IRQF);
163         }
164
165         return pending;
166 }
167
168 static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id)
169 {
170         struct sh_rtc *rtc = dev_id;
171         int ret;
172
173         spin_lock(&rtc->lock);
174         ret = __sh_rtc_interrupt(rtc);
175         spin_unlock(&rtc->lock);
176
177         return IRQ_RETVAL(ret);
178 }
179
180 static irqreturn_t sh_rtc_alarm(int irq, void *dev_id)
181 {
182         struct sh_rtc *rtc = dev_id;
183         int ret;
184
185         spin_lock(&rtc->lock);
186         ret = __sh_rtc_alarm(rtc);
187         spin_unlock(&rtc->lock);
188
189         return IRQ_RETVAL(ret);
190 }
191
192 static irqreturn_t sh_rtc_periodic(int irq, void *dev_id)
193 {
194         struct sh_rtc *rtc = dev_id;
195         int ret;
196
197         spin_lock(&rtc->lock);
198         ret = __sh_rtc_periodic(rtc);
199         spin_unlock(&rtc->lock);
200
201         return IRQ_RETVAL(ret);
202 }
203
204 static irqreturn_t sh_rtc_shared(int irq, void *dev_id)
205 {
206         struct sh_rtc *rtc = dev_id;
207         int ret;
208
209         spin_lock(&rtc->lock);
210         ret = __sh_rtc_interrupt(rtc);
211         ret |= __sh_rtc_alarm(rtc);
212         ret |= __sh_rtc_periodic(rtc);
213         spin_unlock(&rtc->lock);
214
215         return IRQ_RETVAL(ret);
216 }
217
218 static inline void sh_rtc_setpie(struct device *dev, unsigned int enable)
219 {
220         struct sh_rtc *rtc = dev_get_drvdata(dev);
221         unsigned int tmp;
222
223         spin_lock_irq(&rtc->lock);
224
225         tmp = readb(rtc->regbase + RCR2);
226
227         if (enable) {
228                 tmp &= ~RCR2_PEF;       /* Clear PES bit */
229                 tmp |= (rtc->periodic_freq & ~PF_HP);   /* Set PES2-0 */
230         } else
231                 tmp &= ~(RCR2_PESMASK | RCR2_PEF);
232
233         writeb(tmp, rtc->regbase + RCR2);
234
235         spin_unlock_irq(&rtc->lock);
236 }
237
238 static inline int sh_rtc_setfreq(struct device *dev, unsigned int freq)
239 {
240         struct sh_rtc *rtc = dev_get_drvdata(dev);
241         int tmp, ret = 0;
242
243         spin_lock_irq(&rtc->lock);
244         tmp = rtc->periodic_freq & PF_MASK;
245
246         switch (freq) {
247         case 0:
248                 rtc->periodic_freq = 0x00;
249                 break;
250         case 1:
251                 rtc->periodic_freq = 0x60;
252                 break;
253         case 2:
254                 rtc->periodic_freq = 0x50;
255                 break;
256         case 4:
257                 rtc->periodic_freq = 0x40;
258                 break;
259         case 8:
260                 rtc->periodic_freq = 0x30 | PF_HP;
261                 break;
262         case 16:
263                 rtc->periodic_freq = 0x30;
264                 break;
265         case 32:
266                 rtc->periodic_freq = 0x20 | PF_HP;
267                 break;
268         case 64:
269                 rtc->periodic_freq = 0x20;
270                 break;
271         case 128:
272                 rtc->periodic_freq = 0x10 | PF_HP;
273                 break;
274         case 256:
275                 rtc->periodic_freq = 0x10;
276                 break;
277         default:
278                 ret = -ENOTSUPP;
279         }
280
281         if (ret == 0) {
282                 rtc->periodic_freq |= tmp;
283                 rtc->rtc_dev->irq_freq = freq;
284         }
285
286         spin_unlock_irq(&rtc->lock);
287         return ret;
288 }
289
290 static inline void sh_rtc_setaie(struct device *dev, unsigned int enable)
291 {
292         struct sh_rtc *rtc = dev_get_drvdata(dev);
293         unsigned int tmp;
294
295         spin_lock_irq(&rtc->lock);
296
297         tmp = readb(rtc->regbase + RCR1);
298
299         if (enable)
300                 tmp |= RCR1_AIE;
301         else
302                 tmp &= ~RCR1_AIE;
303
304         writeb(tmp, rtc->regbase + RCR1);
305
306         spin_unlock_irq(&rtc->lock);
307 }
308
309 static int sh_rtc_proc(struct device *dev, struct seq_file *seq)
310 {
311         struct sh_rtc *rtc = dev_get_drvdata(dev);
312         unsigned int tmp;
313
314         tmp = readb(rtc->regbase + RCR1);
315         seq_printf(seq, "carry_IRQ\t: %s\n", (tmp & RCR1_CIE) ? "yes" : "no");
316
317         tmp = readb(rtc->regbase + RCR2);
318         seq_printf(seq, "periodic_IRQ\t: %s\n",
319                    (tmp & RCR2_PESMASK) ? "yes" : "no");
320
321         return 0;
322 }
323
324 static inline void sh_rtc_setcie(struct device *dev, unsigned int enable)
325 {
326         struct sh_rtc *rtc = dev_get_drvdata(dev);
327         unsigned int tmp;
328
329         spin_lock_irq(&rtc->lock);
330
331         tmp = readb(rtc->regbase + RCR1);
332
333         if (!enable)
334                 tmp &= ~RCR1_CIE;
335         else
336                 tmp |= RCR1_CIE;
337
338         writeb(tmp, rtc->regbase + RCR1);
339
340         spin_unlock_irq(&rtc->lock);
341 }
342
343 static int sh_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
344 {
345         struct sh_rtc *rtc = dev_get_drvdata(dev);
346         unsigned int ret = 0;
347
348         switch (cmd) {
349         case RTC_PIE_OFF:
350         case RTC_PIE_ON:
351                 sh_rtc_setpie(dev, cmd == RTC_PIE_ON);
352                 break;
353         case RTC_AIE_OFF:
354         case RTC_AIE_ON:
355                 sh_rtc_setaie(dev, cmd == RTC_AIE_ON);
356                 break;
357         case RTC_UIE_OFF:
358                 rtc->periodic_freq &= ~PF_OXS;
359                 sh_rtc_setcie(dev, 0);
360                 break;
361         case RTC_UIE_ON:
362                 rtc->periodic_freq |= PF_OXS;
363                 sh_rtc_setcie(dev, 1);
364                 break;
365         case RTC_IRQP_READ:
366                 ret = put_user(rtc->rtc_dev->irq_freq,
367                                (unsigned long __user *)arg);
368                 break;
369         case RTC_IRQP_SET:
370                 ret = sh_rtc_setfreq(dev, arg);
371                 break;
372         default:
373                 ret = -ENOIOCTLCMD;
374         }
375
376         return ret;
377 }
378
379 static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm)
380 {
381         struct platform_device *pdev = to_platform_device(dev);
382         struct sh_rtc *rtc = platform_get_drvdata(pdev);
383         unsigned int sec128, sec2, yr, yr100, cf_bit;
384
385         do {
386                 unsigned int tmp;
387
388                 spin_lock_irq(&rtc->lock);
389
390                 tmp = readb(rtc->regbase + RCR1);
391                 tmp &= ~RCR1_CF; /* Clear CF-bit */
392                 tmp |= RCR1_CIE;
393                 writeb(tmp, rtc->regbase + RCR1);
394
395                 sec128 = readb(rtc->regbase + R64CNT);
396
397                 tm->tm_sec      = bcd2bin(readb(rtc->regbase + RSECCNT));
398                 tm->tm_min      = bcd2bin(readb(rtc->regbase + RMINCNT));
399                 tm->tm_hour     = bcd2bin(readb(rtc->regbase + RHRCNT));
400                 tm->tm_wday     = bcd2bin(readb(rtc->regbase + RWKCNT));
401                 tm->tm_mday     = bcd2bin(readb(rtc->regbase + RDAYCNT));
402                 tm->tm_mon      = bcd2bin(readb(rtc->regbase + RMONCNT)) - 1;
403
404                 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
405                         yr  = readw(rtc->regbase + RYRCNT);
406                         yr100 = bcd2bin(yr >> 8);
407                         yr &= 0xff;
408                 } else {
409                         yr  = readb(rtc->regbase + RYRCNT);
410                         yr100 = bcd2bin((yr == 0x99) ? 0x19 : 0x20);
411                 }
412
413                 tm->tm_year = (yr100 * 100 + bcd2bin(yr)) - 1900;
414
415                 sec2 = readb(rtc->regbase + R64CNT);
416                 cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF;
417
418                 spin_unlock_irq(&rtc->lock);
419         } while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0);
420
421 #if RTC_BIT_INVERTED != 0
422         if ((sec128 & RTC_BIT_INVERTED))
423                 tm->tm_sec--;
424 #endif
425
426         /* only keep the carry interrupt enabled if UIE is on */
427         if (!(rtc->periodic_freq & PF_OXS))
428                 sh_rtc_setcie(dev, 0);
429
430         dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
431                 "mday=%d, mon=%d, year=%d, wday=%d\n",
432                 __func__,
433                 tm->tm_sec, tm->tm_min, tm->tm_hour,
434                 tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday);
435
436         return rtc_valid_tm(tm);
437 }
438
439 static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm)
440 {
441         struct platform_device *pdev = to_platform_device(dev);
442         struct sh_rtc *rtc = platform_get_drvdata(pdev);
443         unsigned int tmp;
444         int year;
445
446         spin_lock_irq(&rtc->lock);
447
448         /* Reset pre-scaler & stop RTC */
449         tmp = readb(rtc->regbase + RCR2);
450         tmp |= RCR2_RESET;
451         tmp &= ~RCR2_START;
452         writeb(tmp, rtc->regbase + RCR2);
453
454         writeb(bin2bcd(tm->tm_sec),  rtc->regbase + RSECCNT);
455         writeb(bin2bcd(tm->tm_min),  rtc->regbase + RMINCNT);
456         writeb(bin2bcd(tm->tm_hour), rtc->regbase + RHRCNT);
457         writeb(bin2bcd(tm->tm_wday), rtc->regbase + RWKCNT);
458         writeb(bin2bcd(tm->tm_mday), rtc->regbase + RDAYCNT);
459         writeb(bin2bcd(tm->tm_mon + 1), rtc->regbase + RMONCNT);
460
461         if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
462                 year = (bin2bcd((tm->tm_year + 1900) / 100) << 8) |
463                         bin2bcd(tm->tm_year % 100);
464                 writew(year, rtc->regbase + RYRCNT);
465         } else {
466                 year = tm->tm_year % 100;
467                 writeb(bin2bcd(year), rtc->regbase + RYRCNT);
468         }
469
470         /* Start RTC */
471         tmp = readb(rtc->regbase + RCR2);
472         tmp &= ~RCR2_RESET;
473         tmp |= RCR2_RTCEN | RCR2_START;
474         writeb(tmp, rtc->regbase + RCR2);
475
476         spin_unlock_irq(&rtc->lock);
477
478         return 0;
479 }
480
481 static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off)
482 {
483         unsigned int byte;
484         int value = 0xff;       /* return 0xff for ignored values */
485
486         byte = readb(rtc->regbase + reg_off);
487         if (byte & AR_ENB) {
488                 byte &= ~AR_ENB;        /* strip the enable bit */
489                 value = bcd2bin(byte);
490         }
491
492         return value;
493 }
494
495 static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
496 {
497         struct platform_device *pdev = to_platform_device(dev);
498         struct sh_rtc *rtc = platform_get_drvdata(pdev);
499         struct rtc_time *tm = &wkalrm->time;
500
501         spin_lock_irq(&rtc->lock);
502
503         tm->tm_sec      = sh_rtc_read_alarm_value(rtc, RSECAR);
504         tm->tm_min      = sh_rtc_read_alarm_value(rtc, RMINAR);
505         tm->tm_hour     = sh_rtc_read_alarm_value(rtc, RHRAR);
506         tm->tm_wday     = sh_rtc_read_alarm_value(rtc, RWKAR);
507         tm->tm_mday     = sh_rtc_read_alarm_value(rtc, RDAYAR);
508         tm->tm_mon      = sh_rtc_read_alarm_value(rtc, RMONAR);
509         if (tm->tm_mon > 0)
510                 tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */
511         tm->tm_year     = 0xffff;
512
513         wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0;
514
515         spin_unlock_irq(&rtc->lock);
516
517         return 0;
518 }
519
520 static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc,
521                                             int value, int reg_off)
522 {
523         /* < 0 for a value that is ignored */
524         if (value < 0)
525                 writeb(0, rtc->regbase + reg_off);
526         else
527                 writeb(bin2bcd(value) | AR_ENB,  rtc->regbase + reg_off);
528 }
529
530 static int sh_rtc_check_alarm(struct rtc_time *tm)
531 {
532         /*
533          * The original rtc says anything > 0xc0 is "don't care" or "match
534          * all" - most users use 0xff but rtc-dev uses -1 for the same thing.
535          * The original rtc doesn't support years - some things use -1 and
536          * some 0xffff. We use -1 to make out tests easier.
537          */
538         if (tm->tm_year == 0xffff)
539                 tm->tm_year = -1;
540         if (tm->tm_mon >= 0xff)
541                 tm->tm_mon = -1;
542         if (tm->tm_mday >= 0xff)
543                 tm->tm_mday = -1;
544         if (tm->tm_wday >= 0xff)
545                 tm->tm_wday = -1;
546         if (tm->tm_hour >= 0xff)
547                 tm->tm_hour = -1;
548         if (tm->tm_min >= 0xff)
549                 tm->tm_min = -1;
550         if (tm->tm_sec >= 0xff)
551                 tm->tm_sec = -1;
552
553         if (tm->tm_year > 9999 ||
554                 tm->tm_mon >= 12 ||
555                 tm->tm_mday == 0 || tm->tm_mday >= 32 ||
556                 tm->tm_wday >= 7 ||
557                 tm->tm_hour >= 24 ||
558                 tm->tm_min >= 60 ||
559                 tm->tm_sec >= 60)
560                 return -EINVAL;
561
562         return 0;
563 }
564
565 static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
566 {
567         struct platform_device *pdev = to_platform_device(dev);
568         struct sh_rtc *rtc = platform_get_drvdata(pdev);
569         unsigned int rcr1;
570         struct rtc_time *tm = &wkalrm->time;
571         int mon, err;
572
573         err = sh_rtc_check_alarm(tm);
574         if (unlikely(err < 0))
575                 return err;
576
577         spin_lock_irq(&rtc->lock);
578
579         /* disable alarm interrupt and clear the alarm flag */
580         rcr1 = readb(rtc->regbase + RCR1);
581         rcr1 &= ~(RCR1_AF | RCR1_AIE);
582         writeb(rcr1, rtc->regbase + RCR1);
583
584         /* set alarm time */
585         sh_rtc_write_alarm_value(rtc, tm->tm_sec,  RSECAR);
586         sh_rtc_write_alarm_value(rtc, tm->tm_min,  RMINAR);
587         sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR);
588         sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR);
589         sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR);
590         mon = tm->tm_mon;
591         if (mon >= 0)
592                 mon += 1;
593         sh_rtc_write_alarm_value(rtc, mon, RMONAR);
594
595         if (wkalrm->enabled) {
596                 rcr1 |= RCR1_AIE;
597                 writeb(rcr1, rtc->regbase + RCR1);
598         }
599
600         spin_unlock_irq(&rtc->lock);
601
602         return 0;
603 }
604
605 static int sh_rtc_irq_set_state(struct device *dev, int enabled)
606 {
607         struct platform_device *pdev = to_platform_device(dev);
608         struct sh_rtc *rtc = platform_get_drvdata(pdev);
609
610         if (enabled) {
611                 rtc->periodic_freq |= PF_KOU;
612                 return sh_rtc_ioctl(dev, RTC_PIE_ON, 0);
613         } else {
614                 rtc->periodic_freq &= ~PF_KOU;
615                 return sh_rtc_ioctl(dev, RTC_PIE_OFF, 0);
616         }
617 }
618
619 static int sh_rtc_irq_set_freq(struct device *dev, int freq)
620 {
621         if (!is_power_of_2(freq))
622                 return -EINVAL;
623
624         return sh_rtc_ioctl(dev, RTC_IRQP_SET, freq);
625 }
626
627 static struct rtc_class_ops sh_rtc_ops = {
628         .ioctl          = sh_rtc_ioctl,
629         .read_time      = sh_rtc_read_time,
630         .set_time       = sh_rtc_set_time,
631         .read_alarm     = sh_rtc_read_alarm,
632         .set_alarm      = sh_rtc_set_alarm,
633         .irq_set_state  = sh_rtc_irq_set_state,
634         .irq_set_freq   = sh_rtc_irq_set_freq,
635         .proc           = sh_rtc_proc,
636 };
637
638 static int __devinit sh_rtc_probe(struct platform_device *pdev)
639 {
640         struct sh_rtc *rtc;
641         struct resource *res;
642         struct rtc_time r;
643         char clk_name[6];
644         int clk_id, ret;
645
646         rtc = kzalloc(sizeof(struct sh_rtc), GFP_KERNEL);
647         if (unlikely(!rtc))
648                 return -ENOMEM;
649
650         spin_lock_init(&rtc->lock);
651
652         /* get periodic/carry/alarm irqs */
653         ret = platform_get_irq(pdev, 0);
654         if (unlikely(ret <= 0)) {
655                 ret = -ENOENT;
656                 dev_err(&pdev->dev, "No IRQ resource\n");
657                 goto err_badres;
658         }
659
660         rtc->periodic_irq = ret;
661         rtc->carry_irq = platform_get_irq(pdev, 1);
662         rtc->alarm_irq = platform_get_irq(pdev, 2);
663
664         res = platform_get_resource(pdev, IORESOURCE_IO, 0);
665         if (unlikely(res == NULL)) {
666                 ret = -ENOENT;
667                 dev_err(&pdev->dev, "No IO resource\n");
668                 goto err_badres;
669         }
670
671         rtc->regsize = resource_size(res);
672
673         rtc->res = request_mem_region(res->start, rtc->regsize, pdev->name);
674         if (unlikely(!rtc->res)) {
675                 ret = -EBUSY;
676                 goto err_badres;
677         }
678
679         rtc->regbase = ioremap_nocache(rtc->res->start, rtc->regsize);
680         if (unlikely(!rtc->regbase)) {
681                 ret = -EINVAL;
682                 goto err_badmap;
683         }
684
685         clk_id = pdev->id;
686         /* With a single device, the clock id is still "rtc0" */
687         if (clk_id < 0)
688                 clk_id = 0;
689
690         snprintf(clk_name, sizeof(clk_name), "rtc%d", clk_id);
691
692         rtc->clk = clk_get(&pdev->dev, clk_name);
693         if (IS_ERR(rtc->clk)) {
694                 /*
695                  * No error handling for rtc->clk intentionally, not all
696                  * platforms will have a unique clock for the RTC, and
697                  * the clk API can handle the struct clk pointer being
698                  * NULL.
699                  */
700                 rtc->clk = NULL;
701         }
702
703         clk_enable(rtc->clk);
704
705         rtc->rtc_dev = rtc_device_register("sh", &pdev->dev,
706                                            &sh_rtc_ops, THIS_MODULE);
707         if (IS_ERR(rtc->rtc_dev)) {
708                 ret = PTR_ERR(rtc->rtc_dev);
709                 goto err_unmap;
710         }
711
712         rtc->capabilities = RTC_DEF_CAPABILITIES;
713         if (pdev->dev.platform_data) {
714                 struct sh_rtc_platform_info *pinfo = pdev->dev.platform_data;
715
716                 /*
717                  * Some CPUs have special capabilities in addition to the
718                  * default set. Add those in here.
719                  */
720                 rtc->capabilities |= pinfo->capabilities;
721         }
722
723         rtc->rtc_dev->max_user_freq = 256;
724
725         platform_set_drvdata(pdev, rtc);
726
727         if (rtc->carry_irq <= 0) {
728                 /* register shared periodic/carry/alarm irq */
729                 ret = request_irq(rtc->periodic_irq, sh_rtc_shared,
730                                   IRQF_DISABLED, "sh-rtc", rtc);
731                 if (unlikely(ret)) {
732                         dev_err(&pdev->dev,
733                                 "request IRQ failed with %d, IRQ %d\n", ret,
734                                 rtc->periodic_irq);
735                         goto err_unmap;
736                 }
737         } else {
738                 /* register periodic/carry/alarm irqs */
739                 ret = request_irq(rtc->periodic_irq, sh_rtc_periodic,
740                                   IRQF_DISABLED, "sh-rtc period", rtc);
741                 if (unlikely(ret)) {
742                         dev_err(&pdev->dev,
743                                 "request period IRQ failed with %d, IRQ %d\n",
744                                 ret, rtc->periodic_irq);
745                         goto err_unmap;
746                 }
747
748                 ret = request_irq(rtc->carry_irq, sh_rtc_interrupt,
749                                   IRQF_DISABLED, "sh-rtc carry", rtc);
750                 if (unlikely(ret)) {
751                         dev_err(&pdev->dev,
752                                 "request carry IRQ failed with %d, IRQ %d\n",
753                                 ret, rtc->carry_irq);
754                         free_irq(rtc->periodic_irq, rtc);
755                         goto err_unmap;
756                 }
757
758                 ret = request_irq(rtc->alarm_irq, sh_rtc_alarm,
759                                   IRQF_DISABLED, "sh-rtc alarm", rtc);
760                 if (unlikely(ret)) {
761                         dev_err(&pdev->dev,
762                                 "request alarm IRQ failed with %d, IRQ %d\n",
763                                 ret, rtc->alarm_irq);
764                         free_irq(rtc->carry_irq, rtc);
765                         free_irq(rtc->periodic_irq, rtc);
766                         goto err_unmap;
767                 }
768         }
769
770         /* everything disabled by default */
771         rtc->periodic_freq = 0;
772         rtc->rtc_dev->irq_freq = 0;
773         sh_rtc_setpie(&pdev->dev, 0);
774         sh_rtc_setaie(&pdev->dev, 0);
775         sh_rtc_setcie(&pdev->dev, 0);
776
777         /* reset rtc to epoch 0 if time is invalid */
778         if (rtc_read_time(rtc->rtc_dev, &r) < 0) {
779                 rtc_time_to_tm(0, &r);
780                 rtc_set_time(rtc->rtc_dev, &r);
781         }
782
783         device_init_wakeup(&pdev->dev, 1);
784         return 0;
785
786 err_unmap:
787         clk_disable(rtc->clk);
788         clk_put(rtc->clk);
789         iounmap(rtc->regbase);
790 err_badmap:
791         release_resource(rtc->res);
792 err_badres:
793         kfree(rtc);
794
795         return ret;
796 }
797
798 static int __devexit sh_rtc_remove(struct platform_device *pdev)
799 {
800         struct sh_rtc *rtc = platform_get_drvdata(pdev);
801
802         if (likely(rtc->rtc_dev))
803                 rtc_device_unregister(rtc->rtc_dev);
804
805         sh_rtc_setpie(&pdev->dev, 0);
806         sh_rtc_setaie(&pdev->dev, 0);
807         sh_rtc_setcie(&pdev->dev, 0);
808
809         free_irq(rtc->periodic_irq, rtc);
810
811         if (rtc->carry_irq > 0) {
812                 free_irq(rtc->carry_irq, rtc);
813                 free_irq(rtc->alarm_irq, rtc);
814         }
815
816         release_resource(rtc->res);
817
818         iounmap(rtc->regbase);
819
820         clk_disable(rtc->clk);
821         clk_put(rtc->clk);
822
823         platform_set_drvdata(pdev, NULL);
824
825         kfree(rtc);
826
827         return 0;
828 }
829
830 static void sh_rtc_set_irq_wake(struct device *dev, int enabled)
831 {
832         struct platform_device *pdev = to_platform_device(dev);
833         struct sh_rtc *rtc = platform_get_drvdata(pdev);
834
835         set_irq_wake(rtc->periodic_irq, enabled);
836
837         if (rtc->carry_irq > 0) {
838                 set_irq_wake(rtc->carry_irq, enabled);
839                 set_irq_wake(rtc->alarm_irq, enabled);
840         }
841 }
842
843 static int sh_rtc_suspend(struct device *dev)
844 {
845         if (device_may_wakeup(dev))
846                 sh_rtc_set_irq_wake(dev, 1);
847
848         return 0;
849 }
850
851 static int sh_rtc_resume(struct device *dev)
852 {
853         if (device_may_wakeup(dev))
854                 sh_rtc_set_irq_wake(dev, 0);
855
856         return 0;
857 }
858
859 static struct dev_pm_ops sh_rtc_dev_pm_ops = {
860         .suspend = sh_rtc_suspend,
861         .resume = sh_rtc_resume,
862 };
863
864 static struct platform_driver sh_rtc_platform_driver = {
865         .driver         = {
866                 .name   = DRV_NAME,
867                 .owner  = THIS_MODULE,
868                 .pm     = &sh_rtc_dev_pm_ops,
869         },
870         .probe          = sh_rtc_probe,
871         .remove         = __devexit_p(sh_rtc_remove),
872 };
873
874 static int __init sh_rtc_init(void)
875 {
876         return platform_driver_register(&sh_rtc_platform_driver);
877 }
878
879 static void __exit sh_rtc_exit(void)
880 {
881         platform_driver_unregister(&sh_rtc_platform_driver);
882 }
883
884 module_init(sh_rtc_init);
885 module_exit(sh_rtc_exit);
886
887 MODULE_DESCRIPTION("SuperH on-chip RTC driver");
888 MODULE_VERSION(DRV_VERSION);
889 MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, "
890               "Jamie Lenehan <lenehan@twibble.org>, "
891               "Angelo Castello <angelo.castello@st.com>");
892 MODULE_LICENSE("GPL");
893 MODULE_ALIAS("platform:" DRV_NAME);